Sample records for constant parameter values

  1. Distribution Development for STORM Ingestion Input Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John

    The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr tomore » a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e -4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e -4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)« less

  2. Projection rule for complex-valued associative memory with large constant terms

    NASA Astrophysics Data System (ADS)

    Kitahara, Michimasa; Kobayashi, Masaki

    Complex-valued Associative Memory (CAM) has an inherent property of rotation invariance. Rotation invariance produces many undesirable stable states and reduces the noise robustness of CAM. Constant terms may remove rotation invariance, but if the constant terms are too small, rotation invariance does not vanish. In this paper, we eliminate rotation invariance by introducing large constant terms to complex-valued neurons. We have to make constant terms sufficiently large to improve the noise robustness. We introduce a parameter to control the amplitudes of constant terms into projection rule. The large constant terms are proved to be effective by our computer simulations.

  3. Accuracy of Time Phasing Aircraft Development using the Continuous Distribution Function

    DTIC Science & Technology

    2015-03-26

    Breusch - Pagan test ; the reported p-value of 0.5264 fails to rejects the null hypothesis of constant... Breusch - Pagan Test : P-value – 0.6911 0 2 4 6 8 10 12 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 Shapiro-Wilk W Test Prob. < W: 0.9849 -1...Weibull Scale Parameter β – Constant Variance Breusch - Pagan Test : P-value – 0.5176 Beta Shape Parameter α – Influential Data

  4. High Throughput pharmacokinetic modeling using computationally predicted parameter values: dissociation constants (TDS)

    EPA Science Inventory

    Estimates of the ionization association and dissociation constant (pKa) are vital to modeling the pharmacokinetic behavior of chemicals in vivo. Methodologies for the prediction of compound sequestration in specific tissues using partition coefficients require a parameter that ch...

  5. Tachyon constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  6. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  7. Anisotropic strange star with Tolman V potential

    NASA Astrophysics Data System (ADS)

    Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.

    In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.

  8. Maximum Mass of Hybrid Stars in the Quark Bag Model

    NASA Astrophysics Data System (ADS)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  9. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    PubMed Central

    Liebermeister, Wolfram; Klipp, Edda

    2006-01-01

    Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669

  10. Call to Adopt a Nominal Set of Astrophysical Parameters and Constants to Improve the Accuracy of Fundamental Physical Properties of Stars

    NASA Astrophysics Data System (ADS)

    Harmanec, Petr; Prša, Andrej

    2011-08-01

    The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius, and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by (1) replacing the solar radius R⊙ and luminosity L⊙ by the nominal values that are by definition exact and expressed in SI units: and ; (2) computing stellar masses in terms of M⊙ by noting that the measurement error of the product GM⊙ is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values and ; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.

  11. Protein dielectric constants determined from NMR chemical shift perturbations.

    PubMed

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P; García-Moreno E, Bertrand; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2013-11-13

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatic calculations are essential for this purpose, but their use has been limited by a long-standing discussion on which value to use for the dielectric constants (ε(eff) and ε(p)) required in Coulombic and Poisson-Boltzmann models. The currently used values for ε(eff) and ε(p) are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for ε(eff) and ε(p) by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in 14 proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (ε(eff)) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (ε(p)) ranged from 2 to 5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders and how different it is from the ε(p) of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of ε(p) = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pK(a) values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable ε(p) common to most folded proteins.

  12. LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.

    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.

  13. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex.

    PubMed

    Riesová, Martina; Svobodová, Jana; Ušelová, Kateřina; Tošner, Zdeněk; Zusková, Iva; Gaš, Bohuslav

    2014-10-17

    In this paper we determine acid dissociation constants, limiting ionic mobilities, complexation constants with β-cyclodextrin or heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and mobilities of resulting complexes of profens, using capillary zone electrophoresis and affinity capillary electrophoresis. Complexation parameters are determined for both neutral and fully charged forms of profens and further corrected for actual ionic strength and variable viscosity in order to obtain thermodynamic values of complexation constants. The accuracy of obtained complexation parameters is verified by multidimensional nonlinear regression of affinity capillary electrophoretic data, which provides the acid dissociation and complexation parameters within one set of measurements, and by NMR technique. A good agreement among all discussed methods was obtained. Determined complexation parameters were used as input parameters for simulations of electrophoretic separation of profens by Simul 5 Complex. An excellent agreement of experimental and simulated results was achieved in terms of positions, shapes, and amplitudes of analyte peaks, confirming the applicability of Simul 5 Complex to complex systems, and accuracy of obtained physical-chemical constants. Simultaneously, we were able to demonstrate the influence of electromigration dispersion on the separation efficiency, which is not possible using the common theoretical approaches, and predict the electromigration order reversals of profen peaks. We have shown that determined acid dissociation and complexation parameters in combination with tool Simul 5 Complex software can be used for optimization of separation conditions in capillary electrophoresis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  15. Ab initio predictions of structural and elastic properties of struvite: contribution to urinary stone research.

    PubMed

    Piechota, Jacek; Prywer, Jolanta; Torzewska, Agnieszka

    2012-01-01

    In the present work, we carried out density functional calculations of struvite--the main component of the so-called infectious urinary stones--to study its structural and elastic properties. Using a local density approximation and a generalised gradient approximation, we calculated the equilibrium structural parameters and elastic constants C(ijkl). At present, there is no experimental data for these elastic constants C (ijkl) for comparison. Besides the elastic constants, we also present the calculated macroscopic mechanical parameters, namely the bulk modulus (K), the shear modulus (G) and Young's modulus (E). The values of these moduli are found to be in good agreement with available experimental data. Our results imply that the mechanical stability of struvite is limited by the shear modulus, G. The study also explores the energy-band structure to understand the obtained values of the elastic constants.

  16. Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model

    NASA Astrophysics Data System (ADS)

    Dhiman, Nisha; Dahiya, Harleen

    2018-05-01

    We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.

  17. Galaxy Formation Efficiency and the Multiverse Explanation of the Cosmological Constant with EAGLE Simulations

    NASA Astrophysics Data System (ADS)

    Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.

  18. Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-07-01

    Models of the very early Universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.

  19. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    NASA Astrophysics Data System (ADS)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  20. An initial-abstraction, constant-loss model for unit hydrograph modeling for applicable watersheds in Texas

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2007-01-01

    Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb

  1. A single fracture toughness parameter for fibrous composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1981-01-01

    A general fracture toughness parameter Qc was previously derived and verified to be a material constant, independent of layup, for centrally cracked boron aluminum composite specimens. The specimens were made with various proportions of 0 and + or - 45 degree plies. A limited amount of data indicated that the ratio Qc/epsilon tuf' where epsilon tuf is the ultimate tensile strain of the fibers, might be a constant for all composite laminates, regardless of material and layup. In that case, a single value of Qc/epsilon tuf could be used to predict the fracture toughness of all fibrous composite laminates from only the elastic constants and epsilon tuf. Values of Qc/epsilon tuf were calculated for centrally cracked specimens made from graphite/polyimide, graphite/epoxy, E glass/epoxy, boron/epoxy, and S glass graphite/epoxy materials with numerous layups. Within ordinary scatter, the data indicate that Qc/epsilon tuf is a constant for all laminates that did not split extensively at the crack tips or have other deviate failure modes.

  2. Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light

    NASA Astrophysics Data System (ADS)

    Özer, Hatice; Delice, Özgür

    2018-03-01

    Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.

  3. Electrical and magnetic properties of rock and soil

    USGS Publications Warehouse

    Scott, J.H.

    1983-01-01

    Field and laboratory measurements have been made to determine the electrical conductivity, dielectric constant, and magnetic permeability of rock and soil in areas of interest in studies of electromagnetic pulse propagation. Conductivity is determined by making field measurements of apparent resisitivity at very low frequencies (0-20 cps), and interpreting the true resistivity of layers at various depths by curve-matching methods. Interpreted resistivity values are converted to corresponding conductivity values which are assumed to be applicable at 10^2 cps, an assumption which is considered valid because the conductivity of rock and soil is nearly constant at frequencies below 10^2 cps. Conductivity is estimated at higher frequencies (up to 10^6 cps) by using statistical correlations of three parameters obtained from laboratory measurements of rock and soil samples: conductivity at 10^2 cps, frequency and conductivity measured over the range 10^2 to 10^6 cps. Conductivity may also be estimated in this frequency range by using field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and conductivity measured over the range 10^2 to 10^6 cps. This method is less accurate because nonrandom variation of ion concentration in natural pore water introduces error. Dielectric constant is estimated in a similar manner from field-derived conductivity values applicable at 10^2 cps and statistical correlations of three parameters obtained from laboratory measurements of samples: conductivity measured at 10^2 cps, frequency, and dielectric constant measured over the frequency range 10^2 to 10^6 cps. Dielectric constant may also be estimated from field measurements of water content and correlations of laboratory sample measurements of the three parameters: water content, frequency, and dielectric constant measured from 10^2 to 10^6 cps, but again, this method is less accurate because of variation of ion concentration of pore water. Special laboratory procedures are used to measure conductivity and dielectric constant of rock and soil samples. Electrode polarization errors are minimized by using an electrode system that is electrochemically reversible-with ions in pore water.

  4. Adaptive vibration suppression system: an iterative control law for a piezoelectric actuator shunted by a negative capacitor.

    PubMed

    Kodejska, Milos; Mokry, Pavel; Linhart, Vaclav; Vaclavik, Jan; Sluka, Tomas

    2012-12-01

    An adaptive system for the suppression of vibration transmission using a single piezoelectric actuator shunted by a negative capacitance circuit is presented. It is known that by using a negative-capacitance shunt, the spring constant of a piezoelectric actuator can be controlled to extreme values of zero or infinity. Because the value of spring constant controls a force transmitted through an elastic element, it is possible to achieve a reduction of transmissibility of vibrations through the use of a piezoelectric actuator by reducing its effective spring constant. Narrow frequency range and broad frequency range vibration isolation systems are analyzed, modeled, and experimentally investigated. The problem of high sensitivity of the vibration control system to varying operational conditions is resolved by applying an adaptive control to the circuit parameters of the negative capacitor. A control law that is based on the estimation of the value of the effective spring constant of a shunted piezoelectric actuator is presented. An adaptive system which achieves a self-adjustment of the negative capacitor parameters is presented. It is shown that such an arrangement allows the design of a simple electronic system which offers a great vibration isolation efficiency under variable vibration conditions.

  5. Study of the charge dependence of the pion–nucleon coupling constant on the basis of data on low-energy nucleon–nucleon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babenko, V. A.; Petrov, N. M., E-mail: pet2@ukr.net

    2016-01-15

    The relation between quantities that characterize the pion–nucleon and nucleon–nucleon interactions is studied with allowance for the fact that, at low energies, nuclear forces in nucleon–nucleon systems are mediated predominantly by one-pion exchange. On the basis of the values currently recommended for the low-energy parameters of the proton–proton interaction, the charged pion–nucleon coupling constant is evaluated at g{sub π}{sup 2}±/4π = 14.55(13). This value is in perfect agreement with the experimental value of g{sub π}{sup 2}±/4π = 14.52(26) found by the Uppsala Neutron Research Group. At the same time, the value obtained for the charged pion–nucleon coupling constant differs sizablymore » from the value of the pion–nucleon coupling constant for neutral pions, which is g{sub π}{sup 2} 0/4π = 13.55(13). This is indicative of a substantial charge dependence of the coupling constant.« less

  6. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    PubMed

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.

  7. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  8. Role of constant value of surface diffuseness in alpha decay half-lives of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Dehghani, V.; Alavi, S. A.; Benam, Kh.

    2018-05-01

    By using WKB method and considering deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential, the alpha decay half-lives of 68 superheavy alpha emitters have been calculated. The effect of the constant value of surface diffuseness parameter in the range of 0.1 ≤ a ≤ 0.9 (fm) on the potential barrier, tunneling probability, assault frequency, and alpha decay half-lives has been investigated. Significant differences were observed for alpha decay half-lives and decay quantities in this range of surface diffuseness. Good agreement between calculated half-lives with fitted surface diffuseness parameter a = 0.54 (fm) and experiment was observed.

  9. The value of mechanistic biophysical information for systems-level understanding of complex biological processes such as cytokinesis.

    PubMed

    Pollard, Thomas D

    2014-12-02

    This review illustrates the value of quantitative information including concentrations, kinetic constants and equilibrium constants in modeling and simulating complex biological processes. Although much has been learned about some biological systems without these parameter values, they greatly strengthen mechanistic accounts of dynamical systems. The analysis of muscle contraction is a classic example of the value of combining an inventory of the molecules, atomic structures of the molecules, kinetic constants for the reactions, reconstitutions with purified proteins and theoretical modeling to account for the contraction of whole muscles. A similar strategy is now being used to understand the mechanism of cytokinesis using fission yeast as a favorable model system. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  11. Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites

    NASA Astrophysics Data System (ADS)

    Davalos, Jorge A. G.; Carvano, Jorge Márcio; Blanco, Julio

    2017-03-01

    Radiative transfer models in particulate media (Hapke, 1981, 1993, 2012b; Shkuratov et al., 1999) are the most versatile tool that can be used to retrieve both composition and surface physical properties from observation of asteroids and other atmosphereless bodies of the Solar System. One caveat is that these methods require as input a sufficiently comprehensive set of optical constants of suitable template materials. These optical constants are the real and imaginary parts of the refractive indexes of the material as function of wavelength, and have to be derived from laboratory measurements of samples of minerals and meteorites. Optical constants can be calculated from a variety of types of measurements, and each has its problems and limitations. In particular, a problem with the determination of optical constants from measurement of reflectance is that the measurements need to be themselves interpreted using radiative transfer models. This is an issue because the number of parameters used in the most accurate versions of the radiative transfer models is large, and for most of the samples many of these parameters were not measured independently. As a result, attempts in the literature to retrieve optical constants from reflectance measurements tend to assume values for the unknown parameters, which can lead to uncertainties in the retrieved optical constants that can be difficult to quantify. In this work we propose a numerical method that allows the simultaneous inversion of the optical constant and the model parameters. This model is then applied to a set of reflectance spectra of 5 HED meteorites from the RELAB database that were measured with the same setup for samples with several particle size intervals. Our results indicate that our method is able to retrieve optical constants which are able to reproduce the measured reflectance of the samples over a large range (25-500 μm) of particle diameters. It is also found that the solutions obtained in this way are non-unique, in the sense that many combination of the model parameters can yield different sets of optical constants that fit equally well the reflectance spectra. Thus, in the absence of the independent determination of at least some of the model parameter the method is unable to decide which solution correspond to the physical optical constants of the materials. Even so, the dispersion of the model parameters (in particular effective particle diameter and porosity) for acceptable solutions (defined as the ones that reproduce the measured reflectance spectra at all size range with residues smaller than 10%) is within a radius of around 30% of the value of the best fit solution for each parameter. Given the ability of the optical constants derived with this method to reproduce the sample spectra over a large range of particle sizes, they can be used without other restriction to assess if a given meteorite assemblage is contributing to the observed spectra of asteroids. However, quantitative informations that can also be derived using these optical constants, like particle sizes, porosity and volumetric fractions of each end-member in a mixture should be regarded only as rough estimates.

  12. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  13. Computation of restoration of ligand response in the random kinetics of a prostate cancer cell signaling pathway.

    PubMed

    Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu

    2011-01-01

    Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  15. Microwave spectrum and structural parameters for the formamide-formic acid dimer.

    PubMed

    Daly, Adam M; Sargus, Bryan A; Kukolich, Stephen G

    2010-11-07

    The rotational spectra for six isotopologues of the complex formed between formamide and formic acid have been measured using a pulsed-beam Fourier transform microwave spectrometer and analyzed to obtain rotational constants and quadrupole coupling parameters. The rotational constants and quadrupole coupling strengths obtained for H  (12)COOH-H(2)  (14)NCOH are A = 5889.465(2), B = 2148.7409(7), 1575.1234(6), eQq(aa) = 1.014(5), eQq(bb) = 1.99(1), and eQq(cc) = -3.00(1) MHz. Using the 15 rotational constants obtained for the H  (13)COOH, HCOOD, DCOOH, and H(2)  (15)NCHO isotopologues, key structural parameters were obtained from a least-squares structure fit. Hydrogen bond distances of 1.78 Å for R(O3⋯H1) and 1.79 Å for R(H4⋯O1) were obtained. The "best fit" value for the angle(C-O-H) of formic acid is significantly larger than the monomer value of 106.9° with an optimum value of 121.7(3)°. The complex is nearly planar with inertial defect Δ = -0.158 amu  Å(2). The formamide proton is moved out of the molecular plane by 15(3)° for the best fit structure. Density functional theory using B3PW91, HCTH407, and TPSS as well as MP2 and CCSD calculations were performed using 6-311++G(d,p) and the results were compared to experimentally determined parameters.

  16. Constraints on a generalized deceleration parameter from cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Mamon, Abdulla Al

    2018-04-01

    In this paper, we have proposed a generalized parametrization for the deceleration parameter q in order to study the evolutionary history of the universe. We have shown that the proposed model can reproduce three well known q-parametrized models for some specific values of the model parameter α. We have used the latest compilation of the Hubble parameter measurements obtained from the cosmic chronometer (CC) method (in combination with the local value of the Hubble constant H0) and the Type Ia supernova (SNIa) data to place constraints on the parameters of the model for different values of α. We have found that the resulting constraints on the deceleration parameter and the dark energy equation of state support the ΛCDM model within 1σ confidence level at the present epoch.

  17. Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. L. Kelly; A. Malkhasyan

    2010-09-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  18. Bayesian Inference for Time Trends in Parameter Values: Case Study for the Ageing PSA Network of the European Commission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana L. Kelly; Albert Malkhasyan

    2010-06-01

    There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less

  19. Interaction of anisotropic dark energy fluid with perfect fluid in the presence of cosmological term Λ

    NASA Astrophysics Data System (ADS)

    Singh, S. Surendra

    2018-05-01

    Considering the locally rotationally symmetric (LRS) Bianchi type-I metric with cosmological constant Λ, Einstein’s field equations are discussed based on the background of anisotropic fluid. We assumed the condition A = B 1 m for the metric potentials A and B, where m is a positive constant to obtain the viable model of the Universe. It is found that Λ(t) is positive and inversely proportional to time. The values of matter-energy density Ωm, dark energy density ΩΛ and deceleration parameter q are found to be consistent with the values of WMAP observations. State finder parameters and anisotropic deviation parameter are also investigated. It is also observed that the derived model is an accelerating, shearing and non-rotating Universe. Some of the asymptotic and geometrical behaviors of the derived models are investigated with the age of the Universe.

  20. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  1. Henry's Constants of Persistent Organic Pollutants by a Group-Contribution Method Based on Scaled-Particle Theory.

    PubMed

    Razdan, Neil K; Koshy, David M; Prausnitz, John M

    2017-11-07

    A group-contribution method based on scaled-particle theory was developed to predict Henry's constants for six families of persistent organic pollutants: polychlorinated benzenes, polychlorinated biphenyls, polychlorinated dibenzodioxins, polychlorinated dibenzofurans, polychlorinated naphthalenes, and polybrominated diphenyl ethers. The group-contribution model uses limited experimental data to obtain group-interaction parameters for an easy-to-use method to predict Henry's constants for systems where reliable experimental data are scarce. By using group-interaction parameters obtained from data reduction, scaled-particle theory gives the partial molar Gibbs energy of dissolution, Δg̅ 2 , allowing calculation of Henry's constant, H 2 , for more than 700 organic pollutants. The average deviation between predicted values of log H 2 and experiment is 4%. Application of an approximate van't Hoff equation gives the temperature dependence of Henry's constants for polychlorinated biphenyls, polychlorinated naphthalenes, and polybrominated diphenyl ethers in the environmentally relevant range 0-40 °C.

  2. Constraining cosmologies with fundamental constants - I. Quintessence and K-essence

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.

    2013-01-01

    Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.

  3. CALCULATING PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FOR ENVIRONMENTAL MODELING FROM MOLECULAR STRUCTURE

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values-- that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed t...

  4. The brilliant blue FCF ion-molecular forms in solutions according to the spectrophotometry data

    NASA Astrophysics Data System (ADS)

    Chebotarev, A. N.; Bevziuk, K. V.; Snigur, D. V.; Bazel, Ya. R.

    2017-10-01

    The brilliant blue FCF acid-base properties in aqueous solutions have been studied and its ionization constants have been defined by tristimulus colorimetry and spectrophotometry methods. The scheme of the acid-base dye equilibrium has been proposed and a diagram of the distribution of its ionic-molecular forms has been built. It has been established that the dominant form of the dye was the electroneutral form, which molar absorptivity (ɛ625 = 0.97 × 105) increases with the increase of the dielectric permittivity of the solvent. It has been shown that the replacement of polar solvents by less polar ones is causing a bathochromic shift of the maximum absorption band of the dye, the value of which is correlated with the value of the Hansen parameter. Tautomerization constants have been defined in a number of solvents and associated with the value of the Dimroth-Reichardt parameter.

  5. Henry's law constants for dimethylsulfide in freshwater and seawater

    NASA Technical Reports Server (NTRS)

    Dacey, J. W. H.; Wakeham, S. G.; Howes, B. L.

    1984-01-01

    Distilled water and several waters of varying salinity were subjected, over a 0-32 C temperature range, to measurements for Henry's law constants for dimethylsulfide. Values for distilled water and seawater of the solubility parameters A and C are obtained which support the concept that the concentration of dimethylsulfide in the atmosphere is far from equilibrium with seawater.

  6. Equilibrium constants and protonation site for N-methylbenzenesulfonamides

    PubMed Central

    Rosa da Costa, Ana M; García-Río, Luis; Pessêgo, Márcia

    2011-01-01

    Summary The protonation equilibria of four substituted N-methylbenzenesulfonamides, X-MBS: X = 4-MeO (3a), 4-Me (3b), 4-Cl (3c) and 4-NO2 (3d), in aqueous sulfuric acid were studied at 25 °C by UV–vis spectroscopy. As expected, the values for the acidity constants are highly dependent on the electron-donor character of the substituent (the pK BH+ values are −3.5 ± 0.2, −4.2 ± 0.2, −5.2 ± 0.3 and −6.0 ± 0.3 for 3a, 3b, 3c and 3d, respectively). The solvation parameter m* is always higher than 0.5 and points to a decrease in the importance of solvation on the cation stabilization as the electron-donor character of the substituent increases. Hammett plots of the equilibrium constants showed a better correlation with the σ+ substituent parameter than with σ, which indicates that the initial protonation site is the oxygen atom of the sulfonyl group. PMID:22238552

  7. Multiverse understanding of cosmological coincidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant,more » the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.« less

  8. Vacuum phase transition solves the H0 tension

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Linder, Eric V.; Melchiorri, Alessandro

    2018-02-01

    Taking the Planck cosmic microwave background data and the more direct Hubble constant measurement data as unaffected by systematic offsets, the values of the Hubble constant H0 interpreted within the Λ CDM cosmological constant and cold dark matter cosmological model are in ˜3.3 σ tension. We show that the Parker vacuum metamorphosis (VM) model, physically motivated by quantum gravitational effects and with the same number of parameters as Λ CDM , can remove the H0 tension and can give an improved fit to data (up to a mean Δ χ2=-7.5 ). It also ameliorates tensions with weak lensing data and the high redshift Lyman alpha forest data. Considering Bayesian evidence, we found in the case of the Planck data set alone positive evidence for a VM model against a cosmological constant both in the six- and nine-parameter framework. When the R16 data set is also considered, we found a strong evidence for the VM model against a cosmological constant in nine-parameter space. We separately consider a scale-dependent scaling of the gravitational lensing amplitude, such as provided by modified gravity, neutrino mass, or cold dark energy, motivated by the somewhat different cosmological parameter estimates for low and high CMB multipoles. We find that no such scale dependence is preferred.

  9. Simple liquid models with corrected dielectric constants

    PubMed Central

    Fennell, Christopher J.; Li, Libo; Dill, Ken A.

    2012-01-01

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  10. The greenhouse effect in a gray planetary atmosphere.

    NASA Technical Reports Server (NTRS)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  11. Determination of the dissociation constants (pKa) of secondary and tertiary amines in organic media by capillary electrophoresis and their role in the electrophoretic mobility order inversion.

    PubMed

    Cantu, Marcelo Delmar; Hillebranda, Sandro; Carrilho, Emanuel

    2005-03-11

    Non-aqueous capillary electrophoresis (NACE) may provide a selectivity enhancement in separations since the analyte dissociation constants (pKa) in organic media are different from those in aqueous solutions. In this work, we have studied the inversion in mobility order observed in the separation of tertiary (imipramine (IMI) and amitryptiline (AMI)) and secondary amines (desipramine (DES) and nortryptiline (NOR)) in water, methanol, and acetonitrile. We have determined the pKa values in those solvents and the variation of dissociation constants with the temperature. From these data, and applying the Van't Hoff equation, we have calculated the thermodynamic parameters deltaH and deltaS. The pKa values found in methanol for DES, NOR, IMI, and AMI were 10.80, 10.79, 10.38, and 10.33, respectively. On the other hand, in acetonitrile an opposite relation was found since the values were 20.60, 20.67, 20.74, and 20.81 for DES, NOR, IMI, and AMI. This is the reason why a migration order inversion is observed in NACE for these solvents. The thermodynamic parameters were evaluated and presented a tendency that can be correlated with that observed for pKa values.

  12. Geometrical feature of the scaling behavior of the limit-point pressure of inflated hyperelastic membranes.

    PubMed

    Tamadapu, Ganesh; Dhavale, Nikhil Nandkumar; DasGupta, Anirvan

    2013-11-01

    The occurrence of the limit-point instability is an intriguing phenomenon observed during stretching of hyperelastic membranes. In toy rubber balloons, this phenomenon may be experienced in the sudden reduction in the level of difficulty of blowing the balloon accompanied by its rapid inflation. The present paper brings out a link between the geometry and strain-hardening parameter of the membrane, and the occurrence of the limit-point instability. Inflation of membranes with different geometries and boundary conditions is considered, and the corresponding limit-point pressures are obtained for different strain-hardening parameter values. Interestingly, it is observed that the limit-point pressure for the different geometries is inversely proportional to a geometric parameter of the uninflated membrane. This dependence is shown analytically, which can be extended to a general membrane geometry. More surprisingly, the proportionality constant has a power-law dependence on the nondimensional material strain-hardening parameter. The constants involved in the power-law relation are universal constants for a particular membrane geometry.

  13. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  14. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  15. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy.

    PubMed

    Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H

    2017-12-01

    Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.

  16. Fracture toughness of boron/aluminum laminates with various proportions of 0 deg and plus or minus 45 deg

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Sova, J. A.

    1980-01-01

    The fracture toughness of boron/aluminum laminates was measured on sheet specimens containing central slits of various lengths that represent cracks. The specimens were loaded axially and had various widths. The sheets were made with five laminate orientation. Fracture toughness was calculated for each laminate orientation. Specimens began failing at the ends of the slit with what appeared to be tensile failures of fibers in the primary load carrying laminae. A general fracture toughness parameter independent of laminate orientation was derived on the basis of fiber failure in the principal load carrying laminae. The value of this parameter was proportional to the critical value of the stress intensity factor. The constant of proportionality depended only on the elastic constants of the laminates.

  17. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation With Dynamic Contrast-Enhanced MRI Parameters.

    PubMed

    Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna

    2016-02-01

    The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.

  18. Modelling audiovisual integration of affect from videos and music.

    PubMed

    Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V

    2018-05-01

    Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.

  19. Studies on some Pharmacognostic profiles of Pithecell’obium dulce Benth. Leaves (Leguminosae)

    PubMed Central

    Sugumaran, M.; Vetrichelvan, T.; Venkapayya, D

    2006-01-01

    The macroscopical characters of the leaves, leaf constants, physico-chemical constants, extractive values, colour, consistency, pH, extractive values with different solvents, micro chemical test, fluorescence characters of liquid extracts and leaf powder after treatment with different chemical reagents under visible and UV light at 254mn, measurement of cell and tissues were studied to fix some pharmacognostical parameters for leaves of Pithecellobium, dulce Benth which will enable the future investigators for identification of the plant. Preliminary phytochemical study on different extracts of the leaves were also performed. PMID:22557213

  20. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-07

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.

  1. Effects of lattice parameters on piezoelectric constants in wurtzite materials: A theoretical study using first-principles and statistical-learning methods

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2018-04-01

    Longitudinal piezoelectric constant (e 33) values of wurtzite materials, which are listed in a structure database, are calculated and analyzed by using first-principles and statistical learning methods. It is theoretically shown that wurtzite materials with high e 33 generally have small lattice constant ratios (c/a) almost independent of constituent elements, and approximately expressed as e 33 ∝ c/a - (c/a)0 with ideal lattice constant ratio (c/a)0. This relation also holds for highly-piezoelectric ternary materials such as Sc x Al1- x N. We conducted a search for high-piezoelectric wurtzite materials by identifying materials with smaller c/a values. It is proposed that the piezoelectricity of ZnO can be significantly enhanced by substitutions of Zn with Ca.

  2. Time Domain Estimation of Arterial Parameters using the Windkessel Model and the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gostuski, Vladimir; Pastore, Ignacio; Rodriguez Palacios, Gaspar; Vaca Diez, Gustavo; Moscoso-Vasquez, H. Marcela; Risk, Marcelo

    2016-04-01

    Numerous parameter estimation techniques exist for characterizing the arterial system using electrical circuit analogs. However, they are often limited by their requirements and usually high computational burdain. Therefore, a new method for estimating arterial parameters based on Monte Carlo simulation is proposed. A three element Windkessel model was used to represent the arterial system. The approach was to reduce the error between the calculated and physiological aortic pressure by randomly generating arterial parameter values, while keeping constant the arterial resistance. This last value was obtained for each subject using the arterial flow, and was a necessary consideration in order to obtain a unique set of values for the arterial compliance and peripheral resistance. The estimation technique was applied to in vivo data containing steady beats in mongrel dogs, and it reliably estimated Windkessel arterial parameters. Further, this method appears to be computationally efficient for on-line time-domain estimation of these parameters.

  3. Diagnosing ΛHDE model with statefinder hierarchy and fractional growth parameter

    NASA Astrophysics Data System (ADS)

    Zhou, LanJun; Wang, Shuang

    2016-07-01

    Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant ΩΛ0, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩΛ0 and c on the ΛHDE model. In this paper, we apply various DE diagnostic tools to diagnose ΛHDE models with different values of ΩΛ0 and c; these tools include statefinder hierarchy {S 3 (1) , S 4 (1) }, fractional growth parameter ɛ, and composite null diagnostic (CND), which is a combination of {S 3 (1) , S 4 (1) } and ɛ. We find that: (1) adopting different values of ΩΛ0 only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts; (2) compared with S 3 (1) , S 4 (1) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different ΩΛ0 or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.

  4. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  5. Radiation Parameters of High Dose Rate Iridium -192 Sources

    NASA Astrophysics Data System (ADS)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  6. Possible determination of the physical parameters of the first living cells based on the fundamental physical constants

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2016-12-01

    Here is developed the hypothesis that the cell parameters of unicellular organisms (Prokaryotes and Eukaryotes) are determined by the gravitational constant (G, N.m2 /kg2), Planck constant (h, J.s) and growth rate of cells. By scaling analyses it was shown that the growth rate vgr(m/s) of unicellular bacteria and protozoa is relatively constant parameter, ranging in a narrow window of 10-12 - 10-10 m/s, in comparison to the diapason of cell mass, ranging 10 orders of magnitudes from 10-17 kg in bacteria to 10-7 kg in amoebas. By dimensional analyses it was shown that the combination between the growth rate of cells, gravitational constant and Planck constant gives equations with dimension of mass M(vgr)=(h.vgr/G)½ in kg, length L(v gr)=(hṡG/vgr3)1/2 in meter, time T(vgr)=(hṡG/vgr5)1/2 in seconds, and density ρ ((vgr)=vgr.3.5/hG2 in kg/m3 . For growth rate vgr in diapason of 1×10-11 m/s - 1×10-9.5 m/s the calculated numerical values for mass (3×10-18 -1×10-16 kg), length (5×10-8 -1×10-5 m), time (1×102 -1×106 s) and density (1×10-1 - 1×104 kg/m3) overlaps with diapason of experimentally measured values for cell mass (3×10-18 -1×10-15 kg), volume to surface ratio (1×10-7 -1×10-4 m), doubling time (1×103 -1×107 s), and density (1050 - 1300 kg/m3) in bacteria and protozoa. These equations show that appearance of the first living cells could be mutually connected to the physical constants.

  7. (13)C NMR substituent-induced chemical shifts in 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-ones (thiones).

    PubMed

    Kara, Yesim Saniye

    2015-01-01

    In the present, study mostly novel ten 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-ones and ten 4-(substituted phenyl)-3-phenyl-1,2,4-oxadiazol-5(4H)-thiones were synthesized. These oxadiazole derivatives were characterized by IR, (1)H NMR, (13)C NMR and elemental analyses. Their (13)C NMR spectra were measured in Deuterochloroform (CDCl3). The correlation analysis for the substituent-induced chemical shift (SCS) with Hammett substituent constants (σ), Brown Okamoto substituent constants (σ(+), σ(-)), inductive substituent constants (σI) and different of resonance substituent constants (σR, σR(o)) were performed using SSP (single substituent parameter), DSP (dual substituent parameter) and DSP-NLR (dual substituent parameter-non-linear resonance) methods, as well as single and multiple regression analysis. Negative ρ values were found for all correlations (reverse substituent effect). The results of all statistical analyses, (13)C NMR chemical shift of CN, CO and CS carbon of oxadiazole rings have shown satisfactory correlation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Classification of solutions of elliptic equations arising from a gravitational O(3) gauge field model

    NASA Astrophysics Data System (ADS)

    Choi, Nari; Han, Jongmin

    2018-04-01

    In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.

  9. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  10. MC3: Multi-core Markov-chain Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

    2016-10-01

    MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

  11. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  12. The Submillimeter Wave Spectrum of Isotopic Methyl Cyanide

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mueller, H. S. P.

    1996-01-01

    The laboratory submillimeter wave rotational spectrum of the 13CH3CN, CH3C13CN, and CH3C15N isotopomers of methyl cyanide has been observed in natural abundance in the 294 to 607 GHz region. The maximum J and K values are 34 and 14, respectively. Fifteen additional CH3CN transitions up to K = 21 were also measured. The transitions of all four species are fitted to a symmetric top Hamiltonian, and the rotation and distortion constants are determined. The 14N quadrupole and spin rotation coupling constants are also calculated and presented. Suggested values for many other parameters, which could not be directly determined from the isotope spectra, are calculated from the normal species values and isotope relationships. The determined and calculated constants should predict the spectrum of the three isotopomers to well over 1 THz accurately enough for astronomical assignments.

  13. Modelling chemical depletion profiles in regolith

    USGS Publications Warehouse

    Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.

    2008-01-01

    Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.

  14. Modeling of polymer photodegradation for solar cell modules

    NASA Technical Reports Server (NTRS)

    Somersall, A. C.; Guillet, J. E.

    1982-01-01

    It was shown that many of the experimental observations in the photooxidation of hydrocarbon polymers can be accounted for with a computer simulation using an elementary mechanistic model with corresponding rate constants for each reaction. For outdoor applications, however, such as in photovoltaics, the variation of temperature must have important effects on the useful lifetimes of such materials. The data bank necessary to replace the isothermal rate constant values with Arrhenius activation parameters: A (the pre-exponential factor) and E (the activation energy) was searched. The best collection of data assembled to data is summarized. Note, however, that the problem is now considerably enlarged since from a theoretical point of view, with 51 of the input variables replaced with 102 parameters. The sensitivity of the overall scheme is such that even after many computer simulations, a successful photooxidation simulation with the expanded variable set was not completed. Many of the species in the complex process undergo a number of competitive pathways, the relative importance of each being often sensitive to small changes in the calculated rate constant values.

  15. Solar Energy Monitor In Space (SEMIS)

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1974-01-01

    Measurements made at high altitudes from aircraft have resulted in the establishment of standard values of the solar constant and extraterrestrial solar spectral irradiance. These standard values and other solar spectral curves are described. The problem of possible variations of the solar constant and solar spectrum and their influence on the earth-atmosphere system and weather related phenomena is examined. It is shown that the solar energy input parameters should be determined with considerably greater accuracy and precision than has been possible. An instrument package designed as a compact, low weight solar energy monitor in space (SEMIS) is described.

  16. The effects of rigid motions on elastic network model force constants

    PubMed Central

    Lezon, Timothy R.

    2012-01-01

    Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562

  17. Lattice-dynamical model for the filled skutterudite LaFe4Sb12: Harmonic and anharmonic couplings

    NASA Astrophysics Data System (ADS)

    Feldman, J. L.; Singh, D. J.; Bernstein, N.

    2014-06-01

    The filled skutterudite LaFe4Sb12 shows greatly reduced thermal conductivity compared to that of the related unfilled compound CoSb3, although the microscopic reasons for this are unclear. We calculate harmonic and anharmonic force constants for the interaction of the La filler atom with the framework atoms. We find that force constants show a general trend of decaying rapidly with distance and are very small for the interaction of the La with its next-nearest-neighbor Sb and nearest-neighbor La. However, a few rather long-range interactions, such as with the next-nearest-neighbor La and with the third neighbor Sb, are surprisingly strong, although still small. We test the central-force approximation and find significant deviations from it. Using our force constants we calculate a bare La mode Gruneisen parameter and find a value of 3-4, substantially higher than values associated with cage atom anharmonicity, i.e., a value of about 1 for CoSb3 but much smaller than a previous estimate [Bernstein et al., Phys. Rev. B 81, 134301 (2010), 10.1103/PhysRevB.81.134301]. This latter difference is primarily due to the previously used overestimate of the La-Fe cubic force constants. We also find a substantial negative contribution to this bare La Gruneisen parameter from the aforementioned third-neighbor La-Sb interaction. Our results underscore the need for rather long-range interactions in describing the role of anharmonicity on the dynamics in this material.

  18. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  19. How fundamental are fundamental constants?

    NASA Astrophysics Data System (ADS)

    Duff, M. J.

    2015-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  20. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.

    PubMed

    Fuentes-Azcatl, Raúl; Alejandre, José

    2014-02-06

    The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.

  1. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  2. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  3. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    PubMed

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  4. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty

    PubMed Central

    Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M.

    2017-01-01

    Summary Introduction Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. Methods A new analytical wear model, based upon Archard’s law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. Results The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. Conclusions It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise. PMID:29721453

  5. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  6. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Shantaram, S. Pai; Gyekenyesi, John P.

    1989-01-01

    The calculation of shape and scale parametes of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by using the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  7. VERIFICATION AND VALIDATION OF THE SPARC MODEL

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values--that is, the physical and chemical constants that govern reactivity. Although empirical structure-activity relationships that allow estimation of some ...

  8. Viscosity effects on the thermal decomposition of bis(perfluoro-2-N-propoxypropionyl) peroxide in dense carbon dioxide and fluorinated solvents.

    PubMed

    Bunyard, W C; Kadla, J F; DeYoung, J; DeSimone, J M

    2001-08-01

    The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.

  9. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  10. Parameter Balancing in Kinetic Models of Cell Metabolism†

    PubMed Central

    2010-01-01

    Kinetic modeling of metabolic pathways has become a major field of systems biology. It combines structural information about metabolic pathways with quantitative enzymatic rate laws. Some of the kinetic constants needed for a model could be collected from ever-growing literature and public web resources, but they are often incomplete, incompatible, or simply not available. We address this lack of information by parameter balancing, a method to complete given sets of kinetic constants. Based on Bayesian parameter estimation, it exploits the thermodynamic dependencies among different biochemical quantities to guess realistic model parameters from available kinetic data. Our algorithm accounts for varying measurement conditions in the input data (pH value and temperature). It can process kinetic constants and state-dependent quantities such as metabolite concentrations or chemical potentials, and uses prior distributions and data augmentation to keep the estimated quantities within plausible ranges. An online service and free software for parameter balancing with models provided in SBML format (Systems Biology Markup Language) is accessible at www.semanticsbml.org. We demonstrate its practical use with a small model of the phosphofructokinase reaction and discuss its possible applications and limitations. In the future, parameter balancing could become an important routine step in the kinetic modeling of large metabolic networks. PMID:21038890

  11. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  12. Weak gravitational lensing of quantum perturbed lukewarm black holes and cosmological constant effect

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, Hossein; Mojahedi, Mojtaba Amir

    2017-05-01

    The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter Λ. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample source β =-\\tfrac{π }{4}, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations {θ }E(β =0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ɛ =\\tfrac{16{{Λ }}{M}2}{3}. The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x 0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001< ɛ < 0.01.

  13. Couple stress fluid flow in a rotating channel with peristalsis

    NASA Astrophysics Data System (ADS)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  14. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  15. The validation of a generalized Hooke's law for coronary arteries.

    PubMed

    Wang, Chong; Zhang, Wei; Kassab, Ghassan S

    2008-01-01

    The exponential form of constitutive model is widely used in biomechanical studies of blood vessels. There are two main issues, however, with this model: 1) the curve fits of experimental data are not always satisfactory, and 2) the material parameters may be oversensitive. A new type of strain measure in a generalized Hooke's law for blood vessels was recently proposed by our group to address these issues. The new model has one nonlinear parameter and six linear parameters. In this study, the stress-strain equation is validated by fitting the model to experimental data of porcine coronary arteries. Material constants of left anterior descending artery and right coronary artery for the Hooke's law were computed with a separable nonlinear least-squares method with an excellent goodness of fit. A parameter sensitivity analysis shows that the stability of material constants is improved compared with the exponential model and a biphasic model. A boundary value problem was solved to demonstrate that the model prediction can match the measured arterial deformation under experimental loading conditions. The validated constitutive relation will serve as a basis for the solution of various boundary value problems of cardiovascular biomechanics.

  16. A graphical approach to optimizing variable-kernel smoothing parameters for improved deformable registration of CT and cone beam CT images

    NASA Astrophysics Data System (ADS)

    Hart, Vern; Burrow, Damon; Li, X. Allen

    2017-08-01

    A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases  >0.6% from the regression line.

  17. Economic design of control charts considering process shift distributions

    NASA Astrophysics Data System (ADS)

    Vommi, Vijayababu; Kasarapu, Rukmini V.

    2014-09-01

    Process shift is an important input parameter in the economic design of control charts. Earlier control chart designs considered constant shifts to occur in the mean of the process for a given assignable cause. This assumption has been criticized by many researchers since it may not be realistic to produce a constant shift whenever an assignable cause occurs. To overcome this difficulty, in the present work, a distribution for the shift parameter has been considered instead of a single value for a given assignable cause. Duncan's economic design model for chart has been extended to incorporate the distribution for the process shift parameter. It is proposed to minimize total expected loss-cost to obtain the control chart parameters. Further, three types of process shifts namely, positively skewed, uniform and negatively skewed distributions are considered and the situations where it is appropriate to use the suggested methodology are recommended.

  18. Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory

    NASA Technical Reports Server (NTRS)

    Lee, D. L.; Caves, C. M.

    1974-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.

  19. Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory

    NASA Technical Reports Server (NTRS)

    Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.

    1976-01-01

    The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.

  20. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  1. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media.

    PubMed

    Chakraborty, Moumita; Panda, Amiya Kumar

    2011-10-15

    Photophysical behaviour of the anionic xanthene dye, eosin Y (EY) was investigated in solvents of different polarities as well as in the presence of aqueous cationic surfactants. From the correlation between E(T)(30) and Kosower Z values of EY in different solvents, subsequent parameters for EY were determined in the presence of surfactants. A red shift, both in the absorption and emission spectra of EY, was observed with decreasing solvent polarity. Dimerisation of EY was found to be dependent on solvent polarity. Cationic surfactants retarded the process of dimerisation, which were evident from the lower dimerisation constant (K(D)) values, compared to that of in pure water. Dye-surfactant interaction constants were determined at different temperatures (298-318 K) and subsequently the thermodynamic parameters, viz., ΔG°, ΔH° and ΔS° were evaluated using the interaction constant values. The fluorescence spectra of EY followed the same trend as in the absorption spectra, although with lesser extents. Stokes shifts were calculated and correlated with the polarity of the medium. Fluorescence of EY was initially quenched by the cationic surfactants in their pre-micellar region, which then followed a red shift with intensity enhancement. Fluorescence quenching was found to be of Stern-Volmer type where the excited state lifetime of EY remained unchanged in different surfactant media. However, the anisotropy value of EY was changed in the post micellar region of surfactants. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. On similarity solutions of a boundary layer problem with an upstream moving wall

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Lakin, W. D.; Nachman, A.

    1986-01-01

    The problem of a boundary layer on a flat plate which has a constant velocity opposite in direction to that of the uniform mainstream is examined. It was previously shown that the solution of this boundary value problem is crucially dependent on the parameter which is the ratio of the velocity of the plate to the velocity of the free stream. In particular, it was proved that a solution exists only if this parameter does not exceed a certain critical value, and numerical evidence was adduced to show that this solution is nonunique. Using Crocco formulation the present work proves this nonuniqueness. Also considered are the analyticity of solutions and the derivation of upper bounds on the critical value of wall velocity parameter.

  3. Measure synchronization in a Huygens's non-dissipative two-pendulum clocks system

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Chen, ZiChen; Qiu, HaiBo; Xi, XiaoQiang

    2018-01-01

    In this paper, we characterize measure synchronization (MS) in a four-degrees-of-freedom Huygens's two-pendulum clocks system. The two-pendulum clocks are connected by a massless spring with stiffness constant k. We find that with the stiffness constant k increasing, the coupled pendulums system achieves MS above a threshold value of k c . The energy characteristics of measure synchronization have been discussed, it is found that averaged energy of each pendulum system provide us an easy way to characterize MS transition. Furthermore, we discuss the dependence of the critical value for MS transition on initial conditions and the characteristic parameters of the system.

  4. Magnetization of the Ising model on the Sierpinski pastry-shell

    NASA Astrophysics Data System (ADS)

    Chame, Anna; Branco, N. S.

    1992-02-01

    Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.

  5. Optimal plane change during constant altitude hypersonic flight

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Vinh, N. X.; Kuo, S. H.

    1988-01-01

    Future spacecraft operating in the vicinity of the earth may have resort to the atmosphere as an aid in effecting orbital change. While a previous treatment of this technique chose constant altitude, speed, and angle-of-attack values in order to maximize the plane change for a fixed amount of propellant consumption during hypersonic flight, the former two parameters are presently released from the constraint of constancy. The general characteristics of the optimal controls are described on the basis of the domain of maneuverability, and numerical solutions are obtained for several specific cases. Under the condition of constant-altitude flight, it is generally not optimal to fly at constant angle-of-attack.

  6. Unified Scaling Law for flux pinning in practical superconductors: II. Parameter testing, scaling constants, and the Extrapolative Scaling Expression

    NASA Astrophysics Data System (ADS)

    Ekin, Jack W.; Cheggour, Najib; Goodrich, Loren; Splett, Jolene; Bordini, Bernardo; Richter, David

    2016-12-01

    A scaling study of several thousand Nb3Sn critical-current (I c) measurements is used to derive the Extrapolative Scaling Expression (ESE), a relation that can quickly and accurately extrapolate limited datasets to obtain full three-dimensional dependences of I c on magnetic field (B), temperature (T), and mechanical strain (ɛ). The relation has the advantage of being easy to implement, and offers significant savings in sample characterization time and a useful tool for magnet design. Thorough data-based analysis of the general parameterization of the Unified Scaling Law (USL) shows the existence of three universal scaling constants for practical Nb3Sn conductors. The study also identifies the scaling parameters that are conductor specific and need to be fitted to each conductor. This investigation includes two new, rare, and very large I c(B,T,ɛ) datasets (each with nearly a thousand I c measurements spanning magnetic fields from 1 to 16 T, temperatures from ˜2.26 to 14 K, and intrinsic strains from -1.1% to +0.3%). The results are summarized in terms of the general USL parameters given in table 3 of Part 1 (Ekin J W 2010 Supercond. Sci. Technol. 23 083001) of this series of articles. The scaling constants determined for practical Nb3Sn conductors are: the upper-critical-field temperature parameter v = 1.50 ± 0.04 the cross-link parameter w = 3.0 ± 0.3 and the strain curvature parameter u = 1.7 ± 0.1 (from equation (29) for b c2(ɛ) in Part 1). These constants and required fitting parameters result in the ESE relation, given by I c ( B , T , ɛ ) B = C [ b c 2 ( ɛ ) ] s ( 1 - t 1.5 ) η - μ ( 1 - t 2 ) μ b p ( 1 - b ) q with reduced magnetic field b ≡ B/B c2*(T,ɛ) and reduced temperature t ≡ T/T c*(ɛ), where: B c 2 * ( T , ɛ ) = B c 2 * ( 0 , 0 ) ( 1 - t 1.5 ) b c 2 ( ɛ ) T c * ( ɛ ) = T c * ( 0 ) [ b c 2 ( ɛ ) ] 1/3 and fitting parameters: C, B c2*(0,0), T c*(0), s, either η or μ (but not both), plus the parameters in the strain function b c2(ɛ). The pinning-force shape parameters p and q are also preferably fitted (simultaneously with the other parameters), but default values p = 0.5 and q = 2.0 also give high fitting accuracy when the range of relative magnetic fields is not extensive. Default values are also essential when the magnetic field data range is insufficient to determine p and q. The scaling constants are remarkably stable (changes less than ˜1%) with respect to different values of p and q, Nb3Sn conductor configurations, magnetic self-field corrections, and pinning-force trim values. The results demonstrate that the scaling of transport critical current holds down to the lowest temperatures measured ˜2.2 K, for both magnetic self-field corrected and uncorrected data. An initial comparison is also made between transport and magnetization scaling data in matched Nb3Sn samples and significant differences are found, especially for the upper critical field B c2*(T,ɛ), which may be a result of inhomogeneous shielding currents. In Part 3 of this topical review series (Ekin J W 2017 Supercond. Sci. Technol. at press), the smallest practical minimum dataset for extrapolating full I c(B,T,ɛ) datasets is derived. Application of the ESE relation is illustrated in several new areas, including full characterization of Nb3Sn conductors from as little as a single I c(B) curve when a few core parameters have been determined for similar conductors.

  7. Oxygen consumption rate of cells in 3D culture: the use of experiment and simulation to measure kinetic parameters and optimise culture conditions.

    PubMed

    Streeter, Ian; Cheema, Umber

    2011-10-07

    Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.

  8. Distribution-centric 3-parameter thermodynamic models of partition gas chromatography.

    PubMed

    Blumberg, Leonid M

    2017-03-31

    If both parameters (the entropy, ΔS, and the enthalpy, ΔH) of the classic van't Hoff model of dependence of distribution coefficients (K) of analytes on temperature (T) are treated as the temperature-independent constants then the accuracy of the model is known to be insufficient for the needed accuracy of retention time prediction. A more accurate 3-parameter Clarke-Glew model offers a way to treat ΔS and ΔH as functions, ΔS(T) and ΔH(T), of T. A known T-centric construction of these functions is based on relating them to the reference values (ΔS ref and ΔH ref ) corresponding to a predetermined reference temperature (T ref ). Choosing a single T ref for all analytes in a complex sample or in a large database might lead to practically irrelevant values of ΔS ref and ΔH ref for those analytes that have too small or too large retention factors at T ref . Breaking all analytes in several subsets each with its own T ref leads to discontinuities in the analyte parameters. These problems are avoided in the K-centric modeling where ΔS(T) and ΔS(T) and other analyte parameters are described in relation to their values corresponding to a predetermined reference distribution coefficient (K Ref ) - the same for all analytes. In this report, the mathematics of the K-centric modeling are described and the properties of several types of K-centric parameters are discussed. It has been shown that the earlier introduced characteristic parameters of the analyte-column interaction (the characteristic temperature, T char , and the characteristic thermal constant, θ char ) are a special chromatographically convenient case of the K-centric parameters. Transformations of T-centric parameters into K-centric ones and vice-versa as well as the transformations of one set of K-centric parameters into another set and vice-versa are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Modulation of enzyme catalytic properties and biosensor calibration parameters with chlorides: studies with glucose oxidase.

    PubMed

    Kagan, Margarita; Kivirand, Kairi; Rinken, Toonika

    2013-09-10

    We studied the modulation of calibration parameters of biosensors, in which glucose oxidase was used for bio-recognition, in the presence of different chlorides by following the transient phase dynamics of oxygen concentration with an oxygen optrode. The mechanism of modulation was characterized with the changes of the glucose oxidase catalytic constant and oxygen diffusion constant. The modulation of two biosensor calibration parameters were studied: the maximum calculated signal change was amplified for about 20% in the presence of sodium and magnesium chlorides; the value of the kinetic parameter decreased along with the addition of salts and increased only at sodium chloride concentrations over 0.5 mM. Besides glucose bioassay, the amplification of calibration parameters was also studied in cascaded two-enzyme lactose biosensor, where the initial step of lactose bio-recognition, the β-galactosidase - catalyzed lactose hydrolysis, was additionally accelerated by magnesium ions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The A and m coefficients in the Bruun/Dean equilibrium profile equation seen from the Arctic

    USGS Publications Warehouse

    Are, F.; Reimnitz, E.

    2008-01-01

    The Bruun/Dean relation between water depth and distance from the shore with a constant profile shape factor is widely used to describe shoreface profiles in temperate environments. However, it has been shown that the sediment scale parameter (A) and the profile shape factor (m) are interrelated variables. An analysis of 63 Arctic erosional shoreface profiles shows that both coefficients are highly variable. Relative frequency of the average m value is only 16% by the class width 0.1. No other m value frequency exceeds 21%. Therefore, there is insufficient reason to use average m to characterize Arctic shoreface profile shape. The shape of each profile has a definite combination of A and m values. Coefficients A and m show a distinct inverse relationship, as in temperate climate. A dependence of m values on coastal sediment grain size is seen, and m decreases with increasing grain size. With constant m = 0.67, parameter A obtains a dimension unit m1/3. But A equals the water depth in meters 1 m from the water edge. This fact and the variability of parameter m testify that the Bruun/Dean equation is essentially an empirical formula. There is no need to give any measurement unit to parameter A. But the International System of Units (SI) has to be used in applying the Bruun/Dean equation for shoreface profiles. A comparison of the shape of Arctic shoreface profiles with those of temperate environments shows surprising similarity. Therefore, the conclusions reached in this Arctic paper seem to apply also to temperate environments.

  11. Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions

    NASA Astrophysics Data System (ADS)

    Gaikwad, Dhammajyot Kundlik; Pawar, Pravina P.; Selvam, T. Palani

    2017-09-01

    The mass attenuation coefficients (μ/ρ) for some enzymes, proteins, amino acids and fatty acids were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies, by performing transmission experiments using 57Co, 133Ba, 137Cs, 60Co and 22Na sources collimated to produce 0.52 cm diameter beams. A NaI (Tl) scintillation detector with energy resolution 8.2% at 663 keV was used for detection. The experimental values of (μ/ρ) were then used to determine the atomic cross section (σa), electronic cross section (σe), effective atomic number (Zeff) and electron density (Neff). It was observed that (μ/ρ), σa and σe decrease initially and then tends to be almost constant at higher energies. Values of Zeff and Neff were observed roughly constant with energy. The deviations in experimental results of radiological parameters were believed to be affected by physical and chemical environments. Experimental results of radiological parameters were observed in good agreement with WinXCom values.

  12. Running of the spectral index in deformed matter bounce scenarios with Hubble-rate-dependent dark energy

    NASA Astrophysics Data System (ADS)

    Arab, M.; Khodam-Mohammadi, A.

    2018-03-01

    As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.

  13. Prediction of electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor: an ab-initio study

    NASA Astrophysics Data System (ADS)

    Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.

    2018-03-01

    In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.

  14. Consistent parameter fixing in the quark-meson model with vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael

    2016-08-01

    We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.

  15. Semi-empirical proton binding constants for natural organic matter

    NASA Astrophysics Data System (ADS)

    Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain

    2010-03-01

    Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed semi-empirical structural approach, and its usefulness to assess the plausibility of proton stability constants derived from simulations of titration data.

  16. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes

    PubMed Central

    Knotts, Thomas A.

    2017-01-01

    Molecular simulation has the ability to predict various physical properties that are difficult to obtain experimentally. For example, we implement molecular simulation to predict the critical constants (i.e., critical temperature, critical density, critical pressure, and critical compressibility factor) for large n-alkanes that thermally decompose experimentally (as large as C48). Historically, molecular simulation has been viewed as a tool that is limited to providing qualitative insight. One key reason for this perceived weakness in molecular simulation is the difficulty to quantify the uncertainty in the results. This is because molecular simulations have many sources of uncertainty that propagate and are difficult to quantify. We investigate one of the most important sources of uncertainty, namely, the intermolecular force field parameters. Specifically, we quantify the uncertainty in the Lennard-Jones (LJ) 12-6 parameters for the CH4, CH3, and CH2 united-atom interaction sites. We then demonstrate how the uncertainties in the parameters lead to uncertainties in the saturated liquid density and critical constant values obtained from Gibbs Ensemble Monte Carlo simulation. Our results suggest that the uncertainties attributed to the LJ 12-6 parameters are small enough that quantitatively useful estimates of the saturated liquid density and the critical constants can be obtained from molecular simulation. PMID:28527455

  17. The effects of rigid motions on elastic network model force constants.

    PubMed

    Lezon, Timothy R

    2012-04-01

    Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model's single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here, we investigate the differences between calculated values of force constants and data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. Copyright © 2011 Wiley Periodicals, Inc.

  18. Weyl current, scale-invariant inflation, and Planck scale generation

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2017-02-08

    Scalar fields,more » $$\\phi$$ i, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including M P=0; (ii) the $$\\phi$$ i have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K($$\\phi$$ i)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. Finally, these models are governed by a global Weyl scale symmetry and its conserved current, K μ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.« less

  19. Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation

    NASA Astrophysics Data System (ADS)

    Ekiz, C.

    2017-02-01

    In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.

  20. Hydration effects on the electrostatic potential around tuftsin.

    PubMed

    Valdeavella, C V; Blatt, H D; Yang, L; Pettitt, B M

    1999-08-01

    The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr-Lys-Pro-Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson-Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed.

  1. Optimal solutions for a bio mathematical model for the evolution of smoking habit

    NASA Astrophysics Data System (ADS)

    Sikander, Waseem; Khan, Umar; Ahmed, Naveed; Mohyud-Din, Syed Tauseef

    In this study, we apply Variation of Parameter Method (VPM) coupled with an auxiliary parameter to obtain the approximate solutions for the epidemic model for the evolution of smoking habit in a constant population. Convergence of the developed algorithm, namely VPM with an auxiliary parameter is studied. Furthermore, a simple way is considered for obtaining an optimal value of auxiliary parameter via minimizing the total residual error over the domain of problem. Comparison of the obtained results with standard VPM shows that an auxiliary parameter is very feasible and reliable in controlling the convergence of approximate solutions.

  2. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    PubMed

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  3. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  4. Optimization of motion control laws for tether crawler or elevator systems

    NASA Technical Reports Server (NTRS)

    Swenson, Frank R.; Von Tiesenhausen, Georg

    1988-01-01

    Based on the proposal of a motion control law by Lorenzini (1987), a method is developed for optimizing motion control laws for tether crawler or elevator systems in terms of the performance measures of travel time, the smoothness of acceleration and deceleration, and the maximum values of velocity and acceleration. The Lorenzini motion control law, based on powers of the hyperbolic tangent function, is modified by the addition of a constant-velocity section, and this modified function is then optimized by parameter selections to minimize the peak acceleration value for a selected travel time or to minimize travel time for the selected peak values of velocity and acceleration. It is shown that the addition of a constant-velocity segment permits further optimization of the motion control law performance.

  5. Calculation of Weibull strength parameters and Batdorf flow-density constants for volume- and surface-flaw-induced fracture in ceramics

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Gyekenyesi, John P.

    1988-01-01

    The calculation of shape and scale parameters of the two-parameter Weibull distribution is described using the least-squares analysis and maximum likelihood methods for volume- and surface-flaw-induced fracture in ceramics with complete and censored samples. Detailed procedures are given for evaluating 90 percent confidence intervals for maximum likelihood estimates of shape and scale parameters, the unbiased estimates of the shape parameters, and the Weibull mean values and corresponding standard deviations. Furthermore, the necessary steps are described for detecting outliers and for calculating the Kolmogorov-Smirnov and the Anderson-Darling goodness-of-fit statistics and 90 percent confidence bands about the Weibull distribution. It also shows how to calculate the Batdorf flaw-density constants by uing the Weibull distribution statistical parameters. The techniques described were verified with several example problems, from the open literature, and were coded. The techniques described were verified with several example problems from the open literature, and were coded in the Structural Ceramics Analysis and Reliability Evaluation (SCARE) design program.

  6. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm.

    PubMed

    Touw, D J; Vinks, A A; Neef, C

    1997-06-01

    The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.

  7. Impact and Penetration Problems.

    DTIC Science & Technology

    1981-03-16

    constant is now determined theoretically. iii) By utilizing the formal similarity between the two criteria (1) and (3), we can predict the theoretical...cohesive strengths of various crystals. Once the experimental value for y is given, the calculations can be carried 4 out easily to determine the...analytical solution to the mixed boundary value problem yields the nonlocal displacement and stress fields. The nonlocal parameter c is determined by

  8. Numerical integration of KPZ equation with restrictions

    NASA Astrophysics Data System (ADS)

    Torres, M. F.; Buceta, R. C.

    2018-03-01

    In this paper, we introduce a novel integration method of Kardar–Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ε which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters’ space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3, 4 ) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d  =  4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.

  9. Energy conservation and maximal entropy production in enzyme reactions.

    PubMed

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  11. Apparent Diffusion Coefficient and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Pancreatic Cancer: Characteristics and Correlation With Histopathologic Parameters.

    PubMed

    Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi

    2016-01-01

    To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.

  12. Constitutive modeling of the human Anterior Cruciate Ligament (ACL) under uniaxial loading using viscoelastic prony series and hyperelastic five parameter Mooney-Rivlin model

    NASA Astrophysics Data System (ADS)

    Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad

    2016-07-01

    In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.

  13. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  14. Testable solution of the cosmological constant and coincidence problems

    NASA Astrophysics Data System (ADS)

    Shaw, Douglas J.; Barrow, John D.

    2011-02-01

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of Λ≈(9.3Gyrs)-2 [≈10-120 in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of Ωk0=-0.0056(ζb/0.5), where ζb˜1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Λ. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between tΛ=Λ-1/2 and the age of the Universe, tU, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different Λ values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.

  15. Evaluation of electrokinetic parameters for all DNA bases with sputter deposited nanocarbon film electrode.

    PubMed

    Kato, Dai; Sumimoto, Michinori; Ueda, Akio; Hirono, Shigeru; Niwa, Osamu

    2012-12-18

    The electrokinetic parameters of all the DNA bases were evaluated using a sputter-deposited nanocarbon film electrode. It is very difficult to evaluate the electrokinetic parameters of DNA bases with conventional electrodes, and particularly those of pyrimidine bases, owing to their high oxidation potentials. Nanocarbon film formed by employing an electron cyclotron resonance sputtering method consists of a nanocrystalline sp(2) and sp(3) mixed bond structure that exhibits a sufficient potential window, very low adsorption of DNA molecules, and sufficient electrochemical activity to oxidize all DNA bases. A precise evaluation of rate constants (k) between all the bases and the electrodes is achieved for the first time by obtaining rotating disc electrode measurements with our nanocarbon film electrode. We found that the k value of each DNA base was dominantly dependent on the surface oxygen-containing group of the nanocarbon film electrode, which was controlled by electrochemical pretreatment. In fact, the treated electrode exhibited optimum k values for all the mononucleotides, namely, 2.0 × 10(-2), 2.5 × 10(-1), 2.6 × 10(-3), and 5.6 × 10(-3) cm s(-1) for GMP, AMP, TMP, and CMP, respectively. The k value of AMP was sufficiently enhanced by up to 33 times with electrochemical pretreatment. We also found the k values for pyrimidine bases to be much lower than those of purine bases although there was no large difference between their diffusion coefficient constants. Moreover, the theoretical oxidation potential values for all the bases coincided with those obtained in electrochemical experiments using our nanocarbon film electrode.

  16. Suppressing Transients In Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1993-01-01

    Loop of arbitrary order starts in steady-state lock. Method for initializing variables of digital phase-locked loop reduces or eliminates transients in phase and frequency typically occurring during acquisition of lock on signal or when changes made in values of loop-filter parameters called "loop constants". Enables direct acquisition by third-order loop without prior acquisition by second-order loop of greater bandwidth, and eliminates those perturbations in phase and frequency lock occurring when loop constants changed by arbitrarily large amounts.

  17. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  18. Larson-Miller Constant of Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  19. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins.

    PubMed

    Demiralay, Ebru Çubuk; Üstün, Zehra; Daldal, Y Doğan

    2014-03-01

    In this work, thermodynamic acidity constants (pssKa) of methicillin, oxacillin, nafcillin, cloxacilin, dicloxacillin were determined with reverse phase liquid chromatographic method (RPLC) by taking into account the effect of the activity coefficients in hydro-organic water-acetonitrile binary mixtures. From these values, thermodynamic aqueous acidity constants of these drugs were calculated by different approaches. The linear relationships established between retention factors of the species and the polarity parameter of the mobile phase (ET(N)) was proved to predict accurately retention in LC as a function of the acetonitrile content (38%, 40% and 42%, v/v). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Determination of the pairing-strength constants in the isovector plus isoscalar pairing case

    NASA Astrophysics Data System (ADS)

    Mokhtari, D.; Fellah, M.; Allal, N. H.

    2016-05-01

    A method for the determination of the pairing-strength constants, in the neutron-proton (n-p) isovector plus isoscalar pairing case, is proposed in the framework of the BCS theory. It is based on the fitting of these constants to reproduce the experimentally known pairing gap parameters as well as the root-mean-squared (r.m.s) charge radii values. The method is applied to some proton-rich even-even nuclei. The single-particle energies used are those of a deformed Woods-Saxon mean field. It is shown that the obtained value of the ratio GnpT=0/G npT=1 is of the same order as the ones, arbitrary chosen, of some previous works. The effect of the inclusion of the isoscalar n-p pairing in the r.m.s matter radii is then numerically studied for the same nuclei.

  1. Effect of solute immobilization on the stability problem within the fractional model in the solute analog of the Horton-Rogers-Lapwood problem.

    PubMed

    Klimenko, Lyudmila S; Maryshev, Boris S

    2017-11-24

    The paper is devoted to the linear stability analysis within the solute analogue of the Horton-Rogers-Lapwood (HRL) problem. The solid nanoparticles are treated as solute within the continuous approach. Therefore, we consider the infinite horizontal porous layer saturated with a mixture (carrier fluid and solute). Solute transport in porous media is very often complicated by solute immobilization on a solid matrix of porous media. Solute immobilization (solute sorption) is taken into account within the fractal model of the MIM approach. According to this model a solute in porous media immobilizes within random time intervals and the distribution of such random variable does not have a finite mean value, which has a good agreement with some experiments. The solute concentration difference between the layer boundaries is assumed as constant. We consider two cases of horizontal external filtration flux: constant and time-modulated. For the constant flux the system of equations that determines the frequency of neutral oscillations and the critical value of the Rayleigh-Darcy number is derived. Neutral curves of the critical parameters on the governing parameters are plotted. Stability maps are obtained numerically in a wide range of parameters of the system. We have found that taking immobilization into account leads to an increase in the critical value of the Rayleigh-Darcy number with an increase in the intensity of the external filtration flux. The case of weak time-dependent external flux is investigated analytically. We have shown that the modulated external flux leads to an increase in the critical value of the Rayleigh-Darcy number and a decrease in the critical wave number. For moderate time-dependent filtration flux the differential equation with Caputo fractional derivatives has been obtained for the description of the behavior near the convection instability threshold. This equation is analyzed numerically by the Floquet method; the parametric excitation of convection is observed.

  2. Microwave dielectric study of polar liquids at 298 K

    NASA Astrophysics Data System (ADS)

    Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.

    2018-05-01

    Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.

  3. Updated reduced CMB data and constraints on cosmological parameters

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Guo, Zong-Kuan; Tang, Bo

    2015-07-01

    We obtain the reduced CMB data {lA, R, z∗} from WMAP9, WMAP9+BKP, Planck+WP and Planck+WP+BKP for the ΛCDM and wCDM models with or without spatial curvature. We then use these reduced CMB data in combination with low-redshift observations to put constraints on cosmological parameters. We find that including BKP results in a higher value of the Hubble constant especially when the equation of state (EOS) of dark energy and curvature are allowed to vary. For the ΛCDM model with curvature, the estimate of the Hubble constant with Planck+WP+Lensing is inconsistent with the one derived from Planck+WP+BKP at about 1.2σ confidence level (CL).

  4. Observational constraint on dynamical evolution of dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yungui; Cai, Rong-Gen; Chen, Yun

    2010-01-01

    We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ω{sub m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z = 0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parametermore » w(z) of dark energy. We find no significant evidence for evolving w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.« less

  5. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.

    PubMed

    Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam

    2016-06-01

    The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.

  6. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  7. Optimization of magnetization transfer measurements: statistical analysis by stochastic simulation. Application to creatine kinase kinetics.

    PubMed

    Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K

    1990-08-01

    A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.

  8. Autoxidation of jet fuels: Implications for modeling and thermal stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heneghan, S.P.; Chin, L.P.

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less

  9. Post-Newtonian parameter γ in generalized non-local gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  10. The reliable solution and computation time of variable parameters logistic model

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Pan, Xinnong

    2018-05-01

    The study investigates the reliable computation time (RCT, termed as T c) by applying a double-precision computation of a variable parameters logistic map (VPLM). Firstly, by using the proposed method, we obtain the reliable solutions for the logistic map. Secondly, we construct 10,000 samples of reliable experiments from a time-dependent non-stationary parameters VPLM and then calculate the mean T c. The results indicate that, for each different initial value, the T cs of the VPLM are generally different. However, the mean T c trends to a constant value when the sample number is large enough. The maximum, minimum, and probable distribution functions of T c are also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting by using the VPLM output. In addition, the T c of the fixed parameter experiments of the logistic map is obtained, and the results suggest that this T c matches the theoretical formula-predicted value.

  11. Predicting the Cosmological Constant from the CausalEntropic Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Harnik, Roni; Kribs, Graham D.

    2007-02-20

    We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. Themore » alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.« less

  12. Proton dissociation properties of arylphosphonates: Determination of accurate Hammett equation parameters.

    PubMed

    Dargó, Gergő; Bölcskei, Adrienn; Grün, Alajos; Béni, Szabolcs; Szántó, Zoltán; Lopata, Antal; Keglevich, György; Balogh, György T

    2017-09-05

    Determination of the proton dissociation constants of several arylphosphonic acid derivatives was carried out to investigate the accuracy of the Hammett equations available for this family of compounds. For the measurement of the pK a values modern, accurate methods, such as the differential potentiometric titration and NMR-pH titration were used. We found our results significantly different from the pK a values reported before (pK a1 : MAE = 0.16 pK a2 : MAE=0.59). Based on our recently measured pK a values, refined Hammett equations were determined that might be used for predicting highly accurate ionization constants of newly synthesized compounds (pK a1 =1.70-0.894σ, pK a2 =6.92-0.934σ). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Hubble Constant.

    PubMed

    Jackson, Neal

    2015-01-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  14. Assessing the Internal Consistency of the Marine Carbon Dioxide System at High Latitudes: The Labrador Sea AR7W Line Study Case

    NASA Astrophysics Data System (ADS)

    Raimondi, L.; Azetsu-Scott, K.; Wallace, D.

    2016-02-01

    This work assesses the internal consistency of ocean carbon dioxide through the comparison of discrete measurements and calculated values of four analytical parameters of the inorganic carbon system: Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), pH and Partial Pressure of CO2 (pCO2). The study is based on 486 seawater samples analyzed for TA, DIC and pH and 86 samples for pCO2 collected during the 2014 Cruise along the AR7W line in Labrador Sea. The internal consistency has been assessed using all combinations of input parameters and eight sets of thermodynamic constants (K1, K2) in calculating each parameter through the CO2SYS software. Residuals of each parameter have been calculated as the differences between measured and calculated values (reported as ΔTA, ΔDIC, ΔpH and ΔpCO2). Although differences between the selected sets of constants were observed, the largest were obtained using different pairs of input parameters. As expected the couple pH-pCO2 produced to poorest results, suggesting that measurements of either TA or DIC are needed to define the carbonate system accurately and precisely. To identify signature of organic alkalinity we isolated the residuals in the bloom area. Therefore only ΔTA from surface waters (0-30 m) along the Greenland side of the basin were selected. The residuals showed that no measured value was higher than calculations and therefore we could not observe presence of organic bases in the shallower water column. The internal consistency in characteristic water masses of Labrador Sea (Denmark Strait Overflow Water, North East Atlantic Deep Water, Newly-ventilated Labrador Sea Water, Greenland and Labrador Shelf waters) will also be discussed.

  15. Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.

    PubMed

    Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.

  16. THEORETICAL RESEARCH OF THE OPTICAL SPECTRA AND EPR PARAMETERS FOR Cs2NaYCl6:Dy3+ CRYSTAL

    NASA Astrophysics Data System (ADS)

    Dong, Hui-Ning; Dong, Meng-Ran; Li, Jin-Jin; Li, Deng-Feng; Zhang, Yi

    2013-09-01

    The calculated EPR parameters are in reasonable agreement with the observed values. The important material Cs2NaYCl6 doped with rare earth ions have received much attention because of its excellent optical and magnetic properties. Based on the superposition model, in this paper the crystal field energy levels, the electron paramagnetic resonance parameters g factors of Dy3+ and hyperfine structure constants of 161Dy3+ and 163Dy3+ isotopes in Cs2NaYCl6 crystal are studied by diagonalizing the 42 × 42 energy matrix. In the calculations, the contributions of various admixtures and interactions such as the J-mixing, the mixtures among the states with the same J-value, and the covalence are all considered. The calculated results are in reasonable agreement with the observed values. The results are discussed.

  17. Dielectric relaxation spectrum of undiluted poly(4-chlorostyrene), T≳Tg

    NASA Astrophysics Data System (ADS)

    Yoshihara, M.; Work, R. N.

    1980-06-01

    Dielectric relaxation characteristics of undiluted, atactic poly(4-chlorostyrene), P4CS, have been determined at temperatures 406 K⩽T⩽446 K from measurements made at frequencies 0.2 Hz⩽f⩽0.2 MHz. After effects of electrical conductivity are subtracted, it is found that the normalized complex dielectric constant K*=K'-i K″ can be represented quantitatively by the Havriliak-Negami (H-N) equation K*=[1+(iωτ0)1-α]-β, 0⩽α, β⩽1, except for a small, high frequency tail that appears in measurements made near the glass transition temperature, Tg. The parameter β is nearly constant, and α depends linearly on log τ0, where τ0 is a characteristic relaxation time. The parameters α and β extrapolate through values obtained from published data from P4CS solutions, and extrapolation to α=0 yields a value of τ0 which compares favorably with a published value for crankshaft motions of an equivalent isolated chain segment. These observations suggest that β may characterize effects of chain connectivity and α may describe effects of interactions of the surroundings with the chain. Experimental results are compared with alternative empirical and model-based representations of dielectric relaxation in polymers.

  18. Predicting the cosmological constant with the scale-factor cutoff measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Simone, Andrea; Guth, Alan H.; Salem, Michael P.

    2008-09-15

    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes'more » (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.« less

  19. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  20. Design of high-linear CMOS circuit using a constant transconductance method for gamma-ray spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.

    2011-02-01

    We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.

  1. A variational theory of Hall effect of Anderson lattice model: Application to colossal magnetoresistance manganites (Re1-x Ax MnO3)

    NASA Astrophysics Data System (ADS)

    Panwar, Sunil; Kumar, Vijay; Singh, Ishwar

    2017-10-01

    An anomalous Hall constant RH has been observed in various rare earth manganites doped with alkaline earths namely Re1-xAxMnO3 (where Re = La, Pr, Nd etc., and A = Ca, Sr, Ba etc.) which exhibit colossal magnetoresistance (CMR), metal- insulator transition and many other poorly understood phenomena. We show that this phenomenon of anomalous Hall constant can be understood using two band (ℓ-b) Anderson lattice model Hamiltonian alongwith (ℓ-b) hybridization recently studied by us for manganites in the strong electron-lattice Jahn-Teller (JT) coupling regime an approach similar to the two - fluid models. We use a variational method in this work to study the temperature variation of Hall constant RH (T) in these compounds. We have already used this variational method to study the zero field electrical resistivity ρ (T) and magnetic susceptibility of doped CMR manganites. In the present study, we find that the Hall constant RH (T) reduces with increasing magnetic field parameters h&m and the metal-insulator transition temperature (Tρ) shifts towards higher temperature region. We have also observed the role of the model parameters e.g. local Coulomb repulsion U, Hund's rule coupling JH between eg spins and t2g spins, ferromagnetic nearest neighbor exchange coupling JF between t2g core spins and hybridization Vk between ℓ-polarons and d-electrons on Hall constant RH (T) of these materials at different magnetic fields. Here we find that RH (T) for a particular value of h and m shows a rapid initial increase, followed by a sharp peak at low temperature say 50 K in our case and a slow decrease at high temperatures, resembling with the key feature of many CMR compounds like La0.8Ba0.2 MnO3.The magnitude of RH (T) reduces and the anomaly (sharp peak) in RH becomes broader and shifts towards higher temperature region on increasing Vk or JH or doping x and even vanishes on further increasing these parameters. Our results of anomalous Hall constant (RH) have same qualitative behavior as the zero-field electrical resistivity. Moreover Hall Constant (RH) shows positive values indicating that the carriers in these manganites are holes.

  2. Spin-lattice relaxation-rate anomaly at structural phase transitions

    NASA Astrophysics Data System (ADS)

    Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.

    1997-12-01

    The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.

  3. Gamma dosimetric parameters in some skeletal muscle relaxants

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.

    2017-09-01

    We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.

  4. Fast optimization algorithms and the cosmological constant

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Bousso, Raphael; Jordan, Stephen; Lackey, Brad

    2017-11-01

    Denef and Douglas have observed that in certain landscape models the problem of finding small values of the cosmological constant is a large instance of a problem that is hard for the complexity class NP (Nondeterministic Polynomial-time). The number of elementary operations (quantum gates) needed to solve this problem by brute force search exceeds the estimated computational capacity of the observable Universe. Here we describe a way out of this puzzling circumstance: despite being NP-hard, the problem of finding a small cosmological constant can be attacked by more sophisticated algorithms whose performance vastly exceeds brute force search. In fact, in some parameter regimes the average-case complexity is polynomial. We demonstrate this by explicitly finding a cosmological constant of order 10-120 in a randomly generated 1 09-dimensional Arkani-Hamed-Dimopoulos-Kachru landscape.

  5. (2+1)-dimensional stars

    NASA Astrophysics Data System (ADS)

    Lubo, M.; Rooman, M.; Spindel, Ph.

    1999-02-01

    We investigate, in the framework of (2+1)-dimensional gravity, stationary rotationally symmetric gravitational sources of the perfect fluid type, embedded in a space of an arbitrary cosmological constant. We show that the matching conditions between the interior and exterior geometries imply restrictions on the physical parameters of the solutions. In particular, imposing finite sources and the absence of closed timelike curves privileges negative values of the cosmological constant, yielding exterior vacuum geometries of rotating black hole type. In the special case of static sources, we prove the complete integrability of the field equations and show that the sources' masses are bounded from above and, for a vanishing cosmological constant, generally equal to 1. We also discuss and illustrate the stationary configurations by explicitly solving the field equations for constant mass-energy densities. If the pressure vanishes, we recover as interior geometries Gödel-like metrics defined on causally well behaved domains, but with unphysical values of the mass to angular momentum ratio. The introduction of pressure in the sources cures the latter problem and leads to physically more relevant models.

  6. The varying cosmological constant: a new approximation to the Friedmann equations and universe model

    NASA Astrophysics Data System (ADS)

    Öztaş, Ahmet M.; Dil, Emre; Smith, Michael L.

    2018-05-01

    We investigate the time-dependent nature of the cosmological constant, Λ, of the Einstein Field Equation (EFE). Beginning with the Einstein-Hilbert action as our fundamental principle we develop a modified version of the EFE allowing the value of Λ to vary as a function of time, Λ(t), indirectly, for an expanding universe. We follow the evolving Λ presuming four-dimensional space-time and a flat universe geometry and present derivations of Λ(t) as functions of the Hubble constant, matter density, and volume changes which can be traced back to the radiation epoch. The models are more detailed descriptions of the Λ dependence on cosmological factors than previous, allowing calculations of the important parameters, Ωm and Ωr, to deep lookback times. Since we derive these without the need for extra dimensions or other special conditions our derivations are useful for model evaluation with astronomical data. This should aid resolution of several difficult problems of astronomy such as the best value for the Hubble constant at present and at recombination.

  7. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  8. Time varying G and \\varLambda cosmology in f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.

    2017-08-01

    We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.

  9. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  10. Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.

    PubMed

    Pal, Barnana

    2017-01-01

    The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Predictions from star formation in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Leichenauer, Stefan

    2010-03-15

    We compute trivariate probability distributions in the landscape, scanning simultaneously over the cosmological constant, the primordial density contrast, and spatial curvature. We consider two different measures for regulating the divergences of eternal inflation, and three different models for observers. In one model, observers are assumed to arise in proportion to the entropy produced by stars; in the others, they arise at a fixed time (5 or 10x10{sup 9} years) after star formation. The star formation rate, which underlies all our observer models, depends sensitively on the three scanning parameters. We employ a recently developed model of star formation in themore » multiverse, a considerable refinement over previous treatments of the astrophysical and cosmological properties of different pocket universes. For each combination of observer model and measure, we display all single and bivariate probability distributions, both with the remaining parameter(s) held fixed and marginalized. Our results depend only weakly on the observer model but more strongly on the measure. Using the causal diamond measure, the observed parameter values (or bounds) lie within the central 2{sigma} of nearly all probability distributions we compute, and always within 3{sigma}. This success is encouraging and rather nontrivial, considering the large size and dimension of the parameter space. The causal patch measure gives similar results as long as curvature is negligible. If curvature dominates, the causal patch leads to a novel runaway: it prefers a negative value of the cosmological constant, with the smallest magnitude available in the landscape.« less

  12. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  13. Testable solution of the cosmological constant and coincidence problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Douglas J.; Barrow, John D.

    2011-02-15

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvaturemore » of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.« less

  14. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  15. An Investigation into Performance Modelling of a Small Gas Turbine Engine

    DTIC Science & Technology

    2012-10-01

    b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a

  16. Constraining the phantom braneworld model from cosmic structure sizes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Kousvos, Stefanos R.

    2017-11-01

    We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.

  17. Colloidal Dynamics Simulations of Rheology and Stability of Concentrated Fuel Slurries.

    DTIC Science & Technology

    1987-04-10

    Weals potential as the adsorbed polymer concentration and Hamaker con- stant are changed. These calculations provide quantitative evidence for the...derived by Hamaker : 3 6 U (r) A d 2 2 +2Ln( 2- d2(3 A T2 2 2 2 2 A value of 5.0 x 10" 2 0 j was used for the Hamaker constant, A. A plot of Eq. (31) is...parameter controlling the strength of the repulsive steric potential. The Hamaker constant A (Eq. (33)) is the nat- ural choice for the attractive

  18. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  19. Systems identification using a modified Newton-Raphson method: A FORTRAN program

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.; Iliff, K. W.

    1972-01-01

    A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.

  20. Sound propagation and absorption in foam - A distributed parameter model.

    NASA Technical Reports Server (NTRS)

    Manson, L.; Lieberman, S.

    1971-01-01

    Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.

  1. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    PubMed

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P <0.05), there were no significant differences between benign lesions and malignant lesions in V(e)( t =-2.346, P >0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P <0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign lesions were 0.963, 0.903 and 0.575, the sensitivity of rK(trans), rk(ep) and rV(e) were 85.6%, 71.9%, 52.9% , and the specificity of rK(trans), rk(ep) and rV(e) were 94.5%, 92.7%, 60.6% for the differential diagnosis of breast lesions.(3)There was no significant difference in the area under the ROC curve between the predictive probability of quantitative pharmacokinetic parameters and the prediction probability of relative quantitative pharmacokinetic parameters( Z =0.867, P =0.195). Conclusion: There was no significant difference between the quantitative parameter values (K(trans,) k(ep)) and the relative quantitative parameter values (rK(trans,) rk(ep)) in diagnosis of breast lesions, which were important parameters in differential diagnosis of benign and malignant breast lesions.

  2. Lattice quantum gravity and asymptotic safety

    NASA Astrophysics Data System (ADS)

    Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.

    2017-09-01

    We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.

  3. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  4. Limit on the present temporal variation of the fine structure constant.

    PubMed

    Peik, E; Lipphardt, B; Schnatz, H; Schneider, T; Tamm, Chr; Karshenboim, S G

    2004-10-22

    The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.

  5. Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay.

    PubMed

    Carvalho, M N; da Motta, M; Benachour, M; Sales, D C S; Abreu, C A M

    2012-11-15

    The removal process of BTEX and phenol was evaluated. The smectite organoclay for single-solute system reached removal was evaluated by adsorption on smectite organoclay adsorbent by kinetic and equilibrium efficiencies between 55 and 90% while was reached between 30 and 90% for multi-solute system at 297 K and pH 9. The Langmuir-Freundlich model was used to fit the experimental data with correlation coefficient between 0.98 and 0.99 providing kinetic and equilibrium parameter values. Phenol and ethylbenzene presented high maximum adsorbed amount, 8.28 and 6.67 mg/g, respectively, compared to the other compounds for single-solute. Toluene and p-xylene presented high values of adsorption constant which indicates a high adsorption affinity of compounds to organoclay surface and high binding energy of adsorption. Phenol presented low kinetic adsorption constant value indicating slow rate of adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Constant-pH molecular dynamics using stochastic titration

    NASA Astrophysics Data System (ADS)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  7. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  8. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    PubMed

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Star formation in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Leichenauer, Stefan

    2009-03-15

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  10. Electronic contributions to the sigma(p) parameter of the Hammett equation.

    PubMed

    Domingo, Luis R; Pérez, Patricia; Contreras, Renato

    2003-07-25

    A statistical procedure to obtain the intrinsic electronic contributions to the Hammett substituent constant sigma(p) is reported. The method is based on the comparison between the experimental sigma(p) values and the electronic electrophilicity index omega evaluated for a series of 42 functional groups commonly present in organic compounds.

  11. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  12. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O

    NASA Astrophysics Data System (ADS)

    Pabalan, Roberto T.; Pitzer, Kenneth S.

    1987-09-01

    Mineral solubilities in binary and ternary electrolyte mixtures in the system Na-K-Mg-Cl-SO 4-OH-H 2O are calculated to high temperatures using available thermodynamic data for solids and for aqueous electrolyte solutions. Activity and osmotic coefficients are derived from the ion-interaction model of Pitzer (1973, 1979) and co-workers, the parameters of which are evaluated from experimentally determined solution properties or from solubility data in binary and ternary mixtures. Excellent to good agreement with experimental solubilities for binary and ternary mixtures indicate that the model can be successfully used to predict mineral-solution equilibria to high temperatures. Although there are currently no theoretical forms for the temperature dependencies of the various model parameters, the solubility data in ternary mixtures can be adequately represented by constant values of the mixing term θ ij and values of ψ ijk which are either constant or have a simple temperature dependence. Since no additional parameters are needed to describe the thermodynamic properties of more complex electrolyte mixtures, the calculations can be extended to equilibrium studies relevant to natural systems. Examples of predicted solubilities are given for the quaternary system NaCl-KCl-MgCl 2-H 2O.

  13. Constant-roll (quasi-)linear inflation

    NASA Astrophysics Data System (ADS)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  14. Cosmic Explosions, Life in the Universe, and the Cosmological Constant.

    PubMed

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia

    2016-02-26

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  15. The variance of the locally measured Hubble parameter explained with different estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odderskov, Io; Hannestad, Steen; Brandbyge, Jacob, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: jacobb@phys.au.dk

    We study the expected variance of measurements of the Hubble constant, H {sub 0}, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N -body simulations. We compare the variance with that obtained by carrying out mock observations in the N-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend to obtain a smaller variancemore » than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H {sub 0} from CMB measurements and the value measured in the local universe, these considerations are important in light of the percent determination of the Hubble constant in the local universe.« less

  16. Cosmic Explosions, Life in the Universe, and the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia

    2016-02-01

    Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.

  17. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  18. Rate Constants of PSII Photoinhibition and its Repair, and PSII Fluorescence Parameters in Field Plants in Relation to their Growth Light Environments.

    PubMed

    Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro

    2015-09-01

    The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Theoretical research of the spin-Hamiltonian parameters for two rhombic W5+ centers in KTiOPO4 (KTP) crystal through a two-mechanism model

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Chen, Bo-Wei; Wei, Chen-Fu; Zheng, Wen-Chen

    2016-09-01

    The high-order perturbation formulas based on the two-mechanism model are employed to calculate the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) for two approximately rhombic W5+ centers in KTiOPO4 (KTP) crystal. In the model, both the widely-applied crystal-field (CF) mechanism concerning the interactions of CF excited states with the ground state and the generally-neglected charge-transfer (CT) mechanism concerning the interactions of CT excited states with the ground state are included. The calculated results agree with the experimental values, and the signs of constants Ai are suggested. The calculations indicate that (i) for the high valence state dn ions in crystals, the contributions to spin-Hamiltonian parameters should take into account both the CF and CT mechanisms and (ii) the large g-shifts |Δgi | (=|gi-ge |, where ge≈ 2.0023) for W5+ centers in crystals are due to the large spin-orbit parameter of free W5+ ion.

  20. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  1. A Self Adaptive Differential Evolution Algorithm for Global Optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Pravesh; Pant, Millie

    This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.

  2. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  3. Magnetised Strings in Λ-Dominated Anisotropic Universe

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Yadav, Anil Kumar; Dewangan, R. N.

    2016-11-01

    In this paper, we have searched the existence of Λ-dominated anisotropic universe filled with magnetized strings. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to dark energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ω m )0 & (ΩΛ)0 are estimated for high red shift (.3 ≤ z ≤ 1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ω m )0 & (ΩΛ)0 are 0.2920 & 0.7076 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP and Plank. Various physical parameters such as the matter and dark energy densities, the present age of the universe and the present value of deceleration parameter have been obtained on the basis of the values of (Ω m )0 & (ΩΛ)0.Also, we have estimated that the acceleration would have begun in the past at z = 0.6845 i. e. 6.2341 Gyrs before from now.

  4. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    NASA Astrophysics Data System (ADS)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  5. NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the timemore » of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.« less

  6. Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G.

    2016-08-01

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

  7. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.

    PubMed

    Frank, Simon; Goeppert, Nadine; Goldscheider, Nico

    2018-02-15

    Karst springs, especially in alpine regions, are important for drinking water supply but also vulnerable to contamination, especially after rainfall events. This high variability of water quality requires rapid quantification of contamination parameters. Here, we used a fluorescence-based multi-parameter approach to characterize the dynamics of organic carbon, faecal bacteria, and particles at three alpine karst springs. We used excitation emission matrices (EEMs) to identify fluorescent dissolved organic material (FDOM). At the first system, peak A fluorescence and total organic carbon (TOC) were strongly correlated (Spearman's r s of 0.949), indicating that a large part of the organic matter is related to humic-like substances. Protein-like fluorescence and cultivation-based determination of coliform bacteria also had a significant correlation with r s =0.734, indicating that protein-like fluorescence is directly related to faecal pollution. At the second system, which has two spring outlets, the absolute values of all measured water-quality parameters were lower; there was a significant correlation between TOC and humic-like fluorescence (r s =0.588-0.689) but coliform bacteria and protein-like fluorescence at these two springs were not correlated. Additionally, there was a strong correlation (r s =0.571-0.647) between small particle fractions (1.0 and 2.0μm), a secondary turbidity peak and bacteria. At one of these springs, discharge was constant despite the reaction of all other parameters to the rainfall event. Our results demonstrated that i) all three springs showed fast and marked responses of all investigated water-quality parameters after rain events; ii) a constant discharge does not necessarily mean constant water quality; iii) at high contamination levels, protein-like fluorescence is a good indicator of bacterial contamination, while at low contamination levels no correlation between protein-like fluorescence and bacterial values was detected; and iv) a combination of fluorescence measurements and particle-size analysis is a promising approach for a rapid assessment of organic contamination, especially relative to time-consuming conventional bacterial determination methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Micro-Macro Duality and Space-Time Emergence

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    2011-03-01

    The microscopic origin of space-time geometry is explained on the basis of an emergence process associated with the condensation of infinite number of microscopic quanta responsible for symmetry breakdown, which implements the basic essence of "Quantum-Classical Correspondence" and of the forcing method in physical and mathematical contexts, respectively. From this viewpoint, the space-time dependence of physical quantities arises from the "logical extension" [8] to change "constant objects" into "variable objects" by tagging the order parameters associated with the condensation onto "constant objects"; the logical direction here from a value y to a domain variable x (to materialize the basic mechanism behind the Gel'fand isomorphism) is just opposite to that common in the usual definition of a function ƒ : x⟼ƒ(x) from its domain variable x to a value y = ƒ(x).

  9. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    PubMed

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Analysis of Self-Associating Proteins by Singular Value Decomposition of Solution Scattering Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Tim E.; Craig, Bruce A.; Kondrashkina, Elena

    2008-07-08

    We describe a method by which a single experiment can reveal both association model (pathway and constants) and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer. Singular value decomposition of the data yields a set of basis vectors from which the scattering curve for each oligomer is reconstructed using coefficients that depend on the association model. A search identifies the association pathway and constants that provide the best agreement between reconstructed and observed data. Using simulatedmore » data with realistic noise, our method finds the correct pathway and association constants. Depending on the simulation parameters, reconstructed curves for each oligomer differ from the ideal by 0.050.99% in median absolute relative deviation. The reconstructed scattering curves are fundamental to further analysis, including interatomic distance distribution calculation and low-resolution ab initio shape reconstruction of each oligomer in solution. This method can be applied to x-ray or neutron scattering data from small angles to moderate (or higher) resolution. Data can be taken under physiological conditions, or particular conditions (e.g., temperature) can be varied to extract fundamental association parameters ({Delta}H{sub ass}, S{sub ass}).« less

  11. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs

    USGS Publications Warehouse

    Hill, Mary C.; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.

    2000-01-01

    This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity, horizontal anisotropy, vertical hydraulic conductivity or vertical anisotropy, specific storage, and specific yield; and, for implicitly represented layers, vertical hydraulic conductivity. In addition, parameters can be defined to calculate the hydraulic conductance of the River, General-Head Boundary, and Drain Packages; areal recharge rates of the Recharge Package; maximum evapotranspiration of the Evapotranspiration Package; pumpage or the rate of flow at defined-flux boundaries of the Well Package; and the hydraulic head at constant-head boundaries. The spatial variation of model inputs produced using defined parameters is very flexible, including interpolated distributions that require the summation of contributions from different parameters. Observations can include measured hydraulic heads or temporal changes in hydraulic heads, measured gains and losses along head-dependent boundaries (such as streams), flows through constant-head boundaries, and advective transport through the system, which generally would be inferred from measured concentrations. MODFLOW-2000 is intended for use on any computer operating system. The program consists of algorithms programmed in Fortran 90, which efficiently performs numerical calculations and is fully compatible with the newer Fortran 95. The code is easily modified to be compatible with FORTRAN 77. Coordination for multiple processors is accommodated using Message Passing Interface (MPI) commands. The program is designed in a modular fashion that is intended to support inclusion of new capabilities.

  12. Assessment of the instantaneous unit hydrograph derived from the theory of topologically random networks

    USGS Publications Warehouse

    Karlinger, M.R.; Troutman, B.M.

    1985-01-01

    An instantaneous unit hydrograph (iuh) based on the theory of topologically random networks (topological iuh) is evaluated in terms of sets of basin characteristics and hydraulic parameters. Hydrographs were computed using two linear routing methods for each of two drainage basins in the southeastern United States and are the basis of comparison for the topological iuh's. Elements in the sets of basin characteristics for the topological iuh's are the number of first-order streams only, (N), or the nuber of sources together with the number of channel links in the topological diameter (N, D); the hydraulic parameters are values of the celerity and diffusivity constant. Sensitivity analyses indicate that the mean celerity of the internal links in the network is the critical hydraulic parameter for determining the shape of the topological iuh, while the diffusivity constant has minimal effect on the topological iuh. Asymptotic results (source-only) indicate the number of sources need not be large to approximate the topological iuh with the Weibull probability density function.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, Alexander; Vilim, Richard

    Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mörtsell, E., E-mail: edvard@fysik.su.se

    The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts andmore » the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.« less

  15. Kinetics and its accompanying thermodynamics studies on simultaneous complexation of heterobimetallic neodymium (III) with zinc (II) and L-tryptophan in aquated DMF using 4f-4f absorption spectra.

    PubMed

    Huidrom, Bimola; Singh, N Rajmuhon

    2014-01-24

    The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with l-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Kinetics and its accompanying thermodynamics studies on simultaneous complexation of heterobimetallic neodymium (III) with zinc (II) and L-tryptophan in aquated DMF using 4f-4f absorption spectra

    NASA Astrophysics Data System (ADS)

    Huidrom, Bimola; Rajmuhon Singh, N.

    2014-01-01

    The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with L-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1 h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically.

  17. A generic hydrological model for a green roof drainage layer.

    PubMed

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material.

  18. Cosmological histories in bimetric gravity: a graphical approach

    NASA Astrophysics Data System (ADS)

    Mörtsell, E.

    2017-02-01

    The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts and the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.

  19. Global Scale Simultaneous Retrieval of Smoothened Vegetation Optical Depth and Surface Roughness Parameter using AMSR-E X-band Observations

    NASA Astrophysics Data System (ADS)

    Lanka, Karthikeyan; Pan, Ming; Konings, Alexandra; Piles, María; D, Nagesh Kumar; Wood, Eric

    2017-04-01

    Traditionally, passive microwave retrieval algorithms such as Land Parameter Retrieval Model (LPRM) estimate simultaneously soil moisture and Vegetation Optical Depth (VOD) using brightness temperature (Tb) data. The algorithm requires a surface roughness parameter which - despite implications - is generally assumed to be constant at global scale. Due to inherent noise in the satellite data and retrieval algorithm, the VOD retrievals are usually observed to be highly fluctuating at daily scale which may not occur in reality. Such noisy VOD retrievals along with spatially invariable roughness parameter may affect the quality of soil moisture retrievals. The current work aims to smoothen the VOD retrievals (with an assumption that VOD remains constant over a period of time) and simultaneously generate, for the first time, global surface roughness map using multiple descending X-band Tb observations of AMSR-E. The methodology utilizes Tb values under a moving-time-window-setup to estimate concurrently the soil moisture of each day and a constant VOD in the window. Prior to this step, surface roughness parameter is estimated using the complete time series of Tb record. Upon carrying out the necessary sensitivity analysis, the smoothened VOD along with soil moisture retrievals is generated for the 10-year duration of AMSR-E (2002-2011) with a 7-day moving window using the LPRM framework. The spatial patterns of resulted global VOD maps are in coherence with vegetation biomass and climate conditions. The VOD results also exhibit a smoothening effect in terms of lower values of standard deviation. This is also evident from time series comparison of VOD and LPRM VOD retrievals without optimization over moving windows at several grid locations across the globe. The global surface roughness map also exhibited spatial patterns that are strongly influenced by topography and land use conditions. Some of the noticeable features include high roughness over mountainous regions and heavily vegetated tropical rainforests, low roughness in desert areas and moderate roughness value over higher latitudes. The new datasets of VOD and surface roughness can help improving the quality of soil moisture retrievals. Also, the methodology proposed is generic by nature and can be implemented over currently operating AMSR2, SMOS, and SMAP soil moisture missions.

  20. Classical spin glass system in external field with taking into account relaxation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, A. S., E-mail: g_ashot@sci.am; Abajyan, H. G.

    2013-08-15

    We study statistical properties of disordered spin systems under the influence of an external field with taking into account relaxation effects. For description of system the spatial 1D Heisenberg spin-glass Hamiltonian is used. In addition, we suppose that interactions occur between nearest-neighboring spins and they are random. Exact solutions which define angular configuration of the spin in nodes were obtained from the equations of stationary points of Hamiltonian and the corresponding conditions for the energy local minimum. On the basis of these recurrent solutions an effective parallel algorithm is developed for simulation of stabile spin-chains of an arbitrary length. Itmore » is shown that by way of an independent order of N{sup 2} numerical simulations (where N is number of spin in each chain) it is possible to generate ensemble of spin-chains, which is completely ergodic which is equivalent to full self-averaging of spin-chains' vector polarization. Distributions of different parameters (energy, average polarization by coordinates, and spin-spin interaction constant) of unperturbed system are calculated. In particular, analytically is proved and numerically is shown, that for the Heisenberg nearest-neighboring Hamiltonian model, the distribution of spin-spin interaction constants as opposed to widely used Gauss-Edwards-Anderson distribution satisfies Levy alpha-stable distribution law. This distribution is nonanalytic function and does not have variance. In the work we have in detail studied critical properties of an ensemble depending on value of external field parameters (from amplitude and frequency) and have shown that even at weak external fields the spin-glass systemis strongly frustrated. It is shown that frustrations have fractal behavior, they are selfsimilar and do not disappear at scale decreasing of area. By the numerical computation is shown that the average polarization of spin-glass on a different coordinates can have values which can lead to catastrophes in the equation ofClausius-Mossotti for dielectric constant. In other words, for some values of external field parameter, a critical phenomenon occurs in the system which is impossible to describe by the real-valued Heisenberg spin-glass Hamiltonian. For the solution of this problem at first the complex-valued disordered Hamiltonian is used. Physically this type of extension of Hamiltonian allows to consider relaxation effects which occur in the system under the influence of an external field. On the basis of developed approach an effective parallel algorithm is developed for simulation of statistic parameters of spin-glass system under the influence of an external field.« less

  1. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less

  2. Variation of strain rate sensitivity index of a superplastic aluminum alloy in different testing methods

    NASA Astrophysics Data System (ADS)

    Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab

    2017-10-01

    The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.

  3. Modeling clear-sky solar radiation across a range of elevations in Hawai‘i: Comparing the use of input parameters at different temporal resolutions

    NASA Astrophysics Data System (ADS)

    Longman, Ryan J.; Giambelluca, Thomas W.; Frazier, Abby G.

    2012-01-01

    Estimates of clear sky global solar irradiance using the parametric model SPCTRAL2 were tested against clear sky radiation observations at four sites in Hawai`i using daily, mean monthly, and 1 year mean model parameter settings. Atmospheric parameters in SPCTRAL2 and similar models are usually set at site-specific values and are not varied to represent the effects of fluctuating humidity, aerosol amount and type, or ozone concentration, because time-dependent atmospheric parameter estimates are not available at most sites of interest. In this study, we sought to determine the added value of using time dependent as opposed to fixed model input parameter settings. At the AERONET site, Mauna Loa Observatory (MLO) on the island of Hawai`i, where daily measurements of atmospheric optical properties and hourly solar radiation observations are available, use of daily rather than 1 year mean aerosol parameter values reduced mean bias error (MBE) from 18 to 10 W m-2 and root mean square error from 25 to 17 W m-2. At three stations in the HaleNet climate network, located at elevations of 960, 1640, and 2590 m on the island of Maui, where aerosol-related parameter settings were interpolated from observed values for AERONET sites at MLO (3397 m) and Lāna`i (20 m), and precipitable water was estimated using radiosonde-derived humidity profiles from nearby Hilo, the model performed best when using constant 1 year mean parameter values. At HaleNet Station 152, for example, MBE was 18, 10, and 8 W m-2 for daily, monthly, and 1 year mean parameters, respectively.

  4. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    PubMed

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  5. Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity.

    PubMed Central

    Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A

    1990-01-01

    Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796

  6. Infrared and Raman studies of hydrogen bonded complexes involving acetone, acetophenone and benzophenone—I. Thermodynamic constants and frequency shifts of the ν OH and ν CO stretching vibrations

    NASA Astrophysics Data System (ADS)

    Thijs, R.; Zeegers-Huyskens, Th.

    The hydrogen bonded complexes between phenol derivatives and acetone ( I), acetophenone ( II) and benzophenone ( III) have been studied in carbon tetrachloride solution by i.r. spectroscopy. The formation constants, the enthalpies of complex formation, the Δν OH and Δν CO values have been determined. For a given phenol derivative, the thermodynamic constants and Δν OH are ordered according to I > II > III and the influence of a substituent implanted on the phenolic ring can be expressed by the Hammett relationship. The ϱ coefficients of the Hammett equation are related to the complexation enthalpies. The Badger—Bauer relation is valid for the three bases. The comparison with complexes involving other carbonyl bases allows to precise the influence of the substituent implanted on the carbonyl group. The Δν OH values obey the dual substituent parameter equation using σ I and σ +R; the ϱ I/ϱ R ratio is higher than one. The Δν CO values are shown to depend on the complexation enthalpy and on the delocalization effect of the substituents.

  7. Computation of Nonretarded London Dispersion Coefficients and Hamaker Constants of Copper Phthalocyanine.

    PubMed

    Zhao, Yan; Ng, Hou T; Hanson, Eric; Dong, Jiannan; Corti, David S; Franses, Elias I

    2010-02-09

    A time-dependent density functional theory (TDDFT) scheme has been validated for predictions of the dispersion coefficients of five molecules (H2O, NH3, CO2, C6H6, and pentane) and for predictions of the static dipole polarizabilities of three organometallic compounds (TiCl4, OsO4, and Ge(CH3)4). The convergence of grid spacing has been examined, and two types of pseudopotentials and 13 density functionals have been tested. The nonretarded Hamaker constants A11 are calculated by employing a semiempirical parameter a along with the standard Hamaker constant equation. The parameter a is optimized against six accurate Hamaker constants obtained from the full Lifshitz theory. The dispersion coefficients of copper phthalocyanine CuPc and CuPc-SO3H are then computed. Using the theoretical densities of ρ1 = 1.63 and 1.62 g/cm(3), the Hamaker constants A11 of crystalline α-CuPc and β-CuPc are found to be 14.73 × 10(-20) and 14.66 × 10(-20) J, respectively. Using the experimentally derived density of ρ1 = 1.56 g/cm(3) for a commercially available β-CuPc (nanoparticles of ∼90 nm hydrodynamic diameter), A11 = 13.52 × 10(-20) J is found. Its corresponding effective Hamaker constant in water (A121) is calculated to be 3.07 × 10(-20) J. All computed A11 values for CuPc are noted to be higher than those reported previously.

  8. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d 01 =-133.37 MHz and a5p 01 =-160.25 MHz for 4d45p; a4d 01 =-140.84 MHz, a5p 01 =-170.18 MHz and a5s 10 =-2898 MHz for 4d35s5p; a5s 10 =-2529 (2) MHz and a4d 01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  9. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  10. EPR studies of free radicals decay and survival in gamma irradiated aminoglycoside antibiotics: sisomicin, tobramycin and paromomycin.

    PubMed

    Wilczyński, Sławomir; Pilawa, Barbara; Koprowski, Robert; Wróbel, Zygmunt; Ptaszkiewicz, Marta; Swakoń, Jan; Olko, Paweł

    2012-02-14

    Radiation sterilization technology is more actively used now that any time because of its many advantages. Gamma radiation has high penetrating power, relatively low chemical reactivity and causes small temperature rise. But on the other hand radiosterilization can lead to radiolytic products appearing, in example free radicals. Free radicals in radiative sterilized sisomicin, tobramycin and paromomycin were studied by electron paramagnetic resonance (EPR) spectroscopy. Dose of gamma irradiation of 25kGy was used. Concentrations and properties of free radicals in irradiated antibiotics were studied. EPR spectra were recorded for samples stored in air and argon. For gamma irradiated antibiotics strong EPR lines were recorded. One- and two-exponential functions were fitted to experimental points during testing and researching of time influence of the antibiotics storage to studied parameters of EPR lines. Our study of free radicals in radiosterilized antibiotics indicates the need for characterization of medicinal substances prior to sterilization process using EPR values. We propose the concentration of free radicals and other spectroscopic parameters as useful factors to select the optimal type of sterilization for the individual drug. The important parameters are i.a. the τ time constants and K constants of exponential functions. Time constants τ give us information about the speed of free radicals concentration decrease in radiated medicinal substances. The constant K(0) shows the free radicals concentration in irradiated medicament after long time of storage. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO)

    NASA Astrophysics Data System (ADS)

    Ruiz-Cabello, F. Javier Montes; Maroni, Plinio; Borkovec, Michal

    2013-06-01

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  12. Direct measurements of forces between different charged colloidal particles and their prediction by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO).

    PubMed

    Montes Ruiz-Cabello, F Javier; Maroni, Plinio; Borkovec, Michal

    2013-06-21

    Force measurements between three types of latex particles of diameters down to 1 μm with sulfate and carboxyl surface functionalities were carried out with the multi-particle colloidal probe technique. The experiments were performed in monovalent electrolyte up to concentrations of about 5 mM. The force profiles could be quantified with the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) by invoking non-retarded van der Waals forces and the Poisson-Boltzmann description of double layer forces within the constant regulation approximation. The forces measured in the symmetric systems were used to extract particle and surface properties, namely, the Hamaker constant, surface potentials, and regulation parameters. The regulation parameter is found to be independent of solution composition. With these values at hand, the DLVO theory is capable to accurately predict the measured forces in the asymmetric systems down to distances of 2-3 nm without adjustable parameters. This success indicates that DLVO theory is highly reliable to quantify interaction forces in such systems. However, charge regulation effects are found to be important, and they must be considered to obtain correct description of the forces. The use of the classical constant charge or constant potential boundary conditions may lead to erroneous results. To make reliable predictions of the force profiles, the surface potentials must be extracted from direct force measurements too. For highly charged surfaces, the commonly used electrophoresis techniques are found to yield incorrect estimates of this quantity.

  13. Radical kinetics in sub- and supercritical carbon dioxide: thermodynamic rate tuning.

    PubMed

    Ghandi, Khashayar; McFadden, Ryan M L; Cormier, Philip J; Satija, Paras; Smith, Marisa

    2012-06-28

    We report rate constants for muonium addition to 1,1-difluoroethylene (vinylidene fluoride) in CO2 at 290-530 K, 40-360 bar, and 0.05-0.90 g cm(-3). Rate constants are mapped against their thermodynamic conditions, demonstrating the kinetic tuning ability of the solvent. The reaction exhibits critical slowing near conditions of maximum solvent isothermal compressibility, where activation volumes of unprecedentedly large magnitudes on the order of ±10(6) cm(3) mol(-1) are observed. Such values are suggestive of pressure being a significant parameter for tuning fluorolkene reactivity.

  14. Constant-Elasticity-of-Substitution Simulation

    NASA Technical Reports Server (NTRS)

    Reiter, G.

    1986-01-01

    Program simulates constant elasticity-of-substitution (CES) production function. CES function used by economic analysts to examine production costs as well as uncertainties in production. User provides such input parameters as price of labor, price of capital, and dispersion levels. CES minimizes expected cost to produce capital-uncertainty pair. By varying capital-value input, one obtains series of capital-uncertainty pairs. Capital-uncertainty pairs then used to generate several cost curves. CES program menu driven and features specific print menu for examining selected output curves. Program written in BASIC for interactive execution and implemented on IBM PC-series computer.

  15. Sequential Least-Squares Using Orthogonal Transformations. [spacecraft communication/spacecraft tracking-data smoothing

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.

    1975-01-01

    Square root information estimation, starting from its beginnings in least-squares parameter estimation, is considered. Special attention is devoted to discussions of sensitivity and perturbation matrices, computed solutions and their formal statistics, consider-parameters and consider-covariances, and the effects of a priori statistics. The constant-parameter model is extended to include time-varying parameters and process noise, and the error analysis capabilities are generalized. Efficient and elegant smoothing results are obtained as easy consequences of the filter formulation. The value of the techniques is demonstrated by the navigation results that were obtained for the Mariner Venus-Mercury (Mariner 10) multiple-planetary space probe and for the Viking Mars space mission.

  16. A Piloted Simulator Evaluation of Transport Aircraft Rudder Pedal Force/Feel Characteristics

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2008-01-01

    A piloted simulation study has been conducted in a fixed-base research simulator to assess the directional handling qualities for various rudder pedal feel characteristics for commercial transport airplanes. That is, the effects of static pedal force at maximum pedal travel, breakout force, and maximum pedal travel on handling qualities were studied. An artificial maneuver with a severe lateral wind shear and requiring runway tracking at an altitude of 50 feet in a crosswind was used to fully exercise the rudder pedals. Twelve active airline pilots voluntarily participated in the study and flew approximately 500 maneuvers. The pilots rated the maneuver performance with various rudder pedal feel characteristics using the Cooper- Harper rating scale. The test matrix had 15 unique combinations of the 3 static pedal feel characteristics. A 10-term, second-order equation for the Cooper-Harper pilot rating as a function of the 3 independent pedal feel parameters was fit to the data. The test matrix utilized a Central Composite Design that is very efficient for fitting an equation of this form. The equation was used to produce contour plots of constant pilot ratings as a function of two of the parameters with the third parameter held constant. These contour plots showed regions of good handling qualities as well as regions of degraded handling qualities. In addition, a numerical equation solver was used to predict the optimum parameter values (those with the lowest pilot rating). Quantitative pilot performance data were also analyzed. This analysis found that the peak values of the cross power spectra of the pedal force and heading angle could be used to quantify the tendency toward directional pilot induced oscillations (PIO). Larger peak values of the cross power spectra were correlated with larger (degraded) Cooper-Harper pilot ratings. Thus, the subjective data (Cooper-Harper pilot ratings) were consistent with the objective data (peak values of the cross power spectra).

  17. Microwave structure for the propiolic acid-formic acid complex.

    PubMed

    Kukolich, Stephen G; Mitchell, Erik G; Carey, Spencer J; Sun, Ming; Sargus, Bryan A

    2013-10-03

    New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH···HOOCH and HCCCOOD···DOOCH isotopologues. Rotational transitions were measured in the frequency range of 4.9-15.4 GHz, providing accurate rotational constants, which, combined with previous rotational constants, allowed an improved structural fit for the propiolic acid-formic acid complex. The new structural fit yields reasonably accurate orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å(2). The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations. The best-fit hydrogen bond lengths have an r(O1-H1···O4) of 1.64 Å and an r(O3-H2···O2) of 1.87 Å. The average of the two hydrogen bond lengths is r(av)(exp) = 1.76 Å, in good agreement with r(av)(theory) = 1.72 Å. The center of mass separation of the monomers is R(CM) = 3.864 Å. Other structural parameters from the least-squares fit using the experimental rotational constants are compared with theoretical values. The spectra were obtained using two different pulsed beam Fourier transform microwave spectrometers.

  18. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity, and can help to alleviate the problem of data overfitting. PMID:21548948

  19. Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.

    PubMed

    Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

  20. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  1. The growth of the tearing mode - Boundary and scaling effects

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.

  2. Evaluation of Kurtosis into the product of two normally distributed variables

    NASA Astrophysics Data System (ADS)

    Oliveira, Amílcar; Oliveira, Teresa; Seijas-Macías, Antonio

    2016-06-01

    Kurtosis (κ) is any measure of the "peakedness" of a distribution of a real-valued random variable. We study the evolution of the Kurtosis for the product of two normally distributed variables. Product of two normal variables is a very common problem for some areas of study, like, physics, economics, psychology, … Normal variables have a constant value for kurtosis (κ = 3), independently of the value of the two parameters: mean and variance. In fact, the excess kurtosis is defined as κ- 3 and the Normal Distribution Kurtosis is zero. The product of two normally distributed variables is a function of the parameters of the two variables and the correlation between then, and the range for kurtosis is in [0, 6] for independent variables and in [0, 12] when correlation between then is allowed.

  3. Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.

    PubMed

    Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen

    2016-02-25

    The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.

  4. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.

  5. Gravitational lensing effects in a time-variable cosmological 'constant' cosmology

    NASA Technical Reports Server (NTRS)

    Ratra, Bharat; Quillen, Alice

    1992-01-01

    A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.

  6. Measuring cosmological parameters

    PubMed Central

    Freedman, Wendy L.

    1998-01-01

    In this review, the status of measurements of the matter density (Ωm), the vacuum energy density or cosmological constant (ΩΛ), the Hubble constant (H0), and the ages of the oldest measured objects (t0) are summarized. Three independent types of methods for measuring the Hubble constant are considered: the measurement of time delays in multiply imaged quasars, the Sunyaev–Zel’dovich effect in clusters, and Cepheid-based extragalactic distances. Many recent independent dynamical measurements are yielding a low value for the matter density (Ωm ≈ 0.2–0.3). A wide range of Hubble constant measurements appear to be converging in the range of 60–80 km/sec per megaparsec. Areas where future improvements are likely to be made soon are highlighted—in particular, measurements of anisotropies in the cosmic microwave background. Particular attention is paid to sources of systematic error and the assumptions that underlie many of the measurement methods. PMID:9419315

  7. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  8. Comparison of semi-quantitative and quantitative dynamic contrast-enhanced MRI evaluations of vertebral marrow perfusion in a rat osteoporosis model.

    PubMed

    Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu

    2017-11-14

    This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of E max and a strong positive correlation of K trans with MVD were found. Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.

  9. Chandrasekhar-type algorithms for fast recursive estimation in linear systems with constant parameters

    NASA Technical Reports Server (NTRS)

    Choudhury, A. K.; Djalali, M.

    1975-01-01

    In this recursive method proposed, the gain matrix for the Kalman filter and the convariance of the state vector are computed not via the Riccati equation, but from certain other equations. These differential equations are of Chandrasekhar-type. The 'invariant imbedding' idea resulted in the reduction of the basic boundary value problem of transport theory to an equivalent initial value system, a significant computational advance. Initial value experience showed that there is some computational savings in the method and the loss of positive definiteness of the covariance matrix is less vulnerable.

  10. Estimating varying coefficients for partial differential equation models.

    PubMed

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  11. P-V criticality of conformal gravity holography in four dimensions

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2018-02-01

    We examine the critical behavior, i.e. P-V criticality of conformal gravity (CG) in an extended phase space in which the cosmological constant should be interpreted as a thermodynamic pressure and the corresponding conjugate quantity as a thermodynamic volume. The main potential point of interest in CG is that there exists a nontrivial Rindler parameter (a) in the spacetime geometry. This geometric parameter has an important role to construct a model for gravity at large distances where the parameter “a” actually originates. We also investigate the effect of the said parameter on the black hole (BH) thermodynamic equation of state, critical constants, Reverse Isoperimetric Inequality, first law of thermodynamics, Hawking-Page phase transition and Gibbs free energy for this BH. We speculate that due to the presence of the said parameter, there has been a deformation in the shape of the isotherms in the P-V diagram in comparison with the charged-anti de Sitter (AdS) BH and the chargeless-AdS BH. Interestingly, we find that the critical ratio for this BH is ρc = Pcvc Tc = 3 2 32 ‑ 23, which is greater than the charged AdS BH and Schwarzschild-AdS BH, i.e. ρcCG : ρ cSch-AdS : ρ cRN-AdS = 0.67 : 0.50 : 0.37. The symbols are defined in the main work. Moreover, we observe that the critical ratio has a constant value and it is independent of the nontrivial Rindler parameter (a). Finally, we derive the reduced equation of state in terms of the reduced temperature, the reduced volume and the reduced pressure, respectively.

  12. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.

  13. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues.

    PubMed

    Güzel, Fuat; Yakut, Hakan; Topal, Giray

    2008-05-30

    In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.

  14. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of arrhenius and thermodynamic parameters for the aqueous reaction of the hydroxyl radical with lactic acid.

    PubMed

    Martin, Leigh R; Mezyk, Stephen P; Mincher, Bruce J

    2009-01-08

    Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer and to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH approximately 3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the following equation: ln k(1) = (23.85 +/- 0.19) - (1120 +/- 54)/T, corresponding to an activation energy of 9.31 +/- 0.45 kJ mol(-1) and a room temperature reaction rate constant of (5.24 +/- 0.35) x 10(8) M(-1) s(-1) (24.0 degrees C). For the lactate ion, the temperature-dependent rate constant is given by ln k(2) = (24.83 +/- 0.14) - (1295 +/- 42)/T, for an activation energy of 10.76 +/- 0.35 kJ mol(-1) and a room temperature value of (7.77 +/- 0.50) x 10(8) M(-1) s(-1) (22.2 degrees C). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pK(a) value, allowing thermodynamic parameters for the acid dissociation to be calculated as DeltaH(o) = -10.75 +/- 1.77 kJ mol(-1), DeltaS(o) = -103.9 +/- 6.0 J K(-1) mol(-1) and DeltaG(o) = 20.24 +/- 2.52 kJ mol(-1) at low ionic strength.

  16. On the Time Scale of Nocturnal Boundary Layer Cooling in Valleys and Basins and over Plains

    NASA Astrophysics Data System (ADS)

    de Wekker, Stephan F. J.; Whiteman, C. David

    2006-06-01

    Sequences of vertical temperature soundings over flat plains and in a variety of valleys and basins of different sizes and shapes were used to determine cooling-time-scale characteristics in the nocturnal stable boundary layer under clear, undisturbed weather conditions. An exponential function predicts the cumulative boundary layer cooling well. The fitting parameter or time constant in the exponential function characterizes the cooling of the valley atmosphere and is equal to the time required for the cumulative cooling to attain 63.2% of its total nighttime value. The exponential fit finds time constants varying between 3 and 8 h. Calculated time constants are smallest in basins, are largest over plains, and are intermediate in valleys. Time constants were also calculated from air temperature measurements made at various heights on the sidewalls of a small basin. The variation with height of the time constant exhibited a characteristic parabolic shape in which the smallest time constants occurred near the basin floor and on the upper sidewalls of the basin where cooling was governed by cold-air drainage and radiative heat loss, respectively.

  17. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    PubMed Central

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292

  18. Shape optimization of the modular press body

    NASA Astrophysics Data System (ADS)

    Pabiszczak, Stanisław

    2016-12-01

    A paper contains an optimization algorithm of cross-sectional dimensions of a modular press body for the minimum mass criterion. Parameters of the wall thickness and the angle of their inclination relative to the base of section are assumed as the decision variables. The overall dimensions are treated as a constant. The optimal values of parameters were calculated using numerical method of the tool Solver in the program Microsoft Excel. The results of the optimization procedure helped reduce body weight by 27% while maintaining the required rigidity of the body.

  19. Analysis of the uncertainties in the physical calculations of water-moderated power reactors of the VVER type by the parameters of models of preparing few-group constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryukhin, V. V., E-mail: bryuhin@yandex.ru; Kurakin, K. Yu.; Uvakin, M. A.

    The article covers the uncertainty analysis of the physical calculations of the VVER reactor core for different meshes of the reference values of the feedback parameters (FBP). Various numbers of nodes of the parametric axes of FBPs and different ranges between them are investigated. The uncertainties of the dynamic calculations are analyzed using RTS RCCA ejection as an example within the framework of the model with the boundary conditions at the core inlet and outlet.

  20. Constraints on running vacuum model with H(z) and f σ8

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu

    2017-08-01

    We examine the running vacuum model with Λ (H) = 3 ν H2 + Λ0, where ν is the model parameter and Λ0 is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H(z) and weighted linear growth f (z)σ8(z) measurements, we find that ν=(1.37+0.72-0.95)× 10-4 with the best fitted χ2 value slightly smaller than that in the ΛCDM model.

  1. Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes

    NASA Technical Reports Server (NTRS)

    Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.

    2002-01-01

    A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.

  2. Estimation of Geodetic and Geodynamical Parameters with VieVS

    NASA Technical Reports Server (NTRS)

    Spicakova, Hana; Bohm, Johannes; Bohm, Sigrid; Nilsson, tobias; Pany, Andrea; Plank, Lucia; Teke, Kamil; Schuh, Harald

    2010-01-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics at TU Vienna has focused on the development of a new VLBI data analysis software called VieVS (Vienna VLBI Software). One part of the program, currently under development, is a unit for parameter estimation in so-called global solutions, where the connection of the single sessions is done by stacking at the normal equation level. We can determine time independent geodynamical parameters such as Love and Shida numbers of the solid Earth tides. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, it is possible to determine frequency dependent values in the diurnal band together with the resonance frequency of Free Core Nutation. In this paper we show first results obtained from the 24-hour IVS R1 and R4 sessions.

  3. Stability of libration points in the restricted four-body problem with variable mass

    NASA Astrophysics Data System (ADS)

    Mittal, Amit; Aggarwal, Rajiv; Suraj, Md. Sanam; Bisht, Virender Singh

    2016-10-01

    We have investigated the stability of the Lagrangian solutions for the restricted four-body problem with variable mass. It has been assumed that the three primaries with masses m1, m2 and m3 form an equilateral triangle, wherein m2=m3. According to Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), the infinitesimal body varies its mass m with time. The space-time transformations of Meshcherskii (Studies on the Mechanics of Bodies of Variable Mass, GITTL, Moscow, 1949) are used by taking the values of the parameters q=1/2, k=0, n=1. The equations of motion of the infinitesimal body with variable mass have been determined. The equations of motion of the current problem differ from the ones of the restricted four-body problem with constant mass. There exist eight libration points, out of which two are collinear with the primary m1 and the rest are non-collinear for a fixed value of parameters γ (m {at time} t/m {at initial time}, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2) and μ=0.019 (the mass parameter). All the libration points are found to be unstable. The zero velocity surfaces (ZVS) are also drawn and regions of motion are discussed.

  4. Internal rotation in halogenated toluenes: Rotational spectrum of 2,3-difluorotoluene

    NASA Astrophysics Data System (ADS)

    Nair, K. P. Rajappan; Herbers, Sven; Grabow, Jens-Uwe; Lesarri, Alberto

    2018-07-01

    The microwave rotational spectrum of 2,3-difluorotoluene has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the three-fold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2518.70(15) J/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The molecular structure was derived using the substitution (rs) method. From the rotational constants of the different isotopic species the rs structure as well as the r0 structure was determined. Supporting ab initio (MP2) and DFT (B3LYP) calculations provided comparative values for the potential barrier and molecular parameters.

  5. Role of switching-on and -off effects in the vacuum instability

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Ferreira, R.; Gavrilov, S. P.; Gitman, D. M.

    2018-04-01

    We find exact differential mean numbers of fermions and bosons created from the vacuum due to a composite electric field of special configuration. This configuration imitates a finite switching-on and -off regime and consists of fields that switch on exponentially from the infinitely remote past, remains constant during a certain interval T and switch off exponentially to the infinitely remote future. We show that calculations in the slowly varying field approximation are completely predictable in the framework of a locally constant field approximation. Beyond the slowly varying field approximation, we study effects of fast switching on and off in a number of cases when the size of the dimensionless parameter eET is either close or exceeds the threshold value that determines the transition from a regime sensitive to on-off parameters to the slowly varying regime for which these effects are secondary.

  6. Study of charged stellar structures in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    2017-12-01

    This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.

  7. Development of Methods for the Determination of pKa Values

    PubMed Central

    Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram

    2013-01-01

    The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574

  8. Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.

    2016-10-01

    Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.

  9. Soil conservation service curve number: How to take into account spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.

    2012-09-01

    The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.

  10. Randomness fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1996-01-01

    A method and apparatus are provided for detecting a fault on a power line carrying a line parameter such as a load current. The apparatus monitors and analyzes the load current to obtain an energy value. The energy value is compared to a threshold value stored in a buffer. If the energy value is greater than the threshold value a counter is incremented. If the energy value is greater than a high value threshold or less than a low value threshold then a second counter is incremented. If the difference between two subsequent energy values is greater than a constant then a third counter is incremented. A fault signal is issued if the counter is greater than a counter limit value and either the second counter is greater than a second limit value or the third counter is greater than a third limit value.

  11. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redies, C.; Hoffer, L.J.; Beil, C.

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less

  13. Method for accurate determination of dissociation constants of optical ratiometric systems: chemical probes, genetically encoded sensors, and interacting molecules.

    PubMed

    Pomorski, Adam; Kochańczyk, Tomasz; Miłoch, Anna; Krężel, Artur

    2013-12-03

    Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.

  14. Parameterizing the equilibrium distribution of chemicals between the dissolved, solid particulate matter, and colloidal matter compartments in aqueous systems

    USGS Publications Warehouse

    Pankow, J.F.; McKenzie, S.W.

    1991-01-01

    The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.

  15. Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy

    2018-01-01

    The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.

  16. Model based estimation of sediment erosion in groyne fields along the River Elbe

    NASA Astrophysics Data System (ADS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-11-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  17. Sorption kinetics of diuron on volcanic ash derived soils.

    PubMed

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Bayesian inference to identify parameters in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rappel, Hussein; Beex, Lars A. A.; Bordas, Stéphane P. A.

    2017-08-01

    This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii) to show that this influence decreases for an increasing number of measurements and (iii) to show how different types of experiments influence the identified parameters and their uncertainties. The standard linear solid model is the material description of interest and a relaxation test, a constant strain-rate test and a creep test are the tensile experiments focused on. The experimental data are artificially created, allowing us to make a one-to-one comparison between the input parameters and the identified parameter values. Besides dealing with the aforementioned issues, we believe that this contribution forms a comprehensible start for those interested in applying BI in viscoelasticity.

  19. Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model

    NASA Astrophysics Data System (ADS)

    Sudoh, Takahiro; Totani, Tomonori; Makiya, Ryu; Nagashima, Masahiro

    2017-01-01

    The anthropic principle is one of the possible explanations for the cosmological constant (Λ) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, P(<Λobs), though stars are found in much smaller galaxies as well. Here we examine the anthropic argument by using a semi-analytic model of cosmological galaxy formation, which can reproduce many observations such as galaxy luminosity functions. We calculate the probability distribution of Λ by running the model code for a wide range of Λ, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit Λ, and that the number of observers is proportional to stellar mass, we find P(<Λobs) = 6.7 per cent without introducing any galaxy mass threshold. We also investigate the effect of metallicity; we find P(<Λobs) = 9.0 per cent if observers exist only in galaxies whose metallicity is higher than the solar abundance. If the number of observers is proportional to metallicity, we find P(<Λobs) = 9.7 per cent. Since these probabilities are not extremely small, we conclude that the anthropic argument is a viable explanation, if the value of Λ observed in our Universe is determined by a probability distribution.

  20. The Compatibility of Friedmann Cosmological Models with Observed Properties of Gamma-Ray Bursts and a Large Hubble Constant

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Koshut, Thomas M.; Mallozzi, Robert S.; Emslie, A. Gordon; Meegan, Charles A.

    1996-01-01

    The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored.

  1. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Shock, Everetr L.; Koretsky, Carla M.

    1995-04-01

    Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.

  2. Evolution of the interfacial perpendicular magnetic anisotropy constant of the Co2FeAl/MgO interface upon annealing

    NASA Astrophysics Data System (ADS)

    Conca, A.; Niesen, A.; Reiss, G.; Hillebrands, B.

    2018-04-01

    We investigate a series of films with different thickness of the Heusler alloy Co2FeAl in order to study the effect of annealing on the interface with a MgO layer and on the bulk magnetic properties. Our results reveal that while the perpendicular interface anisotropy constant K\\perpS is zero for the as-deposited samples, its value increases with annealing up to a value of 1.14 +/- 0.07 mJ m‑2 for the series annealed at 320 °C and of 2.01 +/- 0.7 mJ m‑2 for the 450 °C annealed series owing to a strong modification of the interface during the thermal treatment. This large value ensures a stabilization of a perpendicular magnetization orientation for an extrapolated thickness below 1.7 nm. The data additionally shows that the in-plane biaxial anisotropy constant has a different evolution with thickness in as-deposited and annealed systems. The Gilbert damping parameter α shows minima for all series for a thickness of 40 nm and an absolute minimum value of 2.8+/-0.1×10-3 . The thickness dependence is explained in terms of an inhomogeneous magnetization state generated by the interplay between the different anisotropies of the system and by the crystalline disorder.

  3. WE-FG-206-06: Dual-Input Tracer Kinetic Modeling and Its Analog Implementation for Dynamic Contrast-Enhanced (DCE-) MRI of Malignant Mesothelioma (MPM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Rimner, A; Hayes, S

    Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series formore » motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer kinetic modeling is feasible in determining micro-vascular characteristics of MPM. This project was supported from Cycle for Survival and MSK Imaging and radiation science (IMRAS) grants.« less

  4. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  5. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  6. Variation of Strontium (Sr) in the Ferroelectric Material Barium Strontium Titanate (Ba1-xSrxTiO3) by Co precipitation Method

    NASA Astrophysics Data System (ADS)

    Subarwanti, Y.; Safitri, R. D.; Supriyanto, A.; Iriani, Y.; Jamaludin, A.

    2017-02-01

    Barium Strontium Titanate (BST) have been made with variation strontium (Sr) 10%, 30% and 50% by co-precipitation method. This study aims to determine influence addition Sr against the crystal structure, crystallite size, lattice parameter, grain size and dielectric constant. Samples have been made by co-precipitation method and then the samples were sintered by furnace at 1100°C with holding time 4 hours. Characterization of BST use X-Ray Diffraction instrument, Scanning Electron Microscopy and Resistance Capacitance Inductance (RCL meter). Based on result obtained, the larger Sr content cause the diffraction angle shift to the right (the greater) and crystallinity increasing. But, the value of dielectric constant, crystallite size and grain size decreasing with additional Sr content. Measurement of dielectric constant (K) performed in the frequency range 1 kHz to 100 kHz and the highest value at Sr content 0.1 i.e. 258.35. The addition of Sr content 30% and 50% change the crystal structure from tetragonal to cubic which has paraelectric phase.

  7. Domain-wall motion at an ultrahigh speed driven by spin-orbit torque in synthetic antiferromagnets.

    PubMed

    Yu, Ziyang; Zhang, Yue; Zhang, Zhenhua; Cheng, Ming; Lu, Zhihong; Yang, Xiaofei; Shi, Jing; Xiong, Rui

    2018-04-27

    In this article, we present our numerical investigation about the spin-orbit-torque induced domain-wall (DW) motion in a synthetic antiferromagnetic multilayer nanotrack. This nanotrack was composed by two ferromagnetic (FM) layers with a RKKY inter-layer antiferromagnetic (AFM) exchange coupling. The velocity of DW was well manipulated by varying parameters including inter-layer exchange constant, the Dzyaloshinskii-Moriya interaction (DMI) strength, the current density and the magnetic anisotropy. The DW velocity was found to be strictly related to the orientation of the moments in the two FM layers. When the interlayer exchange constant or the DMI constant were larger than a critical value, there was a large angle between the moments in one FM layer and that in the other one under the current, and the DW was driven to move at an ultrahigh speed (around 10 000 m s -1 ). However, when the DMI or the AFM exchange coupling was weaker than the critical value, the moments in one FM layer were parallel to that in the other one under the current, and the velocity was significantly reduced.

  8. Agreement Between Institutional Measurements and Treatment Planning System Calculations for Basic Dosimetric Parameters as Measured by the Imaging and Radiation Oncology Core-Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas

    Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less

  9. Application of the precipitation-runoff model in the Warrior coal field, Alabama

    USGS Publications Warehouse

    Kidd, Robert E.; Bossong, C.R.

    1987-01-01

    A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.

  10. Evaluation method for corrosion level of rebar in RC with electrical impedance measurement

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira

    2018-04-01

    The author reported that the impedance measurement using the 4-terminal method on the RC surface for diagnosing corrosion of internal rebar. The difference between the maximum value at 0.01 Hz and the minimum value around 10 Hz indicates the corrosion level of rebar in that report. This is successive report on a signal processing method for estimating the corrosion level by the measured impedance data to obtain more high accuracy. In the dielectric, a graph of frequency and dielectric constant (Cole-Cole plot diagram by KS Cole and RH Cole article of 1941) draws a shape of circle if the dielectric is independent of frequency but it draws a shape of ellipse in reality due to frequency dependency. Havriliak and Negami have also presented Havriliak-Negami model which introduced parameter into dielectric constant equation which deforms Cole-Cole plot diagram and showed that acquired dielectric data of polymer materials fit to this model with proper parameters. In this report, we first consider electric model connected with resistance and capacitance as a rough model of RC concrete. If the capacitance in this model circuit has some loss of dielectric, it is stated that graph in impedance plot is expected to take as similar deformation in the dielectric Cole-Cole plot. Then a numerical optimization computer code for obtaining parameters in the Cole-Cole plot diagram and Havriliak-Negami model is constructed, and the correlation between the deformation parameter of each model and corrosion is shown by this code. These results are feasibility study for diagnosis of corrosion level of rebar by associated parameters to a shape of impedance graph.

  11. Fine-structure constant constraints on dark energy. II. Extending the parameter space

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.

  12. Optical properties of metals: Infrared emissivity in the anomalous skin effect spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echániz, T.; Pérez-Sáez, R. B., E-mail: raul.perez@ehu.es; Tello, M. J.

    When the penetration depth of an electromagnetic wave in a metal is similar to the mean free path of the conduction electrons, the Drude classical theory is no longer satisfied and the skin effect becomes anomalous. Physical parameters of this theory for twelve metals were calculated and analyzed. The theory predicts an emissivity peak ε{sub peak} at room temperature in the mid-infrared for smooth surface metals that moves towards larger wavelengths as temperature decreases. Furthermore, the theory states that ε{sub peak} increases with the emission angle but its position, λ{sub peak}, is constant. Copper directional emissivity measurements as well asmore » emissivity obtained using optical constants data confirm the predictions of the theory. Considering the relationship between the specularity parameter p and the sample roughness, it is concluded that p is not the simple parameter it is usually assumed to be. Quantitative comparison between experimental data and theoretical predictions shows that the specularity parameter can be equal to one for roughness values larger than those predicted. An exhaustive analysis of the experimental optical parameters shows signs of a reflectance broad peak in Cu, Al, Au, and Mo around the wavelength predicted by the theory for p = 1.« less

  13. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  14. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions.

    PubMed

    Miner, Grace L; Bauerle, William L

    2017-09-01

    The Ball-Berry (BB) model of stomatal conductance (g s ) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and 'residual' g s (g 0 ) parameters of the BB model influence transpiration estimates, but the time-intensive nature of measurement limits species-specific data on seasonal and stress responses. We measured m and g 0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter-plant variability was low, but had substantial impact with larger inter-plant variability. Values for maize (m = 4.53 ± 0.65; g 0  = 0.017 ± 0.016 mol m -2 s -1 ) were 40% higher than other published values. In maize, we found no seasonal changes in m or g 0 , supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter-plant variability of m and g 0 was large (m = 8.84 ± 3.77; g 0  = 0.354 ± 0.226 mol m -2 s -1 ), presenting a challenge to clear interpretation of seasonal and water stress responses - m values were stable seasonally, even as g 0 values trended downward, and m values trended downward with water stress while g 0 values declined substantially. © 2017 John Wiley & Sons Ltd.

  15. Determination of the strong coupling constant from jet rates in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hill, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuler, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2. It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant αs as a free parameter. The measured value, αs( MZ2) = 0.123 ± 0.018, is in agreement both with determinations from e+e- annihilation at LEP using the same observable and with the world average.

  16. The Dependence of the Spring Constant in the Linear Range on Spring Parameters

    ERIC Educational Resources Information Center

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani; Khairurrijal

    2011-01-01

    In basic physics laboratories, springs are normally used to determine both spring constants and the Earth's gravitational acceleration. Students generally do not notice that the spring constant is not a universal constant, but depends on the spring parameters. This paper shows and verifies that the spring constant in the linear range is inversely…

  17. Re-evaluation of the reported experimental values of the heat of vaporization of N-methylacetamide

    PubMed Central

    MacKerell, Alexander D.; Shim, Ji Hyun; Anisimov, Victor M.

    2010-01-01

    The accuracy of empirical force fields is inherently related to the quality of the target data used for optimization of the model. With the heat of vaporization (ΔHvap) of N-methylacetamide (NMA), a range of values have been reported as target data for optimization of the nonbond parameters associated with the peptide bond in proteins. In the present work, the original experimental data and Antoine constants used for the determination of the ΔHvap of NMA are reanalyzed. Based on this analysis, the wide range of ΔHvap values reported in the literature are shown to be due to incorrect reporting of the temperatures at which the original values were extracted and limitations in the quality of experimental vapor pressure-temperature data over a wide range of temperatures. Taking these problems into account, a consistent ΔHvap value is extracted from three studies for which experimental data are available. This analysis suggests that the most reliable value for ΔHvap is 13.0±0.1 at 410 K for use in force field optimization studies. The present results also indicate that similar analyses, including analysis of Antoine constants alone, may be of utility when reported ΔHvap values are not consistent for a given neat liquid. PMID:20445813

  18. Propagation properties of cylindrical sinc Gaussian beam

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Bayraktar, Mert

    2016-09-01

    We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.

  19. Facial anthropometry of Hong Kong Chinese babies.

    PubMed

    Fok, T F; Hon, K L; So, H K; Wong, E; Ng, P C; Lee, A K Y; Chang, A

    2003-08-01

    To provide a database of the craniofacial measurements of Chinese infants born in Hong Kong. Prospective cross-sectional study. A total of 2371 healthy singleton, born consecutively at the Prince of Wales Hospital and the Union Hospital from June 1998 to June 2000, were included in the study. The range of gestation was 33-42 weeks. Measurements included facial width (FW), facial height (FH), nasal length (NL), nasal width (NW), and length of the philtrum (PhilL). The facial, nasal, nasofacial and nasozygomatic indices were derived. The data show generally higher values for males in the parameters measured. The various indices remained remarkably constant and did not vary significantly between the two genders or with gestation. When compared with previously published data for white people term babies, Chinese babies have similar NW but shorter philtrum length. The human face appears to grow in a remarkably constant fashion as defined by the various indices of facial proportions. This study establishes the first set of gestational age-specific standard of such craniofacial parameters for Chinese new-borns, potentially enabling early syndromal diagnosis. There are significant inter-racial differences in these craniofacial parameters.

  20. Theoretical research on the spin-Hamiltonian parameters of the rhombic W5+ centers in CaWO4:Y3+ crystal

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Wei, Cheng-Fu; Zheng, Wen-Chen

    2016-02-01

    Detailed theoretical calculations for the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) of the rhombic W5+ center in CaWO4:Y3+ crystal are performed by using the high-order perturbation formulas for d1 ions in rhombic tetrahedral clusters with the ground state |dz2>. These formulas consist of the contributions from two mechanisms, the crystal-field (CF) mechanism connected with CF excited states in the vastly-used CF theory and the frequently-neglected charge-transfer (CT) mechanism related to CT excited states. The calculated results agree well with the experimental values. The calculations indicate that for W5+ ion (or other high valence state dn ions) in crystals, the model calculations of spin-Hamiltonian parameters should take both the CF and CT mechanisms into account. The signs of hyperfine structure constants Ai are suggested and the forming (or defect model) of rhombic W5+ center in CaWO4:Y3+ crystal is confirmed from the calculations.

  1. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Barrash, W.

    2011-12-01

    We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

  3. Physical Absorption of Green House Gases in Amines: The Influence of Functionality, Structure, and Cross-Interactions.

    PubMed

    Orozco, Gustavo A; Lachet, Véronique; Mackie, Allan D

    2016-12-29

    Monte Carlo simulations were performed in the isothermal-isobaric ensemble (NPT) to calculate the Henry constants of methane (CH 4 ), nitrous oxide (N 2 O), and carbon dioxide (CO 2 ) in pure H 2 O, amines, and alkanolamines using the classical Lorentz-Berthelot combining rules (L-B). The Henry constants of N 2 O and CO 2 in water are highly overestimated and motivated us to propose a new set of unlike interactions. Contrarily, the Henry constant of N 2 O in MEA is underestimated by around 40%, and again, a new reoptimized cross unlike parameter is able to reproduce the constant to within 10%. An analysis is given of the relationship between the physical absorption of these gases and the chemical structure or functionality of 12 molecules including amines and alkanolamines using the anisotropic united atom intermolecular potential (AUA4). Finally, the solubility of N 2 O in an aqueous solution of monoethanolamine (MEA) at 30% (wt) was also studied. A Henry constant within 7% of the experimental value was found by using the reoptimized parameters along with L-B to account for the MEA + H 2 O unlike interactions. This very good agreement without additional adjustments for the MEA + H 2 O system may be attributed to the good excess properties predictions found in previous works for the binary mixture (MEA + H 2 O). However, further work, including additional alkanolamines in aqueous solutions at several concentrations, is required to verify this particular point.

  4. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.

  5. Superposition model analysis of the magnetocrystalline anisotropy of Ba-ferrite

    NASA Astrophysics Data System (ADS)

    Novák, Pavel

    1994-06-01

    Theoretical analysis of the first magnetocrystalline anisotropy constantK 1 of BaFe12O19 is performed. Two contributions toK 1 are considered — single ion anisotropy and dipolar anisotropy. ParameterD which determines the magnitude of the single ion contribution is calculated on the basis of the superposition model. It is argued that the disagreement between calculated and observed values ofK 1 is most likely connected with the contribution of Fe3+ ions on bipyramidal sites, for which the value ofD is uncertain.

  6. The effect of interacting dark energy on local measurements of the Hubble constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odderskov, Io; Baldi, Marco; Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}.more » It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.« less

  7. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production.

    PubMed

    Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Explorations in dark energy

    NASA Astrophysics Data System (ADS)

    Bozek, Brandon

    This dissertation describes three research projects on the topic of dark energy. The first project is an analysis of a scalar field model of dark energy with an exponential potential using the Dark Energy Task Force (DETF) simulated data models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of the exponential potential for data sets based on a cosmological constant and a specific exponential scalar field model. We compare our results with the constraining power calculated by the DETF using their "w 0--wa" parameterization of the dark energy. We find that respective increases in constraining power from one stage to the next produced by our analysis give results consistent with DETF results. To further investigate the potential impact of future experiments, we also generate simulated data for an exponential model background cosmology which can not be distinguished from a cosmological constant at DETF Stage 2, and show that for this cosmology good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The second project details this analysis on a Inverse Power Law (IPL) or "Ratra-Peebles" (RP) model. This model is a member of a popular subset of scalar field quintessence models that exhibit "tracking" behavior that make this model particularly theoretically interesting. We find that the relative increase in constraining power on the parameter space of this model is consistent to what was found in the first project and the DETF report. We also show, using a background cosmology based on an IPL scalar field model that is consistent with a cosmological constant with Stage 2 data, that good DETF Stage 4 data would exclude a cosmological constant by better than 3sigma. The third project extends the Causal Entropic Principle to predict the preferred curvature within the "multiverse". The Causal Entropic Principle (Bousso, et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have found that values larger than rhok = 40rho m are disfavored by more than 99.99% and a peak value at rho Λ = 7.9 x 10-123 and rho k = 4.3rhom for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  9. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  10. Just noticeable differences of open quotient and asymmetry coefficient in singing voice.

    PubMed

    Henrich, Nathalie; Sundin, Gunilla; Ambroise, Daniel; d'Alessandro, Christophe; Castellengo, Michèle; Doval, Boris

    2003-12-01

    This study aims to explore the perceptual relevance of the variations of glottal flow parameters and to what extent a small variation can be detected. Just Noticeable Differences (JNDs) have been measured for three values of open quotient (0.4, 0.6, and 0.8) and two values of asymmetry coefficient (2/3 and 0.8), and the effect of changes of vowel, pitch, vibrato, and amplitude parameters has been tested. Two main groups of subjects have been analyzed: a group of 20 untrained subjects and a group of 10 trained subjects. The results show that the JND for open quotient is highly dependent on the target value: an increase of the JND is noticed when the open quotient target value is increased. The relative JND is constant: deltaOq/Oq = 14% for the untrained and 10% for the trained. In the same way, the JND for asymmetry coefficient is also slightly dependent on the target value--an increase of the asymmetry coefficient value leads to a decrease of the JND. The results show that there is no effect from the selected vowel or frequency (two values have been tested), but that the addition of a vibrato has a small effect on the JND of open quotient. The choice of an amplitude parameter also has a great effect on the JND of open quotient.

  11. A mathematical model of physiological processes and its application to the study of aging

    NASA Technical Reports Server (NTRS)

    Hibbs, A. R.; Walford, R. L.

    1989-01-01

    The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChant, Lawrence Justin; Smith, Justin A.

    Here we discuss an improved Corcos (Corcos (1963), (1963)) style cross spectral density utilizing zero pressure gradient, supersonic (Beresh et. al. (2013)) data sets. Using the connection between narrow band measurements with broadband cross-spectral density, i.e. Γ(ξ ,η ,ω )= Φ (ω) A(ωη/U )exp (-i ωξ/U) we focus on estimating coherence expressions of the form: A (ξω nb/U) and B (ηω nb/ U) where ω nb denotes the narrow band frequency, i.e. the band center frequency value and ξ and η are sensors spacing in streamwise/longitudinal and cross-stream/lateral directions, respectively. A methodology to estimate the parameters which retains the Corcosmore » exponential functional form, A(ξω/U)=exp(-k lat ηω/U) but identifies new parameters (constants) consistent with the Beresh et. al. data sets is discussed. The Corcos result requires that the data be properly explained by self-similar variable: ξω/U and ηω/U. The longitudinal (streamwise) variable ξω/U tends to provide a better data collapse, while, consistent with the literature the lateral ηω/U is only successful for higher band center frequencies. Assuming the similarity variables provide a useful description of the data, the longitudinal coherence decay constant result using the Beresh et. al. data sets yields a value for the longitudinal constant k long≈0.36-0.28 that is approximately 3x larger than the “traditional” (low speed, large Reynolds number and zero pressure gradient) of k long≈0.11. We suggest that the most likely reason that the Beresh et. al. data sets incur increased longitudinal decay which results in reduced coherence lengths is due to wall shear induced compression causing an adverse pressure gradient. Focusing on the higher band center frequency measurements where the frequency dependent similarity variables are applicable, the lateral or transverse coherence decay constant k lat≈0.7 is consistent with the “traditional” (low speed, large Reynolds number and zero pressure gradient). It should be noted, that the longitudinal/streamwise coherence decay deviates from the value observed by other researchers while the lateral/ cross-stream value is consistent has been observed by other researchers. We believe that while the measurements used to obtain new decay constant estimates are from internal wind tunnel tests, they likely provide a useful estimate expected reentry flow behavior and are therefore recommended for use. These data could also be useful in determining the uncertainty of correlation length for a uncertainty quantification (UQ) analysis.« less

  13. The Routine Fitting of Kinetic Data to Models

    PubMed Central

    Berman, Mones; Shahn, Ezra; Weiss, Marjory F.

    1962-01-01

    A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975

  14. Relaxing the cosmological constant: a proof of concept

    NASA Astrophysics Data System (ADS)

    Alberte, Lasma; Creminelli, Paolo; Khmelnitsky, Andrei; Pirtskhalava, David; Trincherini, Enrico

    2016-12-01

    We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.

  15. Ab initio estimates of the size of the observable universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Don N., E-mail: profdonpage@gmail.com

    2011-09-01

    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and withmore » a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.« less

  16. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    NASA Astrophysics Data System (ADS)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  17. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.

    PubMed

    Chan, H W; Unsworth, J

    1989-01-01

    A theoretical model is presented for combining parameters of 1-3 ultrasonic composite materials in order to predict ultrasonic characteristics such as velocity, acoustic impedance, electromechanical coupling factor, and piezoelectric coefficients. Hence, the model allows the estimation of resonance frequencies of 1-3 composite transducers. This model has been extended to cover more material parameters, and they are compared to experimental results up to PZT volume fraction nu of 0.8. The model covers calculation of piezoelectric charge constants d(33) and d(31). Values are found to be in good agreement with experimental results obtained for PZT 7A/Araldite D 1-3 composites. The acoustic velocity, acoustic impedance, and electromechanical coupling factor are predicted and found to be close to the values determined experimentally.

  18. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    NASA Astrophysics Data System (ADS)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  19. Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan

    2011-09-01

    A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.

  20. Traveltime inversion and error analysis for layered anisotropy

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhou, Hua-wei

    2011-02-01

    While tilted transverse isotropy (TTI) is a good approximation of the velocity structure for many dipping and fractured strata, it is still challenging to estimate anisotropic depth models even when the tilted angle is known. With the assumption of weak anisotropy, we present a TTI traveltime inversion approach for models consisting of several thickness-varying layers where the anisotropic parameters are constant for each layer. For each model layer the inversion variables consist of the anisotropic parameters ɛ and δ, the tilted angle φ of its symmetry axis, layer velocity along the symmetry axis, and thickness variation of the layer. Using this method and synthetic data, we evaluate the effects of errors in some of the model parameters on the inverted values of the other parameters in crosswell and Vertical Seismic Profile (VSP) acquisition geometry. The analyses show that the errors in the layer symmetry axes sensitively affect the inverted values of other parameters, especially δ. However, the impact of errors in δ on the inversion of other parameters is much less than the impact on δ from the errors in other parameters. Hence, a practical strategy is first to invert for the most error-tolerant parameter layer velocity, then progressively invert for ɛ in crosswell geometry or δ in VSP geometry.

  1. Kinetic and mechanism of the oxidation of chromium(III) complex with anthranil- N, N-diacetic acid by periodate ion in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ali, Ismat H.

    2015-06-01

    The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).

  2. Scaling the universe: Gravitational lenses and the Hubble constant

    PubMed Central

    Myers, Steven T.

    1999-01-01

    Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as “gravitational standard rulers” for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Ωo and Λo that control the evolution of the volume of the Universe with cosmic time. PMID:10200245

  3. Study of RE-garnets using BPW method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, P.; Mukhopadhyay, G.

    1995-02-01

    The magnetic susceptibility of rare-earth (Y and Lu) iron garnets is studied using a modified Bethe-Peierls-Weiss (BPW) approximation. The modifications enable us to incorporate the three exchange parameters Jad, Jaa and Jdd necessary to describe the systems. We get excellent fits to the experimental susceptibilities from which we determined the J-values. These also give excellent agreement with the spin wave dispersion relation constant D.

  4. The Production of FRW Universe and Decay to Particles in Multiverse

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-09-01

    In this study, first, it will be shown that as the Hubble parameter, " H", increases the production cross section for closed and flat Universes increases rapidly at smaller values of " H" and becomes constant for higher values of " H". However in the case of open Universe, the production cross section has been encountered a singularity. Before this singularity, as the H parameter increases, the cross section increases, for smaller H, ( H < 2.5), exhibits a turn-over at moderate values of H, (2.5 < H < 3.5), decreases for larger amount of H After that and for a special value of H, the cross section has been encountered with a singularity. Although the cross section cannot be defined at this singularity but before and after this point, it is certainly equal to zero. After this singularity, the cross section increases rapidly, when H increases. It is shown that if the production cross section of Universe happens before this singularity, it can't achieve to higher values of Hubble parameter after singularity. More over if the production cross section of Universe situates after the singularity, it won't get access to values of Hubble parameter less than the singularity. After that the thermal distribution for particles inside the FRW Universes are obtained. It is found that a large amount of particles are produced near apparent horizon due to their variety in their energy and their probabilities. Finally, comparing the particle production cross sections for flat, closed and open Universes, it is concluded that as the value of k increases, the cross section decreases.

  5. Phototransformation rate constants of PAHs associated with soot particles.

    PubMed

    Kim, Daekyun; Young, Thomas M; Anastasio, Cort

    2013-01-15

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Graviweak Unification, Invisible Universe and Dark Energy

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Laperashvili, L. V.; Tureanu, A.

    2013-07-01

    We consider a graviweak unification model with the assumption of the existence of a hidden (invisible) sector of our Universe, parallel to the visible world. This Hidden World (HW) is assumed to be a Mirror World (MW) with broken mirror parity. We start with a diffeomorphism invariant theory of a gauge field valued in a Lie algebra g, which is broken spontaneously to the direct sum of the space-time Lorentz algebra and the Yang-Mills algebra: ˜ {g} = {{su}}(2) (grav)L ⊕ {{su}}(2)L — in the ordinary world, and ˜ {g}' = {{su}}(2){' (grav)}R ⊕ {{su}}(2)'R — in the hidden world. Using an extension of the Plebanski action for general relativity, we recover the actions for gravity, SU(2) Yang-Mills and Higgs fields in both (visible and invisible) sectors of the Universe, and also the total action. After symmetry breaking, all physical constants, including the Newton's constants, cosmological constants, Yang-Mills couplings, and other parameters, are determined by a single parameter g present in the initial action, and by the Higgs VEVs. The dark energy problem of this model predicts a too large supersymmetric breaking scale (MSUSY 1010GeV), which is not within the reach of the LHC experiments.

  7. A two-thermocouple probe technique for estimating thermocouple time constants in flows with combustion: In situ parameter identification of a first-order lag system

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Shimoji, T.; Ohta, Y.

    1998-09-01

    A two-thermocouple probe, composed of two fine-wire thermocouples of unequal diameters, is a novel technique for estimating thermocouple time constants without any dynamic calibration of the thermocouple response. This technique is most suitable for measuring fluctuating temperatures in turbulent combustion. In the present study, the reliability and applicability of this technique are appraised in a turbulent wake of a heated cylinder (without combustion). A fine-wire resistance thermometer (cold wire) of fast response is simultaneously used to provide a reference temperature. A quantitative and detailed comparison between the cold-wire measurement and the compensated thermocouple ones shows that a previous estimation scheme gives thermocouple time constants smaller than appropriate values, unless the noise in the thermocouple signals is negligible and/or the spatial resolution of the two-thermocouple probe is sufficiently high. The scheme has been improved so as to maximize the correlation coefficient between the two compensated-thermocouple outputs. The improved scheme offers better compensation of the thermocouple response. The present approach is generally applicable to in situ parameter identification of a first-order lag system.

  8. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  9. Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations.

    PubMed

    Michel, Denis; Ruelle, Philippe

    2017-02-15

    A full equilibrium treatment of molecular aggregation is presented for prototypes of 1D and 3D aggregates, with and without nucleation. By skipping complex kinetic parameters like aggregate size-dependent diffusion, the equilibrium treatment allows us to predict directly time-independent quantities such as critical concentrations. The relationships between the macroscopic equilibrium constants for different paths are first established by statistical corrections and so as to comply with the detailed balance constraints imposed by nucleation, and the composition of the mixture resulting from homogeneous aggregation is then analyzed using a polylogarithmic function. Several critical concentrations are distinguished: the residual monomer concentration at equilibrium (RMC) and the critical nucleation concentration (CNC), which is the threshold concentration of total subunits necessary for initiating aggregation. When increasing the concentration of total subunits, the RMC converges more strongly to its asymptotic value, the equilibrium constant of depolymerization, for 3D aggregates and in the case of nucleation. The CNC moderately depends on the number of subunits in the nucleus, but sharply increases with the difference between the equilibrium constants of polymerization and nucleation. As the RMC and CNC can be numerically but not analytically determined, ansatz equations connecting them to thermodynamic parameters are proposed.

  10. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    NASA Astrophysics Data System (ADS)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  11. Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-06-01

    In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.

  12. CODATA recommended values of the fundamental constants

    NASA Astrophysics Data System (ADS)

    Mohr, Peter J.; Taylor, Barry N.

    2000-11-01

    A review is given of the latest Committee on Data for Science and Technology (CODATA) adjustment of the values of the fundamental constants. The new set of constants, referred to as the 1998 values, replaces the values recommended for international use by CODATA in 1986. The values of the constants, and particularly the Rydberg constant, are of relevance to the calculation of precise atomic spectra. The standard uncertainty (estimated standard deviation) of the new recommended value of the Rydberg constant, which is based on precision frequency metrology and a detailed analysis of the theory, is approximately 1/160 times the uncertainty of the 1986 value. The new set of recommended values as well as a searchable bibliographic database that gives citations to the relevant literature is available on the World Wide Web at physics.nist.gov/constants and physics.nist.gov/constantsbib, respectively. .

  13. Cycle 24 HST+COS Target Acquisition Monitor Summary

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; White, James

    2018-06-01

    HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.

  14. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    PubMed

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  15. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period

    NASA Astrophysics Data System (ADS)

    Carlyle, Harriet F.; Tellam, John H.; Parker, Karen E.

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na +, K +, Ca 2+, and Mg 2+ were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in ˜1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO 3 and pH values. However, by including partial CO 2 degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO 4, HCO 3, and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  16. Parameter identification of thermophilic anaerobic degradation of valerate.

    PubMed

    Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini

    2003-01-01

    The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.

  17. Intermolecular interaction studies of glyphosate with water

    NASA Astrophysics Data System (ADS)

    Manon, Priti; Juglan, K. C.; Kaur, Kirandeep; Sethi, Nidhi; Kaur, J. P.

    2017-07-01

    The density (ρ), viscosity (η) and ultrasonic velocity (U) of glyphosate with water have been measured on different ultrasonic frequency ranges from 1MHz, 2MHz, 3MHz & 5MHz by varying concentrations (0.05%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, & 0.40%) at 30°C. The specific gravity bottle, Ostwald's viscometer and quartz crystal interferometer were used to determine density (ρ), viscosity (η) and ultrasonic velocity (U). These three factors contribute in evaluating the other parameters as acoustic impedance (Z), adiabatic compressibility (β), relaxation time (τ), intermolecular free length (Lf), free volume (Vf), ultrasonic attenuation (α/f2), Rao's constant (R), Wada's constant (W) and relative strength (R). Solute-solvent interaction is confirmed by ultrasonic velocity and viscosity values, which increases with increase in concentration indicates stronger association between solute and solvent molecules. With rise in ultrasonic frequency the interaction between the solute and solvent particles decreases. The linear variations in Rao's constant and Wada's constant suggest the absence of complex formation.

  18. Linewidth and lineshift parameters of rotation-vibration transitions of linear molecule perturbed by inert gas

    NASA Astrophysics Data System (ADS)

    Johri, Manoj; Johri, Gajendra K.; Rishishwar, Rajendra P.

    1990-12-01

    The study of spectral lineshape is important to understand intermolecular forces1-5. We have calculated the linewidth and the lineshift for different rotation-vibration transitions of linear molecules (CO and HCl) perturbed by argon using generalized interaction potential4. The Murphy Boggs6 (MB), Mehrotra Boggs7 and perturbation theories have been used for the linewidth calculation. The lineshift parameters have been calculated using the MEB theory7 including the phase shift effect and ignoring Ji=Ji and Jf=Jf transitions. In these calculation the variation of the rotational constant with the vibrational quantum number has been taken into account. The calculated lineshift parameters decrease with an increase in the initial rotation quamtum numbers (Ji). It remains positive for the lower values of Ji and becomes negative for the higher values of Ji where as the measured8 values are negative for all the transitions. The calculated linewidth parameters using the MEB theory7 are lower by about 15% than the measured values for CO-A collisions. The vibrational dependence in CO-A collisions show significant change in the lineshift. For H Cl-A collisions the discrepancy between the calculated lienwidth parameters using the Mehrotra Boggs theory and the measured9 values is about 46% for J=0-1 transitions and decreases to 22% for J=8-9 transition. The results of the perturbation theory do not show regular variation of the linewidth parameters with the rotational state. The linewidth parameters using the Murphy Boggs theory are lower than the measured9 values by about 50% for all the transitions considered. It is found that the contribution of the diabetic collisions is important as included in the perturbtive and the Mehrotra Boggs approaches. Further, if the pressure broadening method is used to probe anisotropy of the intermolecular forces, there is need of modifying the existing theoretical models and the experimental techniques.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, Yves; Foffa, Stefano; Kunz, Martin

    We study the cosmological predictions of two recently proposed non-local modifications of General Relativity. Both models have the same number of parameters as ΛCDM, with a mass parameter m replacing the cosmological constant. We implement the cosmological perturbations of the non-local models into a modification of the CLASS Boltzmann code, and we make a full comparison to CMB, BAO and supernova data. We find that the non-local models fit these datasets very well, at the same level as ΛCDM. Among the vast literature on modified gravity models, this is, to our knowledge, the only example which fits data as wellmore » as ΛCDM without requiring any additional parameter. For both non-local models parameter estimation using Planck +JLA+BAO data gives a value of H{sub 0} slightly higher than in ΛCDM.« less

  20. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  1. A tale of two modes: neutrino free-streaming in the early universe

    NASA Astrophysics Data System (ADS)

    Lancaster, Lachlan; Cyr-Racine, Francis-Yan; Knox, Lloyd; Pan, Zhen

    2017-07-01

    We present updated constraints on the free-streaming nature of cosmological neutrinos from cosmic microwave background (CMB) temperature and polarization power spectra, baryonic acoustic oscillation data, and distance ladder measurements of the Hubble constant. Specifically, we consider a Fermi-like four-fermion interaction between massless neutrinos, characterized by an effective coupling constant Geff, and resulting in a neutrino opacity dot tauνpropto Geff2 Tν5. Using a conservative flat prior on the parameter log10( Geff MeV2), we find a bimodal posterior distribution with two clearly separated regions of high probability. The first of these modes is consistent with the standard ΛCDM cosmology and corresponds to neutrinos decoupling at redshift zν,dec > 1.3×105, that is before the Fourier modes probed by the CMB damping tail enter the causal horizon. The other mode of the posterior, dubbed the "interacting neutrino mode", corresponds to neutrino decoupling occurring within a narrow redshift window centered around zν,dec~8300. This mode is characterized by a high value of the effective neutrino coupling constant, log10( Geff MeV2) = -1.72 ± 0.10 (68% C.L.), together with a lower value of the scalar spectral index and amplitude of fluctuations, and a higher value of the Hubble parameter. Using both a maximum likelihood analysis and the ratio of the two mode's Bayesian evidence, we find the interacting neutrino mode to be statistically disfavored compared to the standard ΛCDM cosmology, and determine this result to be largely driven by the low-l CMB temperature data. Interestingly, the addition of CMB polarization and direct Hubble constant measurements significantly raises the statistical significance of this secondary mode, indicating that new physics in the neutrino sector could help explain the difference between local measurements of H0, and those inferred from CMB data. A robust consequence of our results is that neutrinos must be free streaming long before the epoch of matter-radiation equality in order to fit current cosmological data.

  2. Intermolecular vibrations of (CH2)2O-HF and -DF hydrogen bonded complexes investigated by Fourier transform infrared spectroscopy and ab initio calculations.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Madebène, B; Alikhani, M E

    2010-10-14

    A series of Fourier transform infrared spectra (FTIR) of the hydrogen bonded complexes (CH(2))(2)O-HF and -DF have been recorded in the 50-750 cm(-1) range up to 0.1 cm(-1) resolution in a static cell maintained at near room temperature. The direct observation of three intermolecular transitions enabled us to perform band contour analysis of congested cell spectra and to determine reliable rovibrational parameters such as intermolecular frequencies, rovibrational and anharmonic coupling constants involving two l(1) and l(2) librations and one σ stretching intermolecular motion. Inter-inter anharmonic couplings could be identified between ν(l(1)), ν(l(2)), ν(σ) and the two lowest frequency bending modes. The positive sign of coupling constants (opposite with respect to acid stretching intra-inter ones) reveals a weakening of the hydrogen bond upon intermolecular excitation. The four rovibrational parameters ν(σ) and x(σj) (j = σ, δ(1), δ(2)) derived in the present far-infrared study and also in a previous mid-infrared one [Phys. Chem. Chem. Phys. 2005, 1, 592] make deviations appear smaller than 1% for frequencies and 12% for coupling constants which gives confidence to the reliability of the data obtained. Anharmonic frequencies obtained at the MP2 level with Aug-cc-pvTZ basis set agree well with experimental values over a large set of frequencies and coupling constants. An estimated anharmonic corrected value of the dissociation energy D for both oxirane-HF (2424 cm(-1)) and -DF (2566 cm(-1)) has been derived using a level of theory as high as CCSD(T)/Aug-cc-pvQZ, refining the harmonic value previously calculated for oxirane-HF with the MP2 method and a smaller basis set. Finally, contrary to short predissociation lifetimes evidenced for acid stretching excited states, any homogeneous broadening related to vibrational dynamics of (CH(2))(2)O-HF and -DF has been observed within the three highest frequency intermolecular states, as expected with low excitation energies largely below the dissociation limit as well as a negligible IVR contribution.

  3. Complex oxide thin films for microelectronics

    NASA Astrophysics Data System (ADS)

    Suvorova, Natalya

    The rapid scaling of the device dimensions, namely in metal oxide semiconductor field effect transistor (MOSFET), is reaching its fundamental limit which includes the increase in allowable leakage current due to direct tunneling with decrease of physical thickness of SiO2 gate dielectric. The significantly higher relative dielectric constant (in the range 9--25) of the gate dielectric beyond the 3.9 value of silicon dioxide will allow increasing the physical thickness. Among the choices for the high dielectric constant (K) materials for future generation MOSFET application, barium strontium titanate (BST) and strontium titanate (STO) possess one of the highest attainable K values making them the promising candidates for alternative gate oxide. However, the gate stack engineering does not imply the simple replacement of the SiO2 with the new dielectric. Several requirements should be met for successful integration of a new material. The major one is a production of high level of interface states (Dit) compared to that of SiO 2 on Si. An insertion of a thin SiO2 layer prior the growth of high-K thin film is a simple solution that helps to limit reaction with Si substrate and attains a high quality interface. However, the combination of two thin films reduces the overall K of the dielectric stack. An optimization of the SiO2 underlayer in order to maintain the interface quality yet minimize the effect on K is the focus of this work. The results from our study are presented with emphasis on the key process parameters that improve the dielectric film stack. For in-situ growth characterization of BST and STO films sputter deposited on thermally oxidized Si substrates spectroscopic ellipsometry in combination with time of flight ion scattering and recoil spectrometry have been employed. Studies of material properties have been complemented with analytical electron microscopy. To evaluate the interface quality the electrical characterization has been employed using capacitance-voltage and conductance-voltage measurements. Special attention was given to the extraction of static dielectric constant of BST and STO from the multiple film stack. The K value was found to be sensitive to the input parameters such as dielectric constant and thickness of interface layers.

  4. Modeling solubility, acid-base properties and activity coefficients of amoxicillin, ampicillin and (+)6-aminopenicillanic acid, in NaCl(aq) at different ionic strengths and temperatures.

    PubMed

    Crea, Francesco; Cucinotta, Daniela; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio; Vianelli, Giuseppina

    2012-11-20

    The total solubility of three penicillin derivatives was determined, in pure water and NaCl aqueous solutions at different salt concentrations (from ∼0.15 to 1.0 mol L(-1) for ampicillin and amoxicillin, and from ∼0.05 to 2.0 mol L(-1) for (+)6-aminopenicillanic acid), using the shake-flask method for generating the saturated solutions, followed by potentiometric analysis. The knowledge of the pH of solubilization and of the protonation constants determined in the same experimental conditions, allowed us to calculate, by means of the mass balance equations, the solubility of the neutral species at different ionic strength values, to model its dependence on the salt concentration and to determine the corresponding values at infinite dilution. The salting parameter and the activity coefficients of the neutral species were calculated by the Setschenow equation. The protonation constants of ampicillin and amoxicillin, determined at different temperatures (from T=288.15 to 318.15K), from potentiometric and spectrophotometric measurements, were used to calculate, by means of the Van't Hoff equation, the temperature coefficients at different ionic strength values and the corresponding protonation entropies. The protonation enthalpies of the (+)6-aminopenicillanic acid were determined by isoperibol calorimetric titrations at T=298.15K and up to I=2.0 mol L(-1). The dependence of the protonation constants on ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the specific interaction parameters of the ionic species were determined. The hydrolysis of the β-lactam ring was studied by spectrophotometric and H NMR investigations as a function of pH, ionic strength and time. Potentiometric measurements carried out on the hydrolyzed (+)6-aminopenicillanic acid allowed us to highlight that the opened and the closed β-lactam forms of the (+)6-aminopenicillanic acid have quite different acid-base properties. An analysis of literature solubility, protonation constants, enthalpies and activity coefficients is reported too. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange

    PubMed Central

    2015-01-01

    We present a new computational approach for constant pH simulations in explicit solvent based on the combination of the enveloping distribution sampling (EDS) and Hamiltonian replica exchange (HREX) methods. Unlike constant pH methods based on variable and continuous charge models, our method is based on discrete protonation states. EDS generates a hybrid Hamiltonian of different protonation states. A smoothness parameter s is used to control the heights of energy barriers of the hybrid-state energy landscape. A small s value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions. The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s = ∞, which strictly follows the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values. The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework, which gives the correct description of multiple protonation states and good calculated pKa values. PMID:25061443

  6. Scaling of peak flows with constant flow velocity in random self-similar networks

    USGS Publications Warehouse

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.

  7. Effects of multi-frequency power ultrasound on the enzymolysis of corn gluten meal: Kinetics and thermodynamics study.

    PubMed

    Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John

    2015-11-01

    The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''

    NASA Astrophysics Data System (ADS)

    Bauer, Florian; Solà, Joan; Štefancić, Hrvoje

    2010-12-01

    We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.

  9. Velocity distribution in a turbulent flow near a rough wall

    NASA Astrophysics Data System (ADS)

    Korsun, A. S.; Pisarevsky, M. I.; Fedoseev, V. N.; Kreps, M. V.

    2017-11-01

    Velocity distribution in the zone of developed wall turbulence, regardless of the conditions on the wall, is described by the well-known Prandtl logarithmic profile. In this distribution, the constant, that determines the value of the velocity, is determined by the nature of the interaction of the flow with the wall and depends on the viscosity of the fluid, the dynamic velocity, and the parameters of the wall roughness.In extreme cases depending on the ratio between the thickness of the viscous sublayer and the size of the roughness the constant takes on a value that does not depend on viscosity, or leads to a ratio for a smooth wall.It is essential that this logarithmic profile is the result not only of the Prandtl theory, but can be derived from general considerations of the theory of dimensions, and also follows from the condition of local equilibrium of generation and dissipation of turbulent energy in the wall area. This allows us to consider the profile as a universal law of velocity distribution in the wall area of a turbulent flow.The profile approximation up to the maximum speed line with subsequent integration makes possible to obtain the resistance law for channels of simple shape. For channels of complex shape with rough walls, the universal profile can be used to formulate the boundary condition when applied to the calculation of turbulence models.This paper presents an empirical model for determining the constant of the universal logarithmic profile. The zone of roughness is described by a set of parameters and is considered as a porous structure with variable porosity.

  10. Energy absorption by a magnetic nanoparticle suspension in a rotating field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raikher, Yu. L.; Stepanov, V. I., E-mail: stepanov@icmm.ru

    Heat generation by viscous dissipation in a dilute suspension of single-domain ferromagnetic particles in a rotating magnetic field is analyzed by assuming that the suspended particles have a high magnetic rigidity. The problem is solved by using a kinetic approach based on a rotational diffusion equation. Behavior of specific loss power (SLP) as a function of field strength H and frequency {omega} is examined at constant temperature. SLP increases as either of these parameters squared when the other is constant, eventually approaching a saturation value. The function SLP(H, {omega}) can be used to determine optimal and admissible ranges of magneticallymore » induced heating.« less

  11. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  12. Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G‧ / G) -expansion method

    NASA Astrophysics Data System (ADS)

    Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.

    2018-06-01

    In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.

  13. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models.

    PubMed

    Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J

    2007-03-01

    Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.

  14. Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms.

    PubMed

    Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2008-09-01

    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.

  15. Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails V : Effect of Airplane Relative Density

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1940-01-01

    The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.

  16. Absorption edge parameters of the LIII edge for compounds of Hg, Tl, Pb and Bi using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Gurinderjeet; Singh, Amrit; Gupta, Manoj Kumar; Dhaliwal, A. S.; Kahlon, K. S.

    2018-03-01

    The measurement of Absorption edge parameters of the LIII edge of pure elements Hg, Tl, Pb and Bi along with their compounds HgCl2, HgO, HgF2, TlCl, Tl2O3, PbCl2, PbF2, Pb3O4, BiF3, BiCl3 and Bi2O3 has been done using EDXRF technique. In the present measurements 241Am (59.54 keV) radioactive source of activity 100 mCi along with CANBERRA make cryo-cooled Si (Li) detector is used. The measured results are compared with theoretically calculated values from FFAST version 2.1 (Chantler et al., 2005) and shows good agreement with each other within experimental uncertainties within 3.5%. It is observed that the values of absorption edge parameters of the LIII edge depends slightly on the chemical environment and shows almost constant behaviour with effective atomic number (Zeff)

  17. An Improved Statistical Solution for Global Seismicity by the HIST-ETAS Approach

    NASA Astrophysics Data System (ADS)

    Chu, A.; Ogata, Y.; Katsura, K.

    2010-12-01

    For long-term global seismic model fitting, recent work by Chu et al. (2010) applied the spatial-temporal ETAS model (Ogata 1998) and analyzed global data partitioned into tectonic zones based on geophysical characteristics (Bird 2003), and it has shown tremendous improvements of model fitting compared with one overall global model. While the ordinary ETAS model assumes constant parameter values across the complete region analyzed, the hierarchical space-time ETAS model (HIST-ETAS, Ogata 2004) is a newly introduced approach by proposing regional distinctions of the parameters for more accurate seismic prediction. As the HIST-ETAS model has been fit to regional data of Japan (Ogata 2010), our work applies the model to describe global seismicity. Employing the Akaike's Bayesian Information Criterion (ABIC) as an assessment method, we compare the MLE results with zone divisions considered to results obtained by an overall global model. Location dependent parameters of the model and Gutenberg-Richter b-values are optimized, and seismological interpretations are discussed.

  18. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  19. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  20. A dynamic model for plant growth: validation study under changing temperatures

    NASA Technical Reports Server (NTRS)

    Wann, M.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1984-01-01

    A dynamic simulation model to describe vegetative growth of plants, for which some functions and parameter values have been estimated previously by optimization search techniques and numerical experimentation based on data from constant temperature experiments, is validated under conditions of changing temperatures. To test the predictive capacity of the model, dry matter accumulation in the leaves, stems, and roots of tobacco plants (Nicotiana tabacum L.) was measured at 2- or 3-day intervals during a 5-week period when temperatures in controlled-environment rooms were programmed for changes at weekly and daily intervals and in ascending or descending sequences within a range of 14 to 34 degrees C. Simulations of dry matter accumulation and distribution were carried out using the programmed changes for experimental temperatures and compared with the measured values. The agreement between measured and predicted values was close and indicates that the temperature-dependent functional forms derived from constant-temperature experiments are adequate for modelling plant growth responses to conditions of changing temperatures with switching intervals as short as 1 day.

  1. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.

    Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.

  2. Mathematical quantification of the induced stress resistance of microbial populations during non-isothermal stresses.

    PubMed

    Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo

    2018-02-02

    This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Filali, Walid; Sengouga, Nouredine; Oussalah, Slimane; Mari, Riaz H.; Jameel, Dler; Al Saqri, Noor Alhuda; Aziz, Mohsin; Taylor, David; Henini, Mohamed

    2017-11-01

    Forward and reverse current-voltage (Isbnd V) of Ti/Au/n-Al0.33Ga0.67As/n-GaAs/n-Al0.33Ga0.67As multi-quantum well (MQW) Schottky diodes were measured over a range of temperatures from 20 to 400 K by a step of 20 K. The Schottky diodes parameters were then extracted from these characteristics. The Cheung method is used for this purpose, assuming a thermionic conduction mechanism. The extracted ideality factor decrease with increasing temperatures. But their values at low temperatures were found to be unrealistic. In order to explain this uncertainty, three assumptions were explored. Firstly an assumed inhomogeneous barrier height gave better parameters especially the Richardson constant but the ideality factor is still unrealistic at low temperatures. Secondly, by using numerical simulation, it was demonstrated that defects including interface states are not responsible for the apparent unrealistic Schottky diode parameters. The third assumption is the tunnelling mechanism through the barrier in the low temperature range. At these lower temperatures, the tunnelling mechanism was more suitable to explain the extracted parameters values.

  4. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  5. Technical Work Plan for: Thermodynamic Database for Chemical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.F. Jovecolon

    The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parametermore » values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species.« less

  6. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching.

    PubMed

    Sun, Lijun; Chen, Weiqi; Meng, Yonghong; Yang, Xingbin; Yuan, Li; Guo, Yurong; Warren, Frederick J; Gidley, Michael J

    2016-10-01

    Young apple polyphenols (YAP) and nine types of phenolic compounds were investigated regarding the inhibitory activity against porcine pancreatic α-amylase (PPA) in vitro. Tannic acid, chlorogenic acid and caffeic acid in YAP showed relatively high inhibition with the IC50 values of 0.30, 1.96 and 3.69mg/mL, respectively. A detailed kinetics of inhibition study revealed that YAP and tannic acid were competitive inhibitors of PPA, whereas chlorogenic acid and caffeic acid were mixed inhibitors, exhibiting both competitive and uncompetitive characteristics. The fluorescence of PPA could be significantly quenched by YAP and the three polyphenols, and their quenching constants were determined. The results showed that for the polyphenols investigated, the order of the apparent static quenching constants (KFQ) was in agreement with that of the reciprocal competitive inhibition constants (1/Kic) (tannic acid>chlorogenic acid>caffeic acid>epicatechin); both of the parameters were contrary to the order of the IC50 values. Thus, combining detailed kinetics and fluorescence quenching studies can be applied to characterise the interactions between polyphenols in young apples and α-amylase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Observational constraints on holographic dark energy with varying gravitational constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jianbo; Xu, Lixin; Saridakis, Emmanuel N.

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050},more » while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.« less

  8. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2010-10-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  9. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  10. A unifying strain criterion for fracture of fibrous composite laminates

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1983-01-01

    Fibrous composite materials, such as graphite/epoxy, are light, stiff, and strong. They have great potential for reducing weight in aircraft structures. However, for a realization of this potential, designers will have to know the fracture toughness of composite laminates in order to design damage tolerant structures. In connection with the development of an economical testing procedure, there is a great need for a single fracture toughness parameter which can be used to predict the stress-intensity factor (K(Q)) for all laminates of interest to the designer. Poe and Sova (1980) have derived a general fracture toughness parameter (Qc), which is a material constant. It defines the critical level of strains in the principal load-carryng plies. The present investigation is concerned with the calculation of values for the ratio of Qc and the ultimate tensile strain of the fibers. The obtained data indicate that this ratio is reasonably constant for layups which fail largely by self-similar crack extension.

  11. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Kashif; Ahmad, Shabbir; Ahmad, Shahzad, E-mail: shahzadahmadbzu@gmail.com

    In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms ofmore » both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.« less

  12. On proton excitation of forbidden lines in positive ions

    NASA Astrophysics Data System (ADS)

    Burgess, Alan; Tully, John A.

    2005-08-01

    The semi-classical impact parameter approximations used by Bahcall and Wolf and by Bely and Faucher, for proton excitation of electric quadrupole transitions in positive ions, both fail at high energies, giving cross sections which do not fall off correctly as constant/E. This is in contrast with the pioneering example of Seaton for Fe+13 and of Reid and Schwarz for S+3, both of whom achieve the correct functional form, but do not ensure the correct constant of proportionality. By combining the Born and semi-classical approximations one can obtain cross sections which have the full correct behaviour as E → ∞, and hence, rate coefficients which have the correct high temperature behaviour (~C/T1/2 with the correct value of C). We provide a computer program for calculating these. An error in Faucher's derivation of the Born formula is also discussed.

  13. Optimal Electrodynamic Tether Phasing Maneuvers

    NASA Technical Reports Server (NTRS)

    Bitzer, Matthew S.; Hall, Christopher D.

    2007-01-01

    We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.

  14. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    PubMed

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-11-01

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Experimental determination of exchange constants in antiferromagnetic Mn2Au

    NASA Astrophysics Data System (ADS)

    Sapozhnik, A. A.; Luo, C.; Ryll, H.; Radu, F.; Jourdan, M.; Zabel, H.; Elmers, Hans-Joachim

    2018-05-01

    Mn2Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Néel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange constants. Experimental determination of these parameters is further hampered in thin films by the unavoidable presence of uncompensated and quasiloose spins on antisites and at interfaces. Using x-ray magnetic circular dichroism (XMCD), we measured induced perpendicular spin and orbital moments for a Mn2Au (001) film in fields up to ±8 T. By performing these measurements at a low temperature of 7 K and at room temperature (RT), we were able to separate the loose spin contribution from the susceptibility of AF coupled spins. The value of the AF exchange constant obtained with this method for a 10-nm-thick Mn2Au (001) film is (22 ±5 )meV .

  16. Cosmologically allowed regions for the axion decay constant Fa

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke; Yanagida, Tsutomu T.

    2018-07-01

    If the Peccei-Quinn symmetry is already broken during inflation, the decay constant Fa of the axion can be in a wide region from 1011GeV to 1018GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value ∼Mp (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant Fa is reduced to a rather narrow region for a given tensor-to-scalar ratio r when Peccei-Quinn scalar field takes ∼Mp during inflation. For example, if the ratio r is determined as r ≳10-3 in future measurements, we can predict Fa ≃ (0.1- 1.4) ×1012GeV for domain wall number NDW = 6.

  17. Laboratory experiment on the determination of radiostrontium transfer parameter in water - fish compartment system.

    PubMed

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Siti Salami, Indah Rahmatiah; Muntalif, Barti Setiani

    2012-07-01

    A laboratory experiment was conducted to investigate the water - fish transfer parameter of radiostrontium that potentially contaminate human body through water - fish - human pathway in the nuclear accident cases. In this experiment, carp fish (Cyprinus carpio), generally produced and consumed by Indonesian people, were cultured in a tank filled with 500 L water contaminated with (85)Sr for two months. The observation of fish growth and radioactivity were conducted every five days by taking up three fish and water samples. The fish were dissected and separated into muscle, bones and internally organ, then destructed using chloric acid. The fish and water samples were then measured using gamma spectrometer with HPGe detector. The transfer parameter of transfer factor (T(f)), uptake rate constant (u), elimination rate constant (k), and the effective half life (T(e)) were analyzed by mathematical equations. The high (85)Sr concentration was observed in the bone by the T(f) value of 67.99 ± 9.68 mL g(-1) wet weight, whereas the concentration in muscle and internal organ were lower with the T(f) of 26.05 ± 4.44 mL g(-1) wet weight and 16.95 ± 2.34 mL g(-1) wet weight, respectively. The values of u obtained from the mathematical calculation were 0.025 day(-1), 0.029 day(-1), and 0.04 day(-1) for bone, muscle, and internal organ, respectively. Those values were higher compared to the k values, i.e. 0.018 day(-1), 0.025 day(-1), and 0.022 day(-1) indicating the accumulation were take place in bone, muscle, and internal organ. The effective half life, which is the sum of physical and biological half life, of (85)Sr in carp was about 30 days. The transfer parameter values determined from this experiment can be used in internal radiation doses assessment through water - fish - human pathways in case of radiostrontium contamination in freshwater environment, so a recommendation can be considered relating to the fish consumption during or after radiostrontium release to the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Structural and electronic properties of half-metallic rare-earth perovskites

    NASA Astrophysics Data System (ADS)

    Khandy, Shakeel Ahmad; Islam, Ishtihadah; Bhat, Tahir Mohiuddin; Yousuf, Saleem; Gupta, Dinesh C.

    2018-05-01

    Systemic investigation of structural parameters and electronic properties inclusive of band profiles for BaPaO3 and BaUO3 have been performed. The empirical as well as DFT calculated lattice constants are in agreement with the previously reported results. The critical energy values confirm that the BaPaO3 has lesser migration energy than BaUO3. Both, these materials show a semiconducting, direct band gap in the low spin state with 2.3 eV for BaUO3 and for BaPaO3, its value is 3.9 eV.

  19. Why anthropic reasoning cannot predict Lambda.

    PubMed

    Starkman, Glenn D; Trotta, Roberto

    2006-11-17

    We revisit anthropic arguments purporting to explain the measured value of the cosmological constant. We argue that different ways of assigning probabilities to candidate universes lead to totally different anthropic predictions. As an explicit example, we show that weighting different universes by the total number of possible observations leads to an extremely small probability for observing a value of Lambda equal to or greater than what we now measure. We conclude that anthropic reasoning within the framework of probability as frequency is ill-defined and that in the absence of a fundamental motivation for selecting one weighting scheme over another the anthropic principle cannot be used to explain the value of Lambda, nor, likely, any other physical parameters.

  20. On the behavior of certain ink aging curves.

    PubMed

    Cantú, Antonio A

    2017-09-01

    This work treats writing inks, particularly ballpoint pen inks. It reviews those ink aging methods that are based on the analysis (measurement) of ink solvents (e.g., 2-phenoxyethanol, which is the most common among ballpoint pen inks). Each method involves measurements that are components of an ink aging parameter associated with the method. Only mass independent parameters are considered. An ink solvent from an ink that is on an air-exposed substrate will evaporate at a decreasing rate and is never constant as the ink ages. An ink aging parameter should reflect this behavior. That is, the graph of a parameter's experimentally-determined values plotted against ink age (which yields the ink aging curve) should show this behavior. However, some experimentally-determined aging curves contain outlying points that are below or above where they should be or points corresponding to different ages that have the same ordinate (parameter value). Such curves, unfortunately, are useless since such curves show that an ink can appear older or younger than what it should be in one or more of its points or have the same age in two or more of its points. This work explains that one cause of this unexpected behavior is that the parameter values were improperly determined such as when a measurement is made of an ink solvent that is not completely extracted (removed) from an ink sample with a chosen extractor such as dry heat or a solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. User's Manual for Aerofcn: a FORTRAN Program to Compute Aerodynamic Parameters

    NASA Technical Reports Server (NTRS)

    Conley, Joseph L.

    1992-01-01

    The computer program AeroFcn is discussed. AeroFcn is a utility program that computes the following aerodynamic parameters: geopotential altitude, Mach number, true velocity, dynamic pressure, calibrated airspeed, equivalent airspeed, impact pressure, total pressure, total temperature, Reynolds number, speed of sound, static density, static pressure, static temperature, coefficient of dynamic viscosity, kinematic viscosity, geometric altitude, and specific energy for a standard- or a modified standard-day atmosphere using compressible flow and normal shock relations. Any two parameters that define a unique flight condition are selected, and their values are entered interactively. The remaining parameters are computed, and the solutions are stored in an output file. Multiple cases can be run, and the multiple case solutions can be stored in another output file for plotting. Parameter units, the output format, and primary constants in the atmospheric and aerodynamic equations can also be changed.

  2. New solutions of exotic charged black holes and their stability

    NASA Astrophysics Data System (ADS)

    Farhangkhah, N.

    2016-01-01

    We find a class of charged black hole solutions in third-order Lovelock Gravity. To obtain this class of solutions, we are not confined to the usual assumption of maximal symmetry on the horizon and will consider the solution whose boundary is Einstein space with supplementary conditions on its Weyl tensor. The Weyl tensor of such exotic horizons exposes two chargelike parameter to the solution. These parameters in addition with the electric charge, cause different features in comparison with the charged solution with constant-curvature horizon. For this class of asymptotically (A)dS solutions, the electric charge dominates the behavior of the metric as r goes to zero, and thus the central singularity is always timelike. We also compute the thermodynamic quantities for these solutions and will show that the first law of thermodynamics is satisfied. We also show that the extreme black holes with nonconstant-curvature horizons whose Ricci scalar are zero or a positive constant could exist depending on the value of the electric charge and chargelike parameters. Finally, we investigate the stability of the black holes by analyzing the behavior of free energy and heat capacity specially in the limits of small and large horizon radius. We will show that in contrast with charged solution with constant-curvature horizon, a phase transition occurs between very small and small black holes from a stable phase to an unstable one, while the large black holes show stability to both perturbative and nonperturbative fluctuations.

  3. Comparison between the Logotropic and ΛCDM models at the cosmological scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanis, Pierre-Henri; Kumar, Suresh, E-mail: chavanis@irsamc.ups-tlse.fr, E-mail: suresh.kumar@pilani.bits-pilani.ac.in

    We perform a detailed comparison between the Logotropic model [P.H. Chavanis, Eur. Phys. J. Plus, 130 (2015)] and the ΛCDM model. These two models behave similarly at large (cosmological) scales up to the present. Differences will appear only in the far future, in about 25 Gyrs, when the Logotropic Universe becomes phantom while the ΛCDM Universe enters in the de Sitter era. However, the Logotropic model differs from the ΛCDM model at small (galactic) scales, where the latter encounters serious problems. Having a nonvanishing pressure, the Logotropic model can solve the cusp problem and the missing satellite problem of themore » ΛCDM model. In addition, it leads to dark matter halos with a constant surface density Σ{sub 0}=ρ{sub 0} r {sub h} , and can explain its observed value Σ{sub 0}=141 M {sub ⊙}/pc{sup 2} without adjustable parameter. This makes the logotropic model rather unique among all the models attempting to unify dark matter and dark energy. In this paper, we compare the Logotropic and ΛCDM models at the cosmological scale where they are very close to each other in order to determine quantitatively how much they differ. This comparison is facilitated by the fact that these models depend on only two parameters, the Hubble constant H {sub 0} and the present fraction of dark matter Ω{sub m0}. Using the latest observational data from Planck 2015+Lensing+BAO+JLA+HST, we find that the best fit values of H {sub 0} and Ω{sub m0} are H {sub 0}=68.30 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3014 for the Logotropic model, and H {sub 0}=68.02 km s{sup −1} Mpc{sup −1} and Ω{sub m0}=0.3049 for the ΛCDM model. The difference between the two models is at the percent level. As a result, the Logotropic model competes with the ΛCDM model at large scales and solves its problems at small scales. It may therefore represent a viable alternative to the ΛCDM model. Our study provides an explicit example of a theoretically motivated model that is almost indistinguishable from the ΛCDM model at the present time while having a completely different (phantom) evolution in the future. We analytically derive the statefinders of the Logotropic model for all values of the logotropic constant B . We show that the parameter s {sub 0} is directly related to this constant since s {sub 0}=− B /( B +1) independently of any other parameter like H {sub 0} or Ω{sub m0}. For the predicted value of B =3.53× 10{sup −3}, we obtain ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5516,1.011,−0.003518) instead of ( q {sub 0}, r {sub 0}, s {sub 0})=(−0.5427,1,0) for the ΛCDM model corresponding to 0 B =.« less

  4. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.

    PubMed

    Uddin, M; Coombe, D

    2014-03-20

    Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.

  5. Determination of Arrhenius and Thermodynamic Parameters for the Aqueous Reaction of the Hydroxyl Radical with Lactic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh R. Martin; Stephen P. Mezyk; Bruce J. Mincher

    2009-01-01

    Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer, and also to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH~3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid thismore » rate constant is given by the equation: ln k1 = (23.85 ± 0.19) – (1120 ± 54) / T, corresponding to an activation energy of 9.31 ± 0.45 kJ mol-1 and a room temperature reaction rate constant of (5.24 ± 0.09) x 108 M-1 s-1 (24.0oC). For the lactate ion, the temperature-dependent rate constant is given by: ln k2 = (24.83 ± 0.14) – (1295 ± 42) / T, for an activation energy of 10.76 ± 0.35 kJ mol-1 and a room temperature value of (7.77 ± 0.11) x 108 M-1 s-1 (22.2oC). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pKa value, allowing thermodynamic parameters for the acid dissociation to be calculated as ?Hº = -10.75 ± 1.77 kJ mol-1, ?Sº = -103.9 ± 6.0 J K-1 mol-1 and ?Gº = 20.24 ± 2.52 kJ mol-1 at low ionic strength.« less

  6. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  7. Simple cosmological model with inflation and late times acceleration

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-03-01

    In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.

  8. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.

    PubMed

    Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W

    2015-07-23

    A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.

  9. Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity

    NASA Astrophysics Data System (ADS)

    Li, Yurong; Du, Zhengdong

    2017-02-01

    In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton-Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants δ _F= 4.66920160\\cdots.

  10. Dynamics of short-term acclimation to UV radiation in marine diatoms.

    PubMed

    Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard

    2007-11-12

    In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.

  11. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  12. THE AXISYMMETRIC FREE-CONVECTION HEAT TRANSFER ALONG A VERTICAL THIN CYLINDER WITH CONSTANT SURFACE TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viskanta, R.

    1963-01-01

    Laminar free-convection flow produced by a heated, vertical, circular cylinder for which the temperature at the outer surface of the cylinder is assumed to be uniform is analyzed. The solution of the boundary-layer equations was obtained by the perturbation method of Sparrow and Gregg, which is valid only for small values of the axial distance parameter xi ; and the integral method of Hama et al., for large values of the parameter xi . Heat-transfer results were calculated for Prandtl numbers (Pr) of 100, the Nusselt numbers (Nu) for the cylinder were higher than those for the flat plate, andmore » this difference increased as Pr decreased. It was also found that the perturbation method of solution of the free-convection boundary-layer equations becomes useless for small values of Pr because of the slow convergence of the series. The results obtained by the integral method were in good agreement with those calculated by the perturbation method for Pr approximately 1 and 0.1 < xi < 1 only; they deviated considerably for smaller values of xi . (auth)« less

  13. Recommended Values of the Fundamental Physical Constants: A Status Report

    PubMed Central

    Taylor, Barry N.; Cohen, E. Richard

    1990-01-01

    We summarize the principal advances made in the fundamental physical constants field since the completion of the 1986 CODATA least-squares adjustment of the constants and discuss their implications for both the 1986 set of recommended values and the next least-squares adjustment. In general, the new results lead to values of the constants with uncertainties 5 to 7 times smaller than the uncertainties assigned the 1986 values. However, the changes in the values themselves are less than twice the 1986 assigned one-standard-deviation uncertainties and thus are not highly significant. Although much new data has become available since 1986, three new results dominate the analysis: a value of the Planck constant obtained from a realization of the watt; a value of the fine-structure constant obtained from the magnetic moment anomaly of the electron; and a value of the molar gas constant obtained from the speed of sound in argon. Because of their dominant role in determining the values and uncertainties of many of the constants, it is highly desirable that additional results of comparable uncertainty that corroborate these three data items be obtained before the next adjustment is carried out. Until then, the 1986 CODATA set of recommended values will remain the set of choice. PMID:28179787

  14. Fractal scaling laws of black carbon aerosol and their influence on spectral radiative properties

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Chakrabarty, R. K.; Heinson, W.

    2016-12-01

    Current estimates of the direct radiative forcing for Black Carbon (BC) aerosol span over a poorly constrained range between 0.2 and 1 W.m-2. To improve this large uncertainty, tighter constraints need to be placed on BC's key wavelength-dependent optical properties, namely, the absorption (MAC) and scattering (MSC) cross sections per unit mass and hemispherical upscatter fraction (β; a dimensionless scattering directionality parameter). These parameters are very sensitive to changes in particle morphology and complex refractive index nindex. Their interplay determines the magnitude of net positive or negative radiative forcing efficiencies. The current approach among climate modelers for estimating MAC and MSC values of BC is from their optical cross-sections calculated assuming spherical particle morphology with homogeneous, constant-valued refractive index in the visible solar spectrum. The β values are typically assumed to be a constant across this spectrum. This approach, while being computationally inexpensive and convenient, ignores the inherent fractal morphology of BC and its scaling behaviors, and resulting optical properties. In this talk, I will present recent results from my laboratory on determination of the fractal scaling laws of BC aggregate packing density and its complex refractive index for size spanning across three orders of magnitude, and their effects on spectral (Visible-infrared wavelength) scaling of MAC, MSC, and β values. Our experiments synergistically combined novel BC generation techniques, aggregation models, contact-free multi-wavelength optical measurements, and electron microscopy analysis. The scale dependence of nindex on aggregate size followed power-law exponents of -1.4 and -0.5 for sub- and super-micron size aggregates, respectively. The spherical Rayleigh-optics approximation limits, used by climate models for spectral extrapolation of BC optical cross-sections and deconvolution of multi-species mixing ratios, are redefined using the concept of phase shift parameter. I will highlight the importance of size-dependent β values and its role in offsetting the strong light absorbing nature of BC. Finally, the errors introduced in forcing efficiency calculations of BC by assuming spherical homogeneous morphology will be evaluated.

  15. Studies of the spin Hamiltonian parameters and local structure for ZnO:Cu2+.

    PubMed

    Wu, Shao-Yi; Wei, Li-Hua; Zhang, Zhi-Hong; Wang, Xue-Feng; Hu, Yue-Xia

    2008-12-15

    The spin Hamiltonian parameters (the g factors and the hyperfine structure constants) and local structure for ZnO:Cu2+ are theoretically studied from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are taken into account from the cluster approach due to the significant covalency of the [CuO4](6-) cluster. According to the investigations, the impurity Cu2+ is suggested not to locate on the ideal Zn2+ site in ZnO but to undergo a slight outward displacement (approximately 0.01 angstroms) away from the ligand triangle along C3 axis. The calculated spin Hamiltonian parameters are in good agreement with the observed values. The validity of the above impurity displacement is also discussed.

  16. On the dynamics of a small body under the influence of a Maxwell ring-type N-body system with a spheroidal central body: Focal curves

    NASA Astrophysics Data System (ADS)

    Kalvouridis, T.; Fakis, D.

    2013-09-01

    One of the most interesting aspects which characterize the dynamics of a small body under the influence of a regular polygon formation of N bodies with a spheroidal central primary, is related to the zero-velocity surfaces which, for a given set of the problem's parameters, separate the regions where particle planar motion is permitted from those where this motion is impossible. The non-sphericity of the central primary is here described by adding an inverse cube corrective term to Newton's law of gravitation, when applied both between the central primary and a peripheral one and between this primary and the small body. A similar expression of the potential including a corrective term was proposed by Manev in 1924 in his effort to describe some special physical properties of a body like radiation emission, or to explain some relativistic effects without using the theory of relativity. The version of the problem we deal with, is characterized by three parameters, namely, the number ?=N-1 of the peripheral primaries, the mass parameter (ratio of the central mass m0 to the mass m of a peripheral body) and the oblateness parameter e, which appears in the non-Newtonian term of the force function related to the central primary. Parameter ? takes only positive values, while parameter e can take small real values either positive (oblate body) or negative (prolate body). By using the existing Jacobian-type integral which characterizes the planar motion of the particle in the synodic coordinate system Oxyz located at the mass center O of the system, and by superposing the zerovelocity surfaces C=C(x,y, z=0; ?, e) (where C is the Jacobian constant) drawn for a given configuration ?, we observe that: (i) when e is kept constant and ? varies, then the central parts of all these surfaces ,which evolve around the central primary, intersect along one continuous curve while, (ii) when ? is kept constant and e varies, then, depending on either positive or negative values of e, the central parts of all these surfaces intersect along either one or two common continuous curves respectively. We call these curves focal curves due to their aforementioned property. As it is expected, they display all the symmetry elements of the primaries arrangement in rotations around an axis perpendicular to the xy-plane through an angle 2?/?. We shall prove that in case (i) the focal curve is independent of parameter e, while in case (ii) the focal curves (or curve) are independent of parameter ?. It should be noted that, a similar property concerning the zero-velocity surfaces has been discovered by one of the present authors (Kalvouridis, 2004) during the investigation of the particle dynamics in the Newtonian field of a regular polygon formation of N spherical massive bodies. Another aspect dealt with in the present paper, is the mechanism of the parametric evolution of the focal curves and the effects of this property on the equilibrium locations and the periodic motions of the particle.

  17. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT.

    PubMed

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  18. Stress relaxation study of fillers for directly compressed tablets

    PubMed Central

    Rehula, M.; Adamek, R.; Spacek, V.

    2012-01-01

    It is possible to assess viscoelastic properties of materials by means of the stress relaxation test. This method records the decrease in pressing power in a tablet at its constant height. The cited method was used to evaluate the time-dependent deformation for six various materials: microcrystalline cellulose, cellulose powder, hydroxypropyl methylcellulose, mannitol, lactose monohydrate, and hydrogen phosphate monohydrate. The decrease in pressing powering of a tablet during a 180 s period was described mathematically by the parameters of three exponential equations, where the whole course of the stress relaxation is divided into three individual processes (instant elastic deformation, retarded elastic deformation and permanent plastic deformation). Three values of the moduli of plasticity and elasticity were calculated for each compound. The values of elastic parameters ATi have a strong relationship with bulk density. The plastic parameters PTi represent particle tendency to form bonds. The values of plasticity in the third process PT3 ranged from 400 to 600 MPas. Mannitol had higher plasticity and lactose monohydrate on the contrary reduced plasticity. A linear relation exists between AT3 and PT3 for the third process. No similar interpretation of moduli calculated on the basis of three exponential equations has been realized yet. PMID:24850972

  19. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.

    2018-02-01

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f

  20. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    NASA Astrophysics Data System (ADS)

    Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.

    2013-09-01

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.

  1. Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality

    DOE PAGES

    Williams, R. T.; Grim, Joel Q.; Li, Qi; ...

    2013-09-26

    Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less

  2. Kinetics of bacterial phospholipase C activity at micellar interfaces: effect of substrate aggregate microstructure and a model for the kinetic parameters.

    PubMed

    Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph

    2008-12-25

    Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.

  3. QCD Coupling from a Nonperturbative Determination of the Three-Flavor Λ Parameter

    DOE PAGES

    Bruno, Mattia; Brida, Mattia Dalla; Fritzsch, Patrick; ...

    2017-09-08

    We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ(3)MS=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ(5)MS/Λ(3)MS yields α(5)MS(mZ)=0.11852(84).

  4. Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Denisov, E. T.

    2017-08-01

    Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.

  5. Constraints on running vacuum model with H ( z ) and f σ{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu, E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: yinlumail@foxmail.com

    We examine the running vacuum model with Λ ( H ) = 3 ν H {sup 2} + Λ{sub 0}, where ν is the model parameter and Λ{sub 0} is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H ( z ) and weighted linear growth f ( z )σ{sub 8}( z ) measurements, we find that ν=(1.37{sup +0.72}{sub −0.95})× 10{sup −4} with the best fitted χ{sup 2} value slightly smaller than that in the ΛCDM model.

  6. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  7. Time-domain induced polarization - an analysis of Cole-Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion

    NASA Astrophysics Data System (ADS)

    Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2017-12-01

    The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.

  8. Nuclear magnetic resonance of Al-27 in topaz, Al2SiO4/F, OH/2.

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Ghose, S.

    1972-01-01

    The Al-27 nuclear quadrupolar coupling constant and asymmetry parameter (eta) in topaz have been determined to be 1.67 (plus or minus 0.03) MHz and 0.38 plus or minus 0.05, respectively. These values and the orientations of the principal axes are consistent with the Fe(3+) paramagnetic resonance data and with the symmetry of the AlO4F2 octahedron.

  9. On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters

    NASA Astrophysics Data System (ADS)

    Han, Fenghua; Xie, Feng

    2017-07-01

    In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.

  10. The CODATA 2017 values of h, e, k, and N A for the revision of the SI

    NASA Astrophysics Data System (ADS)

    Newell, D. B.; Cabiati, F.; Fischer, J.; Fujii, K.; Karshenboim, S. G.; Margolis, H. S.; de Mirandés, E.; Mohr, P. J.; Nez, F.; Pachucki, K.; Quinn, T. J.; Taylor, B. N.; Wang, M.; Wood, B. M.; Zhang, Z.

    2018-04-01

    Sufficient progress towards redefining the International System of Units (SI) in terms of exact values of fundamental constants has been achieved. Exact values of the Planck constant h, elementary charge e, Boltzmann constant k, and Avogadro constant N A from the CODATA 2017 Special Adjustment of the Fundamental Constants are presented here. These values are recommended to the 26th General Conference on Weights and Measures to form the foundation of the revised SI.

  11. Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules

    PubMed Central

    Saha, Subhadeep; Roy, Aditi; Roy, Kanak; Roy, Mahendra Nath

    2016-01-01

    Host–guest inclusion complexes of β-cyclodextrin with two vitamins viz., nicotinic acid and ascorbic acid in aqueous medium have been explored by reliable spectroscopic, physicochemical and calorimetric methods as stabilizer, carrier and regulatory releaser of the guest molecules. Job’s plots have been drawn by UV-visible spectroscopy to confirm the 1:1 stoichiometry of the host-guest assembly. Stereo-chemical nature of the inclusion complexes has been explained by 2D NMR spectroscopy. Surface tension and conductivity studies further support the inclusion process. Association constants for the vitamin-β-CD inclusion complexes have been calculated by UV-visible spectroscopy using both Benesi–Hildebrand method and non-linear programme, while the thermodynamic parameters have been estimated with the help of van’t Hoff equation. Isothermal titration calorimetric studies have been performed to determine the stoichiometry, association constant and thermodynamic parameters with high accuracy. The outcomes reveal that there is a drop in ΔSo, which is overcome by higher negative value of ΔHo, making the overall inclusion process thermodynamically favorable. The association constant is found to be higher for ascorbic acid than that for nicotinic acid, which has been explained on the basis of their molecular structures. PMID:27762346

  12. Experimental Solubility Approach to Determine PDMS-Water Partition Constants and PDMS Activity Coefficients.

    PubMed

    Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline

    2016-03-15

    Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility.

  13. Reference database of lung volumes and capacities in wistar rats from 2 to 24 months.

    PubMed

    Filho, Wilson Jacob; Fontinele, Renata Gabriel; de Souza, Romeu Rodrigues

    2014-01-01

    This study determines the effects of growing and aging on lung physiological volumes and capacities and the incidence of inflammation in the small airways with age in rats. A reference database comprising of body weight gain, lung physiological volumes and capacities and an anatomopathological study of lung lesions over 240 Wistar rats from two to 24 -mo, is described. Tidal volume (TV), minute respiratory volume (MRV), and forced vital capacity (FVC) decreased during the first six months of life and then remain constant until 24 -mo of age. The respiratory frequency (Rf) and dynamical compliance (Cdyn) maintain at constant values from 2 to 24- mo of age; the functional residual capacity (FRC) increases in the first 6 -mo and then remains constant up to 24 -mo. It was verified a less intensive inflammation in the small airways with age, when compared with the median and large airways. This study showed the normal parameters for lung volumes and capacities and the incidence of infections for growing and aging male and female rats. The age-related data on these main respiratory parameters in rats would be useful in studies of aging-related disorders using this model and for safety pharmacology studies necessary for the development of drugs.

  14. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3 +:GdTaO4

    NASA Astrophysics Data System (ADS)

    Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang

    2016-11-01

    The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption. Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).

  15. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  16. Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study.

    PubMed

    Uwano, Ikuko; Sasaki, Makoto; Kudo, Kohsuke; Boutelier, Timothé; Kameda, Hiroyuki; Mori, Futoshi; Yamashita, Fumio

    2017-01-10

    The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson's correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms.

  17. Number of independent parameters in the potentiometric titration of humic substances.

    PubMed

    Lenoir, Thomas; Manceau, Alain

    2010-03-16

    With the advent of high-precision automatic titrators operating in pH stat mode, measuring the mass balance of protons in solid-solution mixtures against the pH of natural and synthetic polyelectrolytes is now routine. However, titration curves of complex molecules typically lack obvious inflection points, which complicates their analysis despite the high-precision measurements. The calculation of site densities and median proton affinity constants (pK) from such data can lead to considerable covariance between fit parameters. Knowing the number of independent parameters that can be freely varied during the least-squares minimization of a model fit to titration data is necessary to improve the model's applicability. This number was calculated for natural organic matter by applying principal component analysis (PCA) to a reference data set of 47 independent titration curves from fulvic and humic acids measured at I = 0.1 M. The complete data set was reconstructed statistically from pH 3.5 to 9.8 with only six parameters, compared to seven or eight generally adjusted with common semi-empirical speciation models for organic matter, and explains correlations that occur with the higher number of parameters. Existing proton-binding models are not necessarily overparametrized, but instead titration data lack the sensitivity needed to quantify the full set of binding properties of humic materials. Model-independent conditional pK values can be obtained directly from the derivative of titration data, and this approach is the most conservative. The apparent proton-binding constants of the 23 fulvic acids (FA) and 24 humic acids (HA) derived from a high-quality polynomial parametrization of the data set are pK(H,COOH)(FA) = 4.18 +/- 0.21, pK(H,Ph-OH)(FA) = 9.29 +/- 0.33, pK(H,COOH)(HA) = 4.49 +/- 0.18, and pK(H,Ph-OH)(HA) = 9.29 +/- 0.38. Their values at other ionic strengths are more reliably calculated with the empirical Davies equation than any existing model fit.

  18. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    PubMed

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes.

    PubMed

    Wedenberg, Minna; Lind, Bengt K; Hårdemark, Björn

    2013-04-01

    The biological effects of particles are often expressed in relation to that of photons through the concept of relative biological effectiveness, RBE. In proton radiotherapy, a constant RBE of 1.1 is usually assumed. However, there is experimental evidence that RBE depends on various factors. The aim of this study is to develop a model to predict the RBE based on linear energy transfer (LET), dose, and the tissue specific parameter α/β of the linear-quadratic model for the reference radiation. Moreover, the model should capture the basic features of the RBE using a minimum of assumptions, each supported by experimental data. The α and β parameters for protons were studied with respect to their dependence on LET. An RBE model was proposed where the dependence of LET is affected by the (α/β)phot ratio of photons. Published cell survival data with a range of well-defined LETs and cell types were selected for model evaluation rendering a total of 10 cell lines and 24 RBE values. A statistically significant relation was found between α for protons and LET. Moreover, the strength of that relation varied significantly with (α/β)phot. In contrast, no significant relation between β and LET was found. On the whole, the resulting RBE model provided a significantly improved fit (p-value < 0.01) to the experimental data compared to the standard constant RBE. By accounting for the α/β ratio of photons, clearer trends between RBE and LET of protons were found, and our results suggest that late responding tissues are more sensitive to LET changes than early responding tissues and most tumors. An advantage with the proposed RBE model in optimization and evaluation of treatment plans is that it only requires dose, LET, and (α/β)phot as input parameters. Hence, no proton specific biological parameters are needed.

  20. Green-Naghdi dynamics of surface wind waves in finite depth

    NASA Astrophysics Data System (ADS)

    Manna, M. A.; Latifi, A.; Kraenkel, R. A.

    2018-04-01

    The Miles’ quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles’ theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.

  1. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  2. Melnikov's criteria, parametric control of chaos, and stationary chaos occurrence in systems with asymmetric potential subjected to multiscale type excitation.

    PubMed

    Kwuimy, C A Kitio; Nataraj, C; Litak, G

    2011-12-01

    We consider the problems of chaos and parametric control in nonlinear systems under an asymmetric potential subjected to a multiscale type excitation. The lower bound line for horseshoes chaos is analyzed using the Melnikov's criterion for a transition to permanent or transient nonperiodic motions, complement by the fractal or regular shape of the basin of attraction. Numerical simulations based on the basins of attraction, bifurcation diagrams, Poincaré sections, Lyapunov exponents, and phase portraits are used to show how stationary dissipative chaos occurs in the system. Our attention is focussed on the effects of the asymmetric potential term and the driven frequency. It is shown that the threshold amplitude ∣γ(c)∣ of the excitation decreases for small values of the driven frequency ω and increases for large values of ω. This threshold value decreases with the asymmetric parameter α and becomes constant for sufficiently large values of α. γ(c) has its maximum value for asymmetric load in comparison with the symmetric load. Finally, we apply the Melnikov theorem to the controlled system to explore the gain control parameter dependencies.

  3. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics.

    PubMed

    Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M

    2014-02-01

    We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.

  4. Modification of kinetic parameters of glycogen phosphorylase from mantle tissue of Mytilus galloprovincialis by a phosphorylation mechanism.

    PubMed

    San Juan Serrano, F; Fernández González, M; Sánchez López, J L; García Martín, L O

    1995-09-01

    Initial rate and affinity studies on mantle Mytilus phosphorylase a were carried out in order to find possible differences in its kinetic properties with respect to phosphorylase b. Phosphorylase a was not stimulated for any AMP concentrations. Michaelis constants (Km) are 0.05 mg/ml glycogen, 1.15 mM inorganic phosphate and 1.50 mM glucose-1-phosphate. The Kms for the substrates, in the direction of glycogen breakdown, are enhanced by non-saturating concentrations of cosubstrate, without reducing the apparent maximum velocity. First order and hyperbolic kinetics and values of the allosteric constant smaller than 2 were observed. These results suggest a catalytic mechanism different to that shown for mantle Mytilus phosphorylase b.

  5. Hydrodynamics of the Semi-Immersed Cylinder by Forced Oscillation Model Testing

    NASA Astrophysics Data System (ADS)

    Song, Chun-hui; Fu, Shi-xiao; Tang, Xiao-ying; Hu, Ke; Ma, Lei-xin; Ren, Tong-xin

    2018-03-01

    In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters ( Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients. The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.

  6. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    NASA Astrophysics Data System (ADS)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  7. Effects of historical and predictive information on ability of transport pilot to predict an alert

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    1994-01-01

    In the aviation community, the early detection of the development of a possible subsystem problem during a flight is potentially useful for increasing the safety of the flight. Commercial airlines are currently using twin-engine aircraft for extended transport operations over water, and the early detection of a possible problem might increase the flight crew's options for safely landing the aircraft. One method for decreasing the severity of a developing problem is to predict the behavior of the problem so that appropriate corrective actions can be taken. To investigate the pilots' ability to predict long-term events, a computer workstation experiment was conducted in which 18 airline pilots predicted the alert time (the time to an alert) using 3 different dial displays and 3 different parameter behavior complexity levels. The three dial displays were as follows: standard (resembling current aircraft round dial presentations); history (indicating the current value plus the value of the parameter 5 sec in the past); and predictive (indicating the current value plus the value of the parameter 5 sec into the future). The time profiles describing the behavior of the parameter consisted of constant rate-of-change profiles, decelerating profiles, and accelerating-then-decelerating profiles. Although the pilots indicated that they preferred the near term predictive dial, the objective data did not support its use. The objective data did show that the time profiles had the most significant effect on performance in estimating the time to an alert.

  8. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.

    PubMed

    de Castro, Alberto; Birkenfeld, Judith; Maceo, Bianca; Manns, Fabrice; Arrieta, Esdras; Parel, Jean-Marie; Marcos, Susana

    2013-09-11

    To estimate changes in surface shape and gradient refractive index (GRIN) profile in primate lenses as a function of accommodation. To quantify the contribution of surface shape and GRIN to spherical aberration changes with accommodation. Crystalline lenses from 15 cynomolgus monkeys were studied in vitro under different levels of accommodation produced by a stretching system. Lens shape was obtained from optical coherence tomography (OCT) cross-sectional images. The GRIN was reconstructed with a search algorithm using the optical path measured from OCT images and the measured back focal length. The spherical aberration of the lens was estimated as a function of accommodation using the reconstructed GRIN and a homogeneous refractive index. The lens anterior and posterior radii of curvature decreased with increasing lens power. Both surfaces exhibited negative asphericities in the unaccommodated state. The anterior surface conic constant shifted toward less negative values with accommodation, while the value of the posterior remained constant. GRIN parameters remained constant with accommodation. The lens spherical aberration with GRIN distribution was negative and higher in magnitude than that with a homogeneous equivalent refractive index (by 29% and 53% in the unaccommodated and fully accommodated states, respectively). Spherical aberration with the equivalent refractive index shifted with accommodation toward negative values (-0.070 μm/diopter [D]), but the reconstructed GRIN shifted it farther (-0.124 μm/D). When compared with the lens with the homogeneous equivalent refractive index, the reconstructed GRIN lens has more negative spherical aberration and a larger shift toward more negative values with accommodation.

  9. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  10. Exact results for the finite time thermodynamic uncertainty relation

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreekanth K.; Krishnamurthy, Supriya

    2018-03-01

    We obtain exact results for the recently discovered finite-time thermodynamic uncertainty relation, for the dissipated work W d , in a stochastically driven system with non-Gaussian work statistics, both in the steady state and transient regimes, by obtaining exact expressions for any moment of W d at arbitrary times. The uncertainty function (the Fano factor of W d ) is bounded from below by 2k_BT as expected, for all times τ, in both steady state and transient regimes. The lower bound is reached at τ=0 as well as when certain system parameters vanish (corresponding to an equilibrium state). Surprisingly, we find that the uncertainty function also reaches a constant value at large τ for all the cases we have looked at. For a system starting and remaining in steady state, the uncertainty function increases monotonically, as a function of τ as well as other system parameters, implying that the large τ value is also an upper bound. For the same system in the transient regime, however, we find that the uncertainty function can have a local minimum at an accessible time τm , for a range of parameter values. The large τ value for the uncertainty function is hence not a bound in this case. The non-monotonicity suggests, rather counter-intuitively, that there might be an optimal time for the working of microscopic machines, as well as an optimal configuration in the phase space of parameter values. Our solutions show that the ratios of higher moments of the dissipated work are also bounded from below by 2k_BT . For another model, also solvable by our methods, which never reaches a steady state, the uncertainty function, is in some cases, bounded from below by a value less than 2k_BT .

  11. Evaluation of dynamically downscaled extreme temperature using a spatially-aggregated generalized extreme value (GEV) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Han, Yuefeng; Stein, Michael L.

    2016-02-10

    The Weather Research and Forecast (WRF) model downscaling skill in extreme maximum daily temperature is evaluated by using the generalized extreme value (GEV) distribution. While the GEV distribution has been used extensively in climatology and meteorology for estimating probabilities of extreme events, accurately estimating GEV parameters based on data from a single pixel can be difficult, even with fairly long data records. This work proposes a simple method assuming that the shape parameter, the most difficult of the three parameters to estimate, does not vary over a relatively large region. This approach is applied to evaluate 31-year WRF-downscaled extreme maximummore » temperature through comparison with North American Regional Reanalysis (NARR) data. Uncertainty in GEV parameter estimates and the statistical significance in the differences of estimates between WRF and NARR are accounted for by conducting bootstrap resampling. Despite certain biases over parts of the United States, overall, WRF shows good agreement with NARR in the spatial pattern and magnitudes of GEV parameter estimates. Both WRF and NARR show a significant increase in extreme maximum temperature over the southern Great Plains and southeastern United States in January and over the western United States in July. The GEV model shows clear benefits from the regionally constant shape parameter assumption, for example, leading to estimates of the location and scale parameters of the model that show coherent spatial patterns.« less

  12. Estimating Tsunami Runup with Fault Plane Parameters

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.

    2016-12-01

    The forecasting of tsunami runup has often been done by solving numerical models. The execution times, however, make them unsuitable for the purpose of warning. We offer an alternative method that provides analytical relationship between the runup height, the fault plane parameters and the characteristic of coastal bathymetry. The method uses the model of Okada (1985) to estimate the coseismic deformation and the corresponding sea surface displacement (η(x,0)). Once the tsunami waves are generated, Carrier & Greenspan (1958) solution (C&G) is adopted to yield analytical expressions for the shoreline elevation and velocity. Two types of problems are investigated. In the first, the bathymetry is modeled as a constant slope that is connected to a constant depth region, where a seismic event occurs. This is a boundary value problem (BVP). In the second, the bathymetry is further simplified as a constant slope, on which a seismic event occurs. This is an initial value problem (IVP). Both problems are depicted in Figure 1. We derive runup solutions in terms of the fault parameters. The earthquake is associated with vertical coseismic seafloor displacements by using Okada's elastic model. In addition to the simplifications considered in Okada's model, we further assume (1) a strike parallel to the shoreline, (2) a very long rupture area and (3) a fast earthquake so surface elevation mimics the seafloor displacements. Then the tsunami origin is modeled in terms of the fault depth (d), fault width (W), fault slip (s) and dip angle (δ). We describe the solution for the BVP. Madsen & Schaeffer (2010) utilized C&G to derive solutions for the shoreline elevation of sinusoidal waves imposed in the offshore boundary. A linear superposition of this solution represents any arbitrary incident wave. Furthermore, we can prescribe the boundary condition at the toe of sloping beach by adopting the linear shallow wave equations in the constant depth area. By means of a dimensional analysis, the runup R is determined by Eq.1. Kanoglu (2004) derived a non-dimensional expression for long wave runup originated over a sloping beach. In our work we determine an analytical expression for a sinusoidal initial condition. Following the same procedure as the BVP, the expression for the runup R in the IVP is given by Eq.2. The curves F1 and F2 are plotted in Figure 2.

  13. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter could limit conduction at high concentration. Although some experimental data from other authors were included to allow qualitative comparison with model calculations, the absolute values of the effective rate constants obtained are only tentative. However, the relative changes in these constants needed to explain qualitatively the experiments should be of significance.

  14. Acoustic emission characterization of steel fibre reinforced concrete during bending

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.

    2010-04-01

    The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.

  15. Microscopic evaluation and physiochemical analysis of Dillenia indica leaf

    PubMed Central

    Kumar, S; Kumar, V; Prakash, Om

    2011-01-01

    Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789

  16. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  17. Influence of phonon-phonon coupling on superconducting state in honeycomb-type crystal lattice

    NASA Astrophysics Data System (ADS)

    Drzazga, E. A.; Szczȩśniak, R.; Domagalska, I. A.

    2018-01-01

    We have taken into account the superconducting state inducing in the crystal lattice of the honeycomb-type. In the framework of the Eliashberg theory, we have determined the thermodynamic properties of the system. The phonon spectral function, which is the input parameter in the Eliashberg equations, has been calculated by using the thermodynamic Green functions. We have considered the model of the coupled Einstein oscillators with frequency ω0 = 100 meV. We have shown that the increasing inter-phonon coupling constant (f) causes the rapid growth of the critical temperature ([TC]max = 36.2 K) just below the maximum value of f equal to 0.25ω0. Simultaneously, the order parameter and the thermodynamic critical field take the values increasingly distant from the predictions of the BCS theory, which results from the strong-coupling and the retardation effects.

  18. Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture.

    PubMed

    Acuña-Argüelles, M E; Olguin-Lora, P; Razo-Flores, E

    2003-04-01

    A mixed culture aerobically metabolized phenol, cresol isomers (o-,m-,p-), 2-ethylphenol and xylenol isomers (2,5-DMP and 3,4-DMP) as the sole carbon and energy source. This culture had a high tolerance towards phenol with values of maximum degradation rate (Vmax) of 47 microM phenol mg-1 protein h-1 and inhibition substrate constant (Ki) of 10 mM. These kinetic parameters were considerably diminished and the toxicity increased with the alkylphenols. For example with 2,5-xylenol, Vmax and Ki values of 0.8 microM 2,5-xylenol mg-1 protein h-1 and 1.3 mM, respectively, were obtained. The cresols were 5-fold more toxic than phenol, whereas 2-ethylphenol and 3,4-xylenol were 11-fold more toxic, and 2,5-xylenol was 34-fold more toxic than phenol.

  19. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy.

    PubMed

    Duman, Osman; Tunç, Sibel; Kancı Bozoğlan, Bahar

    2013-07-01

    The interactions of metoprolol tartrate (MPT) and guaifenesin (GF) drugs with human serum albumin (HSA) and human hemoglobin (HMG) proteins at pH 7.4 were studied by fluorescence and circular dichroism (CD) spectroscopy. Drugs quenched the fluorescence spectra of HSA and HMG proteins through a static quenching mechanism. For each protein-drug system, the values of Stern-Volmer quenching constant, bimolecular quenching constant, binding constant and number of binding site on the protein molecules were determined at 288.15, 298.15, 310.15 and 318.15 K. It was found that the binding constants of HSA-MPT and HSA-GF systems were smaller than those of HMG-MPT and HMG-GF systems. For both drugs, the affinity of HMG was much higher than that of HSA. An increase in temperature caused a negative effect on the binding reactions. The number of binding site on blood proteins for MPT and GF drugs was approximately one. Thermodynamic parameters showed that MPT interacted with HSA through electrostatic attraction forces. However, hydrogen bonds and van der Waals forces were the main interaction forces in the formation of HSA-GF, HMG-MPT and HMG-GF complexes. The binding processes between protein and drug molecules were exothermic and spontaneous owing to negative ∆H and ∆G values, respectively. The values of binding distance between protein and drug molecules were calculated from Förster resonance energy transfer theory. It was found from CD analysis that the bindings of MPT and GF drugs to HSA and HMG proteins altered the secondary structure of HSA and HMG proteins.

  20. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    PubMed

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  1. Refinement of Elastic, Poroelastic, and Osmotic Tissue Properties of Intervertebral Disks to Analyze Behavior in Compression

    PubMed Central

    Stokes, Ian A. F.; Laible, Jeffrey P.; Gardner-Morse, Mack G.; Costi, John J.; Iatridis, James C.

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force–time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754

  2. Factors affecting the process performance of biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopchynski, D.M.; Farmer, R.W.; Maier, W.J.

    1996-11-01

    Biofiltration is an emerging biological treatment technology for the removal of airborne VOCs from industrial process waste streams. Removal of air-phase VOCs by biofiltration is accomplished by contacting a process airstream with an active microbial biofilm attached to a solid phase packing. VOCs that partition into the biofilm are aerobically oxidized to the endproducts of water, carbon dioxide and salts. A multiple reactor biofiltration pilot plant test program has been in progress at the University of Minnesota Environmental Engineering Laboratories since 1992. The primary goal of the program is to study factors that affect biofiltration process performance. Initial results ofmore » this test program were reported in a previous conference paper and master`s thesis. This paper presents the results of more recent studies that focus on the effects of: (1) biofilm accumulation (which in turn causes a decrease in biofilter bed porosity and packing bed surface area), (2) rates of nutrient addition, and (3) chemical properties of the target contaminant, on biofiltration removal performance. Removal performance was evaluated by determining biofilter removal capacities and efficiencies for various substrate feeds. The performance parameters were measured under constant contaminant inlet concentrations and under constant temperature. Three VOCs were selected for study and they are: MEK, (methyl ethyl ketone), xylene, and hexane. MEK, xylene, and hexane were chosen because they are representative of widely used industrial solvents and they have significantly different Henry`s law constants relative to each other (the MEK value < Xylene value < Hexane value). Henry`s law constants quantify the partitioning of a chemical between the air and water-biofilm phase and therefore can be used to correlate the effect of chemical properties on biofilter removal capacities. This paper also introduces a new model for the biofiltration process.« less

  3. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  4. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  5. Theoretical studies of the EPR parameters and local structures for Cu2+-doped cobalt ammonium phosphate hexahydrate

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2015-11-01

    High-order perturbation formulas for a 3d9 ion in rhombically elongated octahedral was applied to calculate the electron paramagnetic resonance (EPR) parameters (the g factors, gi, and the hyperfine structure constants Ai, i = x, y, z) of the rhombic Cu2+ center in CoNH4PO4.6H2O. In the calculations, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the EPR parameters with the local structure of the rhombic Cu2+ center. Based on the calculations, the ligand octahedral (i.e. [Cu(H2O)6]2+ cluster) are found to experience the local bond length variations ΔZ (≈0.213 Å) and δr (≈0.132 Å) along axial and perpendicular directions due to the Jahn-Teller effect. Theoretical EPR parameters based on the above local structure are in good agreement with the observed values; the results are discussed.

  6. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  7. Analytical Considerations about the Cosmological Constant and Dark Energy

    NASA Astrophysics Data System (ADS)

    Abreu, Everton M. C.; de Assis, Leonardo P. G.; Dos Reis, Carlos M. L.

    The accelerated expansion of the universe has now been confirmed by several independent observations including those of high redshift type Ia supernovae, and the cosmic microwave background combined with the large scale structure of the universe. Another way of presenting this kinematic property of the universe is to postulate the existence of a new and exotic entity, with negative pressure, the dark energy (DE). In spite of observationally well established, no single theoretical model provides an entirely compelling framework within which cosmic acceleration or DE can be understood. At present all existing observational data are in agreement with the simplest possibility that the cosmological constant be a candidate for DE. This case is internally self-consistent and noncontradictory. The extreme smallness of the cosmological constant expressed in either Planck, or even atomic units means only that its origin is not related to strong, electromagnetic, and weak interactions. Although in this case DE reduces to only a single fundamental constant we still have no derivation from any underlying quantum field theory for its small value. From the principles of quantum cosmologies, for example, it is possible to obtain the reason for an inverse-square law for the cosmological constant with no conflict with observations. Despite the fact that this general expression is well known, in this work we introduce families of analytical solutions for the scale factor different from the current literature. The knowledge of the scale factor behavior might shed some light on these questions mentioned above since the entire evolution of a homogeneous isotropic universe is contained in the scale factor. We use different parameters for these solutions and with these parameters we establish a connection with the equation of state for different DE scenarios.

  8. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less

  9. Alloying effects on structural and thermal behavior of Ti{sub 1-x}Zr{sub x}C: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com

    2016-05-06

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  10. Optimization of the structural and control system for LSS with reduced-order model

    NASA Technical Reports Server (NTRS)

    Khot, N. S.

    1989-01-01

    The objective is the simultaneous design of the structural and control system for space structures. The minimum weight of the structure is the objective function, and the constraints are placed on the closed loop distribution of the frequencies and the damping parameters. The controls approach used is linear quadratic regulator with constant feedback. A reduced-order control system is used. The effect of uncontrolled modes is taken into consideration by the model error sensitivity suppression (MESS) technique which modified the weighting parameters for the control forces. For illustration, an ACOSS-FOUR structure is designed for a different number of controlled modes with specified values for the closed loop damping parameters and frequencies. The dynamic response of the optimum designs for an initial disturbance is compared.

  11. Nutrient control of phytoplankton photosynthesis in the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Platt, Trevor; Sathyendranath, Shubha; Ulloa, Osvaldo; Harrison, William G.; Hoepffner, Nicolas; Goes, Joaquim

    1992-01-01

    Results from several years of oceanographic cruises are reported which show that the parameters of the photosynthesis-light curve of the flora of the North Sargasso Sea are remarkably constant in magnitude, except during the spring phytoplankton bloom when their magnitudes are noticeably higher. These results are interpreted as providing direct evidence for nutrient control of photosynthesis in the open ocean. The findings also reinforce the plausibility of using biogeochemical provinces to partition the ocean into manageable units for basin- or global-scale analysis. They show that seasonal changes in critical parameter should not be overlooked if robust carbon budgets are to be constructed, and illustrate the value of attacking the parameters that control the key fluxes, rather than the fluxes themselves, when investigating the ocean carbon cycle.

  12. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  13. Film thickness for different regimes of fluid-film lubrication. [elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    Mathematical formulas are presented which express the dimensionless minimum film thickness for the four lubrication regimes found in elliptical contacts: isoviscous-rigid regime; piezoviscous-rigid regime; isoviscous-elastic regime; and piezoviscous-elastic regime. The relative importance of pressure on elastic distortion and lubricant viscosity is the factor that distinguishes these regimes for a given conjunction geometry. In addition, these equations were used to develop maps of the lubrication regimes by plotting film thickness contours on a log-log grid of the dimensionless viscosity and elasticity parameters for three values of the ellipticity parameter. These results present a complete theoretical film thickness parameter solution for elliptical constants in the four lubrication regimes. The results are particularly useful in initial investigations of many practical lubrication problems involving elliptical conjunctions.

  14. Influence of internal electric fields on bonding and properties of impurities in insulators: Mn2+ in LiBaF3 and normal perovskites

    NASA Astrophysics Data System (ADS)

    Trueba, A.; García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M.

    2008-08-01

    Although in LiBaF3:Mn2+ the impurity replaces Li+ thus forming octahedral MnF64- units the experimental hyperfine and anisotropic superhyperfine constants and the energies of d-d optical transitions do not fit into the pattern observed for Mn2+ -doped normal perovskite lattices. Seeking to look into this relevant issue first-principles calculations in the framework of the density-functional theory have been carried out for MnF64- complexes embedded in both KMgF3 and LiBaF3 host lattices which display normal and inverted perovskite structures respectively. The present calculations lead to a value of the equilibrium Mn2+-F- distance, RI , which is the same for both host lattices within 0.015Å . Despite this fact and in agreement with experimental data the calculated values of both the anisotropic superhyperfine constant, Ap , and the cubic-field splitting parameter, 10Dq, for LiBaF3:Mn2+ are found to be higher than those for KMgF3:Mn2+ while Racah parameters are a bit higher for the latter case. All these results, and also the 3% reduction undergone by the hyperfine constant on passing from KMgF3:Mn2+ to LiBaF3:Mn2+ are shown to be connected with a parallel increase in the covalency. These surprising results, which cannot be ascribed to a different RI value, are shown to arise from the internal electric field, ER , due to all lattice ions lying outside the MnF64- complex. Although, according to symmetry, ER is null at Mn2+ site this is shown to be not true in the neighborhood of ligands for the LiBaF3 host lattice. The quite different shape of ER in normal and inverted perovskite lattices is shown to be already understood considering only the first two shells surrounding the MnF64- complex. The present results demonstrate that the traditional ligand field theory fails to understand the changes undergone by optical and magnetic parameters of a complex when a host lattice is replaced by another one which is not isomorphous. The relevance of present conclusions for understanding the color of Cr3+ -based gemstones is also underlined.

  15. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.

    PubMed

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-12-07

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  16. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    PubMed

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and developing food processes and products. However, despite its extreme usefulness, the Tg, a key element of the FPS approach, remains a challenging parameter to routinely measure in amorphous food materials, especially complex materials. This research demonstrates that RHc values, obtained at constant temperature using an automatic water vapor sorption instrument, can be used to detect the glassy to rubbery transition and are similar to the Tg values obtained at constant %RH, especially considering the very different approaches of these 2 methods--a transition from surface adsorption to bulk absorption (water vapor sorption) versus a step change in the heat capacity (DSC thermal method).

  17. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    PubMed

    Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C

    2018-03-01

    To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.

  18. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  19. Determination of the DNA-binding characteristics of ethidium bromide, proflavine, and cisplatin by flow injection analysis: usefulness in studies on antitumor drugs.

    PubMed

    Alonso, A; Almendral, M J; Curto, Y; Criado, J J; Rodríguez, E; Manzano, J L

    2006-08-15

    Flow injection analysis was used to study the reactions occurring between DNA and certain compounds that bind to its double helix, deforming this and even breaking it, such that some of them (e.g., cisplatin) are endowed with antitumoral activity. Use of this technique in the merging zones and stopped-flow modes afforded data on the binding parameters and the kinetic characteristics of the process. The first compound studied was ethidium bromide (EtdBr), used as a fluorescent marker because its fluorescence is enhanced when it binds to DNA. The DNA-EtdBr binding parameters, the apparent intrinsic binding constant (0.31+/-0.02 microM(-1)), and the maximum number of binding sites per nucleotide (0.327+/-0.009) were determined. The modification introduced in these parameters by the presence of proflavine (Prf), a classic competitive inhibitor of the binding of EtdBr to the DNA double helix, was also studied, determining the value of the intrinsic binding constant of Prf (K(Prf) = 0.119+/-9x10(-3) microM(-1)). Finally, we determined the binding parameters between DNA and EtdBr in the presence of the antitumor agent cisplatin, a noncompetitive inhibitor of such binding. This provided information about the binding mechanism as well as the duration and activity of the binding of the compound in its pharmacological use.

  20. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  1. New look at the Badger-Bauer rule: Correlations of spectroscopic IR and NMR parameters with hydrogen bond energy and geometry. FHF complexes

    NASA Astrophysics Data System (ADS)

    Tupikina, E. Yu.; Denisov, G. S.; Melikova, S. M.; Kucherov, S. Yu.; Tolstoy, P. M.

    2018-07-01

    In this work correlation dependencies between hydrogen bond energy ΔE for complexes with Fsbnd H⋯F hydrogen bond and their spectroscopic characteristics of the IR and NMR spectra are presented. We considered 26 complexes in a wide hydrogen bond energy range 0.2-47 kcal/mol. For each complex we calculated complexation energy (MP2/6-311++G(d,p)), IR spectroscopic parameters (FH stretching frequency ν, FH stretching frequency in local mode approximation νLM at MP2/6-311++G(d,p) level) and NMR parameters (chemical shift of hydrogen δH and fluorine nuclei δF, Nuclear Independent Chemical Shielding and spin-spin coupling constants 1JFH, 1hJH...F, 2hJFF at B3LYP/pcSseg-2 level). It was shown that changes of parameters upon complexation, i.e. changes of the stretching frequency in local mode approximation ΔνLM, change of the proton chemical shift ΔδH and change of the absolute value of spin-spin coupling constant 1JFH could be used for estimation of corresponding hydrogen bond strength. Furthermore, we build correlation dependencies between abovementioned spectroscopic characteristics and geometric ones, such as the asymmetry of bridging proton position q1 = 0.5·(rFH - rH…F).

  2. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.

  3. Computational method for determining n and k for a thin film from the measured reflectance, transmittance, and film thickness.

    PubMed

    Bennett, J M; Booty, M J

    1966-01-01

    A computational method of determining n and k for an evaporated film from the measured reflectance, transmittance, and film thickness has been programmed for an IBM 7094 computer. The method consists of modifications to the NOTS multilayer film program. The basic program computes normal incidence reflectance, transmittance, phase change on reflection, and other parameters from the optical constants and thicknesses of all materials. In the modification, n and k for the film are varied in a prescribed manner, and the computer picks from among these values one n and one k which yield reflectance and transmittance values almost equalling the measured values. Results are given for films of silicon and aluminum.

  4. A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2014-12-01

    Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.

  5. Planck constant as spectral parameter in integrable systems and KZB equations

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  6. Concurrent variation of response bias and sensitivity in an operant-psychophysical test.

    NASA Technical Reports Server (NTRS)

    Terman, M.; Terman, J. S.

    1972-01-01

    The yes-no signal detection procedure was applied to a single-response operant paradigm in which rats discriminated between a standard auditory intensity and attenuated comparison values. The payoff matrix was symmetrical (with reinforcing brain stimulation for correct detections and brief time-out for errors), but signal probability and intensity differences were varied to generate a family of isobias and isosensitivity functions. The d' parameter remained fairly constant across a wide range of bias levels. Isobias functions deviated from a strict matching strategy as discrimination difficulty increased, although an orderly relation was maintained between signal probability value and the degree and direction of response bias.

  7. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    PubMed

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  8. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    PubMed Central

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  9. Anisotropic universe with magnetized dark energy

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar

    2016-04-01

    In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.

  10. The reconstruction of tachyon inflationary potentials

    NASA Astrophysics Data System (ADS)

    Fei, Qin; Gong, Yungui; Lin, Jiong; Yi, Zhu

    2017-08-01

    We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of e-folds before the end of inflation. Using the relation between the observables like ns and r with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter wre during reheating is a constant. Depending on the model parameters and the value of wre, the constraints on Nre and Tre are different. As ns increases, the allowed reheating epoch becomes longer for wre=-1/3, 0 and 1/6 while the allowed reheating epoch becomes shorter for wre=2/3.

  11. Analysis and Sizing for Transient Thermal Heating of Insulated Aerospace Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated structure subjected to a simplified heat pulse. The solution is solely a function of two nondimensional parameters. Simpler functions of these two parameters were developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective thermal properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Equations were also developed for the minimum mass required to maintain the inner, unheated surface below a specified temperature. In the course of the derivation, two figures of merit were identified. Required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10%-20% over the relevant range of parameters studied.

  12. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  13. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  14. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    DTIC Science & Technology

    2007-09-20

    phases. The power law parameter values were found to be in close agreement with the constants for nuclear explosions in Nevada and chemical explosions in...caused by the difference of lithostatic pressures between top and bottom of a vertical cylindrical explosive source, typical for borehole chemical ...NORSAR recorded several decoupled chemical explosions in large chambers of underground mines in Sweden (Stevens et al., 2003), however a reference

  15. Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives

    NASA Astrophysics Data System (ADS)

    Codoñer, Armando; Monzó, Isidro S.; Tomás, Francisco; Valero, Rosa

    The formation of molecular complexes between flavine adenine dinucleotide (FAD) and some β-carboline derivatives [antidepressant drugs that have a pronounced inhibition of monoamine oxidase (MAO)] has been studied by using electronic absorption and fluorescence spectroscopic methods. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.

  16. Controls on Earthquake Rupture and Triggering Mechanisms in Subduction Zones

    DTIC Science & Technology

    2010-06-01

    weaken the fault [Wibber- ley and Shimamoto, 2005]. Song and Simons [2003] infer that strongly negative TPGA values correlate with increases in the...and Y. Hu (2006), Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge, J. Geophys. Res., 111, B06410, doi:10.1029...modified Coulomb stress function, γ is a state variable, and A is a fault constitutive parameter. We assume that the normal stress σ remains constant, and

  17. The general solution to the classical problem of finite Euler Bernoulli beam

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Amba-Rao, C. L.

    1977-01-01

    An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.

  18. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  19. Application of the compensated Arrhenius formalism to fluidity data of polar organic liquids.

    PubMed

    Petrowsky, Matt; Fleshman, Allison M; Frech, Roger

    2013-03-14

    The temperature dependence of viscosity (the reciprocal of fluidity) in polar liquids has been studied for over a century, but the available theoretical models have serious limitations. Consequently, the viscosity is often described with empirical equations using adjustable fitting parameters that offer no insight into the molecular mechanism of transport. We have previously reported a novel approach called the compensated Arrhenius formalism (CAF) to describe ionic conductivity, self-diffusion, and dielectric relaxation in terms of molecular and system properties. Here the CAF is applied to fluidity data of pure n-acetates, 2-ketones, n-nitriles, and n-alcohols over the temperature range 5-85 °C. The fluidity is represented as an Arrhenius-like expression that includes a static dielectric constant dependence in the exponential prefactor. The dielectric constant dependence results from the dependence of mass and charge transport on the molecular dipole moment and the solvent dipole density. The CAF is the only self-consistent description of fluid transport in polar liquids written solely in terms of molecular and system parameters. A scaling procedure is used to calculate the activation energy for transport. We find that the activation energies for fluidity of the aprotic liquids are comparable in value, whereas a higher average E(a) value is observed for the n-alcohol data. Finally, we contrast the molecular description of transport presented here with the conventional hydrodynamic model.

  20. Synchronization of relativistic particles in the hyperbolic Kuramoto model

    NASA Astrophysics Data System (ADS)

    Ritchie, Louis M.; Lohe, M. A.; Williams, Anthony G.

    2018-05-01

    We formulate a noncompact version of the Kuramoto model by replacing the invariance group SO(2) of the plane rotations by the noncompact group SO(1, 1). The N equations of the system are expressed in terms of hyperbolic angles αi and are similar to those of the Kuramoto model, except that the trigonometric functions are replaced by hyperbolic functions. Trajectories are generally unbounded, nevertheless synchronization occurs for any positive couplings κi, arbitrary positive multiplicative parameters λi and arbitrary exponents ωi. There are no critical values for the coupling constants. We measure the onset of synchronization by means of several order and disorder parameters. We show numerically and by means of exact solutions for N = 2 that solutions can develop singularities if the coupling constants are negative, or if the initial values are not suitably restricted. We describe a physical interpretation of the system as a cluster of interacting relativistic particles in 1 + 1 dimensions, subject to linear repulsive forces with space-time trajectories parametrized by the rapidity αi. The trajectories synchronize provided that the particle separations remain predominantly time-like, and the synchronized cluster can be viewed as a bound state of N relativistic particle constituents. We extend the defining equations of the system to higher dimensions by means of vector equations which are covariant with respect to SO(p, q).

  1. Defect of the well-known (classical) expression for the ionization rate in gas-discharge plasma and its modification

    NASA Astrophysics Data System (ADS)

    Litvinov, I. I.

    2015-11-01

    A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.

  2. Simulating the Refractive Index Structure Constant ({C}_{n}^{2}) in the Surface Layer at Antarctica with a Mesoscale Model

    NASA Astrophysics Data System (ADS)

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Tian, Qiguo; Liu, Dong; Rao, Ruizhong; Zhu, Wenyue

    2018-01-01

    In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (C n 2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate C n 2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate C n 2 using the bulk aerodynamic method. Finally, the corresponding C n 2 values from the micro-thermometer are compared with the C n 2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators—the bias, root mean square error (RMSE), bias-corrected RMSE (σ), and correlation coefficient (R xy )—in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, σ, and R xy . The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.

  3. Estimation of kinetic parameters of anthocyanins and color degradation in vitamin C fortified cranberry juice during storage.

    PubMed

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2017-04-01

    Color degradation in cranberry juice during storage is the most common consumer complaint. To enhance nutritional quality, juice is typically fortified with vitamin C. This study determined effect of gallic acid, a natural antioxidant, for the preservation of anthocyanins (ACYs) and color, and estimated kinetics of ACYs and color degradation. Juice, fortified with 40-80mg/100mL vitamin C and 0-320mg/100mL gallic acid, was pasteurized at 85°C for 1min and stored at 23°C for 16days. Total monomeric anthocyanins and red color intensity were evaluated spectrophotometrically and data were used to determine degradation rate constants (k values) and order of reaction (n) of ACYs and color. Due to high correlation, k and n could not be estimated simultaneously. To overcome this difficulty, both n and k were held at different constant values in separate analyses to allow accurate estimation of each. Parameters n and k were modeled empirically as functions of vitamin C, and of vitamin C and gallic acid, respectively. Reaction order n ranged from 1.2 to 4.4, and decreased with increasing vitamin C concentration. The final model offers an effective tool that could be used for predicting ACYs and color retention in cranberry juice during storage. Copyright © 2017. Published by Elsevier Ltd.

  4. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  5. A tale of two modes: neutrino free-streaming in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, Lachlan; Cyr-Racine, Francis-Yan; Knox, Lloyd

    2017-07-01

    We present updated constraints on the free-streaming nature of cosmological neutrinos from cosmic microwave background (CMB) temperature and polarization power spectra, baryonic acoustic oscillation data, and distance ladder measurements of the Hubble constant. Specifically, we consider a Fermi-like four-fermion interaction between massless neutrinos, characterized by an effective coupling constant G {sub eff}, and resulting in a neutrino opacity τ-dot {sub ν∝} G {sub eff}{sup 2} T {sub ν}{sup 5}. Using a conservative flat prior on the parameter log{sub 10}( G {sub eff} MeV{sup 2}), we find a bimodal posterior distribution with two clearly separated regions of high probability. The firstmore » of these modes is consistent with the standard ΛCDM cosmology and corresponds to neutrinos decoupling at redshift z {sub ν,dec} > 1.3×10{sup 5}, that is before the Fourier modes probed by the CMB damping tail enter the causal horizon. The other mode of the posterior, dubbed the 'interacting neutrino mode', corresponds to neutrino decoupling occurring within a narrow redshift window centered around z {sub ν,dec}∼8300. This mode is characterized by a high value of the effective neutrino coupling constant, log{sub 10}( G {sub eff} MeV{sup 2}) = −1.72 ± 0.10 (68% C.L.), together with a lower value of the scalar spectral index and amplitude of fluctuations, and a higher value of the Hubble parameter. Using both a maximum likelihood analysis and the ratio of the two mode's Bayesian evidence, we find the interacting neutrino mode to be statistically disfavored compared to the standard ΛCDM cosmology, and determine this result to be largely driven by the low- l CMB temperature data. Interestingly, the addition of CMB polarization and direct Hubble constant measurements significantly raises the statistical significance of this secondary mode, indicating that new physics in the neutrino sector could help explain the difference between local measurements of H {sub 0}, and those inferred from CMB data. A robust consequence of our results is that neutrinos must be free streaming long before the epoch of matter-radiation equality in order to fit current cosmological data.« less

  6. Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, H. M.; Makhlouf, M. M.

    2016-04-01

    The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.

  7. A weighted least squares estimation of the polynomial regression model on paddy production in the area of Kedah and Perlis

    NASA Astrophysics Data System (ADS)

    Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd

    2017-08-01

    The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.

  8. Bayes-Turchin Analysis of Overlapping L-Edges EXAFS Data of Iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossner, H. H.; Schmitz, D.; Imperia, P.

    2007-02-02

    Spin polarized and spin averaged extended x-ray absorption fine structure ((M)EXAFS) data were measured at temperatures of 180 K and 296 K in the soft x-ray energy regime of the overlapping L-edges of an iron film grown on V(110). The absorption coefficients were analyzed with the Bayes-Turchin procedure. The analysis yields the correction function to the atomic-like background-absorption coefficient calculated by FEFF8 and reveals components of atomic EXAFS oscillations. The EXAFS Debye-Waller (DW) parameters were determined. Their split into a thermal and a structural contribution was not possible without theoretical input since the two temperatures in this experiment were notmore » sufficiently far apart from each other and the k range of the data was too small. The a priori values of the thermal contribution to the DW parameters were therefore derived from a force-field model with two spring constants. They were adjusted to DW parameters calculated from Born-von Karman force constants which had been obtained from inelastic neutron scattering. Those two spring constants also nicely reproduce the unprojected vibrational density of states deduced from phonon dispersion curves. The MEXAFS oscillations can be described by the rigid-band model and the L2- and L3-EXAFS components. A negative exchange-related energy is obtained by fitting the MEXAFS signal in the extended energy region. This is in contrast to the predictions of the Hedin-Lundquist functional and the Dirac-Hara functional used in the FEFF8 code.« less

  9. Applying Henry`s Law to groundwater treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidgopkar, V.R.

    Air strippers are very popular equipment for mass transfer where air and water are contacted and the contaminants are transferred from water into the air phase. In a typical air-stripper arrangement, water flows from the top and air is blown from the bottom. The increase in surface area between the air and the water phases increases the removal efficiency. In packed towers, high-surface-area packing materials are used to that end. In a sieve tray tower, water flows across the tray through channels separated by baffles and air flows from the bottom, up through holes in the tray. In diffused aerators,more » air is introduced through a bubbler or a nozzle into the water stream. All these units are commercially available. Several environmental consulting and remediation engineering firms use Henry`s Law to predict the stripping performance of volatile and semi-volatile contaminants present using the above equipment. Extensive work has been done during the past few decades to determine Henry`s Law constant, H. Different procedures are reported in the literature to determine henry`s Law constant for various chemicals from the experimental data and from empirical correlations. This article discusses the reasons why so much error is observed in reported values of henry`s Law constants in the literature--the effect of various parameters such as temperature, co-solubility, etc., on H value. A modified experimental procedure to measure Henry`s Law constant is presented, then the law is applied in predicting stripping performance of various chemicals.« less

  10. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    PubMed

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit values of GlutoPeak parameters which would be highly beneficial for millers and bakers when determine suitability of flour for end-use. © 2017 Wiley Periodicals, Inc.

  11. Thermal equation of state of silicon carbide

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  12. A phenomenological treatment of rotating turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1995-01-01

    The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.

  13. Thermal equation of state of silicon carbide

    DOE PAGES

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; ...

    2016-02-11

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure–volume–temperature (P-V-T) data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as, the ambient bulk modulus K To = 237(2) GPa, temperature derivative of bulk modulus at constant pressure (∂K/∂T)P = -0.037(4) GPa K -1, volumetric thermal expansivity α(0, T)=a+bT with a = 5.77(1)×10 -6 K -1 and b = 1.36(2)×10 -8 K -2,more » and pressure derivative of thermal expansion at constant temperature (∂α/∂P) T =6.53±0.64×10 -7 K -1GPa -1. Furthermore, we found the temperature derivative of bulk modulus at constant volume, (∂K T/∂T) V, equal to -0.028(4) GPa K -1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. Lastly, the computed results generally agree well with the experimental values.« less

  14. Development and validation of the European Cluster Assimilation Techniques run libraries

    NASA Astrophysics Data System (ADS)

    Facskó, G.; Gordeev, E.; Palmroth, M.; Honkonen, I.; Janhunen, P.; Sergeev, V.; Kauristie, K.; Milan, S.

    2012-04-01

    The European Commission funded the European Cluster Assimilation Techniques (ECLAT) project as a collaboration of five leader European universities and research institutes. A main contribution of the Finnish Meteorological Institute (FMI) is to provide a wide range global MHD runs with the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS). The runs are divided in two categories: Synthetic runs investigating the extent of solar wind drivers that can influence magnetospheric dynamics, as well as dynamic runs using measured solar wind data as input. Here we consider the first set of runs with synthetic solar wind input. The solar wind density, velocity and the interplanetary magnetic field had different magnitudes and orientations; furthermore two F10.7 flux values were selected for solar radiation minimum and maximum values. The solar wind parameter values were constant such that a constant stable solution was archived. All configurations were run several times with three different (-15°, 0°, +15°) tilt angles in the GSE X-Z plane. The result of the 192 simulations named so called "synthetic run library" were visualized and uploaded to the homepage of the FMI after validation. Here we present details of these runs.

  15. Electronic Polarizability and the Effective Pair Potentials of Water

    PubMed Central

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  16. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Application of a whole-body pharmacokinetic model for targeted radionuclide therapy to NM404 and FLT

    NASA Astrophysics Data System (ADS)

    Grudzinski, Joseph J.; Floberg, John M.; Mudd, Sarah R.; Jeffery, Justin J.; Peterson, Eric T.; Nomura, Alice; Burnette, Ronald R.; Tomé, Wolfgang A.; Weichert, Jamey P.; Jeraj, Robert

    2012-03-01

    We have previously developed a model that provides relative dosimetry estimates for targeted radionuclide therapy (TRT) agents. The whole-body and tumor pharmacokinetic (PK) parameters of this model can be noninvasively measured with molecular imaging, providing a means of comparing potential TRT agents. Parameter sensitivities and noise will affect the accuracy and precision of the estimated PK values and hence dosimetry estimates. The aim of this work is to apply a PK model for TRT to two agents with different magnitudes of clearance rates, NM404 and FLT, explore parameter sensitivity with respect to time and investigate the effect of noise on parameter precision and accuracy. Twenty-three tumor bearing mice were injected with a ‘slow-clearing’ agent, 124I-NM404 (n = 10), or a ‘fast-clearing’ agent, 18F-FLT (3‧-deoxy-3‧-fluorothymidine) (n = 13) and imaged via micro-PET/CT pseudo-dynamically or dynamically, respectively. Regions of interest were drawn within the heart and tumor to create time-concentration curves for blood pool and tumor. PK analysis was performed to estimate the mean and standard error of the central compartment efflux-to-influx ratio (k12/k21), central elimination rate constant (kel), and tumor influx-to-efflux ratio (k34/k43), as well as the mean and standard deviation of the dosimetry estimates. NM404 and FLT parameter estimation results were used to analyze model accuracy and parameter sensitivity. The accuracy of the experimental sampling schedule was compared to that of an optimal sampling schedule found using Cramer-Rao lower bounds theory. Accuracy was assessed using correlation coefficient, bias and standard error of the estimate normalized to the mean (SEE/mean). The PK parameter estimation of NM404 yielded a central clearance, kel (0.009 ± 0.003 h-1), normal body retention, k12/k21 (0.69 ± 0.16), tumor retention, k34/k43 (1.44 ± 0.46) and predicted dosimetry, Dtumor (3.47 ± 1.24 Gy). The PK parameter estimation of FLT yielded a central elimination rate constant, kel (0.050 ± 0.025 min-1), normal body retention, k12/k21 (2.21 ± 0.62) and tumor retention, k34/k43 (0.65 ± 0.17), and predicted dosimetry, Dtumor (0.61 ± 0.20 Gy). Compared to experimental sampling, optimal sampling decreases the dosimetry bias and SEE/mean for NM404; however, it increases bias and decreases SEE/mean for FLT. For both NM404 and FLT, central compartment efflux rate constant, k12, and central compartment influx rate constant, k21, possess mirroring sensitivities at relatively early time points. The instantaneous concentration in the blood, C0, was most sensitive at early time points; central elimination, kel, and tumor efflux, k43, are most sensitive at later time points. A PK model for TRT was applied to both a slow-clearing, NM404, and a fast-clearing, FLT, agents in a xenograft murine model. NM404 possesses more favorable PK values according to the PK TRT model. The precise and accurate measurement of k12, k21, kel, k34 and k43 will translate into improved and precise dosimetry estimations. This work will guide the future use of this PK model for assessing the relative effectiveness of potential TRT agents.

  18. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  19. Parametric Methods for Determining the Characteristics of Long-Term Metal Strength

    NASA Astrophysics Data System (ADS)

    Nikitin, V. I.; Rybnikov, A. I.

    2018-06-01

    A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.

  20. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    PubMed

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®

Top