Sample records for constant population size

  1. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    PubMed Central

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  2. Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed

    2017-03-01

    In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.

  3. Geo-Demography of HIV/AIDS in Japan from 1985 to 2011: Incidence and Transmission Mode under Influence of Population Size/Density.

    PubMed

    Yoshikura, Hiroshi

    2016-01-01

    A stable relation was found between number of HIV/AIDS patients (P) and population size (N) and between HIV/AIDS incidence (I) and population density (D). The relation could be expressed as P = kN(m) or I = hD(n), where k, h, m, and n are constants. For "AIDS"/"AIDS diagnosis", the constant m was 1.5 for Japan and 1.3 for the United States of America (USA); n was 0.38 for both Japan and the USA. These observations indicated that larger population sizes related to disproportionately larger numbers of HIV/AIDS patients, and denser populations had disproportionately higher incidences of HIV/AIDS. Considering the wide geo-demographic difference between the two countries, it was striking that the same equations with constants within a narrow range were applicable to both Japan and the USA. Modes of HIV transmission appeared to be variable among prefectures in Japan. Homosexual transmission was suggested as being more predominant in more populated prefectures.

  4. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  5. Penna Bit-String Model with Constant Population

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; de Oliveira, S. Moss; Sá Martins, J. S.

    We removed from the Penna model for biological aging any random killing Verhulst factor. Deaths are due only to genetic diseases and the population size is fixed, instead of fluctuating around some constant value. We show that these modifications give qualitatively the same results obtained in an earlier paper, where the random killings (used to avoid an exponential increase of the population) were applied only to newborns.

  6. Population Demographic History Can Cause the Appearance of Recombination Hotspots

    PubMed Central

    Johnston, Henry R.; Cutler, David J.

    2012-01-01

    Although the prevailing view among geneticists suggests that recombination hotspots exist ubiquitously across the human genome, there is only limited experimental evidence from a few genomic regions to support the generality of this claim. A small number of true recombination hotspots are well supported experimentally, but the vast majority of hotspots have been identified on the basis of population genetic inferences from the patterns of linkage disequilibrium (LD) seen in the human population. These inferences are made assuming a particular model of human history, and one of the assumptions of that model is that the effective population size of humans has remained constant throughout our history. Our results show that relaxation of the constant population size assumption can create LD and variation patterns that are qualitatively and quantitatively similar to human populations without any need to invoke localized hotspots of recombination. In other words, apparent recombination hotspots could be an artifact of variable population size over time. Several lines of evidence suggest that the vast majority of hotspots identified on the basis of LD information are unlikely to have elevated recombination rates. PMID:22560089

  7. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Disease invasion risk in a growing population.

    PubMed

    Yuan, Sanling; van den Driessche, P; Willeboordse, Frederick H; Shuai, Zhisheng; Ma, Junling

    2016-09-01

    The spread of an infectious disease may depend on the population size. For simplicity, classic epidemic models assume homogeneous mixing, usually standard incidence or mass action. For standard incidence, the contact rate between any pair of individuals is inversely proportional to the population size, and so the basic reproduction number (and thus the initial exponential growth rate of the disease) is independent of the population size. For mass action, this contact rate remains constant, predicting that the basic reproduction number increases linearly with the population size, meaning that disease invasion is easiest when the population is largest. In this paper, we show that neither of these may be true on a slowly evolving contact network: the basic reproduction number of a short epidemic can reach its maximum while the population is still growing. The basic reproduction number is proportional to the spectral radius of a contact matrix, which is shown numerically to be well approximated by the average excess degree of the contact network. We base our analysis on modeling the dynamics of the average excess degree of a random contact network with constant population input, proportional deaths, and preferential attachment for contacts brought in by incoming individuals (i.e., individuals with more contacts attract more incoming contacts). In addition, we show that our result also holds for uniform attachment of incoming contacts (i.e., every individual has the same chance of attracting incoming contacts), and much more general population dynamics. Our results show that a disease spreading in a growing population may evade control if disease control planning is based on the basic reproduction number at maximum population size.

  9. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    PubMed

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  10. Continuous Adaptive Population Reduction (CAPR) for Differential Evolution Optimization.

    PubMed

    Wong, Ieong; Liu, Wenjia; Ho, Chih-Ming; Ding, Xianting

    2017-06-01

    Differential evolution (DE) has been applied extensively in drug combination optimization studies in the past decade. It allows for identification of desired drug combinations with minimal experimental effort. This article proposes an adaptive population-sizing method for the DE algorithm. Our new method presents improvements in terms of efficiency and convergence over the original DE algorithm and constant stepwise population reduction-based DE algorithm, which would lead to a reduced number of cells and animals required to identify an optimal drug combination. The method continuously adjusts the reduction of the population size in accordance with the stage of the optimization process. Our adaptive scheme limits the population reduction to occur only at the exploitation stage. We believe that continuously adjusting for a more effective population size during the evolutionary process is the major reason for the significant improvement in the convergence speed of the DE algorithm. The performance of the method is evaluated through a set of unimodal and multimodal benchmark functions. In combining with self-adaptive schemes for mutation and crossover constants, this adaptive population reduction method can help shed light on the future direction of a completely parameter tune-free self-adaptive DE algorithm.

  11. High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study

    PubMed Central

    2013-01-01

    Background Demographic bottlenecks can severely reduce the genetic variation of a population or a species. Establishing whether low genetic variation is caused by a bottleneck or a constantly low effective number of individuals is important to understand a species’ ecology and evolution, and it has implications for conservation management. Recent studies have evaluated the power of several statistical methods developed to identify bottlenecks. However, the false positive rate, i.e. the rate with which a bottleneck signal is misidentified in demographically stable populations, has received little attention. We analyse this type of error (type I) in forward computer simulations of stable populations having greater than Poisson variance in reproductive success (i.e., variance in family sizes). The assumption of Poisson variance underlies bottleneck tests, yet it is commonly violated in species with high fecundity. Results With large variance in reproductive success (Vk ≥ 40, corresponding to a ratio between effective and census size smaller than 0.1), tests based on allele frequencies, allelic sizes, and DNA sequence polymorphisms (heterozygosity excess, M-ratio, and Tajima’s D test) tend to show erroneous signals of a bottleneck. Similarly, strong evidence of population decline is erroneously detected when ancestral and current population sizes are estimated with the model based method MSVAR. Conclusions Our results suggest caution when interpreting the results of bottleneck tests in species showing high variance in reproductive success. Particularly in species with high fecundity, computer simulations are recommended to confirm the occurrence of a population bottleneck. PMID:24131797

  12. On the absence of a correlation between population size and 'toolkit size' in ethnographic hunter-gatherers.

    PubMed

    Aoki, Kenichi

    2018-04-05

    In apparent contradiction to the theoretically predicted effect of population size on the quality/quantity of material culture, statistical analyses on ethnographic hunter-gatherers have shown an absence of correlation between population size and toolkit size. This has sparked a heated, if sometimes tangential, debate as to the usefulness of the theoretical models and as to what modes of cultural transmission humans are capable of and hunter-gatherers rely on. I review the directly relevant theoretical literature and argue that much of the confusion is caused by a mismatch between the theoretical variable and the empirical observable. I then confirm that a model incorporating the appropriate variable does predict a positive association between population size and toolkit size for random oblique, vertical, best-of- K , conformist, anticonformist, success bias and one-to-many cultural transmission, with the caveat that for all populations sampled, the population size has remained constant and toolkit size has reached the equilibrium for this population size. Finally, I suggest three theoretical scenarios, two of them involving variable population size, that would attenuate or eliminate this association and hence help to explain the empirical absence of correlation.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  13. Effective population size and the genetic consequences of commercial whaling on the humpback whales (Megaptera novaeangliae) from Southwestern Atlantic Ocean

    PubMed Central

    Cypriano-Souza, Ana Lúcia; da Silva, Tiago Ferraz; Engel, Márcia H.; Bonatto, Sandro L.

    2018-01-01

    Abstract Genotypes of 10 microsatellite loci of 420 humpback whales from the Southwestern Atlantic Ocean population were used to estimate for the first time its contemporary effective (N e) and census (N c) population sizes and to test the genetic effect of commercial whaling. The results are in agreement with our previous studies that found high genetic diversity for this breeding population. Using an approximate Bayesian computation approach, the scenario of constant N e was significantly supported over scenarios with moderate to strong size changes during the commercial whaling period. The previous generation N c (N e multiplied by 3.6), which should corresponds to the years between around 1980 and 1990, was estimated between ~2,600 and 6,800 whales (point estimate ~4,000), and is broadly compatible with the recent abundance surveys extrapolated to the past using a growth rate of 7.4% per annum. The long-term N c in the constant scenario (point estimate ~15,000) was broadly compatible (considering the confidence interval) with pre-whaling catch records estimates (point estimate ~25,000). Overall, our results shown that the Southwestern Atlantic Ocean humpback whale population is genetically very diverse and resisted well to the strong population reduction during commercial whaling. PMID:29668011

  14. Effective population size and the genetic consequences of commercial whaling on the humpback whales (Megaptera novaeangliae) from Southwestern Atlantic Ocean.

    PubMed

    Cypriano-Souza, Ana Lúcia; da Silva, Tiago Ferraz; Engel, Márcia H; Bonatto, Sandro L

    2018-01-01

    Genotypes of 10 microsatellite loci of 420 humpback whales from the Southwestern Atlantic Ocean population were used to estimate for the first time its contemporary effective (Ne) and census (Nc) population sizes and to test the genetic effect of commercial whaling. The results are in agreement with our previous studies that found high genetic diversity for this breeding population. Using an approximate Bayesian computation approach, the scenario of constant Ne was significantly supported over scenarios with moderate to strong size changes during the commercial whaling period. The previous generation Nc (Ne multiplied by 3.6), which should corresponds to the years between around 1980 and 1990, was estimated between ~2,600 and 6,800 whales (point estimate ~4,000), and is broadly compatible with the recent abundance surveys extrapolated to the past using a growth rate of 7.4% per annum. The long-term Nc in the constant scenario (point estimate ~15,000) was broadly compatible (considering the confidence interval) with pre-whaling catch records estimates (point estimate ~25,000). Overall, our results shown that the Southwestern Atlantic Ocean humpback whale population is genetically very diverse and resisted well to the strong population reduction during commercial whaling.

  15. Size- and temperature-dependent Hamaker constants for heterogeneous systems of interacting nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinchuk, P.; Pinchuk, A. O.

    2016-09-01

    Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.

  16. Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes.

    PubMed

    Ait Kaci Azzou, S; Larribe, F; Froda, S

    2016-10-01

    In Ait Kaci Azzou et al. (2015) we introduced an Importance Sampling (IS) approach for estimating the demographic history of a sample of DNA sequences, the skywis plot. More precisely, we proposed a new nonparametric estimate of a population size that changes over time. We showed on simulated data that the skywis plot can work well in typical situations where the effective population size does not undergo very steep changes. In this paper, we introduce an iterative procedure which extends the previous method and gives good estimates under such rapid variations. In the iterative calibrated skywis plot we approximate the effective population size by a piecewise constant function, whose values are re-estimated at each step. These piecewise constant functions are used to generate the waiting times of non homogeneous Poisson processes related to a coalescent process with mutation under a variable population size model. Moreover, the present IS procedure is based on a modified version of the Stephens and Donnelly (2000) proposal distribution. Finally, we apply the iterative calibrated skywis plot method to a simulated data set from a rapidly expanding exponential model, and we show that the method based on this new IS strategy correctly reconstructs the demographic history. Copyright © 2016. Published by Elsevier Inc.

  17. Modeling the impacts of two age-related portfolio effects on recruitment variability with and without a marine reserve.

    PubMed

    McGilliard, Carey R; Punt, André E; Hilborn, Ray; Essington, Tim

    2017-10-01

    Many rockfish species are long-lived and thought to be susceptible to being overfished. Hypotheses about the importance of older female rockfish to population persistence have led to arguments that marine reserves are needed to ensure the sustainability of rockfish populations. However, the implications of these hypotheses for rockfish population dynamics are still unclear. We modeled two mechanisms by which reducing the proportion of older fish in a population has been hypothesized to influence sustainability, and explored whether these mechanisms influenced mean population dynamics and recruitment variability. We explored whether populations with these mechanisms could be managed more sustainably with a marine reserve in addition to a constant fishing mortality rate (F) than with a constant F alone. Both hypotheses can be seen as portfolio effects whereby risk of recruitment failure is spread over a "portfolio" of maternal ages. First, we modeled a spawning window effect whereby mothers of different ages spawned in different times or locations (windows) with local environmental conditions. Second, we modeled an offspring size effect whereby older mothers produced larger offspring than younger mothers, where length of a starvation period over which offspring could survive increased with maternal age. Recruitment variability resulting from both models was 55-65% lower than for models without maternal age-related portfolio effects in the absence of fishing and increased with increases in Fs for both models. An offspring size effect caused lower output reproductive rates such that the specified reproductive rate input as a model parameter was no longer the realized rate measured as the reproductive rate observed in model results; this quirk is not addressed in previous analyses of offspring size effects. We conducted a standardization such that offspring size effect and control models had the same observed reproductive rates. A comparison of long-term catch, the probability of falling below a biomass threshold, and recruitment variability over a range of exploitation rates for models with an age-related portfolio effect showed no benefit of a marine reserve implemented in addition to a constant F (as compared to a constant F alone) for populations with sedentary adults and sedentary or mobile larvae. © 2017 by the Ecological Society of America.

  18. Population size dependency of measles epidemic that was scalable from Japanese prefectures to European countries.

    PubMed

    Yoshikura, Hiroshi

    2018-04-27

    Relation between number of measles patients (y) and population size (x) was expressed by an equation y = ax s , where a is a constant and s the slope of the plot; s was 2.04-2.17 for prefectures in Japan, i.e., the number of patients was proportional to square of the prefecture population size. For European countries that joined European Union no later than 2009, the slope was 1.43-1.87. The measles' population dependency found among prefectures in Japan was thus scalable up to European countries. It was surprising because, unlike Japan, population density in EU countries was not uniform and not proportional to the population size. The population size dependency was not observed among Western Pacific and South-East Asian countries probably on account of confounding interacting socioeconomic factors. Correlation between measles incidence and birth rate, infant mortality or GDP per capita was almost insignificant.Size distribution of local infection clusters (LICs) of measles and rubella in Japan followed power law. For measles, though the population dependency remained unchanged after "elimination", there was change in the Zipf-type plot of LIC sizes. After the "elimination", LICs linked to importation-related outbreaks in less populated prefectures emerged as the top-ranked LICs.

  19. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation

    PubMed Central

    Skórka, Piotr; Szymański, Paweł; Tobolka, Marcin; Luczak, Andrzej; Tryjanowski, Piotr

    2016-01-01

    Background. One of the most difficult challenges for conservation biology is to reconcile growing human demands for resources with the rising need for protecting nature. Wind farms producing renewable energy have been recognised to be a threat for birds, but clear directives for environmental planning are still missing. Methods. Point counts were performed to study the relationship between eight environmental variables and bird populations in different parts of a year on the largest Polish wind farm between March 2011 and February 2013. Variables potentially related to species richness (Chao 1 estimator) and the abundance of the entire bird community as well as five selected farmland species were analysed with the use of generalized linear mixed models. Results. Some associations between the studied variables and bird populations were season/year specific, while others had a constant direction (positive or negative) across seasons and/or years. The latter were distance to the nearest turbine, field size, number of wind turbines, proximity of settlements and water bodies. Spatial autocorrelation and counting time were significantly correlated with bird population estimates but the directions of these relationships varied among seasons and years. Associations between abundance of individual species and environmental variables were species-specific. Conclusions. The results demonstrated a constant negative relationship between wind turbine proximity and bird numbers. Other environmental variables, such as field size, proximity of settlements and water bodies that also had constant associations with bird populations across seasons may be taken into account when minimizing adverse effects of wind farm development on birds or choosing optimal locations of new turbines. PMID:27547516

  20. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation.

    PubMed

    Rosin, Zuzanna M; Skórka, Piotr; Szymański, Paweł; Tobolka, Marcin; Luczak, Andrzej; Tryjanowski, Piotr

    2016-01-01

    Background. One of the most difficult challenges for conservation biology is to reconcile growing human demands for resources with the rising need for protecting nature. Wind farms producing renewable energy have been recognised to be a threat for birds, but clear directives for environmental planning are still missing. Methods. Point counts were performed to study the relationship between eight environmental variables and bird populations in different parts of a year on the largest Polish wind farm between March 2011 and February 2013. Variables potentially related to species richness (Chao 1 estimator) and the abundance of the entire bird community as well as five selected farmland species were analysed with the use of generalized linear mixed models. Results. Some associations between the studied variables and bird populations were season/year specific, while others had a constant direction (positive or negative) across seasons and/or years. The latter were distance to the nearest turbine, field size, number of wind turbines, proximity of settlements and water bodies. Spatial autocorrelation and counting time were significantly correlated with bird population estimates but the directions of these relationships varied among seasons and years. Associations between abundance of individual species and environmental variables were species-specific. Conclusions. The results demonstrated a constant negative relationship between wind turbine proximity and bird numbers. Other environmental variables, such as field size, proximity of settlements and water bodies that also had constant associations with bird populations across seasons may be taken into account when minimizing adverse effects of wind farm development on birds or choosing optimal locations of new turbines.

  1. The transition between the niche and neutral regimes in ecology

    PubMed Central

    Fisher, Charles K.; Mehta, Pankaj

    2014-01-01

    An ongoing debate in ecology concerns the impacts of ecological drift and selection on community assembly. Here, we show that there is a transition in diverse ecological communities between a selection-dominated regime (the niche phase) and a drift-dominated regime (the neutral phase). Simulations and analytic arguments show that the niche phase is favored in communities with large population sizes and relatively constant environments, whereas the neutral phase is favored in communities with small population sizes and fluctuating environments. Our results demonstrate how apparently neutral populations may arise even in communities inhabited by species with varying traits. PMID:25157131

  2. Population growth enhances the mean fixation time of neutral mutations and the persistence of neutral variation.

    PubMed

    Waxman, D

    2012-06-01

    A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ∼4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.

  3. On geological interpretations of crystal size distributions: Constant vs. proportionate growth

    USGS Publications Warehouse

    Eberl, D.D.; Kile, D.E.; Drits, V.A.

    2002-01-01

    Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.

  4. The Statistics and Mathematics of High Dimension Low Sample Size Asymptotics.

    PubMed

    Shen, Dan; Shen, Haipeng; Zhu, Hongtu; Marron, J S

    2016-10-01

    The aim of this paper is to establish several deep theoretical properties of principal component analysis for multiple-component spike covariance models. Our new results reveal an asymptotic conical structure in critical sample eigendirections under the spike models with distinguishable (or indistinguishable) eigenvalues, when the sample size and/or the number of variables (or dimension) tend to infinity. The consistency of the sample eigenvectors relative to their population counterparts is determined by the ratio between the dimension and the product of the sample size with the spike size. When this ratio converges to a nonzero constant, the sample eigenvector converges to a cone, with a certain angle to its corresponding population eigenvector. In the High Dimension, Low Sample Size case, the angle between the sample eigenvector and its population counterpart converges to a limiting distribution. Several generalizations of the multi-spike covariance models are also explored, and additional theoretical results are presented.

  5. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences.

    PubMed

    Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan

    2011-09-01

    To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.

  6. Public goods games in populations with fluctuating size.

    PubMed

    McAvoy, Alex; Fraiman, Nicolas; Hauert, Christoph; Wakeley, John; Nowak, Martin A

    2018-05-01

    Many mathematical frameworks of evolutionary game dynamics assume that the total population size is constant and that selection affects only the relative frequency of strategies. Here, we consider evolutionary game dynamics in an extended Wright-Fisher process with variable population size. In such a scenario, it is possible that the entire population becomes extinct. Survival of the population may depend on which strategy prevails in the game dynamics. Studying cooperative dilemmas, it is a natural feature of such a model that cooperators enable survival, while defectors drive extinction. Although defectors are favored for any mixed population, random drift could lead to their elimination and the resulting pure-cooperator population could survive. On the other hand, if the defectors remain, then the population will quickly go extinct because the frequency of cooperators steadily declines and defectors alone cannot survive. In a mutation-selection model, we find that (i) a steady supply of cooperators can enable long-term population survival, provided selection is sufficiently strong, and (ii) selection can increase the abundance of cooperators but reduce their relative frequency. Thus, evolutionary game dynamics in populations with variable size generate a multifaceted notion of what constitutes a trait's long-term success. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    PubMed Central

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  8. Relationships of maternal body size and morphology with egg and clutch size in the diamondback terrapin, Malaclemys terrapin (Testudines: Emydidae)

    USGS Publications Warehouse

    Kern, Maximilian M.; Guzy, Jacquelyn C.; Lovich, Jeffrey E.; Gibbons, J. Whitfield; Dorcas, Michael E.

    2016-01-01

    Because resources are finite, female animals face trade-offs between the size and number of offspring they are able to produce during a single reproductive event. Optimal egg size (OES) theory predicts that any increase in resources allocated to reproduction should increase clutch size with minimal effects on egg size. Variations of OES predict that egg size should be optimized, although not necessarily constant across a population, because optimality is contingent on maternal phenotypes, such as body size and morphology, and recent environmental conditions. We examined the relationships among body size variables (pelvic aperture width, caudal gap height, and plastron length), clutch size, and egg width of diamondback terrapins from separate but proximate populations at Kiawah Island and Edisto Island, South Carolina. We found that terrapins do not meet some of the predictions of OES theory. Both populations exhibited greater variation in egg size among clutches than within, suggesting an absence of optimization except as it may relate to phenotype/habitat matching. We found that egg size appeared to be constrained by more than just pelvic aperture width in Kiawah terrapins but not in the Edisto population. Terrapins at Edisto appeared to exhibit osteokinesis in the caudal region of their shells, which may aid in the oviposition of large eggs.

  9. Species abundance distributions in neutral models with immigration or mutation and general lifetimes.

    PubMed

    Lambert, Amaury

    2011-07-01

    We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.

  10. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    NASA Astrophysics Data System (ADS)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  11. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    PubMed Central

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  12. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae)

    PubMed Central

    Westby, K. M.

    2015-01-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  13. Population and prehistory II: Space-limited human populations in constant environments

    PubMed Central

    Puleston, Cedric O.; Tuljapurkar, Shripad

    2010-01-01

    We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single nontrivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact. PMID:18598711

  14. Population and prehistory II: space-limited human populations in constant environments.

    PubMed

    Puleston, Cedric O; Tuljapurkar, Shripad

    2008-09-01

    We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single non-trivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact.

  15. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  16. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    PubMed

    Tanadini, Lorenzo G; Schmidt, Benedikt R

    2011-01-01

    Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of imperiled species.

  17. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  18. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  19. Density-dependent home-range size revealed by spatially explicit capture–recapture

    USGS Publications Warehouse

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  20. Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): Implications for managing small populations of long-lived animals

    USGS Publications Warehouse

    Pittman, Shannon E.; King, T.L.; Faurby, S.; Dorcas, M.E.

    2011-01-01

    In this study, we sought to determine the population stability and genetic diversity of one isolated population of the federally-threatened bog turtle (Glyptemys muhlenbergii) in North Carolina. Using capture-recapture data, we estimated adult survival and population growth rate from 1992 to 2007. We found that the population decreased from an estimated 36 adult turtles in 1994 to approximately 11 adult turtles in 2007. We found a constant adult survival of 0. 893 (SE = 0. 018, 95% confidence interval, 0. 853-0. 924) between 1992 and 2007. Using 18 microsatellite markers, we compared the genetic status of this population with five other bog turtle populations. The target population displayed allelic richness (4. 8 ?? 0. 5) and observed heterozygosity (0. 619 ?? 0. 064) within the range of the other bog turtle populations. Coalescent analysis of population growth rate, effective population size, and timing of population structuring event also indicated the genetics of the target population were comparable to the other populations studied. Estimates of effective population size were a proportion of the census size in all populations except the target population, in which the effective population size was larger than the census size (30 turtles vs. 11 turtles). We attribute the high genetic diversity in the target population to the presence of multiple generations of old turtles. This study illustrates that the demographic status of populations of long-lived species may not be reflected genetically if a decline occurred recently. Consequently, the genetic integrity of populations of long-lived animals experiencing rapid demographic bottlenecks may be preserved through conservation efforts effective in addressing demographic problems. ?? 2011 Springer Science+Business Media B.V.

  1. Bottleneck Effect on Evolutionary Rate in the Nearly Neutral Mutation Model

    PubMed Central

    Araki, H.; Tachida, H.

    1997-01-01

    Variances of evolutionary rates among lineages in some proteins are larger than those expected from simple Poisson processes. This phenomenon is called overdispersion of the molecular clock. If population size N is constant, the overdispersion is observed only in a limited range of 2Nσ under the nearly neutral mutation model, where σ represents the standard deviation of selection coefficients of new mutants. In this paper, we investigated effects of changing population size on the evolutionary rate by computer simulations assuming the nearly neutral mutation model. The size was changed cyclically between two numbers, N(1) and N(2) (N(1) > N(2)), in the simulations. The overdispersion is observed if 2N(2)σ is less than two and the state of reduced size (bottleneck state) continues for more than ~0.1/u generations, where u is the mutation rate. The overdispersion results mainly because the average fitnesses of only a portion of populations go down when the population size is reduced and only in these populations subsequent advantageous substitutions occur after the population size becomes large. Since the fitness reduction after the bottleneck is stochastic, acceleration of the evolutionary rate does not necessarily occur uniformly among loci. From these results, we argue that the nearly neutral mutation model is a candidate mechanism to explain the overdispersed molecular clock. PMID:9335622

  2. A Model with Darwinian Dynamics on a Rugged Landscape

    NASA Astrophysics Data System (ADS)

    Brotto, Tommaso; Bunin, Guy; Kurchan, Jorge

    2017-02-01

    We discuss the population dynamics with selection and random diffusion, keeping the total population constant, in a fitness landscape associated with Constraint Satisfaction, a paradigm for difficult optimization problems. We obtain a phase diagram in terms of the size of the population and the diffusion rate, with a glass phase inside which the dynamics keeps searching for better configurations, and outside which deleterious `mutations' spoil the performance. The phase diagram is analogous to that of dense active matter in terms of temperature and drive.

  3. [Are the swiss dying out? Demographic facts and perspectives concerning the current situation of child-bearing in Europe].

    PubMed

    Tönz, O

    2005-04-01

    In the last decades, the birthrates in most European countries have fallen considerably below the target value needed for the maintenance of a constant population. In Switzerland, the total fertility is 1.37 children per woman between 15 and 48 years of age (target 2.1), and in Swiss women along-excluding foreigners-it has reached the historical low of 1.21 children. The birth excess of the native population has been negative since 1998, which means that the number of inhabitants in Switzerland is only kept constant by immigrants. If the low birthrate continues for another 200 years, the native population-without immigration-will melt down to 2% of today's size, in other words: it will become extinct. The reasons for this deplorable evolution and possible countermeasures will briefly be discussed.

  4. A multi-scale study of Orthoptera species richness and human population size controlling for sampling effort

    NASA Astrophysics Data System (ADS)

    Cantarello, Elena; Steck, Claude E.; Fontana, Paolo; Fontaneto, Diego; Marini, Lorenzo; Pautasso, Marco

    2010-03-01

    Recent large-scale studies have shown that biodiversity-rich regions also tend to be densely populated areas. The most obvious explanation is that biodiversity and human beings tend to match the distribution of energy availability, environmental stability and/or habitat heterogeneity. However, the species-people correlation can also be an artefact, as more populated regions could show more species because of a more thorough sampling. Few studies have tested this sampling bias hypothesis. Using a newly collated dataset, we studied whether Orthoptera species richness is related to human population size in Italy’s regions (average area 15,000 km2) and provinces (2,900 km2). As expected, the observed number of species increases significantly with increasing human population size for both grain sizes, although the proportion of variance explained is minimal at the provincial level. However, variations in observed Orthoptera species richness are primarily associated with the available number of records, which is in turn well correlated with human population size (at least at the regional level). Estimated Orthoptera species richness (Chao2 and Jackknife) also increases with human population size both for regions and provinces. Both for regions and provinces, this increase is not significant when controlling for variation in area and number of records. Our study confirms the hypothesis that broad-scale human population-biodiversity correlations can in some cases be artefactual. More systematic sampling of less studied taxa such as invertebrates is necessary to ascertain whether biogeographical patterns persist when sampling effort is kept constant or included in models.

  5. Fame emerges as a result of small memory

    NASA Astrophysics Data System (ADS)

    Bingol, Haluk

    2008-03-01

    A dynamic memory model is proposed in which an agent “learns” a new agent by means of recommendation. The agents can also “remember” and “forget.” The memory size is decreased while the population size is kept constant. “Fame” emerged as a few agents become very well known in expense of the majority being completely forgotten. The minimum and the maximum of fame change linearly with the relative memory size. The network properties of the who-knows-who graph, which represents the state of the system, are investigated.

  6. Single and simultaneous binary mergers in Wright-Fisher genealogies.

    PubMed

    Melfi, Andrew; Viswanath, Divakar

    2018-05-01

    The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Climate variability, human wildlife conflict and population dynamics of lions Panthera leo.

    PubMed

    Trinkel, Martina

    2013-04-01

    Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82% of all known lion mortalities were caused by humans, and most of these consisted of adult females (28%) and subadult males (29%). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.

  8. Climate variability, human wildlife conflict and population dynamics of lions Panthera leo

    NASA Astrophysics Data System (ADS)

    Trinkel, Martina

    2013-04-01

    Large carnivores are threatened by habitat loss, declining prey populations and direct persecution. Pride dynamics of eight lion prides in the centre of the Etosha National Park, Namibia are described during a 16-year study. Since the beginning of the 1980s, the number of adult and subadult lions declined continuously to two third of its initial population size, and reached a new equilibrium in the 1990s. Pride sizes decreased from 6.3 adult females in 1989 to 2.8 lionesses in 1997. While the number of adult females declined continuously, the number of adult males, subadult females and subadult males remained constant over the years. A severe drought period, lasting for more than 20 years, led to declining prey populations inside the lions' territory. Besides declining prey populations, conflict with humans at the border of Etosha puts substantial pressure onto the lion population: 82 % of all known lion mortalities were caused by humans, and most of these consisted of adult females (28 %) and subadult males (29 %). I postulate that the considerable decline in the lion population is a response to declining prey populations, and although the human predator conflict is severe, it does not seem to limit the size of Etosha's lion population.

  9. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles.

    PubMed

    de Roos, André M; Persson, Lennart

    2003-02-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if mortality and/or development is independent of food density, i.e. in a situation with a constant juvenile developmental delay and a constant, food-independent background mortality. Thus, the oscillations that occur when juveniles are more competitive are induced by the juvenile delay per se. When juveniles exert a larger foraging pressure on the shared resource, maturation implies an increase not only in adult density, but also in food density and consequently fecundity. Our analysis suggests that this correlation in time between adult density and fecundity is crucial for the occurrence of population cycles when juveniles are competitively superior.

  10. Attrition and changes in size distribution of lime sorbents during fluidization in a circulating fluidized bed absorber. Double quarterly report, January 1--August 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Kwun; Keener, T.C.; Cook, J.L.

    1993-12-31

    The experimental data of lime sorbent attrition obtained from attriton tests in a circulating fluidized bed absorber (CFBA) are represented. The results are interpreted as both the weight-based attrition rate and size-based attrition rate. The weight-based attrition rate constants are obtained from a modified second-order attrition model, incorporating a minimum fluidization weight, W{sub min}, and excess velocity. Furthermore, this minimum fluidization weight, or W{sub min} was found to be a function of both particle size and velocity. A plot of the natural log of the overall weight-based attrition rate constants (ln K{sub a}) for Lime 1 (903 MMD) at superficialmore » gas velocities of 2 m/s, 2.35 m/s, and 2.69 m/s and for Lime 2 (1764 MMD) at superficial gas velocities of 2 m/s, 3 m/s, 4 m/s and 5 m/s versus the energy term, 1/(U-U{sub mf}){sup 2}, yielded a linear relationship. And, a regression coefficient of 0.9386 for the linear regression confirms that K{sub a} may be expressed in Arrhenius form. In addition, an unsteady state population model is represented to predict the changes in size distribution of bed materials during fluidization. The unsteady state population model was verified experimentally and the solid size distribution predicted by the model agreed well with the corresponding experimental size distributions. The model may be applicable for the batch and continuous operations of fluidized beds in which the solids size reduction is predominantly resulted from attritions and elutriations. Such significance of the mechanical attrition and elutriation is frequently seen in a fast fluidized bed as well as in a circulating fluidized bed.« less

  11. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  12. Early Life-Stage Responses of a Eurythemal Estuarine Fish, Mummichog (Fundulus hetereoclitus) to Fixed and Fluctuating Thermal Regimes

    NASA Astrophysics Data System (ADS)

    Shaifer, J.

    2016-02-01

    The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.

  13. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  14. Diagnostic test accuracy and prevalence inferences based on joint and sequential testing with finite population sampling.

    PubMed

    Su, Chun-Lung; Gardner, Ian A; Johnson, Wesley O

    2004-07-30

    The two-test two-population model, originally formulated by Hui and Walter, for estimation of test accuracy and prevalence estimation assumes conditionally independent tests, constant accuracy across populations and binomial sampling. The binomial assumption is incorrect if all individuals in a population e.g. child-care centre, village in Africa, or a cattle herd are sampled or if the sample size is large relative to population size. In this paper, we develop statistical methods for evaluating diagnostic test accuracy and prevalence estimation based on finite sample data in the absence of a gold standard. Moreover, two tests are often applied simultaneously for the purpose of obtaining a 'joint' testing strategy that has either higher overall sensitivity or specificity than either of the two tests considered singly. Sequential versions of such strategies are often applied in order to reduce the cost of testing. We thus discuss joint (simultaneous and sequential) testing strategies and inference for them. Using the developed methods, we analyse two real and one simulated data sets, and we compare 'hypergeometric' and 'binomial-based' inferences. Our findings indicate that the posterior standard deviations for prevalence (but not sensitivity and specificity) based on finite population sampling tend to be smaller than their counterparts for infinite population sampling. Finally, we make recommendations about how small the sample size should be relative to the population size to warrant use of the binomial model for prevalence estimation. Copyright 2004 John Wiley & Sons, Ltd.

  15. Reduction of feral cat (Felis catus Linnaeus 1758) colony size following hysterectomy of adult female cats.

    PubMed

    Mendes-de-Almeida, Flavya; Remy, Gabriella L; Gershony, Liza C; Rodrigues, Daniela P; Chame, Marcia; Labarthe, Norma V

    2011-06-01

    The size of urban cat colonies is limited only by the availability of food and shelter; therefore, their population growth challenges all known population control programs. To test a new population control method, a free-roaming feral cat colony at the Zoological Park in the city of Rio de Janeiro was studied, beginning in 2001. The novel method consisted of performing a hysterectomy on all captured female cats over 6 months of age. To estimate the size of the colony and compare population from year to year, a method of capture-mark-release-recapture was used. The aim was to capture as many individuals as possible, including cats of all ages and gender to estimate numbers of cats in all population categories. Results indicated that the feral cat population remained constant from 2001 to 2004. From 2004 to 2008, the hysterectomy program and population estimates were performed every other year (2006 and 2008). The population was estimated to be 40 cats in 2004, 26 in 2006, and 17 cats in 2008. Although pathogens tend to infect more individuals as the population grows older and maintains natural behavior, these results show that free-roaming feral cat colonies could have their population controlled by a biannual program that focuses on hysterectomy of sexually active female cats. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  16. Shoulder strength value differences between genders and age groups.

    PubMed

    Balcells-Diaz, Eudald; Daunis-I-Estadella, Pepus

    2018-03-01

    The strength of a normal shoulder differs according to gender and decreases with age. Therefore, the Constant score, which is a shoulder function measurement tool that allocates 25% of the final score to strength, differs from the absolute values but likely reflects a normal shoulder. To compare group results, a normalized Constant score is needed, and the first step to achieving normalization involves statistically establishing the gender differences and age-related decline. In this investigation, we sought to verify the gender difference and age-related decline in strength. We obtained a randomized representative sample of the general population in a small to medium-sized Spanish city. We then invited this population to participate in our study, and we measured their shoulder strength. We performed a statistical analysis with a power of 80% and a P value < .05. We observed a statistically significant difference between the genders and a statistically significant decline with age. To the best of our knowledge, this is the first investigation to study a representative sample of the general population from which conclusions can be drawn regarding Constant score normalization. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Count data, detection probabilities, and the demography, dynamics, distribution, and decline of amphibians.

    PubMed

    Schmidt, Benedikt R

    2003-08-01

    The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.

  18. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    PubMed

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-05-08

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  19. How can we model selectively neutral density dependence in evolutionary games.

    PubMed

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  20. DESCARTES' RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA.

    PubMed

    Bhaskar, Anand; Song, Yun S

    2014-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the "folded" SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes' rule of signs for polynomials to the Laplace transform of piecewise continuous functions.

  1. DESCARTES’ RULE OF SIGNS AND THE IDENTIFIABILITY OF POPULATION DEMOGRAPHIC MODELS FROM GENOMIC VARIATION DATA1

    PubMed Central

    Bhaskar, Anand; Song, Yun S.

    2016-01-01

    The sample frequency spectrum (SFS) is a widely-used summary statistic of genomic variation in a sample of homologous DNA sequences. It provides a highly efficient dimensional reduction of large-scale population genomic data and its mathematical dependence on the underlying population demography is well understood, thus enabling the development of efficient inference algorithms. However, it has been recently shown that very different population demographies can actually generate the same SFS for arbitrarily large sample sizes. Although in principle this nonidentifiability issue poses a thorny challenge to statistical inference, the population size functions involved in the counterexamples are arguably not so biologically realistic. Here, we revisit this problem and examine the identifiability of demographic models under the restriction that the population sizes are piecewise-defined where each piece belongs to some family of biologically-motivated functions. Under this assumption, we prove that the expected SFS of a sample uniquely determines the underlying demographic model, provided that the sample is sufficiently large. We obtain a general bound on the sample size sufficient for identifiability; the bound depends on the number of pieces in the demographic model and also on the type of population size function in each piece. In the cases of piecewise-constant, piecewise-exponential and piecewise-generalized-exponential models, which are often assumed in population genomic inferences, we provide explicit formulas for the bounds as simple functions of the number of pieces. Lastly, we obtain analogous results for the “folded” SFS, which is often used when there is ambiguity as to which allelic type is ancestral. Our results are proved using a generalization of Descartes’ rule of signs for polynomials to the Laplace transform of piecewise continuous functions. PMID:28018011

  2. Constraining Dust Properties in Circumstellar Envelopes of C-Stars in the Small Magellanic Cloud: Optical Constants And Grain Size Of Carbon Dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-07-01

    We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.

  3. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure.

    PubMed

    Möbius, Wolfram; Murray, Andrew W; Nelson, David R

    2015-12-01

    As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle's shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call 'geometry-enhanced genetic drift', complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles.

  4. How Obstacles Perturb Population Fronts and Alter Their Genetic Structure

    PubMed Central

    Möbius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2015-01-01

    As populations spread into new territory, environmental heterogeneities can shape the population front and genetic composition. We focus here on the effects of an important building block of heterogeneous environments, isolated obstacles. With a combination of experiments, theory, and simulation, we show how isolated obstacles both create long-lived distortions of the front shape and amplify the effect of genetic drift. A system of bacteriophage T7 spreading on a spatially heterogeneous Escherichia coli lawn serves as an experimental model system to study population expansions. Using an inkjet printer, we create well-defined replicates of the lawn and quantitatively study the population expansion of phage T7. The transient perturbations of the population front found in the experiments are well described by a model in which the front moves with constant speed. Independent of the precise details of the expansion, we show that obstacles create a kink in the front that persists over large distances and is insensitive to the details of the obstacle’s shape. The small deviations between experimental findings and the predictions of the constant speed model can be understood with a more general reaction-diffusion model, which reduces to the constant speed model when the obstacle size is large compared to the front width. Using this framework, we demonstrate that frontier genotypes just grazing the side of an isolated obstacle increase in abundance, a phenomenon we call ‘geometry-enhanced genetic drift’, complementary to the founder effect associated with spatial bottlenecks. Bacterial range expansions around nutrient-poor barriers and stochastic simulations confirm this prediction. The effect of the obstacle on the genealogy of individuals at the front is characterized by simulations and rationalized using the constant speed model. Lastly, we consider the effect of two obstacles on front shape and genetic composition of the population illuminating the effects expected from complex environments with many obstacles. PMID:26696601

  5. Orbit and size distributions for asteroids temporarily captured by the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Fedorets, Grigori; Granvik, Mikael; Jedicke, Robert

    2017-03-01

    As a continuation of the work by Granvik et al. (2012), we expand the statistical treatment of Earth's temporarily-captured natural satellites from temporarily-captured orbiters (TCOs, i.e., objects which make at least one orbit around the Earth) to the newly redefined subpopulation of temporarily-captured flybys (TCFs). TCFs are objects that while being gravitationally bound fail to make a complete orbit around the Earth while on a geocentric orbit, but nevertheless approach the Earth within its Hill radius. We follow the trajectories of massless test asteroids through the Earth-Moon system and record the orbital characteristics of those that are temporarily captured. We then carry out a steady-state analysis utilizing the novel NEO population model by Granvik et al. (2016). We also investigate how an quadratic distribution at very small values of e⊙ and i⊙ affects the predicted population statistics of Earth's temporarily-captured natural satellites. The steady-state population in both cases (constant and quadratic number distributions inside the e and i bins) is predicted to contain a slightly reduced number of meter-sized asteroids compared to the values of the previous paper. For the combined TCO/TCF population, we find the largest body constantly present on a geocentric orbit to be on the order of 80 cm in diameter. In the phase space, where the capture is possible, the capture efficiency of TCOs and TCFs is O(10-6 -10-4) . We also find that kilometer-scale asteroids are captured once every 10 Myr.

  6. Estimating population size in wastewater-based epidemiology. Valencia metropolitan area as a case study.

    PubMed

    Rico, María; Andrés-Costa, María Jesús; Picó, Yolanda

    2017-02-05

    Wastewater can provide a wealth of epidemiologic data on common drugs consumed and on health and nutritional problems based on the biomarkers excreted into community sewage systems. One of the biggest uncertainties of these studies is the estimation of the number of inhabitants served by the treatment plants. Twelve human urine biomarkers -5-hydroxyindoleacetic acid (5-HIAA), acesulfame, atenolol, caffeine, carbamazepine, codeine, cotinine, creatinine, hydrochlorothiazide (HCTZ), naproxen, salicylic acid (SA) and hydroxycotinine (OHCOT)- were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to estimate population size. The results reveal that populations calculated from cotinine, 5-HIAA and caffeine are commonly in agreement with those calculated by the hydrochemical parameters. Creatinine is too unstable to be applicable. HCTZ, naproxen, codeine, OHCOT and carbamazepine, under or overestimate the population compared to the hydrochemical population estimates but showed constant results through the weekdays. The consumption of cannabis, cocaine, heroin and bufotenine in Valencia was estimated for a week using different population calculations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    PubMed

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  8. Individual-based modelling of population growth and diffusion in discrete time.

    PubMed

    Tkachenko, Natalie; Weissmann, John D; Petersen, Wesley P; Lake, George; Zollikofer, Christoph P E; Callegari, Simone

    2017-01-01

    Individual-based models (IBMs) of human populations capture spatio-temporal dynamics using rules that govern the birth, behavior, and death of individuals. We explore a stochastic IBM of logistic growth-diffusion with constant time steps and independent, simultaneous actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the continuum limit. This model is well-suited to parallelization on high-performance computers. We explore its emergent properties with analytical approximations and numerical simulations in parameter ranges relevant to human population dynamics and ecology, and reproduce continuous-time results in the limit of small transition probabilities. Our model prediction indicates that the population density and dispersal speed are affected by fluctuations in the number of individuals. The discrete-time model displays novel properties owing to the binomial character of the fluctuations: in certain regimes of the growth model, a decrease in time step size drives the system away from the continuum limit. These effects are especially important at local population sizes of <50 individuals, which largely correspond to group sizes of hunter-gatherers. As an application scenario, we model the late Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of model-based estimates of first-arrival dates with archaeological dates in dependence of IBM model parameter settings.

  9. [Geographic Spread of Influenza under the Influence of Community Population Size, Which Differed from That of Measles and Rubella].

    PubMed

    Yoshikura, Hiroshi

    2018-05-24

    The influenza season is defined as the period from week 36 of the year to week 20 of the subsequent year in this report. The population size of prefectures (x) and number of patients per prefecture (y) were initially uncorrelated, but a correlation developed as the season advanced. The correlation with correlation coefficient >0.7 emerged increasingly earlier over time; it developed in week 5 of the subsequent year in 2001/2002, but in week 47 of the same year in 2014/2015. Once x and y were correlated, plots of y on the vertical axis against x on the horizontal axis resulted in a straight line, y = Cx s , where s was the slope of the plot and C was a constant. The slope was high (s>1) initially, but decreased (s<1) later, indicating that influenza first spread to populated prefectures and then nationwide, involving less populated prefectures. This spread pattern was the same for the seasonal influenza and AH1pdm2009, although the progression of the latter was much faster. For measles and rubella epidemics, the number of patients per prefecture was proportional to the square of the population size from the start to the end of the season.

  10. Pharmacokinetic modelling of intravenous tobramycin in adolescent and adult patients with cystic fibrosis using the nonparametric expectation maximization (NPEM) algorithm.

    PubMed

    Touw, D J; Vinks, A A; Neef, C

    1997-06-01

    The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.

  11. The prediction of the cavitation phenomena including population balance modeling

    NASA Astrophysics Data System (ADS)

    Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib

    2017-07-01

    Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.

  12. Comparison of two sampling techniques to assess quantity and distribution of Malassezia yeasts on the skin of Basset Hounds.

    PubMed

    Bensignor, E; Jankowski, F; Seewald, W; Touati, F; Deville, M; Guillot, J

    2002-10-01

    Cytological examination using the tape-strip technique and fungal culture using contact plates with modified Dixon's medium were compared to evaluate the carriage of Malassezia yeasts on four cutaneous sites (left pinna, umbilical region, axilla and perianal area) in adult Basset Hounds. Twenty animals were included in the study. High numbers of Malassezia were isolated from at least one area in 100% of the animals. The frequencies of isolation and population sizes differed significantly according to anatomical location. They were greater on the pinna, followed by the umbilical area, axilla and perianal area. Fungal culture was more sensitive than cytology for the isolation of Malassezia yeasts. Frequencies of isolation were greater using this method, but population sizes were constantly smaller than with cytology.

  13. Constancy and asynchrony of Osmoderma eremita populations in tree hollows.

    PubMed

    Ranius, Thomas

    2001-01-01

    A species rich beetle fauna is associated with old, hollow trees. Many of these species are regarded as endangered, but there is little understanding of the population structure and extinction risks of these species. In this study I show that one of the most endangered beetles, Osmoderma eremita, has a population structure which conforms to that of a metapopulation, with each tree possibly sustaining a local population. This was revealed by performing a mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability between trees was much greater than temporal variability between years. The population size was on average 11 adults tree -1 year -1 , but differed widely between trees (0-85 adults tree -1 year -1 ). The population size in each tree varied moderately between years [mean coefficient of variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte Carlo simulation). The population size variability in all trees combined, however, was not larger than expected from sampling errors alone in a constant population (C.V.=0.15, P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each other out when they are added together. This pattern can arise only when the fluctuations occur asynchronously between trees. The asynchrony of the fluctuations justifies the assumption usually made in metapopulation modelling, that local populations within a metapopulation fluctuate independently of one another. The asynchrony might greatly increase persistence time at the metapopulation level (per stand), compared to the local population level (per tree). The total population size of O. eremita in the study area was estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, and most of these must be enlarged to allow long-term metapopulation persistence and to satisfy genetic considerations of the O. eremita populations.

  14. Wing morphometrics of Aedes (Ochlerotatus) albifasciatus (Macquart, 1838) (Diptera: Culicidae) from different climatic regions of Argentina.

    PubMed

    Garzón, Maximiliano J; Schweigmann, Nicolás

    2018-05-16

    Gene flow restrictions between populations of Aedes albifasciatus, the vector of Western equine encephalitis and Dirophilaria immitis, have been described in the central region of Argentina. Genetic and eco-physiological variations usually result in local forms reflecting the climatic regions. Mosquito wings and their different parts have ecological functions in flight and communication. Therefore, wing shape could be considered an aspect of sexual dimorphism, and its eco-physiological responses can be expressed as morphological changes induced by the environment. To compare the geographical and sexual variations with respect to wing shape and size in two Ae. albifasciatus populations from contrasting climates of Argentina (temperate: Buenos Aires, and the arid steppe of Patagonia: Sarmiento), the wings of adults reared in thermal trays at different constant temperatures (10-29 °C) were analyzed. The wing size of Ae. albifasciatus showed inverse linear relationships with the rearing thermal condition and higher slope for Buenos Aires. In the cool range (10-17 °C), geographical size variations responded to the converse Bergmann's rule, where Buenos Aires individuals were larger than those from Sarmiento. Sexual shape dimorphism occurred in both populations while geographical variation in shape was observed in both sexes. Buenos Aires individuals showed greater response sensitivity with respect to the size-temperature relation than those from Sarmiento. The converse Bergmann's rule in size variation could be due to a higher development rate in Sarmiento to produce more cohorts in the limited favorable season. The shape could be more relevant with respect to the size in the study of population structures due to the size being more liable to vary due to changes in the environment. The geographical variations with respect to morphology could be favored by the isolation between populations and adaptations to the environmental conditions. Our results demonstrate that the shape and size of wing provide useful phenotypic information for studies related to sexual and environmental adaptations.

  15. Population biology of the mangrove crab Ucides cordatus (Decapoda: Ucididae) in an estuary from semiarid northeastern Brazil.

    PubMed

    Leite, Marcos de Miranda Leão; Rezende, Carla Ferreira; Silva, José Roberto Feitosa

    2013-12-01

    The mangrove crab Ucides cordatus is an important resource of estuarine regions along the Brazilian coast. U. cordatus is distributed from Florida, U.S.A., to the coast of Santa Catarina, Brazil. The species plays an important role in processing leaf litter in the mangroves, which optimizes the processes of energy transfer and nutrient cycling, and is considered a keystone species in the ecosystem. Population declines have been reported in different parts of the Brazilian coast. In the present study we evaluated aspects of the population structure, sex ratio and size at morphological sexual maturity. We analyzed 977 specimens collected monthly over 24 months (2010-2012), in a mangrove of the Jaguaribe River, in the municipality of Aracati on the East coast of Ceará state, Northeastern Brazil. The study area has a mild semiarid tropical climate, with mean temperatures between 26 and 28 degrees C. The area is located within the eco-region of the semiarid Northeast coast, where mangroves occur in small areas and estuaries are affected by mesomareal regimes. The population structure was evaluated by the frequency distribution of size classes in each month, and the overall sex ratio was analyzed using the chi-square test. Size at morphological sexual maturity was estimated based on the allometry of the cheliped of the males and the abdomen width of the females, using the program REGRANS. The size-frequency distribution was unimodal in both sexes. The overall sex ratio (M:F) (1:0.6) was significantly different from 1:1. Analysis of the sex ratio by size class showed that the proportion of males increased significantly from size class 55-60 mm upward, and this pattern persisted in the larger size classes. In the smaller size classes the sex ratio did not differ from 1:1. The size at morphological sexual maturity was estimated at a carapace width (CW) of 52 mm and 45 mm for males and females, respectively. Analysis of the population parameters indicated that the population of U. cordatus in the Jaguaribe River mangrove is stable. However, constant monitoring of the population is required to detect any changes in the population attributes that may affect this stability.

  16. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  17. Temperature and size-dependent Hamaker constants for metal nanoparticles.

    PubMed

    Jiang, K; Pinchuk, P

    2016-08-26

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  18. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  19. Incorporating detection probability into northern Great Plains pronghorn population estimates

    USGS Publications Warehouse

    Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; DePerno, Christopher S.

    2014-01-01

    Pronghorn (Antilocapra americana) abundances commonly are estimated using fixed-wing surveys, but these estimates are likely to be negatively biased because of violations of key assumptions underpinning line-transect methodology. Reducing bias and improving precision of abundance estimates through use of detection probability and mark-resight models may allow for more responsive pronghorn management actions. Given their potential application in population estimation, we evaluated detection probability and mark-resight models for use in estimating pronghorn population abundance. We used logistic regression to quantify probabilities that detecting pronghorn might be influenced by group size, animal activity, percent vegetation, cover type, and topography. We estimated pronghorn population size by study area and year using mixed logit-normal mark-resight (MLNM) models. Pronghorn detection probability increased with group size, animal activity, and percent vegetation; overall detection probability was 0.639 (95% CI = 0.612–0.667) with 396 of 620 pronghorn groups detected. Despite model selection uncertainty, the best detection probability models were 44% (range = 8–79%) and 180% (range = 139–217%) greater than traditional pronghorn population estimates. Similarly, the best MLNM models were 28% (range = 3–58%) and 147% (range = 124–180%) greater than traditional population estimates. Detection probability of pronghorn was not constant but depended on both intrinsic and extrinsic factors. When pronghorn detection probability is a function of animal group size, animal activity, landscape complexity, and percent vegetation, traditional aerial survey techniques will result in biased pronghorn abundance estimates. Standardizing survey conditions, increasing resighting occasions, or accounting for variation in individual heterogeneity in mark-resight models will increase the accuracy and precision of pronghorn population estimates.

  20. Food supply and size class depending variations in phytodetritus intake in the benthic foraminifer Ammonia tepida.

    PubMed

    Wukovits, Julia; Bukenberger, Patrick; Enge, Annekatrin Julie; Gerg, Maximillian; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2018-04-13

    Ammonia tepida is a common and abundant benthic foraminifer in intertidal mudflats. Benthic foraminifera are primary consumers and detritivores and act as key players in sediment nutrient fluxes. In this study, laboratory feeding experiments using isotope-labeled phytodetritus were carried out with A. tepida collected at the German Wadden Sea, to investigate the response of A. tepida to varying food supply. Feeding mode (single pulse, constant feeding; different incubation temperatures) caused strong variations in cytoplasmic carbon and nitrogen cycling, suggesting generalistic adaptations to variations in food availability. To study the influence of intraspecific size to foraminiferal carbon and nitrogen cycling, three size fractions (125-250 µm, 250-355 µm, >355 µm) of A. tepida specimens were separated. Small individuals showed higher weight specific intake for phytodetritus, especially for phytodetrital nitrogen, highlighting that size distribution within foraminiferal populations is relevant to interpret foraminiferal carbon and nitrogen cycling. These results were used to extrapolate the data to natural populations of living A. tepida in sediment cores, demonstrating the impact of high abundances of small individuals on phytodetritus processing and nutrient cycling. It is estimated that at high abundances of individuals in the 125-250 µm size fraction, Ammonia populations can account for more than 11% of phytodetritus processing in intertidal benthic communities. © 2018. Published by The Company of Biologists Ltd.

  1. Population structure, sex ratio and growth of the seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae) from coastal waters of southern Brazil

    PubMed Central

    Grabowski, Raphael Cezar; Simões, Sabrina Morilhas; Castilho, Antonio Leão

    2014-01-01

    Abstract This study evaluated the growth and population structure of Xiphopenaeus kroyeri in Babitonga Bay, southern Brazil. Monthly trawls were conducted from July 2010 through June 2011, using a shrimp boat outfitted with double-rig nets, at depths from 5 to 17 m. Differences from the expected 0.5 sex ratio were determined by applying a Binomial test. A von Bertalanffy growth model was used to estimate the individual growth, and longevity was calculated using its inverted formula. A total of 4,007 individuals were measured, including 1,106 juveniles (sexually immature) and 2,901 adults. Females predominated in the larger size classes. Males and females showed asymptotic lengths of 27.7 mm and 31.4 mm, growth constants of 0.0086 and 0.0070 per day, and longevities of 538 and 661 days, respectively. The predominance of females in larger size classes is the general rule in species of Penaeidae. The paradigm of latitudinal-effect does not appear to apply to seabob shrimp on the southern Brazilian coast, perhaps because of the small proportion of larger individuals, the occurrence of cryptic species, or the intense fishing pressure in this region. The longevity values are within the general range for species of Penaeidae. The higher estimates for longevity in populations at lower latitudes may have occurred because of the growth constants observed at these locations, resulting in overestimation of this parameter. PMID:25561841

  2. Morphology and ecology of the kalyptorhynch Typhlopolycystis rubra (Plathelminthes), an inmate of lugworm burrows in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Noldt, U.; Reise, K.

    1987-06-01

    Typhlopolycystis rubra, a new species of the taxon Polycystididae (Plathelminthes, Kalyptorhynchia), is described. The red species is characterized by copulatory hard structures which consist of a proximal girdle and 2 similar sized stylets. T. rubra occurs in intertidal sand near the island of Sylt in the North Sea. Here, it is virtually confined to the lowest parts of lugworm ( Arenicola marina) burrows, where it aggregates in the coarse grained sand around the feeding pocket areas. This is an extremely narrow spatial niche within the sulfide layer of sediment. Population size over a period of 7 years is the most constant one among all species of Plathelminthes living on the tidal flat. The ability of T. rubra to endure unsuitable conditions inside a cyst may contribute to this remarkably low population variability.

  3. Tailoring sub-micron PLGA particle release profiles via centrifugal fractioning

    PubMed Central

    Dutta, Dipankar; Salifu, Mariama; Sirianni, Rachael W.; Stabenfeldt, Sarah E.

    2016-01-01

    Poly(D,L-lactic-co-glycolic) acid (PLGA)-based submicron particles are uniquely posed to overcome limitations of conventional drug delivery systems. However, tailoring cargo/payload release profiles from PLGA micro/nanoparticles typically requires optimization of the multi-parameter formulation, where small changes may cause drastic shifts in the resulting release profiles. In this study, we aimed to establish whether refining the average diameter of submicron particle populations after formulation alters protein release profiles. PLGA particles were first produced via double emulsion-solvent evaporation method to encapsulate bovine serum albumin. Particles were then subjected to centrifugal fractioning protocols varying in both spin time and force to determine encapsulation efficiency and release profile of differently sized populations that originated from a single batch. We found the average particle diameter was related to marked alterations in encapsulation efficiencies (range: 36.4–49.4%), burst release (range: 15.8–49.1%), and time for total cargo release (range: 38–78 days). Our data corroborate previous reports relating PLGA particle size with such release characteristics, however, this is the first study, to our knowledge, to directly compare particle population size while holding all formulation parameters constant. In summary, centrifugal fractioning to selectively control the population distribution of sub-micron PLGA particles represents a feasible tool to tailor release characteristics. PMID:26517011

  4. Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.

    PubMed

    Lange, K

    1982-03-01

    In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.

  5. Improving inferences in population studies of rare species that are detected imperfectly

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Sutton, N.; Kawanishi, K.; Bailey, L.L.

    2005-01-01

    For the vast majority of cases, it is highly unlikely that all the individuals of a population will be encountered during a study. Furthermore, it is unlikely that a constant fraction of the population is encountered over times, locations, or species to be compared. Hence, simple counts usually will not be good indices of population size. We recommend that detection probabilities (the probability of including an individual in a count) be estimated and incorporated into inference procedures. However, most techniques for estimating detection probability require moderate sample sizes, which may not be achievable when studying rare species. In order to improve the reliability of inferences from studies of rare species, we suggest two general approaches that researchers may wish to consider that incorporate the concept of imperfect detectability: (1) borrowing information about detectability or the other quantities of interest from other times, places, or species; and (2) using state variables other than abundance (e.g., species richness and occupancy). We illustrate these suggestions with examples and discuss the relative benefits and drawbacks of each approach.

  6. Numerical simulation of advection fog formation on multi-disperse aerosols due to combustion-related pollutants

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    The effects of multi-disperse distribution of the aerosol population are presented. Single component and multi-component aerosol species on the condensation/nucleation processes which affect the reduction in visibility are described. The aerosol population with a high particle concentration provided more favorable conditions for the formation of a denser fog than the aerosol population with a greater particle size distribution when the value of the mass concentration of the aerosols was kept constant. The results were used as numerical predictions of fog formation. Two dimensional observations in horizontal and vertical coordinates, together with time-dependent measurements were needed as initial values for the following physical parameters: (1)wind profiles; (2) temperature profiles; (3) humidity profiles; (4) mass concentration of aerosol particles; (5) particle size distribution of aerosols; and (6) chemical composition of aerosols. Formation and dissipation of advection fog, thus, can be forecasted numerically by introducing initial values obtained from the observations.

  7. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  8. Impacts of memory on a regular lattice for different population sizes with asynchronous update in spatial snowdrift game

    NASA Astrophysics Data System (ADS)

    Shu, Feng; Liu, Xingwen; Li, Min

    2018-05-01

    Memory is an important factor on the evolution of cooperation in spatial structure. For evolutionary biologists, the problem is often how cooperation acts can emerge in an evolving system. In the case of snowdrift game, it is found that memory can boost cooperation level for large cost-to-benefit ratio r, while inhibit cooperation for small r. Thus, how to enlarge the range of r for the purpose of enhancing cooperation becomes a hot issue recently. This paper addresses a new memory-based approach and its core lies in: Each agent applies the given rule to compare its own historical payoffs in a certain memory size, and take the obtained maximal one as virtual payoff. In order to get the optimal strategy, each agent randomly selects one of its neighbours to compare their virtual payoffs, which can lead to the optimal strategy. Both constant-size memory and size-varying memory are investigated by means of a scenario of asynchronous updating algorithm on regular lattices with different sizes. Simulation results show that this approach effectively enhances cooperation level in spatial structure and makes the high cooperation level simultaneously emerge for both small and large r. Moreover, it is discovered that population sizes have a significant influence on the effects of cooperation.

  9. A test of reproductive power in snakes.

    PubMed

    Boback, Scott M; Guyer, Craig

    2008-05-01

    Reproductive power is a contentious concept among ecologists, and the model has been criticized on theoretical and empirical grounds. Despite these criticisms, the model has successfully predicted the modal (optimal) size in three large taxonomic groups and the shape of the body size distribution in two of these groups. We tested the reproductive power model on snakes, a group that differs markedly in physiology, foraging ecology, and body shape from the endothermic groups upon which the model was derived. Using detailed field data from the published literature, snake-specific constants associated with reproductive power were determined using allometric relationships of energy invested annually in egg production and population productivity. The resultant model accurately predicted the mode and left side of the size distribution for snakes but failed to predict the right side of that distribution. If the model correctly describes what is possible in snakes, observed size diversity is limited, especially in the largest size classes.

  10. Reweighting anthropometric data using a nearest neighbour approach.

    PubMed

    Kumar, Kannan Anil; Parkinson, Matthew B

    2018-07-01

    When designing products and environments, detailed data on body size and shape are seldom available for the specific user population. One way to mitigate this issue is to reweight available data such that they provide an accurate estimate of the target population of interest. This is done by assigning a statistical weight to each individual in the reference data, increasing or decreasing their influence on statistical models of the whole. This paper presents a new approach to reweighting these data. Instead of stratified sampling, the proposed method uses a clustering algorithm to identify relationships between the detailed and reference populations using their height, mass, and body mass index (BMI). The newly weighted data are shown to provide more accurate estimates than traditional approaches. The improved accuracy that accompanies this method provides designers with an alternative to data synthesis techniques as they seek appropriate data to guide their design practice.Practitioner Summary: Design practice is best guided by data on body size and shape that accurately represents the target user population. This research presents an alternative to data synthesis (e.g. regression or proportionality constants) for adapting data from one population for use in modelling another.

  11. The effects of body size and climate on post-weaning survival of elephant seals at Heard Island

    USGS Publications Warehouse

    McMahon, Clive R; New, Leslie; Fairley, E.J.; Hindell, M.A.; Burton, H.R.

    2015-01-01

    The population size of southern elephant seals in the southern Indian and Pacific Oceans decreased precipitously between the 1950s and 1990s. To investigate the reasons behind this, we studied the population of southern elephant seals at Heard Island between 1949 and 1954, using data collected by the early Australian National Antarctic Research Expeditions. Seals were marked and measured (lengths) as weaned pups, and resighted at Heard and Marion islands and in the Vestfold Hills, Antarctica in subsequent years. Bayesian state-space mark-recapture models were used to determine post-weaning survival. Yearling survival was consistently lower (ϕy: 0.28–0.40) than sub-adult survival (ϕs: 0.79–0.83). We found evidence for constant sub-adult survival and time-dependent resight probabilities. Weaning length was an important determinate of yearling survival, with the probability of survival increasing with individual length. There was some suggestion that the Southern Annular Mode influenced yearling survival but this evidence was not strong. Nonetheless, our results provide further support showing that size at independence affects yearling survival. Given the known sensitivity of southern elephant seal populations to survival early in life, it is possible that the decline in population size at Heard Island between the 1950s and 1990s like that at Macquarie Island was due to low yearling survival mediated through maternal ability to produce large pups and the dominant environmental conditions mothers experience during pregnancy.

  12. Biased phylodynamic inferences from analysing clusters of viral sequences

    PubMed Central

    Xiang, Fei; Frost, Simon D. W.

    2017-01-01

    Abstract Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behaviour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the effect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the effective population size and exponential growth rate under several demographic scenarios. Our simulation studies show that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant population size coalescent process systematically underestimates the overall effective population size. In addition, the transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the consequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could result in wasted intervention resources. PMID:28852573

  13. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus).

    PubMed

    Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K

    2005-10-01

    Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.

  14. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.

    PubMed

    Belz, Regina G; Patama, Marjo; Sinkkonen, Aki

    2018-08-01

    Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  16. The Discovery of Single-Nucleotide Polymorphisms—and Inferences about Human Demographic History

    PubMed Central

    Wakeley, John; Nielsen, Rasmus; Liu-Cordero, Shau Neen; Ardlie, Kristin

    2001-01-01

    A method of historical inference that accounts for ascertainment bias is developed and applied to single-nucleotide polymorphism (SNP) data in humans. The data consist of 84 short fragments of the genome that were selected, from three recent SNP surveys, to contain at least two polymorphisms in their respective ascertainment samples and that were then fully resequenced in 47 globally distributed individuals. Ascertainment bias is the deviation, from what would be observed in a random sample, caused either by discovery of polymorphisms in small samples or by locus selection based on levels or patterns of polymorphism. The three SNP surveys from which the present data were derived differ both in their protocols for ascertainment and in the size of the samples used for discovery. We implemented a Monte Carlo maximum-likelihood method to fit a subdivided-population model that includes a possible change in effective size at some time in the past. Incorrectly assuming that ascertainment bias does not exist causes errors in inference, affecting both estimates of migration rates and historical changes in size. Migration rates are overestimated when ascertainment bias is ignored. However, the direction of error in inferences about changes in effective population size (whether the population is inferred to be shrinking or growing) depends on whether either the numbers of SNPs per fragment or the SNP-allele frequencies are analyzed. We use the abbreviation “SDL,” for “SNP-discovered locus,” in recognition of the genomic-discovery context of SNPs. When ascertainment bias is modeled fully, both the number of SNPs per SDL and their allele frequencies support a scenario of growth in effective size in the context of a subdivided population. If subdivision is ignored, however, the hypothesis of constant effective population size cannot be rejected. An important conclusion of this work is that, in demographic or other studies, SNP data are useful only to the extent that their ascertainment can be modeled. PMID:11704929

  17. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations.

    PubMed

    Peel, A J; Pulliam, J R C; Luis, A D; Plowright, R K; O'Shea, T J; Hayman, D T S; Wood, J L N; Webb, C T; Restif, O

    2014-07-07

    The notion of a critical community size (CCS), or population size that is likely to result in long-term persistence of a communicable disease, has been developed based on the empirical observations of acute immunizing infections in human populations, and extended for use in wildlife populations. Seasonal birth pulses are frequently observed in wildlife and are expected to impact infection dynamics, yet their effect on pathogen persistence and CCS have not been considered. To investigate this issue theoretically, we use stochastic epidemiological models to ask how host life-history traits and infection parameters interact to determine pathogen persistence within a closed population. We fit seasonal birth pulse models to data from diverse mammalian species in order to identify realistic parameter ranges. When varying the synchrony of the birth pulse with all other parameters being constant, our model predicted that the CCS can vary by more than two orders of magnitude. Tighter birth pulses tended to drive pathogen extinction by creating large amplitude oscillations in prevalence, especially with high demographic turnover and short infectious periods. Parameters affecting the relative timing of the epidemic and birth pulse peaks determined the intensity and direction of the effect of pre-existing immunity in the population on the pathogen's ability to persist beyond the initial epidemic following its introduction.

  18. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations

    PubMed Central

    Peel, A. J.; Pulliam, J. R. C.; Luis, A. D.; Plowright, R. K.; O'Shea, T. J.; Hayman, D. T. S.; Wood, J. L. N.; Webb, C. T.; Restif, O.

    2014-01-01

    The notion of a critical community size (CCS), or population size that is likely to result in long-term persistence of a communicable disease, has been developed based on the empirical observations of acute immunizing infections in human populations, and extended for use in wildlife populations. Seasonal birth pulses are frequently observed in wildlife and are expected to impact infection dynamics, yet their effect on pathogen persistence and CCS have not been considered. To investigate this issue theoretically, we use stochastic epidemiological models to ask how host life-history traits and infection parameters interact to determine pathogen persistence within a closed population. We fit seasonal birth pulse models to data from diverse mammalian species in order to identify realistic parameter ranges. When varying the synchrony of the birth pulse with all other parameters being constant, our model predicted that the CCS can vary by more than two orders of magnitude. Tighter birth pulses tended to drive pathogen extinction by creating large amplitude oscillations in prevalence, especially with high demographic turnover and short infectious periods. Parameters affecting the relative timing of the epidemic and birth pulse peaks determined the intensity and direction of the effect of pre-existing immunity in the population on the pathogen's ability to persist beyond the initial epidemic following its introduction. PMID:24827436

  19. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three categories of population dynamics models: deterministic modeling with Logistic chaos map as an example, stochastic modeling with spatial distribution patterns as an example, as well as survival analysis and extended evolutionary game theory (EEGT) modeling. Sample experiment results with Genetic algorithms (GA) are presented to demonstrate the applications of these models. The proposed EC population dynamics approach also makes survival selection largely unnecessary or much simplified since the individuals are naturally selected (controlled) by the mathematical models for EC population dynamics.

  20. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Indirect genetic estimates of breeding population size in the polyploid green sturgeon (Acipenser medirostris).

    PubMed

    Israel, J A; May, B

    2010-03-01

    The utility of genetic measures for kinship reconstruction in polysomic species is not well evaluated. We developed a framework to test hypotheses about estimating breeding population size indirectly from collections of outmigrating green sturgeon juveniles. We evaluated a polysomic dataset, in allelic frequency and phenotypic formats, from green sturgeon to describe the relationship among known progeny from experimental families. The distributions of relatedness values for kin classes were used for reconstructing green sturgeon pedigrees from juveniles of unknown relationship. We compared three rarefaction functions that described the relationship between the number of kin groups and number of samples in a pedigree to estimate the annual abundance of spawners contributing to the threatened green sturgeon Southern Distinct Population Segment in the upper Sacramento River. Results suggested the estimated abundance of breeding green sturgeon remained roughly constant in the upper Sacramento River over a 5-year period, ranging from 10 to 28 individuals depending on the year and rarefaction method. These results demonstrate an empirical understanding for the distribution of relatedness values among individuals is a benefit for assessing pedigree reconstruction methods and identifying misclassification rates. Monitoring of rare species using these indirect methods is feasible and can provide insight into breeding and ontogenetic behaviour. While this framework was developed for specific application to studying fish populations in a riverscape, the framework could be advanced to improve genetic estimation of breeding population size and to identify important breeding habitats of rare species when combined with finer-scaled sampling of offspring.

  2. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  3. Enumerative and binomial sampling plans for citrus mealybug (Homoptera: pseudococcidae) in citrus groves.

    PubMed

    Martínez-Ferrer, María Teresa; Ripollés, José Luís; Garcia-Marí, Ferran

    2006-06-01

    The spatial distribution of the citrus mealybug, Planococcus citri (Risso) (Homoptera: Pseudococcidae), was studied in citrus groves in northeastern Spain. Constant precision sampling plans were designed for all developmental stages of citrus mealybug under the fruit calyx, for late stages on fruit, and for females on trunks and main branches; more than 66, 286, and 101 data sets, respectively, were collected from nine commercial fields during 1992-1998. Dispersion parameters were determined using Taylor's power law, giving aggregated spatial patterns for citrus mealybug populations in three locations of the tree sampled. A significant relationship between the number of insects per organ and the percentage of occupied organs was established using either Wilson and Room's binomial model or Kono and Sugino's empirical formula. Constant precision (E = 0.25) sampling plans (i.e., enumerative plans) for estimating mean densities were developed using Green's equation and the two binomial models. For making management decisions, enumerative counts may be less labor-intensive than binomial sampling. Therefore, we recommend enumerative sampling plans for the use in an integrated pest management program in citrus. Required sample sizes for the range of population densities near current management thresholds, in the three plant locations calyx, fruit, and trunk were 50, 110-330, and 30, respectively. Binomial sampling, especially the empirical model, required a higher sample size to achieve equivalent levels of precision.

  4. Finite-size effects on bacterial population expansion under controlled flow conditions

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc; Toschi, Federico

    2017-03-01

    The expansion of biological species in natural environments is usually described as the combined effect of individual spatial dispersal and growth. In the case of aquatic ecosystems flow transport can also be extremely relevant as an extra, advection induced, dispersal factor. We designed and assembled a dedicated microfluidic device to control and quantify the expansion of populations of E. coli bacteria under both co-flowing and counter-flowing conditions, measuring the front speed at varying intensity of the imposed flow. At variance with respect to the case of classic advective-reactive-diffusive chemical fronts, we measure that almost irrespective of the counter-flow velocity, the front speed remains finite at a constant positive value. A simple model incorporating growth, dispersion and drift on finite-size hard beads allows to explain this finding as due to a finite volume effect of the bacteria. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) that ignore the finite size of organisms may be inaccurate to describe the physics of spatial growth dynamics of bacteria.

  5. Population education for young adults: making the small family desirable.

    PubMed

    Butt, H

    1972-01-01

    The approach to population control has been almost totally clinical in India so far. A new program of population education which is broader than the clinical appeal is needed. The major target population in India would be illiterates and those with a small amount of education. Within this target population different groups would have to be treated differently. Division would be between illiterates and literates, between urban and rural populations, and between male and female groups. Family planning must be related to other aspects of life, e.g., the health and well-being of the mother and other children in the family. Sex and social education must be presented together. Basic values cannot be changed. Smaller families will eventually change the values. By concentrating on the basic value of survival of the family, the best method to effect this can be shown to be better care of fewer c hildren rather than proliferation of many children. Education should concentrate on the individual and on economic reasons for limiting family size. Once the idea of limiting family size is accepted, it remains to be shown that methods for doing this are available, safe, and religiously and socially acceptable. The message needs constant repetition. Group education would be least expensive. Population education could be presented by incorporating it into other socioeconomic contexts such as reading classes for the illiterates and mathematics classes for the basic literates.

  6. Demographic analysis of dormancy and survival in the terrestrial orchid Cypripedium reginae

    USGS Publications Warehouse

    Kery, Marc; Gregg, Katharine B.

    2004-01-01

    1. We use capture-recapture models to estimate the fraction of dormant ramets, survival and state transition rates, and to identify factors affecting these rates, for the terrestrial orchid Cypripedium reginae. We studied two populations in West Virginia, USA, for 11 years and investigated relationships between grazing and demography. Abe Run's population was small, with moderate herbivory by deer and relatively constant population size. The population at Big Draft was of medium size, with heavy deer grazing, and a sharply declining number of flowering plants up to the spring before our study started, when the population was fenced. 2. We observed dormant episodes lasting from 1 to 4 years. At Abe Run and Big Draft, 32.5% and 7.4% of ramets, respectively, were dormant at least once during the study period for an average of 1.6 and 1.3 years, respectively. We estimated the annual fraction of ramets in the dormant state at 12.3% (95% CI 9.5-15.8%) at Abe Run and at 1.8% (95% CI 1.2-2.6%) at Big Draft. Transition rates between the dormant, vegetative and flowering life-states did not vary between years in either population. Most surviving ramets remained in the same state from one year to the next. Survival rates were constant at Abe Run (0.96, 95% CI 0.93-0.97), but varied between years at Big Draft (0.89-0.99, mean 0.95). 3. At Big Draft, we found neither a temporal trend in survival after cessation of grazing, nor relationships between survival and the number of spring frost days or cumulative precipitation during the current or the previous 12 months. However, analysis of precipitation on a 3-month basis revealed a positive relationship between survival and precipitation during the spring (March-May) of the previous year. 4. Relationship between climate and the population dynamics of orchids may have to be studied with a fine temporal resolution, and considering possible time lags. Capture-recapture modelling provides a comprehensive and flexible framework for demographic analysis of plants with dormancy.

  7. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations.

    PubMed

    Prigge, Vanessa; Melchinger, Albrecht E; Dhillon, Baldev S; Frisch, Matthias

    2009-06-01

    Expenses for marker assays are the major costs in marker-assisted backcrossing programs for the transfer of target genes from a donor into the genetic background of a recipient genotype. Our objectives were to (1) investigate the effect of employing sequentially increasing marker densities over backcross generations on the recurrent parent genome (RPG) recovery and the number of marker data points (MDP) required, and (2) determine optimum designs for attaining RPG thresholds of 93-98% with a minimum number of MDP. We simulated the introgression of one dominant target gene for genome models of sugar beet (Beta vulgaris L.) and maize (Zea mays L.) with varying marker distances of 5-80 cM and population sizes of 30-250 plants across BC(1) to BC(3) generations. Employing less dense maps in early backcross generations resulted in savings of over 50% in the number of required MDP compared with using a constant set of markers and was accompanied only by small reductions in the attained RPG values. The optimum designs were characterized by increasing marker densities and increasing population sizes in advanced generations for both genome models. We conclude that increasing simultaneously the marker density and the population size from early to advanced backcross generations results in gene introgression with a minimum number of required MDP.

  8. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  9. Asymptotic Distributions of Coalescence Times and Ancestral Lineage Numbers for Populations with Temporally Varying Size

    PubMed Central

    Chen, Hua; Chen, Kun

    2013-01-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n − An(t) follows a Poisson distribution, and as m → n, n(n−1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference. PMID:23666939

  10. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    PubMed

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  11. Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations

    PubMed Central

    Duncan, Alison B.; Fellous, Simon; Kaltz, Oliver

    2011-01-01

    The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host–parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range. PMID:21450730

  12. Optimal exploitation strategies for an animal population in a stochastic serially correlated environment

    USGS Publications Warehouse

    Anderson, D.R.

    1974-01-01

    Optimal exploitation strategies were studied for an animal population in a stochastic, serially correlated environment. This is a general case and encompasses a number of important cases as simplifications. Data on the mallard (Anas platyrhynchos) were used to explore the exploitation strategies and test several hypotheses because relatively much is known concerning the life history and general ecology of this species and extensive empirical data are available for analysis. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. Desirable properties of an optimal exploitation strategy were defined. A mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. Both the literature and the analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, alternative hypotheses were formulated: (1) exploitation mortality represents a largely additive form of mortality, or (2 ) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. Assuming that exploitation is largely an additive force of mortality, optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slightly concave function of the environmental conditions. Optimal exploitation under this hypothesis tends to reduce the variance of the size of the population. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the breeding population. Environmental variables may be somewhat more important than the size of the breeding population to the production of young mallards. In contrast, the size of the breeding population appears to be more important in the exploitation process than is the state of the environment. The form of the exploitation strategy appears to be relatively insensitive to small changes in the production rate. In general, the relative importance of the size of the breeding population may decrease as fecundity increases. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, harvest rate, or designed to maintain a constant breeding population size is inefficient.

  13. Proceedings of the Annual Meeting, Aquatic Plant Control Research Program (25th) Held in Orlando, Florida on 26-30 November 1990

    DTIC Science & Technology

    1991-06-01

    to locate and treat pioneering aquatic plants in late spring to assist in populations prior to their rapid expansion the formulation of treatment... Demography Wulff, R. D. 1986a. "Seed Size Variation in and Its Consequences for Potamogeton Desmodium paniculatum; I. Factors Af- pectinatus L...formed by the confluence of the include longevity of the method, constant fish- Wateree and Congaree Rivers. The Wateree feeding activity against

  14. Turbulent Dynamics of Epithelial Cell Cultures

    NASA Astrophysics Data System (ADS)

    Blanch-Mercader, C.; Yashunsky, V.; Garcia, S.; Duclos, G.; Giomi, L.; Silberzan, P.

    2018-05-01

    We investigate the large length and long time scales collective flows and structural rearrangements within in vitro human bronchial epithelial cell (HBEC) cultures. Activity-driven collective flows result in ensembles of vortices randomly positioned in space. By analyzing a large population of vortices, we show that their area follows an exponential law with a constant mean value and their rotational frequency is size independent, both being characteristic features of the chaotic dynamics of active nematic suspensions. Indeed, we find that HBECs self-organize in nematic domains of several cell lengths. Nematic defects are found at the interface between domains with a total number that remains constant due to the dynamical balance of nucleation and annihilation events. The mean velocity fields in the vicinity of defects are well described by a hydrodynamic theory of extensile active nematics.

  15. Size-dependent Hamaker constants for silver and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pinchuk, Pavlo; Jiang, Ke

    2015-08-01

    Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.

  16. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.

  17. Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics

    NASA Astrophysics Data System (ADS)

    Pineda, Eloi; Crespo, Daniel

    1999-08-01

    A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.

  18. How Life History Can Sway the Fixation Probability of Mutants

    PubMed Central

    Li, Xiang-Yi; Kurokawa, Shun; Giaimo, Stefano; Traulsen, Arne

    2016-01-01

    In this work, we study the effects of demographic structure on evolutionary dynamics when selection acts on reproduction, survival, or both. In contrast to the previously discovered pattern that the fixation probability of a neutral mutant decreases while the population becomes younger, we show that a mutant with a constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and selection on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for also studying density- and frequency-dependent effects in populations when demographic structures cannot be neglected. PMID:27129737

  19. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y

    2018-06-21

    The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.

  20. Prey-producing predators: the ecology of human intensification.

    PubMed

    Efferson, Charles

    2008-01-01

    Economic growth theory and theoretical ecology represent independent traditions of modeling aggregate consumer-resource systems. Both focus on different but equally important forces underlying the dynamics of human societies. Though the two traditions have unknowingly converged in some ways, they each have curious conventions from the perspective of the other. These conventions are reviewed, and two separate modeling frameworks that integrate the two traditions in a simple and straightforward fashion are developed and analyzed. The resulting models represent a consumer species (e.g. humans) that both produces and consumes its resources and then reproduces biologically according to the consumption of its resources. Depending on the balance between production, consumption, and reproduction, the models can exhibit stagnant behavior, like some predator-prey models, or growth, like many mutualism and economic growth models. When growth occurs, in the long term it takes one of two forms. Either resources per capita grow and the human population size converges to a constant, which may be zero, or resources per capita converge to a constant and the human population grows. The difference depends on initial conditions and the particular mix of biological conditions and human technology.

  1. Pareto genealogies arising from a Poisson branching evolution model with selection.

    PubMed

    Huillet, Thierry E

    2014-02-01

    We study a class of coalescents derived from a sampling procedure out of N i.i.d. Pareto(α) random variables, normalized by their sum, including β-size-biasing on total length effects (β < α). Depending on the range of α we derive the large N limit coalescents structure, leading either to a discrete-time Poisson-Dirichlet (α, -β) Ξ-coalescent (α ε[0, 1)), or to a family of continuous-time Beta (2 - α, α - β)Λ-coalescents (α ε[1, 2)), or to the Kingman coalescent (α ≥ 2). We indicate that this class of coalescent processes (and their scaling limits) may be viewed as the genealogical processes of some forward in time evolving branching population models including selection effects. In such constant-size population models, the reproduction step, which is based on a fitness-dependent Poisson Point Process with scaling power-law(α) intensity, is coupled to a selection step consisting of sorting out the N fittest individuals issued from the reproduction step.

  2. A Bayesian, combinatorial approach to capture-recapture.

    PubMed

    García-Pelayo, Ricardo

    2006-11-01

    It is shown that, in the capture-recapture method, the widely used formulae of Bailey or Chapman-Seber give the most likely value for the size of the population, but systematically underestimate the probability that the population is larger than any given size. We take here a first step in a combinatorial approach which does not suffer from this flaw: formulae are given which can be used in the closed case (no birth, death or migrations between captures) when at least two animals have been recaptured and when there is homogeneity with regard to capture probability. Numerical and heuristic evidence is presented pointing to the fact that the error incurred when using the formulae of Bailey or Chapman-Seber depends asymptotically only on the number of recaptured animals, and will not diminish if the number of captured animals becomes large while the number of recaptured animals remains constant. A result that was stated and left unproven by Darroch is proven here.

  3. Diminishing-returns epistasis decreases adaptability along an evolutionary trajectory.

    PubMed

    Wünsche, Andrea; Dinh, Duy M; Satterwhite, Rebecca S; Arenas, Carolina Diaz; Stoebel, Daniel M; Cooper, Tim F

    2017-03-01

    Populations evolving in constant environments exhibit declining adaptability. Understanding the basis of this pattern could reveal underlying processes determining the repeatability of evolutionary outcomes. In principle, declining adaptability can be due to a decrease in the effect size of beneficial mutations, a decrease in the rate at which they occur, or some combination of both. By evolving Escherichia coli populations started from different steps along a single evolutionary trajectory, we show that declining adaptability is best explained by a decrease in the size of available beneficial mutations. This pattern reflected the dominant influence of negative genetic interactions that caused new beneficial mutations to confer smaller benefits in fitter genotypes. Genome sequencing revealed that starting genotypes that were more similar to one another did not exhibit greater similarity in terms of new beneficial mutations, supporting the view that epistasis acts globally, having a greater influence on the effect than on the identity of available mutations along an adaptive trajectory. Our findings provide support for a general mechanism that leads to predictable phenotypic evolutionary trajectories.

  4. Latitudinal-Related Variation in Wintering Population Trends of Greylag Geese (Anser Anser) along the Atlantic Flyway: A Response to Climate Change?

    PubMed

    Ramo, Cristina; Amat, Juan A; Nilsson, Leif; Schricke, Vincent; Rodríguez-Alonso, Mariano; Gómez-Crespo, Enrique; Jubete, Fernando; Navedo, Juan G; Masero, José A; Palacios, Jesús; Boos, Mathieu; Green, Andy J

    2015-01-01

    The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years) being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark) did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.

  5. Size-dependent survivorship in the web-building spiderAgelena limbata.

    PubMed

    Tanaka, Koichi

    1992-07-01

    Stage-specific mortality rates and mortality factors for the web-building spiderAgelena limbata, which is suggested to be food-limited, were studied, and the relationship between body size of spiders and survivorship for instar 3 to adults was examined. The mortality rate of the egg sac stage including eggs, deutova (prenymphal stage), and overwintering instar 1 nymphs was low. The low mortality of this stage was partly due to maternal care that reduced the mortality caused by predation and/or abiotic factors. From emergence of instar 1 nymphs from egg sacs to reproduction, the stagespecific mortality rates were almost constant, 32-47%, and the time-specific mortality rates were also constant. These results suggest a Deevey (1947) type II survivorship curve inA. limbata, in contrast to other reports on the wandering or burrowing spiders which suggested type III curves. Important mortality factors for nymphs and adults were parasitism by an ichneumonid wasp and predation by spiders. There were great variations in body size (carapace width) ofA. limbata in the field. Smaller individuals survived at a lower rate to the next stage than larger individuals. This tendency was clearer for the population living under poorer prey availability.A. limbata was unlikely to starve to death in the field because every stage ofA. limbata could survive starvation for a long time in the laboratory, 22-65 days on average. I suggest that the size-dependent survivorship of this spider is associated with vulnerability of smaller individuals to parasitism and predation.

  6. Red mud flocculation process in alumina production

    NASA Astrophysics Data System (ADS)

    Fedorova, E. R.; Firsov, A. Yu

    2018-05-01

    The process of thickening and washing red mud is a gooseneck of alumina production. The existing automated systems of the thickening process control involve stabilizing the parameters of the primary technological circuits of the thickener. The actual direction of scientific research is the creation and improvement of models and systems of the thickening process control by model. But the known models do not fully consider the presence of perturbing effects, in particular the particle size distribution in the feed process, distribution of floccules by size after the aggregation process in the feed barrel. The article is devoted to the basic concepts and terms used in writing the population balance algorithm. The population balance model is implemented in the MatLab environment. The result of the simulation is the particle size distribution after the flocculation process. This model allows one to foreseen the distribution range of floccules after the process of aggregation of red mud in the feed barrel. The mud of Jamaican bauxite was acting as an industrial sample of red mud; Cytec Industries of HX-3000 series with a concentration of 0.5% was acting as a flocculant. When simulating, model constants obtained in a tubular tank in the laboratories of CSIRO (Australia) were used.

  7. Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift

    PubMed Central

    Zhao, Lei; Yue, Xingye; Waxman, David

    2013-01-01

    A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318

  8. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  9. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  10. Allowable levels of take for the trade in Nearctic songbirds.

    PubMed

    Johnson, Fred A; Walters, Matthew A H; Boomer, G Scott

    2012-06-01

    The take of Nearctic songbirds for the caged-bird trade is an important cultural and economic activity in Mexico, but its sustainability has been questioned. We relied on the theta-logistic population model to explore options for setting allowable levels of take for 11 species of passerines that were subject to legal take in Mexico in 2010. Because estimates of population size necessary for making-periodic adjustments to levels of take are not routinely available, we examined the conditions under which a constant level of take might contribute to population depletion (i.e., a population below its level of maximum net productivity). The chance of depleting a population is highest when levels of take are based on population sizes that happen to be much lower or higher than the level of maximum net productivity, when environmental variation is relatively high and serially correlated, and when the interval between estimation of population size is relatively long (> or = 5 years). To estimate demographic rates of songbirds involved in the Mexican trade we relied on published information and allometric relationships to develop probability distributions for key rates, and then sampled from those distributions to characterize the uncertainty in potential levels of take. Estimates of the intrinsic rate of growth (r) were highly variable, but median estimates were consistent with those expected for relatively short-lived, highly fecund species. Allowing for the possibility of nonlinear density dependence generally resulted in allowable levels of take that were lower than would have been the case under an assumption of linearity. Levels of take authorized by the Mexican government in 2010 for the 11 species we examined were small in comparison to relatively conservative allowable levels of take (i.e., those intended to achieve 50% of maximum sustainable yield). However, the actual levels of take in Mexico are unknown and almost certainly exceed the authorized take. Also, the take of Nearctic songbirds in other Latin American and Caribbean countries ultimately must be considered in assessing population-level impacts.

  11. Allowable levels of take for the trade in Nearctic songbirds

    USGS Publications Warehouse

    Johnson, Fred A.; Walters, Matthew A.H.; Boomer, G. Scott

    2012-01-01

    The take of Nearctic songbirds for the caged-bird trade is an important cultural and economic activity in Mexico, but its sustainability has been questioned. We relied on the theta-logistic population model to explore options for setting allowable levels of take for 11 species of passerines that were subject to legal take in Mexico in 2010. Because estimates of population size necessary for making periodic adjustments to levels of take are not routinely available, we examined the conditions under which a constant level of take might contribute to population depletion (i.e., a population below its level of maximum net productivity). The chance of depleting a population is highest when levels of take are based on population sizes that happen to be much lower or higher than the level of maximum net productivity, when environmental variation is relatively high and serially correlated, and when the interval between estimation of population size is relatively long (≥5 years). To estimate demographic rates of songbirds involved in the Mexican trade we relied on published information and allometric relationships to develop probability distributions for key rates, and then sampled from those distributions to characterize the uncertainty in potential levels of take. Estimates of the intrinsic rate of growth (r) were highly variable, but median estimates were consistent with those expected for relatively short-lived, highly fecund species. Allowing for the possibility of nonlinear density dependence generally resulted in allowable levels of take that were lower than would have been the case under an assumption of linearity. Levels of take authorized by the Mexican government in 2010 for the 11 species we examined were small in comparison to relatively conservative allowable levels of take (i.e., those intended to achieve 50% of maximum sustainable yield). However, the actual levels of take in Mexico are unknown and almost certainly exceed the authorized take. Also, the take of Nearctic songbirds in other Latin American and Caribbean countries ultimately must be considered in assessing population-level impacts.

  12. Particle size effects on viscosity of silver pastes: A manufacturer's view

    NASA Technical Reports Server (NTRS)

    Provance, J.; Allison, K.

    1983-01-01

    Particles from a variety of silver powders were investigated by scanning electron microscopy and particle size analyses. Particle size distribution curves and volume population graphs were prepared for these silver powders and for glass powders with optimum, extra fine and coarse particle sizes. The viscosity at a given shear rate and slope of viscosity over a range of shear rates were determined for thick film pastes made with these powders. Because of particle anomalies and variations, the need for flexibility to achieve the best printing qualities for silver pastes was evident. It was established that print quality, dried and fired film density and optimum contact of silver particles with silicon, important for cell electrical output, could be achieved by adjusting the slope of viscosity that fell outside of the range, -0.550 to -0.650. This was accomplished through organic vehicle technology that permitted a change in the slope of viscosity, up or down, while maintaining a constant silver and total solids content.

  13. Network evolution induced by the dynamical rules of two populations

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  14. Meal size is a critical driver of weight gain in early childhood.

    PubMed

    Syrad, Hayley; Llewellyn, Clare H; Johnson, Laura; Boniface, David; Jebb, Susan A; van Jaarsveld, Cornelia H M; Wardle, Jane

    2016-06-20

    Larger serving sizes and more frequent eating episodes have been implicated in the rising prevalence of obesity at a population level. This study examines the relative contributions of meal size and frequency to weight gain in a large sample of British children. Using 3-day diet diaries from 1939 children aged 21 months from the Gemini twin cohort, we assessed prospective associations between meal size, meal frequency and weight gain from two to five years. Separate longitudinal analyses demonstrated that every 10 kcal increase in meal size was associated with 1.5 g/wk or 4% (p = 0.005) faster growth rate, while meal frequency was not independently associated with growth (β = 0.3 g/wk p = 0.20). Including both meal parameters in the model strengthened associations (meal size: β = 2.6 g/wk, p < 0.001; meal frequency: β = 1.0 g/wk, p = 0.001). Taken together, the implication is that meal size promotes faster growth regardless of frequency, but meal frequency has a significant effect only if meal size is assumed to be held constant. Clearer advice on meal size and frequency, especially advice on appropriate meal size, may help prevent excess weight gain.

  15. Reconstructing shifts in vital rates driven by long-term environmental change: a new demographic method based on readily available data.

    PubMed

    González, Edgar J; Martorell, Carlos

    2013-07-01

    Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.

  16. Reconstructing shifts in vital rates driven by long-term environmental change: a new demographic method based on readily available data

    PubMed Central

    González, Edgar J; Martorell, Carlos

    2013-01-01

    Frequently, vital rates are driven by directional, long-term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems. PMID:23919169

  17. NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carollo, C. M.; Bschorr, T. J.; Lilly, S. J.

    2013-08-20

    We use the large COSMOS sample of galaxies to study in an internally self-consistent way the change in the number densities of quenched early-type galaxies (Q-ETGs) of a given size over the redshift interval 0.2 < z < 1 in order to study the claimed size evolution of these galaxies. In a stellar mass bin at 10{sup 10.5} < M{sub galaxy} < 10{sup 11} M{sub Sun }, we see no change in the number density of compact Q-ETGs over this redshift range, while in a higher mass bin at >10{sup 11} M{sub Sun }, where we would expect merging tomore » be more significant, we find a small decrease, by {approx}30%. In both mass bins, the increase of the median sizes of Q-ETGs with time is primarily caused by the addition to the size function of larger and more diffuse Q-ETGs. At all masses, compact Q-ETGs become systematically redder toward later epochs, with a (U - V) color difference which is consistent with a passive evolution of their stellar populations, indicating that they are a stable population that does not appreciably evolve in size. We find furthermore, at all epochs, that the larger Q-ETGs (at least in the lower mass bin) have average rest-frame colors that are systematically bluer than those of the more compact Q-ETGs, suggesting that the former are indeed younger than the latter. The idea that new, large, Q-ETGs are responsible for the observed growth in the median size of the population at a given mass is also supported by analysis of the sizes and number of the star-forming galaxies that are expected to be the progenitors of the new Q-ETGs over the same period. In the low mass bin, the new Q-ETGs appear to have {approx}30% smaller half-light radii than their star-forming progenitors. This is likely due to the fading of their disks after they cease star formation. Comparison with higher redshifts shows that the median size of newly quenched galaxies roughly scales, at constant mass, as (1 + z){sup -1}. We conclude that the dominant cause of the size evolution seen in the Q-ETG population is that the average sizes and thus stellar densities of individual Q-ETGs roughly scale with the average density of the universe at the time when they were quenched, and that subsequent size changes in individual objects, through merging or other processes, are of secondary importance, especially at masses below 10{sup 11} M{sub Sun}.« less

  18. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  19. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  20. Surface morphology of vacuum-evaporated pentacene film on Si substrate studied by in situ grazing-incidence small-angle X-ray scattering: I. The initial stage of formation of pentacene film

    NASA Astrophysics Data System (ADS)

    Hirosawa, Ichiro; Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Yoshimoto, Noriyuki

    2018-03-01

    The progress of the surface morphology of a growing sub-monolayered pentacene film on a Si substrate was studied by in situ grazing-incidence small angle X-ray scattering (GISAXS). The observed GISAXS profiles did not show sizes of pentacene islands but mainly protuberances on the boundaries around pentacene film. Scattering of X-ray by residual pits in the pentacene film was also detected in the GISAXS profiles of an almost fully covered film. The average radius of pentacene protuberances increased from 13 to 24 nm as the coverage increased to 0.83 monolayer, and the most frequent radius was almost constant at approximately 9 nm. This result suggests that the population of larger protuberances increase with increasing lengths of boundaries of the pentacene film. It can also be considered that the detected protuberances were crystallites of pentacene, since the average size of protuberances was nearly equal to crystallite sizes of pentacene films. The almost constant characteristic distance of 610 nm and amplitudes of pair correlation functions at low coverages suggest that the growth of pentacene films obeyed the diffusion-limited aggregation (DLA) model, as previously reported. It is also considered that the sites of islands show a triangular distribution for small variations of estimated correlation distances.

  1. Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil.

    PubMed

    Dias, Ricardo Augusto; Guilloux, Aline Gil Alves; Borba, Mauro Riegert; Guarnieri, Maria Cristina de Lourdes; Prist, Ricardo; Ferreira, Fernando; Amaku, Marcos; Neto, José Soares Ferreira; Stevenson, Mark

    2013-06-01

    A longitudinal study was carried out to describe the size and spatial distribution of the stray dog population in the University of São Paulo campus, Brazil from November 2010 to November 2011. The campus is located within the urban area of São Paulo, the largest city of Brazil, with a population over 11 million. The 4.2 km(2) that comprise the university grounds are walled, with 10 access gates, allowing stray dogs to move in and out freely. Over 100,000 people and 50,000 vehicles circulate in the campus daily. Five observations were made during the study period, using a mark-resight method. The same route was performed in all observations, being traveled twice on each observation day. Observed animals were photographed and the sight coordinates were obtained using a GPS device. The estimated size of the stray dog population varied from 32 (CI 95% 23-56) to 56 (CI 95% 45-77) individuals. Differences between in- and outward dog movements influenced dog population estimates. Overlapping home ranges of docile dogs were observed in areas where most people circulate. An elusive group was observed close to a protected rain forest area and the estimated home range for this group did not overlap with the home ranges for other dogs within the campus. A kernel density map showed that higher densities of stray dog sighting is associated with large organic matter generators, such as university restaurants. We conclude that the preferred source of food of the stray dogs on the University of São Paulo campus was leftover food deliberately offered by restaurant users. The population was stable during the study period and the constant source of food was the main reason to retain this population within the campus. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. The existence and abundance of ghost ancestors in biparental populations.

    PubMed

    Gravel, Simon; Steel, Mike

    2015-05-01

    In a randomly-mating biparental population of size N there are, with high probability, individuals who are genealogical ancestors of every extant individual within approximately log2(N) generations into the past. We use this result of J. Chang to prove a curious corollary under standard models of recombination: there exist, with high probability, individuals within a constant multiple of log2(N) generations into the past who are simultaneously (i) genealogical ancestors of each of the individuals at the present, and (ii) genetic ancestors to none of the individuals at the present. Such ancestral individuals-ancestors of everyone today that left no genetic trace-represent 'ghost' ancestors in a strong sense. In this short note, we use simple analytical argument and simulations to estimate how many such individuals exist in finite Wright-Fisher populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mutation-selection equilibrium in games with multiple strategies.

    PubMed

    Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E; Nowak, Martin A

    2009-06-21

    In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of nxn games in the limit of weak selection.

  4. Measuring Spatial Accessibility of Health Care Providers – Introduction of a Variable Distance Decay Function within the Floating Catchment Area (FCA) Method

    PubMed Central

    Groneberg, David A.

    2016-01-01

    We integrated recent improvements within the floating catchment area (FCA) method family into an integrated ‘iFCA`method. Within this method we focused on the distance decay function and its parameter. So far only distance decay functions with constant parameters have been applied. Therefore, we developed a variable distance decay function to be used within the FCA method. We were able to replace the impedance coefficient β by readily available distribution parameter (i.e. median and standard deviation (SD)) within a logistic based distance decay function. Hence, the function is shaped individually for every single population location by the median and SD of all population-to-provider distances within a global catchment size. Theoretical application of the variable distance decay function showed conceptually sound results. Furthermore, the existence of effective variable catchment sizes defined by the asymptotic approach to zero of the distance decay function was revealed, satisfying the need for variable catchment sizes. The application of the iFCA method within an urban case study in Berlin (Germany) confirmed the theoretical fit of the suggested method. In summary, we introduced for the first time, a variable distance decay function within an integrated FCA method. This function accounts for individual travel behaviors determined by the distribution of providers. Additionally, the function inherits effective variable catchment sizes and therefore obviates the need for determining variable catchment sizes separately. PMID:27391649

  5. [On the relation between encounter rate and population density: Are classical models of population dynamics justified?].

    PubMed

    Nedorezov, L V

    2015-01-01

    A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.

  6. Optimal exploitation strategies for an animal population in a Markovian environment: A theory and an example

    USGS Publications Warehouse

    Anderson, D.R.

    1975-01-01

    Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra-biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient.

  7. Sex-ratio, seasonality and long-term variation in maturation and spawning of the brown shrimp Crangon crangon (L.) in the German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Siegel, V.; Damm, U.; Neudecker, T.

    2008-12-01

    Aspects of the reproductive and maturation biology of the brown shrimp Crangon crangon (L.) were studied in various subareas of the German Bight (North Sea). The size-specific sex ratio of C. crangon was examined based on length frequency distribution data. The sex ratio for the smallest size groups at which sex was determined was typically around 0.5, indicating an even ratio between males and females. The proportion of females decreased in the 30-45 mm size range. In length classes larger than 50 mm, the proportion of females constantly increases to 100% at around 60 mm total length. We concluded that sex reversal from male to female may not occur in C. crangon. Size at sexual maturity was determined from the proportion of ovigerous females. Size at maturity ( L 50) was estimated as 55.4 and 62.0 mm total length for spring and winter data, respectively. The seasonal spawning cycle was studied over the period 1958-2005. Between mid February and late June and for size classes larger than 65 mm ovigerous shrimps exceeded 80% and reached up to 100% of the females in the population. This period can be seen as the core spawning season. From early August to early December the proportion of ovigerous shrimps in the female population is very low. Interannual differences in the seasonal process are obvious with a dramatic decline in C. crangon reproductive success in the late 1980s. Various options are discussed for the reasons of the decline and recovery of the reproductive performance.

  8. Change-in-ratio estimators for populations with more than two subclasses

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.

    1991-01-01

    Change-in-ratio methods have been developed to estimate the size of populations with two or three population subclasses. Most of these methods require the often unreasonable assumption of equal sampling probabilities for individuals in all subclasses. This paper presents new models based on the weaker assumption that ratios of sampling probabilities are constant over time for populations with three or more subclasses. Estimation under these models requires that a value be assumed for one of these ratios when there are two samples. Explicit expressions are given for the maximum likelihood estimators under models for two samples with three or more subclasses and for three samples with two subclasses. A numerical method using readily available statistical software is described for obtaining the estimators and their standard errors under all of the models. Likelihood ratio tests that can be used in model selection are discussed. Emphasis is on the two-sample, three-subclass models for which Monte-Carlo simulation results and an illustrative example are presented.

  9. Selection of trilateral continuums of life history strategies under food web interactions.

    PubMed

    Fujiwara, Masami

    2018-03-14

    The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.

  10. The effects of sample size on population genomic analyses--implications for the tests of neutrality.

    PubMed

    Subramanian, Sankar

    2016-02-20

    One of the fundamental measures of molecular genetic variation is the Watterson's estimator (θ), which is based on the number of segregating sites. The estimation of θ is unbiased only under neutrality and constant population growth. It is well known that the estimation of θ is biased when these assumptions are violated. However, the effects of sample size in modulating the bias was not well appreciated. We examined this issue in detail based on large-scale exome data and robust simulations. Our investigation revealed that sample size appreciably influences θ estimation and this effect was much higher for constrained genomic regions than that of neutral regions. For instance, θ estimated for synonymous sites using 512 human exomes was 1.9 times higher than that obtained using 16 exomes. However, this difference was 2.5 times for the nonsynonymous sites of the same data. We observed a positive correlation between the rate of increase in θ estimates (with respect to the sample size) and the magnitude of selection pressure. For example, θ estimated for the nonsynonymous sites of highly constrained genes (dN/dS < 0.1) using 512 exomes was 3.6 times higher than that estimated using 16 exomes. In contrast this difference was only 2 times for the less constrained genes (dN/dS > 0.9). The results of this study reveal the extent of underestimation owing to small sample sizes and thus emphasize the importance of sample size in estimating a number of population genomic parameters. Our results have serious implications for neutrality tests such as Tajima D, Fu-Li D and those based on the McDonald and Kreitman test: Neutrality Index and the fraction of adaptive substitutions. For instance, use of 16 exomes produced 2.4 times higher proportion of adaptive substitutions compared to that obtained using 512 exomes (24% vs 10 %).

  11. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  12. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  13. The Invisible Cliff: Abrupt Imposition of Malthusian Equilibrium in a Natural-Fertility, Agrarian Society

    PubMed Central

    Puleston, Cedric; Tuljapurkar, Shripad; Winterhalder, Bruce

    2014-01-01

    Analysis of a natural fertility agrarian society with a multi-variate model of population ecology isolates three distinct phases of population growth following settlement of a new habitat: (1) a sometimes lengthy copial phase of surplus food production and constant vital rates; (2) a brief transition phase in which food shortages rapidly cause increased mortality and lessened fertility; and (3) a Malthusian phase of indefinite length in which vital rates and quality of life are depressed, sometimes strikingly so. Copial phase duration declines with increases in the size of the founding group, maximum life expectancy and fertility; it increases with habitat area and yield per hectare; and, it is unaffected by the sensitivity of vital rates to hunger. Transition phase duration is unaffected by size of founding population and area of settlement; it declines with yield, life expectancy, fertility and the sensitivity of vital rates to hunger. We characterize the transition phase as the Malthusian transition interval (MTI), in order to highlight how little time populations generally have to adjust. Under food-limited density dependence, the copial phase passes quickly to an equilibrium of grim Malthusian constraints, in the manner of a runner dashing over an invisible cliff. The three-phase pattern diverges from widely held intuitions based on standard Lotka-Verhulst approaches to population regulation, with implications for the analysis of socio-cultural evolution, agricultural intensification, bioarchaeological interpretation of food stress in prehistoric societies, and state-level collapse. PMID:24498131

  14. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    PubMed

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The interaction between predator strategy and prey competition in a pair of multi-predator multi-prey lattices

    NASA Astrophysics Data System (ADS)

    Abernethy, Gavin M.; McCartney, Mark; Glass, David H.

    2018-03-01

    A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range of foraging behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighbours along the prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The significance of competition amongst the prey is investigated by testing a variety of distributions of the relative intraspecific and interspecific competition. We also study the influence this has on the survival and population size of predator phenotypes with a variety of foraging strategies. Our results indicate that the distribution of competition amongst prey is of little significance, provided that intraspecific is stronger than the interspecific, and that it is typically preferable for a predator to adopt a foraging strategy that scales linearly with prey population sizes if it is alone. In an environment of multiple predator phenotypes, the least or most-focused predators are most likely to persist, dependent on the feeding parameter.

  16. 120 Years of U.S. Residential Housing Stock and Floor Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto de Moura, Maria C.; Smith, Steven J.; Belzer, David B.

    2015-08-11

    Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions. Floor space is a major driver of building energy demand. This paper develops a historical time series of total residential floor space for 1891-2010 and examines the role of socio-economic drivers GDP, population and household size on floor space. Using primarily data from the U.S. Census Bureau, we develop new construction and vintage-disaggregated housing stock for three building types, and address various data inconsistency issues. An examination of the long-term relationship of GDP and total residential floor space shows a remarkably constantmore » trend over the period. While population increases five times over the period, a 50% decrease in household size contributes towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. Total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years.« less

  17. An engineering method for estimating notch-size effect in fatigue tests on steel

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul; Hardrath, Herbert F

    1952-01-01

    Neuber's proposed method of calculating a practical factor of stress concentration for parts containing notches of arbitrary size depends on the knowledge of a "new material constant" which can be established only indirectly. In this paper, the new constant has been evaluated for a large variety of steels from fatigue tests reported in the literature, attention being confined to stresses near the endurance limit. Reasonably satisfactory results were obtained with the assumption that the constant depends only on the tensile strength of the steel. Even in cases where the notches were cracks of which only the depth was known, reasonably satisfactory agreement was found between calculated and experimental factors. It is also shown that the material constant can be used in an empirical formula to estimate the size effect on unnotched specimens tested in bending fatigue.

  18. Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?

    PubMed

    Picard, Nicolas; Liang, Jingjing

    2014-01-01

    Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.

  19. Social contact networks and disease eradicability under voluntary vaccination.

    PubMed

    Perisic, Ana; Bauch, Chris T

    2009-02-01

    Certain theories suggest that it should be difficult or impossible to eradicate a vaccine-preventable disease under voluntary vaccination: Herd immunity implies that the individual incentive to vaccinate disappears at high coverage levels. Historically, there have been examples of declining coverage for vaccines, such as MMR vaccine and whole-cell pertussis vaccine, that are consistent with this theory. On the other hand, smallpox was globally eradicated by 1980 despite voluntary vaccination policies in many jurisdictions. Previous modeling studies of the interplay between disease dynamics and individual vaccinating behavior have assumed that infection is transmitted in a homogeneously mixing population. By comparison, here we simulate transmission of a vaccine-preventable SEIR infection through a random, static contact network. Individuals choose whether to vaccinate based on infection risks from neighbors, and based on vaccine risks. When neighborhood size is small, rational vaccinating behavior results in rapid containment of the infection through voluntary ring vaccination. As neighborhood size increases (while the average force of infection is held constant), a threshold is reached beyond which the infection can break through partially vaccinated rings, percolating through the whole population and resulting in considerable epidemic final sizes and a large number vaccinated. The former outcome represents convergence between individually and socially optimal outcomes, whereas the latter represents their divergence, as observed in most models of individual vaccinating behavior that assume homogeneous mixing. Similar effects are observed in an extended model using smallpox-specific natural history and transmissibility assumptions. This work illustrates the significant qualitative differences between behavior-infection dynamics in discrete contact-structured populations versus continuous unstructured populations. This work also shows how disease eradicability in populations where voluntary vaccination is the primary control mechanism may depend partly on whether the disease is transmissible only to a few close social contacts or to a larger subset of the population.

  20. Simple Model for Detonation Energy and Rate

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Souers, P. Clark

    2017-06-01

    A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs

    NASA Astrophysics Data System (ADS)

    Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.

    2013-06-01

    A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.

  2. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato).

    PubMed Central

    Kado, Tomoyuki; Yoshimaru, Hiroshi; Tsumura, Yoshihiko; Tachida, Hidenori

    2003-01-01

    We investigated the nucleotide variation of a conifer, Cryptomeria japonica, and the divergence between this species and its closest relative, Taxodium distichum, at seven nuclear loci (Acl5, Chi1, Ferr, GapC, HemA, Lcyb, and Pat). Samples of C. japonica were collected from three areas, Kantou-Toukai, Hokuriku, and Iwate. No apparent geographic differentiation was found among these samples. However, the frequency spectrum of the nucleotide polymorphism revealed excesses of intermediate-frequency variants, which suggests that the population was not panmictic and a constant size in the past. The average nucleotide diversity, pi, for silent sites was 0.00383. However, values of pi for silent sites vary among loci. Comparisons of polymorphism to divergence among loci (the HKA test) showed that the polymorphism at the Acl5 locus was significantly lower. We also observed a nearly significant excess of replacement polymorphisms at the Lcyb locus. These results suggested possibilities of natural selection acting at some of the loci. Intragenic recombination was detected only once at the Chi1 locus and was not detected at the other loci. The low level of population recombination rate, 4Nr, seemed to be due to both low level of recombination, r, and small population size, N. PMID:12930759

  3. Ancestral inference from haplotypes and mutations.

    PubMed

    Griffiths, Robert C; Tavaré, Simon

    2018-04-25

    We consider inference about the history of a sample of DNA sequences, conditional upon the haplotype counts and the number of segregating sites observed at the present time. After deriving some theoretical results in the coalescent setting, we implement rejection sampling and importance sampling schemes to perform the inference. The importance sampling scheme addresses an extension of the Ewens Sampling Formula for a configuration of haplotypes and the number of segregating sites in the sample. The implementations include both constant and variable population size models. The methods are illustrated by two human Y chromosome datasets. Copyright © 2018. Published by Elsevier Inc.

  4. Analysis of the Impact of Realistic Wind Size Parameter on the Delft3D Model

    NASA Astrophysics Data System (ADS)

    Washington, M. H.; Kumar, S.

    2017-12-01

    The wind size parameter, which is the distance from the center of the storm to the location of the maximum winds, is currently a constant in the Delft3D model. As a result, the Delft3D model's output prediction of the water levels during a storm surge are inaccurate compared to the observed data. To address these issues, an algorithm to calculate a realistic wind size parameter for a given hurricane was designed and implemented using the observed water-level data for Hurricane Matthew. A performance evaluation experiment was conducted to demonstrate the accuracy of the model's prediction of water levels using the realistic wind size input parameter compared to the default constant wind size parameter for Hurricane Matthew, with the water level data observed from October 4th, 2016 to October 9th, 2016 from National Oceanic and Atmospheric Administration (NOAA) as a baseline. The experimental results demonstrate that the Delft3D water level output for the realistic wind size parameter, compared to the default constant size parameter, matches more accurately with the NOAA reference water level data.

  5. Theoretical and experimental study on the effects of particle size and temperature on the reaction kinetics of cubic nano-Cu2O

    NASA Astrophysics Data System (ADS)

    Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai

    2017-09-01

    The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.

  6. Anomalies in the detection of change: When changes in sample size are mistaken for changes in proportions.

    PubMed

    Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy

    2016-01-01

    Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.

  7. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    Treesearch

    M. H. Meeuwig; J. B. Dunham; J. P. Hayes; G. L. Vinyard

    2004-01-01

    The effects of constant (12, 18, and 24°C) and cyclical (daily variation of 15–21 and 12–24 °C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24°C) and more variable daily temperatures (i.e., 12–24°C daily cycle) negatively...

  8. Landsat image and sample design for water reservoirs (Rapel dam Central Chile).

    PubMed

    Lavanderos, L; Pozo, M E; Pattillo, C; Miranda, H

    1990-01-01

    Spatial heterogeneity of the Rapel reservoir surface waters is analyzed through Landsat images. The image digital counts are used with the aim or developing an aprioristic quantitative sample design.Natural horizontal stratification of the Rapel Reservoir (Central Chile) is produced mainly by suspended solids. The spatial heterogeneity conditions of the reservoir for the Spring 86-Summer 87 period were determined by qualitative analysis and image processing of the MSS Landsat, bands 1 and 3. The space-time variations of the different observed strata obtained with multitemporal image analysis.A random stratified sample design (r.s.s.d) was developed, based on the digital counts statistical analysis. Strata population size as well as the average, variance and sampling size of the digital counts were obtained by the r.s.s.d method.Stratification determined by analysis of satellite images were later correlated with ground data. Though the stratification of the reservoir is constant over time, the shape and size of the strata varys.

  9. The perception of depth from binocular disparity.

    DOT National Transportation Integrated Search

    1963-05-01

    This study was concerned with the factors involved in the perception of depth from a binocular disparity. A binocularly observed configuration of constant convergences, constant visual size, and having constant binocular disparities was made to appea...

  10. Extensive genome-wide autozygosity in the population isolates of Daghestan.

    PubMed

    Karafet, Tatiana M; Bulayeva, Kazima B; Bulayev, Oleg A; Gurgenova, Farida; Omarova, Jamilia; Yepiskoposyan, Levon; Savina, Olga V; Veeramah, Krishna R; Hammer, Michael F

    2015-10-01

    Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages. The ND-speaking populations showed greatly elevated coefficients of inbreeding, very high numbers and long lengths of Runs of Homozygosity, and elevated linkage disequilibrium compared with surrounding groups from the Caucasus, the Near East, Europe, Central and South Asia. These results are consistent with the hypothesis that most ND-speaking groups descend from a common ancestral population that fragmented into a series of genetic isolates in the Daghestanian highlands. They have subsequently maintained a long-term small effective population size as a result of constant inbreeding and very low levels of gene flow. Given these findings, Daghestanian population isolates are likely to be useful for mapping genes associated with complex diseases.

  11. Identifying key demographic parameters of a small island-associated population of Indo-Pacific bottlenose dolphins (Reunion, Indian Ocean).

    PubMed

    Dulau, Violaine; Estrade, Vanessa; Fayan, Jacques

    2017-01-01

    Photo-identification surveys of Indo-Pacific bottlenose dolphins were conducted from 2009 to 2014 off Reunion Island (55°E33'/21°S07'), in the Indian Ocean. Robust Design models were applied to produce the most reliable estimate of population abundance and survival rate, while accounting for temporary emigration from the survey area (west coast). The sampling scheme consisted of a five-month (June-October) sampling period in each year of the study. The overall population size at Reunion was estimated to be 72 individuals (SE = 6.17, 95%CI = 61-85), based on a random temporary emigration (γ") of 0.096 and a proportion of 0.70 (SE = 0.03) distinct individuals. The annual survival rate was 0.93 (±0.018 SE, 95%CI = 0.886-0.958) and was constant over time and between sexes. Models considering gender groups indicated different movement patterns between males and females. Males showed null or quasi-null temporary emigration (γ" = γ' < 0.01), while females showed a random temporary emigration (γ") of 0.10, suggesting that a small proportion of females was outside the survey area during each primary sampling period. Sex-specific temporary migration patterns were consistent with movement and residency patterns observed in other areas. The Robust Design approach provided an appropriate sampling scheme for deriving island-associated population parameters, while allowing to restrict survey effort both spatially (i.e. west coast only) and temporally (five months per year). Although abundance and survival were stable over the six years, the small population size of fewer than 100 individuals suggested that this population is highly vulnerable. Priority should be given to reducing any potential impact of human activity on the population and its habitat.

  12. Population momentum: A wider definition.

    PubMed

    Potter, R G; Wolowyna, O; Kulkarni, P M

    1977-11-01

    Summary Keyfitz has derived an elegant formula for estimating the ultimate size of an initially stable, growing population that abruptly reduces its fertility to replacement level. Reduction of fertility is achieved by the rather unrealistic device of dividing the original age schedule nffertility rates by the net reproduction rate. Only the inertia of the age distribution is thus accounted for, but not that of the fertility schedule. The key idea of an abrupt imposition of a fixed regimen capable in the long run of generating zero population growth may be retained, but the regimen made more realistic. By elaborating the population setting, such disparate ZPG regimens as reduction of marital fertility by contraception, delayed and/or less universal marriage, raised mortality risks, or permanent net out-migration may be formulated. Convergence of the populaton to stationarity becomes a two-phase process: a primary adjustment period of changing fertility rates followed by a period of age adjustment. The present paper treats what happens when a fixed ZPG sterilization regimen, defined by a minimum age of sterilization γ and constant continuous risk φ of sterilization among unsterilized wives aged γ to β, is imposed abruptly (or else progressively over an interval T) upon an initially stable, growing population. Additional sources of residual growth are: (1) the nine-month lag in sterilization effect owing to pregnancy: (2) the more youthful pattern of child-bearing under sterilization: (3) the extra adjustment period (of length β-γ-0.75) of changing fertility rates; and (4) any delays in exposing elements of the population to the sterilization regimen. Two questions are pursued. First, how important are the additional sources of residual growth? Secondly, how do their relative sizes vary as a function of the characteristics of the initial population?

  13. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 2: Crater Size-frequency Distribution Curves and Geomorphic Unit Ages

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    In assessing the relative ages of the geomorphic/geologic units, crater counts of the entire unit or nearly the entire unit were made and summed in order to get a more accurate value than obtainable by counts of isolated sections of each unit. Cumulative size-frequency counts show some interesting relationships. Most of the units show two distinct crater populations with a flattening out of the distribution curve at and below 10 km diameter craters. Above this crater size the curves for the different units diverge most notably. In general, the variance may reflect the relative ages of these units. At times, however, in the larger crater size range, these curves can overlap and cross on another. Also the error bars at these larger sizes are broader (and thus more suspect), since counts of larger craters show more scatter, whereas the unit areas remain constant. Occasional clusters of relatively large craters within a given unit, particularly one of limited areal extent, can affect the curve so that the unit might seem to be older than units which it overlies or cuts.

  14. Single-Specimen Technique to Establish the J-Resistance of Linear Viscoelastic Solids with Constant Poisson's Ratio

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)

    2001-01-01

    A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.

  15. Updating the reference population to achieve constant genomic prediction reliability across generations.

    PubMed

    Pszczola, M; Calus, M P L

    2016-06-01

    The reliability of genomic breeding values (DGV) decays over generations. To keep the DGV reliability at a constant level, the reference population (RP) has to be continuously updated with animals from new generations. Updating RP may be challenging due to economic reasons, especially for novel traits involving expensive phenotyping. Therefore, the goal of this study was to investigate a minimal RP update size to keep the reliability at a constant level across generations. We used a simulated dataset resembling a dairy cattle population. The trait of interest was not included itself in the selection index, but it was affected by selection pressure by being correlated with an index trait that represented the overall breeding goal. The heritability of the index trait was assumed to be 0.25 and for the novel trait the heritability equalled 0.2. The genetic correlation between the two traits was 0.25. The initial RP (n=2000) was composed of cows only with a single observation per animal. Reliability of DGV using the initial RP was computed by evaluating contemporary animals. Thereafter, the RP was used to evaluate animals which were one generation younger from the reference individuals. The drop in the reliability when evaluating younger animals was then assessed and the RP was updated to re-gain the initial reliability. The update animals were contemporaries of evaluated animals (EVA). The RP was updated in batches of 100 animals/update. First, the animals most closely related to the EVA were chosen to update RP. The results showed that, approximately, 600 animals were needed every generation to maintain the DGV reliability at a constant level across generations. The sum of squared relationships between RP and EVA and the sum of off-diagonal coefficients of the inverse of the genomic relationship matrix for RP, separately explained 31% and 34%, respectively, of the variation in the reliability across generations. Combined, these parameters explained 53% of the variation in the reliability across generations. Thus, for an optimal RP update an algorithm considering both relationships between reference and evaluated animals, as well as relationships among reference animals, is required.

  16. Circumpolar variation in morphological characteristics of Greater White-fronted Geese Anser albifrons

    USGS Publications Warehouse

    Ely, Craig R.; Fox, A.D.; Alisauskas, R.T.; Andreev, A.; Bromley, R.G.; Degtyarev, Andrei G.; Ebbinge, B.; Gurtovaya, E.N.; Kerbes, R.; Kondratyev, Alexander V.; Kostin, I.; Krechmar, A.V.; Litvin, K.E.; Miyabayashi, Y.; Moou, J.H.; Oates, R.M.; Orthmeyer, D.L.; Sabano, Yutaka; Simpson, S.G.; Solovieva, D.V.; Spindler, Michael A.; Syroechkovsky, Y.V.; Takekawa, John Y.; Walsh, A.

    2005-01-01

    Capsule: Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range. Aims: To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation. Methods: Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically. Results: Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction. Conclusions: Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories. 

  17. Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition.

    PubMed

    Hesse, Elze; Pannell, John R

    2011-05-01

    Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua. The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared. Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes. Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.

  18. Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition

    PubMed Central

    Hesse, Elze; Pannell, John R.

    2011-01-01

    Background and Aims Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua. Methods The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared. Key Results Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes. Conclusions Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua. PMID:21385775

  19. Heterogeneity of Mosquito (Diptera: Culicidae) Control Community Size, Research Productivity, and Arboviral Diseases Across the United States.

    PubMed

    Hamer, Gabriel L

    2016-05-01

    Multiple factors lead to extensive variation in mosquito and mosquito-borne virus control programs throughout the United States. This variation is related to differences in budgets, number of personnel, operational activities targeting nuisance or vector species, integration of Geographical Information Systems, and the degree of research and development to improve management interventions through collaboration with academic institutions. To highlight this heterogeneity, the current study evaluates associations among the size of a mosquito control community, the research productivity, and the mosquito-borne virus human disease burden among states within the continental United States. I used the attendance at state mosquito and vector control meetings as a proxy for the size of the mosquito control community in each state. To judge research productivity, I used all peer-reviewed publications on mosquitoes and mosquito-borne viruses using data originating in each state over a 5- and 20-yr period. Total neuroinvasive human disease cases caused by mosquito-borne viruses were aggregated for each state. These data were compared directly and after adjusting for differences in human population size for each state. Results revealed that mean meeting attendance was positively correlated with the number of publications in each state, but not after correcting for the size of the population in each state. Additionally, human disease cases were positively correlated with the number of publications in each state. Finally, mean meeting attendance and human disease cases were only marginally positively associated, and no correlation existed after correcting for human population size. These analyses indicated that the mosquito control community size, research productivity, and mosquito-borne viral human disease burden varied greatly among states. The mechanisms resulting in this variation were discussed and the consequences of this variation are important given the constantly changing environment due to invasive mosquito species and arboviruses, urbanization, immigration, global travel, and climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Grain size effect on the giant dielectric constant of CaCu3Ti4O12 nanoceramics prepared by mechanosynthesis and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Yamada, Koji

    2014-04-01

    In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.

  1. Microbubbles and Blood Brain Barrier Opening: A Numerical Study on Acoustic Emissions and Wall Stress Predictions

    PubMed Central

    Goertz, David E.; Hynynen, Kullervo

    2015-01-01

    Focused ultrasound with microbubbles is an emerging technique for blood brain barrier (BBB) opening. Here, a comprehensive theoretical model of a bubble-fluid-vessel system has been developed which accounts for the bubble’s non-spherical oscillations inside a microvessel, and its resulting acoustic emissions. Numerical simulations of unbound and confined encapsulated bubbles were performed to evaluate the effect of the vessel wall on acoustic emissions and vessel wall stresses. Using a Marmottant shell model, the normalized second harmonic to fundamental emissions first decreased as a function of pressure (>50 kPa) until reaching a minima ("transition point") at which point they increased. The transition point of unbound compared to confined bubble populations occurred at different pressures and was associated with an accompanying increase in shear and circumferential wall stresses. As the wall stresses depend on the bubble to vessel wall distance, the stresses were evaluated for bubbles with their wall at a constant distance to a flat wall. As a result, the wall stresses were bubble size and frequency dependent and the peak stress values induced by bubbles larger than resonance remained constant versus frequency at a constant mechanical index. PMID:25546853

  2. Lipid Microarray Biosensor for Biotoxin Detection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates bymore » TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4« less

  3. Effects of size of ingestively masticated fragments of plant tissues on kinetics of digestion of NDF.

    PubMed

    Ellis, W C; Mahlooji, M; Lascano, C E; Matis, J H

    2005-07-01

    Ingestively masticated fragments were collected and sized via sieving. Different sizes of esophageal masticate and ruminal digesta fragments, and ground fragments of larger masticated pieces were incubated in vitro, and undigested NDF remaining at intervals of up to 168 h of incubation was determined. The ruminal age-dependent time delay (tau) for onset of digestion of NDF was positively correlated (P < 0.004) with the mean sieve aperture estimated to retain 50% of the fragments between successive sieve apertures (MRA). Degradation rate of potentially degradable NDF (PDF) and level of indigestible NDF were not related (P > 0.10) to MRA of masticated and ground fragments. Estimates of tau were positively related to MRA, with slopes of bermudagrass < corn silage < ruminal fragments of corn silage. It was concluded that fragment size-, and consequently, ruminal age-dependent onset of PDF degradation of a mixture of different fragment sizes results in an age-dependent rate of degradation of the more rapidly degrading of two subentities of PDF. Models are proposed that assume a tau before onset of simultaneous degradation of PDF from two pools characterized as having gamma-modeled age-dependency and age-constant rates. The ruminal age-dependent pool seems to be associated with the faster-degrading pool, and its rate parameter increases with range in MRA in the population of fragments. Conceptually, the ruminal age-dependent rate parameter for PDF degradation seems to represent a composite of several effects: 1) effects of the size-dependent tau; 2) range in MRA of the population of ingestively masticated fragments; and 3) subentities of PDF that degrade via more rapid age-dependent rates compared with subentities of PDF that degrade via age-constant rates. The estimated fractional rates of ruminative comminution of ingestively masticated fragments (0.060 to 0.075/h) were of a magnitude similar to the mean fractional rates of PDF digestion (0.030 to 0.085/h), which implies that ruminative comminution may be first-limiting to fractional rate of PDF digestion. The in vivo roles of ingestive and ruminative mastication of fragments on PDF degradation must be considered in any kinetic system for estimating PDF digestion in the rumen. These results and others in the literature suggest that the rate of surface area exposure rather than intrinsic chemical attributes of PDF may be first-limiting to degradation rate of PDF in vivo.

  4. The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability.

    PubMed

    White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R

    2017-06-14

    Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).

  5. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    USGS Publications Warehouse

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources will be available for monitoring. ?? 2011 The Wildlife Society. Copyright ?? The Wildlife Society, 2011.

  6. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    Many types of manufacturing processes involve powders and are affected by powder behavior. It is highly desirable to implement tools that allow the behavior of bulk powder to be predicted based on the behavior of only small quantities of powder. Such descriptions can enable engineers to significantly improve the performance of powder processing and formulation steps. In this work, an enhancement of the centrifuge technique is proposed as a means of powder characterization. This enhanced method uses specially designed substrates with hemispherical indentations within the centrifuge. The method was tested using simulations of the momentum balance at the substrate surface. Initial simulations were performed with an ideal powder containing smooth, spherical particles distributed on substrates designed with indentations. The van der Waals adhesion between the powder, whose size distribution was based on an experimentally-determined distribution from a commercial silica powder, and the indentations was calculated and compared to the removal force created in the centrifuge. This provided a way to relate the powder size distribution to the rotational speed required for particle removal for various indentation sizes. Due to the distinct form of the data from these simulations, the cumulative size distribution of the powder and the Hamaker constant for the system were be extracted. After establishing adhesion force characterization for an ideal powder, the same proof-of-concept procedure was followed for a more realistic system with a simulated rough powder modeled as spheres with sinusoidal protrusions and intrusions around the surface. From these simulations, it was discovered that an equivalent powder of smooth spherical particles could be used to describe the adhesion behavior of the rough spherical powder by establishing a size-dependent 'effective' Hamaker constant distribution. This development made it possible to describe the surface roughness effects of the entire powder through one adjustable parameter that was linked to the size distribution. It is important to note that when the engineered substrates (hemispherical indentations) were applied, it was possible to extract both powder size distribution and effective Hamaker constant information from the simulated centrifuge adhesion experiments. Experimental validation of the simulated technique was performed with a silica powder dispersed onto a stainless steel substrate with no engineered surface features. Though the proof-of-concept work was accomplished for indented substrates, non-ideal, relatively flat (non-indented) substrates were used experimentally to demonstrate that the technique can be extended to this case. The experimental data was then used within the newly developed simulation procedure to show its application to real systems. In the absence of engineered features on the substrates, it was necessary to specify the size distribution of the powder as an input to the simulator. With this information, it was possible to extract an effective Hamaker constant distribution and when the effective Hamaker constant distribution was applied in conjunction with the size distribution, the observed adhesion force distribution was described precisely. An equation was developed that related the normalized effective Hamaker constants (normalized by the particle diameter) to the particle diameter was formulated from the effective Hamaker constant distribution. It was shown, by application of the equation, that the adhesion behavior of an ideal (smooth, spherical) powder with an experimentally-validated, effective Hamaker constant distribution could be used to effectively represent that of a realistic powder. Thus, the roughness effects and size variations of a real powder are captured in this one distributed parameter (effective Hamaker constant distribution) which provides a substantial improvement to the existing technique. This can lead to better optimization of powder processing by enhancing powder behavior models.

  7. MATHEMATICAL CONSTANTS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  8. Linkage Disequilibrium Under Recurrent Bottlenecks

    PubMed Central

    Schaper, E.; Eriksson, A.; Rafajlovic, M.; Sagitov, S.; Mehlig, B.

    2012-01-01

    To model deviations from selectively neutral genetic variation caused by different forms of selection, it is necessary to first understand patterns of neutral variation. Best understood is neutral genetic variation at a single locus. But, as is well known, additional insights can be gained by investigating multiple loci. The resulting patterns reflect the degree of association (linkage) between loci and provide information about the underlying multilocus gene genealogies. The statistical properties of two-locus gene genealogies have been intensively studied for populations of constant size, as well as for simple demographic histories such as exponential population growth and single bottlenecks. By contrast, the combined effect of recombination and sustained demographic fluctuations is poorly understood. Addressing this issue, we study a two-locus Wright–Fisher model of a population subject to recurrent bottlenecks. We derive coalescent approximations for the covariance of the times to the most recent common ancestor at two loci in samples of two chromosomes. This covariance reflects the degree of association and thus linkage disequilibrium between these loci. We find, first, that an effective population-size approximation describes the numerically observed association between two loci provided that recombination occurs either much faster or much more slowly than the population-size fluctuations. Second, when recombination occurs frequently between but rarely within bottlenecks, we observe that the association of gene histories becomes independent of physical distance over a certain range of distances. Third, we show that in this case, a commonly used measure of linkage disequilibrium, σd2 (closely related to r^2), fails to capture the long-range association between two loci. The reason is that constituent terms, each reflecting the long-range association, cancel. Fourth, we analyze a limiting case in which the long-range association can be described in terms of a Xi coalescent allowing for simultaneous multiple mergers of ancestral lines. PMID:22048021

  9. Pubic Lice (Pthirus pubis): History, Biology and Treatment vs. Knowledge and Beliefs of US College Students

    PubMed Central

    Anderson, Alice L.; Chaney, Elizabeth

    2009-01-01

    Pubic lice (Pthirus pubis) maintain a worldwide parasitic population infesting two to over 10 percent of human populations, continuing a presence that has been constant since early evidence 10,000 years ago. Outbreaks in the 1970s have been recorded, but incomplete records preclude description of a definitive population cycle. Current levels of infestation in a US college student population were investigated in this study. Knowledge and opinions of students were also recorded in an online survey administered to college students taking a basic health course at a mid-sized East Coast University. In a group of 817 students, 35 reported experience with pubic lice or other STD infection. Knowledge, beliefs, and treatment attitudes were examined for the 782 students who did not have experience with either pubic lice or STD infection. These students deemed antibiotics as a viable treatment for pubic lice infestation. They also indicated negative attitudes toward the use of pesticide crèmes, which are the most useful prescription. Symptoms and transmission myths in student answers are described. PMID:19440402

  10. The leverage of demographic dynamics on carbon dioxide emissions: does age structure matter?

    PubMed

    Zagheni, Emilio

    2011-02-01

    This article provides a methodological contribution to the study of the effect of changes in population age structure on carbon dioxide (CO(2)) emissions. First, I propose a generalization of the IPAT equation to a multisector economy with an age-structured population and discuss the insights that can be obtained in the context of stable population theory. Second, I suggest a statistical model of household consumption as a function of household size and age structure to quantitatively evaluate the extent of economies of scale in consumption of energy-intensive goods, and to estimate age-specific profiles of consumption of energy-intensive goods and of CO(2) emissions. Third, I offer an illustration of the methodologies using data for the United States. The analysis shows that per-capita CO(2) emissions increase with age until the individual is in his or her 60s, and then emissions tend to decrease. Holding everything else constant, the expected change in U.S. population age distribution during the next four decades is likely to have a small, but noticeable, positive impact on CO(2) emissions.

  11. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-06

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  12. Visuomotor Dissociation in Cerebral Scaling of Size.

    PubMed

    Potgieser, Adriaan R E; de Jong, Bauke M

    2016-01-01

    Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.

  13. Planck's Constant as a Natural Unit of Measurement

    ERIC Educational Resources Information Center

    Quincey, Paul

    2013-01-01

    The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…

  14. Potential population-level effects of increased haulout-related mortality of Pacific walrus calves

    USGS Publications Warehouse

    Udevitz, Mark S.; Taylor, Rebecca L.; Garlich-Miller, Joel L.; Quakenbush, Lori T.; Snyder, Jonathan A.

    2013-01-01

    Availability of summer sea ice has been decreasing in the Chukchi Sea during recent decades, and increasing numbers of Pacific walruses have begun using coastal haulouts in late summer during years when sea ice retreats beyond the continental shelf. Calves and yearlings are particularly susceptible to being crushed during disturbance events that cause the herd to panic and stampede at these large haulouts, but the potential population-level effects of this mortality are unknown. We used recent harvest data, along with previous assumptions about demographic parameters for this population, to estimate female population size and structure in 2009 and project these numbers forward using a range of assumptions about future harvests and haulout-related mortality that might result from increased use of coastal haulouts during late summer. We found that if demographic parameters were held constant, the levels of harvest that occurred during 1990–2008 would have allowed the population to grow during that period. Our projections indicate, however, that an increase in haulout-related mortality affecting only calves has a greater effect on the population than an equivalent increase in harvest-related mortality distributed among all age classes. Therefore, disturbance-related mortality of calves at coastal haulouts may have relatively important population consequences.

  15. Slowly switching between environments facilitates reverse evolution in small populations.

    PubMed

    Tan, Longzhi; Gore, Jeff

    2012-10-01

    Natural populations must constantly adapt to ever-changing environmental conditions. A particularly interesting question is whether such adaptations can be reversed by returning the population to an ancestral environment. Such evolutionary reversals have been observed in both natural and laboratory populations. However, the factors that determine the reversibility of evolution are still under debate. The time scales of environmental change vary over a wide range, but little is known about how the rate of environmental change influences the reversibility of evolution. Here, we demonstrate computationally that slowly switching between environments increases the reversibility of evolution for small populations that are subject to only modest clonal interference. For small populations, slow switching reduces the mean number of mutations acquired in a new environment and also increases the probability of reverse evolution at each of these "genetic distances." As the population size increases, slow switching no longer reduces the genetic distance, thus decreasing the evolutionary reversibility. We confirm this effect using both a phenomenological model of clonal interference and also a Wright-Fisher stochastic simulation that incorporates genetic diversity. Our results suggest that the rate of environmental change is a key determinant of the reversibility of evolution, and provides testable hypotheses for experimental evolution. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  16. Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1.

    PubMed

    Vinje, William E; Gallant, Jack L

    2002-04-01

    We have investigated how the nonclassical receptive field (nCRF) affects information transmission by V1 neurons during simulated natural vision in awake, behaving macaques. Stimuli were centered over the classical receptive field (CRF) and stimulus size was varied from one to four times the diameter of the CRF. Stimulus movies reproduced the spatial and temporal stimulus dynamics of natural vision while maintaining constant CRF stimulation across all sizes. In individual neurons, stimulation of the nCRF significantly increases the information rate, the information per spike, and the efficiency of information transmission. Furthermore, the population averages of these quantities also increase significantly with nCRF stimulation. These data demonstrate that the nCRF increases the sparseness of the stimulus representation in V1, suggesting that the nCRF tunes V1 neurons to match the highly informative components of the natural world.

  17. Elastic constants from microscopic strain fluctuations

    PubMed

    Sengupta; Nielaba; Rao; Binder

    2000-02-01

    Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.

  18. Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation.

    PubMed

    Stephan, Wolfgang

    2016-01-01

    In the past 15 years, numerous methods have been developed to detect selective sweeps underlying adaptations. These methods are based on relatively simple population genetic models, including one or two loci at which positive directional selection occurs, and one or two marker loci at which the impact of selection on linked neutral variation is quantified. Information about the phenotype under selection is not included in these models (except for fitness). In contrast, in the quantitative genetic models of adaptation, selection acts on one or more phenotypic traits, such that a genotype-phenotype map is required to bridge the gap to population genetics theory. Here I describe the range of population genetic models from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and I also consider the case of polygenic selection characterized by subtle allele frequency shifts at many loci. Furthermore, I present an overview of the statistical tests that have been proposed based on these population genetics models to detect evidence for positive selection in the genome. © 2015 John Wiley & Sons Ltd.

  19. Modeling the impacts of hunting on the population dynamics of red howler monkeys (Alouatta seniculus)

    USGS Publications Warehouse

    Wiederholt, Ruscena; Fernandez-Duque, Eduardo; Diefenbach, Duane R.; Rudran, Rasanayagam

    2010-01-01

    Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un-hunted areas serve to enhance hunting yields, population size, and population persistence in hunted landscapes. Therefore, spatial regulation of hunting via a reserve system may be an effective management strategy for sustainable hunting, and we recommend it because it may also be more feasible to implement than harvest quotas or restrictions on season length.

  20. Effects of growth rate, size, and light availability on tree survival across life stages: a demographic analysis accounting for missing values and small sample sizes.

    PubMed

    Moustakas, Aristides; Evans, Matthew R

    2015-02-28

    Plant survival is a key factor in forest dynamics and survival probabilities often vary across life stages. Studies specifically aimed at assessing tree survival are unusual and so data initially designed for other purposes often need to be used; such data are more likely to contain errors than data collected for this specific purpose. We investigate the survival rates of ten tree species in a dataset designed to monitor growth rates. As some individuals were not included in the census at some time points we use capture-mark-recapture methods both to allow us to account for missing individuals, and to estimate relocation probabilities. Growth rates, size, and light availability were included as covariates in the model predicting survival rates. The study demonstrates that tree mortality is best described as constant between years and size-dependent at early life stages and size independent at later life stages for most species of UK hardwood. We have demonstrated that even with a twenty-year dataset it is possible to discern variability both between individuals and between species. Our work illustrates the potential utility of the method applied here for calculating plant population dynamics parameters in time replicated datasets with small sample sizes and missing individuals without any loss of sample size, and including explanatory covariates.

  1. Inbreeding and reproduction in endangered ungulates: preservation of genetic variation through the Organization of Genetic Resource Banks.

    PubMed

    Roldan, E R S; Gomendio, M; Garde, J J; Espeso, G; Ledda, S; Berlinguer, F; del Olmo, A; Soler, A J; Arregui, L; Crespo, C; González, R

    2006-10-01

    There is a constant increase in the number of species suffering marked reductions in population size. This reduction in size and the lack of genetic flow may lead to a decrease in genetic variability and to matings between close relatives (i.e. inbreeding) with an ensuing reduction in fitness. It is thus important to understand the mechanism underlying the deleterious effects of inbreeding and to develop reproductive biotechnologies that will allow the reduction of inbreeding depression by facilitating gene exchange between populations. The study of three endangered species of gazelles, Cuvier's gazelle (Gazella cuvieri), Mohor gazelle (Gazella dama mhorr) and dorcas gazelle (Gazella dorcas neglecta) has revealed that inbreeding negatively affects several semen parameters (motility, sperm morphology, acrosome integrity). Semen cryopreservation has been achieved in the three species but success varies depending on the diluent employed and the level of inbreeding. Artificial insemination of Mohor gazelles have led to the birth of the first gazelle born using frozen-thawed semen but improvements are needed before this technology can be applied on a routine basis for the genetic management of the populations. Collection of oocytes after ovarian stimulation, followed by in vitro maturation, fertilization and culture has met with some initial success in the Mohor gazelle. These, together with other reproductive technologies, will offer an invaluable help in preserving the maximum of genetic diversity of these and related endangered ungulate species.

  2. Daily and seasonal changes in heat exposure and the Hsp70 level of individuals from a field population of Xeropicta derbentina (Krynicki 1836) (Pulmonata, Hygromiidae) in Southern France.

    PubMed

    Dieterich, A; Fischbach, U; Ludwig, M; Di Lellis, M A; Troschinski, S; Gärtner, U; Triebskorn, R; Köhler, H-R

    2013-07-01

    The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.

  3. DCE-MRI-Derived Volume Transfer Constant (Ktrans) and DWI Apparent Diffusion Coefficient as Predictive Markers of Short- and Long-Term Efficacy of Chemoradiotherapy in Patients With Esophageal Cancer.

    PubMed

    Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen

    2018-01-01

    This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.

  4. Imaging nanoclusters in the constant height mode of the dynamic SFM.

    PubMed

    Barth, Clemens; Pakarinen, Olli H; Foster, Adam S; Henry, Claude R

    2006-04-14

    For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).

  5. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.

    Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas.more » We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.« less

  6. Deeper sparsely nets are size-optimal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1997-12-01

    The starting points of this paper are two size-optimal solutions: (i) one for implementing arbitrary Boolean functions (Horne, 1994); and (ii) another one for implementing certain sub-classes of Boolean functions (Red`kin, 1970). Because VLSI implementations do not cope well with highly interconnected nets--the area of a chip grows with the cube of the fan-in (Hammerstrom, 1988)--this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Horne and Hush (1994) valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will prove that size-optimalmore » solutions are obtained for small constant fan-in for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower than linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e. minimizing AT{sup 2}) solutions (Beiu, 1997a), while there are similar small constants relating to the capacity of processing information (Miller 1956).« less

  7. New insights in morphological analysis for managing activated sludge systems.

    PubMed

    Oliveira, Pedro; Alliet, Marion; Coufort-Saudejaud, Carole; Frances, Christine

    2018-06-01

    In activated sludge (AS) process, the impact of the operational parameters on process efficiency is assumed to be correlated with the sludge properties. This study provides a better insight into these interactions by subjecting a laboratory-scale AS system to a sequence of operating condition modifications enabling typical situations of a wastewater treatment plant to be represented. Process performance was assessed and AS floc morphology (size, circularity, convexity, solidity and aspect ratio) was quantified by measuring 100,000 flocs per sample with an automated image analysis technique. Introducing 3D distributions, which combine morphological properties, allowed the identification of a filamentous bulking characterized by a floc population shift towards larger sizes and lower solidity and circularity values. Moreover, a washout phenomenon was characterized by smaller AS flocs and an increase in their solidity. Recycle ratio increase and COD:N ratio decrease both promoted a slight reduction of floc sizes and a constant evolution of circularity and convexity values. The analysis of the volume-based 3D distributions turned out to be a smart tool to combine size and shape data, allowing a deeper understanding of the dynamics of floc structure under process disturbances.

  8. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  9. Convergence study of global meshing on enamel-cement-bracket finite element model

    NASA Astrophysics Data System (ADS)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  10. Genetic polymorphisms in varied environments.

    PubMed

    Powell, J R

    1971-12-03

    Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.

  11. An Upper Limit on the Functional Fraction of the Human Genome.

    PubMed

    Graur, Dan

    2017-07-01

    For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Integrodifference equations in patchy landscapes : II: population level consequences.

    PubMed

    Musgrave, Jeffrey; Lutscher, Frithjof

    2014-09-01

    We analyze integrodifference equations (IDEs) in patchy landscapes. Movement is described by a dispersal kernel that arises from a random walk model with patch dependent diffusion, settling, and mortality rates, and it incorporates individual behavior at an interface between two patch types. Growth follows a simple Beverton-Holt growth or linear decay. We obtain explicit formulae for the critical domain-size problem, and we illustrate how different individual behavior at the boundary between two patch types affects this quantity. We also study persistence conditions on an infinite, periodic, patchy landscape. We observe that if the population can persist on the landscape, the spatial profile of the invasion evolves into a discontinuous traveling periodic wave that moves with constant speed. Assuming linear determinacy, we calculate the dispersion relation and illustrate how movement behavior affects invasion speed. Numerical simulations justify our approach by showing a close correspondence between the spread rate obtained from the dispersion relation and from numerical simulations.

  13. Quantification of baseline pupillary response and task-evoked pupillary response during constant and incremental task load.

    PubMed

    Mosaly, Prithima R; Mazur, Lukasz M; Marks, Lawrence B

    2017-10-01

    The methods employed to quantify the baseline pupil size and task-evoked pupillary response (TEPR) may affect the overall study results. To test this hypothesis, the objective of this study was to assess variability in baseline pupil size and TEPR during two basic working memory tasks: constant load of 3-letters memorisation-recall (10 trials), and incremental load memorisation-recall (two trials of each load level), using two commonly used methods (1) change from trail/load specific baseline, (2) change from constant baseline. Results indicated that there was a significant shift in baseline between the trails for constant load, and between the load levels for incremental load. The TEPR was independent of shifts in baseline using method 1 only for constant load, and method 2 only for higher levels of incremental load condition. These important findings suggest that the assessment of both the baseline and methods to quantify TEPR are critical in ergonomics application, especially in studies with small number of trials per subject per condition. Practitioner Summary: Quantification of TEPR can be affected by shifts in baseline pupil size that are most likely affected by non-cognitive factors when other external factors are kept constant. Therefore, quantification methods employed to compute both baseline and TEPR are critical in understanding the information processing of humans in practical ergonomics settings.

  14. Range estimates and habitat use of invasive Silver Carp (Hypophthalmichthys molitrix): Evidence of sedentary and mobile individuals

    USGS Publications Warehouse

    Prechtel, Austin R.; Coulter, Alison A.; Etchison, Luke; Jackson, P. Ryan; Goforth, Reuben R.

    2018-01-01

    Unregulated rivers provide unobstructed corridors for the dispersal of both native and invasive species. We sought to evaluate range size and habitat use of an invasive species (Silver Carp, Hypophthalmichthys molitrix) in an unimpounded river reach (Wabash River, IN), to provide insights into the dispersal of invasive species and their potential overlap with native species. We hypothesized that range size would increase with fish length, be similar among sexes, and vary annually while habitats used would be deeper, warmer, lower velocity, and of finer substrate. Silver Carp habitat use supported our hypotheses but range size did not vary with sex or length. 75% home range varied annually, suggesting that core areas occupied by individuals may change relative to climate-based factors (e.g., water levels), whereas broader estimates of range size remained constant across years. Ranges were often centered on landscape features such as tributaries and backwaters. Results of this study indicate habitat and landscape features as potential areas where Silver Carp impacts on native ecosystems may be the greatest. Observed distribution of range sizes indicates the presence of sedentary and mobile individuals within the population. Mobile individuals may be of particular importance as they drive the spread of the invasive species into new habitats.

  15. Small fan-in is beautiful

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1997-09-01

    The starting points of this paper are two size-optimal solutions: (1) one for implementing arbitrary Boolean functions; and (2) another one for implementing certain subclasses of Boolean functions. Because VLSI implementations do not cope well with highly interconnected nets -- the area of a chip grows with the cube of the fan-in -- this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Horne and Hush valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will prove that size-optimal solutions are obtainedmore » for small constant fan-ins for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower that linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e., minimizing AT{sup 2}) solutions, while there are similar small constants relating to the capacity of processing information.« less

  16. Overpopulation question is complex, scientist says.

    PubMed

    Bauman, J

    1998-03-13

    This article presents Joel E. Cohen's lecture on the issue of population growth. Cohen, a professor at Rockefeller and Columbia universities, outlined the complexities involved in estimating the world's ability to support humans. He noted that the world has undergone a startling population explosion, with the total number of humans expected to surpass 6 billion in 1998, doubling the population size in only 40 years. Estimates of the total number of humans the planet can support have been varied over the years. However, the only constant element is that there is a wide gap between the standard of living in rich countries with relatively slow population growth and poor countries, where the population is booming. Statistics compiled in the 1960s, 1970s, 1980s, and 1990s attest to this fact. In addition, demographers show that food supply is not a good indicator of how many people an area can support and the fact that food prices are low does not indicate that there is no scarcity. Hence, there is a need to cope with the flourishing worldwide population. To do this, people should understand the complicated relationship between the physical constraints of the planet's carrying capacity and the choices that people must make. Cohen advocated for an improvement in the world's economic climate through better trade relations between developed and poorer countries.

  17. Evaluating the potential for stock size to limit recruitment in largemouth bass

    USGS Publications Warehouse

    Allen, Michael S.; Rogers, Mark W.; Catalano, Mathew J.; Gwinn, Daniel G.; Walsh, Stephen J.

    2011-01-01

    Compensatory changes in juvenile survival allow fish stocks to maintain relatively constant recruitment across a wide range of stock sizes (and levels of fishing), but few studies have experimentally explored recruitment compensation in fish populations. We evaluated the potential for recruitment compensation in largemouth bass Micropterus salmoides by stocking six 0.4-ha hatchery ponds with adult densities ranging from 6 to 40 fish over 2 years. Ponds were drained in October each year, and the age-0 fish densities were used as a measure of recruitment. We found no relationship between stock abundance and recruitment; ponds with low adult densities produced nearly as many recruits as the higher-density ponds in some cases. Both prey abundance and the growth of age-0 largemouth bass declined with age-0 fish density. Recruit abundance was highly variable both within and among the adult density groups, and thus we were unable to identify a clear stock–recruit relationship for largemouth bass. Our results indicate that reducing the number of effective spawners via angling practices would not reduce recruitment over a relatively large range in stock size.

  18. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  19. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less

  20. Inter-class competition in stage-structured populations: effects of adult density on life-history traits of adult and juvenile common lizards.

    PubMed

    San-Jose, Luis M; Peñalver-Alcázar, Miguel; Huyghe, Katleen; Breedveld, Merel C; Fitze, Patrick S

    2016-12-01

    Ecological and evolutionary processes in natural populations are largely influenced by the population's stage-structure. Commonly, different classes have different competitive abilities, e.g., due to differences in body size, suggesting that inter-class competition may be important and largely asymmetric. However, experimental evidence states that inter-class competition, which is important, is rare and restricted to marine fish. Here, we manipulated the adult density in six semi-natural populations of the European common lizard, Zootoca vivipara, while holding juvenile density constant. Adult density affected juveniles, but not adults, in line with inter-class competition. High adult density led to lower juvenile survival and growth before hibernation. In contrast, juvenile survival after hibernation was higher in populations with high adult density, pointing to relaxed inter-class competition. As a result, annual survival was not affected by adult density, showing that differences in pre- and post-hibernation survival balanced each other out. The intensity of inter-class competition affected reproduction, performance, and body size in juveniles. Path analyses unravelled direct treatment effects on early growth (pre-hibernation) and no direct treatment effects on the parameters measured after hibernation. This points to allometry of treatment-induced differences in early growth, and it suggests that inter-class competition mainly affects the early growth of the competitively inferior class and thereby their future performance and reproduction. These results are in contrast with previous findings and, together with results in marine fish, suggest that the strength and direction of density dependence may depend on the degree of inter-class competition, and thus on the availability of resources used by the competing classes.

  1. Probing the stochastic property of endoreduplication in cell size determination of Arabidopsis thaliana leaf epidermal tissue

    PubMed Central

    2017-01-01

    Cell size distribution is highly reproducible, whereas the size of individual cells often varies greatly within a tissue. This is obvious in a population of Arabidopsis thaliana leaf epidermal cells, which ranged from 1,000 to 10,000 μm2 in size. Endoreduplication is a specialized cell cycle in which nuclear genome size (ploidy) is doubled in the absence of cell division. Although epidermal cells require endoreduplication to enhance cellular expansion, the issue of whether this mechanism is sufficient for explaining cell size distribution remains unclear due to a lack of quantitative understanding linking the occurrence of endoreduplication with cell size diversity. Here, we addressed this question by quantitatively summarizing ploidy profile and cell size distribution using a simple theoretical framework. We first found that endoreduplication dynamics is a Poisson process through cellular maturation. This finding allowed us to construct a mathematical model to predict the time evolution of a ploidy profile with a single rate constant for endoreduplication occurrence in a given time. We reproduced experimentally measured ploidy profile in both wild-type leaf tissue and endoreduplication-related mutants with this analytical solution, further demonstrating the probabilistic property of endoreduplication. We next extended the mathematical model by incorporating the element that cell size is determined according to ploidy level to examine cell size distribution. This analysis revealed that cell size is exponentially enlarged 1.5 times every endoreduplication round. Because this theoretical simulation successfully recapitulated experimentally observed cell size distributions, we concluded that Poissonian endoreduplication dynamics and exponential size-boosting are the sources of the broad cell size distribution in epidermal tissue. More generally, this study contributes to a quantitative understanding whereby stochastic dynamics generate steady-state biological heterogeneity. PMID:28926847

  2. Spatially associated clump populations in Rosette from CO and dust maps

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor V.; Ossenkopf-Okada, Volker; Stanchev, Orlin; Schneider, Nicola; Donkov, Sava; Klessen, Ralf S.

    2018-04-01

    Spatial association of clumps from different tracers turns out to be a valuable tool to determine the physical properties of molecular clouds. It provides a reliable estimate for the X-factors, serves to trace the density of clumps seen in column densities only, and allows one to measure the velocity dispersion of clumps identified in dust emission. We study the spatial association between clump populations, extracted by use of the GAUSSCLUMPS technique from 12CO (1-0), 13CO (1-0) line maps and Herschel dust-emission maps of the star-forming region Rosette, and analyse their physical properties. All CO clumps that overlap with another CO or dust counterpart are found to be gravitationally bound and located in the massive star-forming filaments of the molecular cloud. They obey a single mass-size relation M_cl∝ R_cl^γ with γ ≃ 3 (implying constant mean density) and display virtually no velocity-size relation. We interpret their population as low-density structures formed through compression by converging flows and still not evolved under the influence of self-gravity. The high-mass parts of their clump mass functions are fitted by a power law dN_cl/d log M_cl∝ M_cl^{Γ } and display a nearly Salpeter slope Γ ˜ -1.3. On the other hand, clumps extracted from the dust-emission map exhibit a shallower mass-size relation with γ = 2.5 and mass functions with very steep slopes Γ ˜ -2.3 even if associated with CO clumps. They trace density peaks of the associated CO clumps at scales of a few tenths of pc where no single density scaling law should be expected.

  3. Predator bioenergetics and the prey size spectrum: do foraging costs determine fish production?

    PubMed

    Giacomini, Henrique C; Shuter, Brian J; Lester, Nigel P

    2013-09-07

    Most models of fish growth and predation dynamics assume that food ingestion rate is the major component of the energy budget affected by prey availability, while active metabolism is invariant (here called constant activity hypothesis). However, increasing empirical evidence supports an opposing view: fish tend to adjust their foraging activity to maintain reasonably constant ingestion levels in the face of varying prey density and/or quality (the constant satiation hypothesis). In this paper, we use a simple but flexible model of fish bioenergetics to show that constant satiation is likely to occur in fish that optimize both net production rate and life history. The model includes swimming speed as an explicit measure of foraging activity leading to both energy gains (through prey ingestion) and losses (through active metabolism). The fish is assumed to be a particulate feeder that has to swim between consecutive individual prey captures, and that shifts its diet ontogenetically from smaller to larger prey. The prey community is represented by a negative power-law size spectrum. From these rules, we derive the net production of fish as a function of the size spectrum, and this in turn establishes a formal link between the optimal life history (i.e. maximum body size) and prey community structure. In most cases with realistic parameter values, optimization of life history ensures that: (i) a constantly satiated fish preying on a steep size spectrum will stop growing and invest all its surplus energy in reproduction before satiation becomes too costly; (ii) conversely, a fish preying on a shallow size spectrum will grow large enough for satiation to be present throughout most of its ontogeny. These results provide a mechanistic basis for previous empirical findings, and call for the inclusion of active metabolism as a major factor limiting growth potential and the numerical response of predators in theoretical studies of food webs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Dilemma of dilemmas: how collective and individual perspectives can clarify the size dilemma in voluntary linear public goods dilemmas.

    PubMed

    Shank, Daniel B; Kashima, Yoshihisa; Saber, Saam; Gale, Thomas; Kirley, Michael

    2015-01-01

    Empirical findings on public goods dilemmas indicate an unresolved dilemma: that increasing size-the number of people in the dilemma-sometimes increases, decreases, or does not influence cooperation. We clarify this dilemma by first classifying public goods dilemma properties that specify individual outcomes as individual properties (e.g., Marginal Per Capita Return) and group outcomes as group properties (e.g., public good multiplier), mathematically showing how only one set of properties can remain constant as the dilemma size increases. Underpinning decision-making regarding individual and group properties, we propose that individuals are motivated by both individual and group preferences based on a theory of collective rationality. We use Van Lange's integrated model of social value orientations to operationalize these preferences as an amalgamation of outcomes for self, outcomes for others, and equality of outcomes. Based on this model, we then predict how the public good's benefit and size, combined with controlling individual versus group properties, produce different levels of cooperation in public goods dilemmas. A two (low vs. high benefit) by three (2-person baseline vs. 5-person holding constant individual properties vs. 5-person holding constant group properties) factorial experiment (group n = 99; participant n = 390) confirms our hypotheses. The results indicate that when holding constant group properties, size decreases cooperation. Yet when holding constant individual properties, size increases cooperation when benefit is low and does not affect cooperation when benefit is high. Using agent-based simulations of individual and group preferences vis-à-vis the integrative model, we fit a weighted simulation model to the empirical data. This fitted model is sufficient to reproduce the empirical results, but only when both individual (self-interest) and group (other-interest and equality) preference are included. Our research contributes to understanding how people's motivations and behaviors within public goods dilemmas interact with the properties of the dilemma to lead to collective outcomes.

  5. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  6. Cell Size Regulation in Bacteria

    NASA Astrophysics Data System (ADS)

    Amir, Ariel

    2014-05-01

    Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.

  7. Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio-Pleistocene divergence of dwarfs and giants across an Afromontane archipelago.

    PubMed

    Taylor, Peter J; Stoffberg, Samantha; Monadjem, Ara; Schoeman, Martinus Corrie; Bayliss, Julian; Cotterill, Fenton P D

    2012-01-01

    Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens). Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe). A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya). Relative to the intermediate-sized savanna population (Clade 2), these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique) or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa). Sympatry between divergent clades (Clade 1 and Clade 2) at Lutope-Ngolangola Gorge (NW Zimbabwe) is attributed to recent range expansions. We propose an "Allometric Speciation Hypothesis", which attributes the evolution of this species complex of bats to divergence in constant frequency (CF) sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz) represents the allometric effect of adaptive divergence in skull size, represented in the evolution of gigantism and dwarfism in habitat islands.

  8. Four New Bat Species (Rhinolophus hildebrandtii Complex) Reflect Plio-Pleistocene Divergence of Dwarfs and Giants across an Afromontane Archipelago

    PubMed Central

    Taylor, Peter J.; Stoffberg, Samantha; Monadjem, Ara; Schoeman, Martinus Corrie; Bayliss, Julian; Cotterill, Fenton P. D.

    2012-01-01

    Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens). Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe). A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya). Relative to the intermediate-sized savanna population (Clade 2), these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique) or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa). Sympatry between divergent clades (Clade 1 and Clade 2) at Lutope-Ngolangola Gorge (NW Zimbabwe) is attributed to recent range expansions. We propose an “Allometric Speciation Hypothesis”, which attributes the evolution of this species complex of bats to divergence in constant frequency (CF) sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz) represents the allometric effect of adaptive divergence in skull size, represented in the evolution of gigantism and dwarfism in habitat islands. PMID:22984399

  9. Selected classes of minimised hammerhead ribozyme have very high cleavage rates at low Mg2+ concentration.

    PubMed Central

    Conaty, J; Hendry, P; Lockett, T

    1999-01-01

    In vitro selection was used to enrich for highly efficient RNA phosphodiesterases within a size-constrained (18 nt) ribonucleotide domain. The starting population (g0) was directed in trans against an RNA oligonucleotide substrate immobilised to an avidin-magnetic phase. Four rounds of selection were conducted using 20 mM Mg2+to fractionate the population on the basis of divalent metal ion-dependent phosphodiesterase activity. The resulting generation 4 (g4) RNA was then directed through a further two rounds of selection using low concentrations of Mg2+. Generation 6 (g6) was composed of sets of active, trans cleaving minimised ribozymes, containing recognised hammerhead motifs in the conserved nucleotides, but with highly variable linker domains (loop II-L.1-L.4). Cleavage rate constants in the g6 population ranged from 0.004 to 1.3 min-1at 1 mM Mg2+(pH 8.0, 37 degrees C). Selection was further used to define conserved positions between G(10.1) and C(11.1) required for high cleavage activity at low Mg2+concentration. At 10 mM MgCl2the kinetic phenotype of these molecules was comparable to a hammerhead ribozyme with 4 bp in helix II. At low Mg2+concentration, the disparity in cleavage rate constants increases in favour of the minimised ribozymes. Favourable kinetic traits appeared to be a general property for specific selected linker sequences, as the high rates of catalysis were transferable to a different substrate system. PMID:10325431

  10. Pushing the limit of NMR-based distance measurements - retrieving dipolar couplings to spins with extensively large quadrupolar frequencies.

    PubMed

    Makrinich, M; Nimerovsky, E; Goldbourt, A

    2018-04-14

    Dipolar recoupling under magic-angle spinning allows to measure accurate inter-nuclear distances provided that the two interacting spins can be efficiently and uniformly excited. Alexander (Lex) Vega has shown that adiabatic transfers of populations in quadrupolar spins during the application of constant-wave (cw) radio-frequency pulses lead to efficient and quantifiable dipolar recoupling curves. Accurate distance determination within and beyond the adiabatic regime using cw pulses is limited by the size of the quadrupolar coupling constant. Here we show that using the approach of long-pulse phase modulation, dipolar recoupling and accurate distances can be obtained for nuclei having extensively large quadrupolar frequencies of 5-10 MHz. We demonstrate such results by obtaining a 31 P- 79/81 Br distance in a compound for which bromine-79 (spin-3/2) has a quadrupolar coupling constant of 11.3 MHz, and a 13 C- 209 Bi distance where the bismuth (spin-9/2) has a quadrupolar coupling constant of 256 MHz, equaling a quadrupolar frequency of 10.7 MHz. For Bromine, we demonstrate that an analytical curve based on the assumption of complete spin saturation fits the data. In the case of bismuth acetate, a C-Bi 3 spin system must be used in order to match the correct saturation recoupling curve, and results are in agreement with the crystallographic structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Timing and Order of Transmission Events Is Not Directly Reflected in a Pathogen Phylogeny

    PubMed Central

    Romero-Severson, Ethan; Skar, Helena; Bulla, Ingo; Albert, Jan; Leitner, Thomas

    2014-01-01

    Pathogen phylogenies are often used to infer spread among hosts. There is, however, not an exact match between the pathogen phylogeny and the host transmission history. Here, we examine in detail the limitations of this relationship. First, all splits in a pathogen phylogeny of more than 1 host occur within hosts, not at the moment of transmission, predating the transmission events as described by the pretransmission interval. Second, the order in which nodes in a phylogeny occur may be reflective of the within-host dynamics rather than epidemiologic relationships. To investigate these phenomena, motivated by within-host diversity patterns, we developed a two-phase coalescent model that includes a transmission bottleneck followed by linear outgrowth to a maximum population size followed by either stabilization or decline of the population. The model predicts that the pretransmission interval shrinks compared with predictions based on constant population size or a simple transmission bottleneck. Because lineages coalesce faster in a small population, the probability of a pathogen phylogeny to resemble the transmission history depends on when after infection a donor transmits to a new host. We also show that the probability of inferring the incorrect order of multiple transmissions from the same host is high. Finally, we compare time of HIV-1 infection informed by genetic distances in phylogenies to independent biomarker data, and show that, indeed, the pretransmission interval biases phylogeny-based estimates of when transmissions occurred. We describe situations where caution is needed not to misinterpret which parts of a phylogeny that may indicate outbreaks and tight transmission clusters. PMID:24874208

  12. The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.

    PubMed

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J

    2018-07-01

    This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    PubMed

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  14. Modeling the Present and Future Incidence of Pediatric Hand, Foot, and Mouth Disease Associated with Ambient Temperature in Mainland China.

    PubMed

    Zhao, Qi; Li, Shanshan; Cao, Wei; Liu, De-Li; Qian, Quan; Ren, Hongyan; Ding, Fan; Williams, Gail; Huxley, Rachel; Zhang, Wenyi; Guo, Yuming

    2018-04-20

    There is limited evidence about the association between ambient temperature and the incidence of pediatric hand, foot, and mouth disease (HFMD) nationwide in China. We examined the childhood temperature-HFMD associations across mainland China, and we projected the change in HFMD cases due to projected temperature change by the 2090s. Data on daily HFMD (children 0-14 y old) counts and weather were collected from 362 sites during 2009-2014. Daily temperature by the 2090s was downscaled under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Temperature-HFMD associations were quantified using a two-stage Poisson regression with a distributed lag nonlinear model. The impact of changes in temperature on the incidence of HFMD was estimated by combining the fitted temperature-HFMD associations with projected temperatures under each scenario, assuming a constant population structure. Sensitivity analyses were performed to assess the influence of primary model assumptions. During 2009-2014, >11 million HFMD cases were reported. In most regions, the temperature-HFMD association had an inverted U shape with a peak at approximately 20°C, but the association leveled off or continued to increase in the Inner Mongolia and Northeast regions. When estimates were pooled across all regions and the population size was held constant, the projected incidence of HFMD increased by 3.2% [95% empirical confidence interval (eCI): −13.5%, 20.0%] and 5.3% (95% eCI: −33.3%, 44.0%) by the 2090s under the RCP 4.5 and 8.5 scenarios, respectively. However, regional projections suggest that HFMD may decrease with climate change in temperate areas of central and eastern China. Our estimates suggest that the association between temperature and HFMD varies across China and that the future impact of climate change on HFMD incidence will vary as well. Other factors, including changes in the size of the population at risk (children 0-14 y old) will also influence future HFMD trends. https://doi.org/10.1289/EHP3062.

  15. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-08-01

    Ancient civilizations may have dispersed or collapsed under extreme dry conditions. There are indications that the same may hold for modern societies. However, hydroclimatic change cannot be the sole predictor of the fate of contemporary societies in water-scarce regions. This paper focuses on technological change as a factor that may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. We study the role of technological change on the dynamics of coupled human-water systems, and model technological change as an endogenous process that depends on many factors intrinsic to coupled human-water dynamics. We do not treat technology as an exogenous random sequence of events, but assume that it results from societal actions. While the proposed model is a rather simple model of a coupled human-water system, it is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity, but typically it does so only to a certain extent. In general we find that endogenous technology change under increasing water scarcity helps to delay the peak of population size before it inevitably starts to decline. We also analyze the case when water remains constant over time and find that co-evolutionary trajectories can never grow at a constant rate; rather the rate itself grows with time. Thus our model does not predict a co-evolutionary trajectory of a socio-hydrological system where technological innovation harmoniously provides for a growing population. It allows either for an explosion or an eventual dispersal of population. The latter occurs only under increasing water scarcity. As a result, we draw the conclusion that declining consumption per capita despite technological advancement and increase in aggregate production may serve as a useful predictor of upcoming decline in contemporary societies in water-scarce basins.

  16. Identifying key demographic parameters of a small island–associated population of Indo-Pacific bottlenose dolphins (Reunion, Indian Ocean)

    PubMed Central

    Estrade, Vanessa; Fayan, Jacques

    2017-01-01

    Photo-identification surveys of Indo-Pacific bottlenose dolphins were conducted from 2009 to 2014 off Reunion Island (55°E33’/21°S07’), in the Indian Ocean. Robust Design models were applied to produce the most reliable estimate of population abundance and survival rate, while accounting for temporary emigration from the survey area (west coast). The sampling scheme consisted of a five-month (June–October) sampling period in each year of the study. The overall population size at Reunion was estimated to be 72 individuals (SE = 6.17, 95%CI = 61–85), based on a random temporary emigration (γ”) of 0.096 and a proportion of 0.70 (SE = 0.03) distinct individuals. The annual survival rate was 0.93 (±0.018 SE, 95%CI = 0.886–0.958) and was constant over time and between sexes. Models considering gender groups indicated different movement patterns between males and females. Males showed null or quasi-null temporary emigration (γ” = γ’ < 0.01), while females showed a random temporary emigration (γ”) of 0.10, suggesting that a small proportion of females was outside the survey area during each primary sampling period. Sex-specific temporary migration patterns were consistent with movement and residency patterns observed in other areas. The Robust Design approach provided an appropriate sampling scheme for deriving island-associated population parameters, while allowing to restrict survey effort both spatially (i.e. west coast only) and temporally (five months per year). Although abundance and survival were stable over the six years, the small population size of fewer than 100 individuals suggested that this population is highly vulnerable. Priority should be given to reducing any potential impact of human activity on the population and its habitat. PMID:28640918

  17. On incomplete sampling under birth-death models and connections to the sampling-based coalescent.

    PubMed

    Stadler, Tanja

    2009-11-07

    The constant rate birth-death process is used as a stochastic model for many biological systems, for example phylogenies or disease transmission. As the biological data are usually not fully available, it is crucial to understand the effect of incomplete sampling. In this paper, we analyze the constant rate birth-death process with incomplete sampling. We derive the density of the bifurcation events for trees on n leaves which evolved under this birth-death-sampling process. This density is used for calculating prior distributions in Bayesian inference programs and for efficiently simulating trees. We show that the birth-death-sampling process can be interpreted as a birth-death process with reduced rates and complete sampling. This shows that joint inference of birth rate, death rate and sampling probability is not possible. The birth-death-sampling process is compared to the sampling-based population genetics model, the coalescent. It is shown that despite many similarities between these two models, the distribution of bifurcation times remains different even in the case of very large population sizes. We illustrate these findings on an Hepatitis C virus dataset from Egypt. We show that the transmission times estimates are significantly different-the widely used Gamma statistic even changes its sign from negative to positive when switching from the coalescent to the birth-death process.

  18. Modeling of equilibrium hollow objects stabilized by electrostatics.

    PubMed

    Mani, Ethayaraja; Groenewold, Jan; Kegel, Willem K

    2011-05-18

    The equilibrium size of two largely different kinds of hollow objects behave qualitatively differently with respect to certain experimental conditions. Yet, we show that they can be described within the same theoretical framework. The objects we consider are 'minivesicles' of ionic and nonionic surfactant mixtures, and shells of Keplerate-type polyoxometalates. The finite-size of the objects in both systems is manifested by electrostatic interactions. We emphasize the importance of constant charge and constant potential boundary conditions. Taking these conditions into account, indeed, leads to the experimentally observed qualitatively different behavior of the equilibrium size of the objects.

  19. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric radar measurements from melting hydrometeors, it is necessary to move away from the restriction that the melting particles are spherical. In this study, our primary focus is on the derivation of the effective dielectric constants of non-spherical particles that are mixtures of ice and water. The computational model for the ice-water particle is described by a collection of 128x128x128 cubic cells of identical size. Because of the use of such a high-resolution model, the particles can be described accurately not only with regard to shape but with respect to structure as well. The Cartesian components of the mean internal electric field of particles, which are used to infer the effective dielectric constants, are calculated at each cell by the use of the Conjugate Gradient-Fast Fourier Transform (CG-FFT) numerical method. In this work we first check the validity of derived effective dielectric constant from a non-spherical mixed phase particle by comparing the polarimetric scattering parameters of an ice-water spheroid obtained from the CGFFT to those computed from the T-matrix for a homogeneous particle with the same geometry as that of the mixed phase particle (such as size, shape and orientation) and with an effective dielectric constant derived from the internal field of the mixed-phase particle. The accuracy of the effective dielectric constant can be judged by whether the scattering parameters of interest can accurately reproduce those of the exact solution, i.e., the T-matrix results. The purpose of defining an effective dielectric constant is to reduce the complexity of the scattering calculations in the sense that the effective dielectric constant, once obtained, may be applicable to a range of particle sizes, shapes and orientations. Conversely, if a different effective dielectric constant is needed for each particle size or shape, then its utility would be marginal. Having verified that the effective dielectric constant defined for a particular particle with a fixed shape, size, and orientation is valid, a check is performed to see if this effective dielectric constant can be used to characterize a class of particle types (with arbitrary sizes, shapes and orientations) if the fractional ice-water contents of melting particles remain the same. Among the scattering and polarimatric parameters used for examination of effective dielectric constant in this study, are the radar backscattering, extinction and scattering coefficients, asymmetry factor, differential reflectivity factor (ZDR), phase shift and linear polarization ratio (LDR). The goal is to determine whether the effective dielectric constant approach provides a means to compute accurately the radar polarimetric scattering parameters and radiometer brightness temperature quantities from the melting layer in a relatively simple and efficient way.

  20. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations.

    PubMed

    Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar

    2017-01-01

    Organisms are believed to have evolved circadian clocks as adaptations to deal with cyclic environmental changes, and therefore it has been hypothesized that evolution in constant environments would lead to regression of such clocks. However, previous studies have yielded mixed results, and evolution of circadian clocks under constant conditions has remained an unsettled topic of debate in circadian biology. In continuation of our previous studies, which reported persistence of circadian rhythms in Drosophila melanogaster populations evolving under constant light, here we intended to examine whether circadian clocks and the associated properties evolve differently under constant light and constant darkness. In this regard, we assayed activity-rest, adult emergence and oviposition rhythms of D. melanogaster populations which have been maintained for over 19 years (~330 generations) under three different light regimes - constant light (LL), light-dark cycles of 12:12 h (LD) and constant darkness (DD). We observed that while circadian rhythms in all the three behaviors persist in both LL and DD stocks with no differences in circadian period, they differed in certain aspects of the entrained rhythms when compared to controls reared in rhythmic environment (LD). Interestingly, we also observed that DD stocks have evolved significantly higher robustness or power of free-running activity-rest and adult emergence rhythms compared to LL stocks. Thus, our study, in addition to corroborating previous results of circadian clock evolution in constant light, also highlights that, contrary to the expected regression of circadian clocks, rearing in constant darkness leads to the evolution of more robust circadian clocks which may be attributed to an intrinsic adaptive advantage of circadian clocks and/or pleiotropic functions of clock genes in other traits.

  1. Stochastic von Bertalanffy models, with applications to fish recruitment.

    PubMed

    Lv, Qiming; Pitchford, Jonathan W

    2007-02-21

    We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.

  2. Strong fluctuations in aboveground population size do not limit genetic diversity in populations of an endangered biennial species.

    PubMed

    Münzbergová, Zuzana; Šurinová, Maria; Husáková, Iveta; Brabec, Jiří

    2018-04-26

    Assessing genetic diversity within populations of rare species and understanding its determinants are crucial for effective species protection. While a lot is known about the relationships between genetic diversity, fitness, and current population size, very few studies explored the effects of past population size. Knowledge of past population size may, however, improve our ability to predict future population fates. We studied Gentianella praecox subsp. bohemica, a biennial species with extensive seed bank. We tested the effect of current, past minimal and maximal population size, and harmonic mean of population sizes within the last 15 years on genetic diversity and fitness. Maximum population size over the last 15 years was the best predictor of expected heterozygosity of the populations and was significantly related to current population size and management. Plant fitness was significantly related to current as well as maximum population size and expected heterozygosity. The results suggested that information on past population size may improve our understanding of contemporary genetic diversity across populations. They demonstrated that despite the strong fluctuations in population size, large reductions in population size do not result in immediate loss of genetic diversity and reduction of fitness within the populations. This is likely due to the seed bank of the species serving as reservoir of the genetic diversity of the populations. From a conservation point of view, this suggests that the restoration of small populations of short-lived species with permanent seed bank is possible as these populations may still be genetically diverse.

  3. Constraining particle size-dependent plume sedimentation from the 17 June 1996 eruption of Ruapehu Volcano, New Zealand, using geophysical inversions

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; Frazer, L. N.; Wolfe, C. J.; Houghton, B. F.; Rosenberg, M. D.

    2014-03-01

    Weak subplinian-plinian plumes pose frequent hazards to populations and aviation, yet many key parameters of these particle-laden plumes are, to date, poorly constrained. This study recovers the particle size-dependent mass distribution along the trajectory of a well-constrained weak plume by inverting the dispersion process of tephra fallout. We use the example of the 17 June 1996 Ruapehu eruption in New Zealand and base our computations on mass per unit area tephra measurements and grain size distributions at 118 sample locations. Comparisons of particle fall times and time of sampling collection, as well as observations during the eruption, reveal that particles smaller than 250 μm likely settled as aggregates. For simplicity we assume that all of these fine particles fell as aggregates of constant size and density, whereas we assume that large particles fell as individual particles at their terminal velocity. Mass fallout along the plume trajectory follows distinct trends between larger particles (d≥250 μm) and the fine population (d<250 μm) that are likely due to the two different settling behaviors (aggregate settling versus single-particle settling). In addition, we computed the resulting particle size distribution within the weak plume along its axis and find that the particle mode shifts from an initial 1φ mode to a 2.5φ mode 10 km from the vent and is dominated by a 2.5 to 3φ mode 10-180 km from vent, where the plume reaches the coastline and we do not have further field constraints. The computed particle distributions inside the plume provide new constraints on the mass transport processes within weak plumes and improve previous models. The distinct decay trends between single-particle settling and aggregate settling may serve as a new tool to identify particle sizes that fell as aggregates for other eruptions.

  4. Constraining Bulk Densities of Near-Earth Asteroid Surfaces from Radar Observations Using Laboratory Measurements of Permittivity

    NASA Astrophysics Data System (ADS)

    Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.

    2017-12-01

    Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.

  5. Molten salt synthesis of nanocrystalline phase of high dielectric constant material CaCu3Ti4O12.

    PubMed

    Prakash, B Shri; Varma, K B R

    2008-11-01

    Nanocrystalline powders of giant dielectric constant material, CaCu3Ti4O12 (CCTO), have been prepared successfully by the molten salt synthesis (MSS) using KCl at 750 degrees C/10 h, which is significantly lower than the calcination temperature (approximately 1000 degrees C) that is employed to obtain phase pure CCTO in the conventional solid-state reaction route. The water washed molten salt synthesized powder, characterized by X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) confirmed to be a phase pure CCTO associated with approximately 150 nm sized crystallites of nearly spherical shape. The decrease in the formation temperature/duration of CCTO in MSS method was attributed to an increase in the diffusion rate or a decrease in the diffusion length of reacting ions in the molten salt medium. As a consequence of liquid phase sintering, pellets of as-synthesized KCl containing CCTO powder exhibited higher sinterability and grain size than that of KCl free CCTO samples prepared by both MSS method and conventional solid-state reaction route. The grain size and the dielectric constant of KCl containing CCTO ceramics increased with increasing sintering temperature (900 degrees C-1050 degrees C). Indeed the dielectric constants of these ceramics were higher than that of KCl free CCTO samples prepared by both MSS method and those obtained via the solid-state reaction route and sintered at the same temperature. Internal barrier layer capacitance (IBLC) model was invoked to correlate the observed dielectric constant with the grain size in these samples.

  6. Ostracod body size trends do not follow either Bergmann's rule or Cope's rule during periods of constant temperature increase

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Seshadri, P.; Amin, V.; Heim, N. A.; Payne, J.

    2013-12-01

    Over time, organisms have adapted to changing environments by evolving to be larger or smaller. Scientists have described body-size trends using two generalized theories. Bergmann's rule states that body size is inversely related to temperature, and Cope's rule establishes an increase over time. Cope's rule has been hypothesized as a temporal manifestation of Bergmann's rule, as the temperature of the Earth has consistently decreased over time and mean body size has increased. However, during times of constant temperature increase, Bergmann's rule and Cope's rule predict opposite effects on body size. Our goal was to clarify this relationship using both accessible proxies of historic temperature - atmospheric CO2 levels and paleo-latitude. We measured ostracod lengths throughout the Paleozoic and Mesozoic eras (using the Catalogue of Ostracoda) and utilized ostracod latitudinal information from the Paleobiology Database. By closely studying body-size trends during four time periods of constant CO2 increase across spectrums of time and latitude, we were able to compare the effects of Cope's and Bergmann's rule. The correlation, p-values, and slopes of each of our graphs showed that there is no clear relationship between body size and each of these rules in times of temperature increase, both latitudinally and temporally. Therefore, both Cope's and Bergmann's rule act on marine ostracods and no rule is dominant, though our results more strongly disprove the latitudinal variation in ostracod size.

  7. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.

    PubMed

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  8. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    NASA Astrophysics Data System (ADS)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  9. Practical implications of theoretical consideration of capsule filling by the dosator nozzle system.

    PubMed

    Jolliffe, I G; Newton, J M

    1982-05-01

    Eight lactose size fractions with mean particle sizes ranging from 15.6 to 155.2 micrometers were characterized by their failure properties using a Jenike shear cell. The effective angle of internal friction was found to be constant for all size fractions, with a mean value of 36.2 degrees. Jenike flow factors could only be obtained for the two most cohesive size fractions presumably due to limitations of the shear cell. Angles of wall friction, phi, were determined for all size fractions on face ground and turned stainless steel surfaces. These decreased with increasing particle size up to around 40 micrometers, above which they became effectively constant for both surfaces. The rougher turned plate gave consistently higher values of phi for each particle size. Simple retention experiments with a dosator nozzle and a range of powder bed bulk densities showed good retention was possible only up to a particle size of around 40 micrometers. Retention was difficult or impossible above this size. Values of phi were applied to equations derived in the theoretical approach described previously (Jolliffe et al 1980). This showed that the strength required within a powder to ensure arching increases with increasing particle size up to around 40 micrometers. Above this size, this strength requirement becomes constant. This is related to the powder retention observations. Finally, the failure data was used to calculate the minimum compressive stresses required to ensure powder retention within the dosator nozzle, by employing the equations described by Jolliffe et al (1980). This suggested that, as powders became more free flowing, a larger compressive stress is necessary and that the angle of wall friction should be lower to ensure stress is transmitted to the arching zone.

  10. Is alloparenting helpful for Mednyi Island arctic foxes, Alopex lagopus semenovi?

    PubMed

    Kruchenkova, Elena P; Goltsman, Michael; Sergeev, Sergei; Macdonald, David W

    2009-04-01

    The Arctic Fox Alopex lagopus semenovi population on Mednyi Island is completely isolated and subsists largely by scavenging on seabird colonies, which have remained abundant and spatio-temporally predictable for many years. We compared population data at the beginning of 1976/1978 and some time after 1994-2005, finding an 85% decline in fox numbers due to disease, to assess the effect of population size on social structure. A total of 81 groups of known size and composition was observed during this 29-year period. Overall, helpers (usually non-lactating yearling females) occurred in 25.7% of groups, and in 32.4% of groups there were two or three lactating females. Female engagement in alloparental behaviour decreased, but not statistically significantly, after the decline in population density. Total food availability was apparently constant throughout the study period, and therefore, the amount available per individual was much higher later in the study. Both communally nursing females and helpers brought food and helped to guard the litter. However, the benefits of communal rearing were unclear. While cubs were left without guards significantly more rarely in the groups with an additional adult, the number of cubs weaned per lactating female was greater in groups with one (3.93 +/- 1.60), as opposed to two or three (3.06 +/- 0.92), lactating females. Survival of cubs to 1 year of age in the groups with two lactating females and/or with helpers was lower than that in the families with one lactating female without helpers (22.2% vs 32.2%). Fewer second-generation litters were born to foxes produced by composite families than to those produced by pairs. Reproductive adults producing by pairs had, on average, 1.23 (+/-1.72) second-generation litters. In groups that initially included additional adults, the average number of second-generation litters per reproductive female was 0.21 (+/-0.49) and 0.46 (+/-0.81) litters per male. Thus, according to three measures, increased group size had no apparent positive impact on reproductive success. The increased parental investment and enhanced guarding of the cubs in the larger families could be beneficial under conditions of high population density and a saturated biotope to which the island fox population was presumably adapted before the population crash in the late 1970s.

  11. Is alloparenting helpful for Mednyi Island arctic foxes, Alopex lagopus semenovi?

    NASA Astrophysics Data System (ADS)

    Kruchenkova, Elena P.; Goltsman, Michael; Sergeev, Sergei; MacDonald, David W.

    2009-04-01

    The Arctic Fox Alopex lagopus semenovi population on Mednyi Island is completely isolated and subsists largely by scavenging on seabird colonies, which have remained abundant and spatio-temporally predictable for many years. We compared population data at the beginning of 1976/1978 and some time after 1994-2005, finding an 85% decline in fox numbers due to disease, to assess the effect of population size on social structure. A total of 81 groups of known size and composition was observed during this 29-year period. Overall, helpers (usually non-lactating yearling females) occurred in 25.7% of groups, and in 32.4% of groups there were two or three lactating females. Female engagement in alloparental behaviour decreased, but not statistically significantly, after the decline in population density. Total food availability was apparently constant throughout the study period, and therefore, the amount available per individual was much higher later in the study. Both communally nursing females and helpers brought food and helped to guard the litter. However, the benefits of communal rearing were unclear. While cubs were left without guards significantly more rarely in the groups with an additional adult, the number of cubs weaned per lactating female was greater in groups with one (3.93 ± 1.60), as opposed to two or three (3.06 ± 0.92), lactating females. Survival of cubs to 1 year of age in the groups with two lactating females and/or with helpers was lower than that in the families with one lactating female without helpers (22.2% vs 32.2%). Fewer second-generation litters were born to foxes produced by composite families than to those produced by pairs. Reproductive adults producing by pairs had, on average, 1.23 (±1.72) second-generation litters. In groups that initially included additional adults, the average number of second-generation litters per reproductive female was 0.21 (±0.49) and 0.46 (±0.81) litters per male. Thus, according to three measures, increased group size had no apparent positive impact on reproductive success. The increased parental investment and enhanced guarding of the cubs in the larger families could be beneficial under conditions of high population density and a saturated biotope to which the island fox population was presumably adapted before the population crash in the late 1970s.

  12. Grain size effect on the giant dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} nanoceramics prepared by mechanosynthesis and spark plasma sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Mohamad M., E-mail: mmohamad@kfu.edu.sa; Department of Physics, Faculty of Science, Assiut University in the New Valley, El-Kharga 72511; Yamada, Koji

    2014-04-21

    In the present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ∼200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2–3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed inmore » CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 10{sup 3}, 2.4 × 10{sup 4}, and 3.2 × 10{sup 4} for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 10{sup 4}. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.« less

  13. Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality.

    PubMed

    Waples, R S

    2016-10-01

    The relationship between life-history traits and the key eco-evolutionary parameters effective population size (Ne) and Ne/N is revisited for iteroparous species with overlapping generations, with a focus on the annual rate of adult mortality (d). Analytical methods based on populations with arbitrarily long adult lifespans are used to evaluate the influence of d on Ne, Ne/N and the factors that determine these parameters: adult abundance (N), generation length (T), age at maturity (α), the ratio of variance to mean reproductive success in one season by individuals of the same age (φ) and lifetime variance in reproductive success of individuals in a cohort (Vk•). Although the resulting estimators of N, T and Vk• are upwardly biased for species with short adult lifespans, the estimate of Ne/N is largely unbiased because biases in T are compensated for by biases in Vk• and N. For the first time, the contrasting effects of T and Vk• on Ne and Ne/N are jointly considered with respect to d and φ. A simple function of d and α based on the assumption of constant vital rates is shown to be a robust predictor (R(2)=0.78) of Ne/N in an empirical data set of life tables for 63 animal and plant species with diverse life histories. Results presented here should provide important context for interpreting the surge of genetically based estimates of Ne that has been fueled by the genomics revolution.

  14. Deeper and sparser nets are optimal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiu, V.; Makaruk, H.E.

    1998-03-01

    The starting points of this paper are two size-optimal solutions: (1) one for implementing arbitrary Boolean functions (Home and Hush, 1994); and (2) another one for implementing certain sub-classes of Boolean functions (Red`kin, 1970). Because VLSI implementations do not cope well with highly interconnected nets--the area of a chip grows with the cube of the fan-in (Hammerstrom, 1988)--this paper will analyze the influence of limited fan-in on the size optimality for the two solutions mentioned. First, the authors will extend a result from Home and Hush (1994) valid for fan-in {Delta} = 2 to arbitrary fan-in. Second, they will provemore » that size-optimal solutions are obtained for small constant fan-in for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower that linear. These results are in agreement with similar ones proving that for small constant fan-ins ({Delta} = 6...9) there exist VLSI-optimal (i.e., minimizing AT{sup 2}) solutions (Beiu, 1997a), while there are similar small constants relating to the capacity of processing information (Miller 1956).« less

  15. Variation of Strontium (Sr) in the Ferroelectric Material Barium Strontium Titanate (Ba1-xSrxTiO3) by Co precipitation Method

    NASA Astrophysics Data System (ADS)

    Subarwanti, Y.; Safitri, R. D.; Supriyanto, A.; Iriani, Y.; Jamaludin, A.

    2017-02-01

    Barium Strontium Titanate (BST) have been made with variation strontium (Sr) 10%, 30% and 50% by co-precipitation method. This study aims to determine influence addition Sr against the crystal structure, crystallite size, lattice parameter, grain size and dielectric constant. Samples have been made by co-precipitation method and then the samples were sintered by furnace at 1100°C with holding time 4 hours. Characterization of BST use X-Ray Diffraction instrument, Scanning Electron Microscopy and Resistance Capacitance Inductance (RCL meter). Based on result obtained, the larger Sr content cause the diffraction angle shift to the right (the greater) and crystallinity increasing. But, the value of dielectric constant, crystallite size and grain size decreasing with additional Sr content. Measurement of dielectric constant (K) performed in the frequency range 1 kHz to 100 kHz and the highest value at Sr content 0.1 i.e. 258.35. The addition of Sr content 30% and 50% change the crystal structure from tetragonal to cubic which has paraelectric phase.

  16. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  17. Effects of deterministic and random refuge in a prey-predator model with parasite infection.

    PubMed

    Mukhopadhyay, B; Bhattacharyya, R

    2012-09-01

    Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species.

    PubMed

    Roscher, Christiane; Schumacher, Jens; Weisser, Wolfgang W; Schmid, Bernhard; Schulze, Ernst-Detlef

    2007-12-01

    Several studies have shown that the contribution of individual species to the positive relationship between species richness and community biomass production cannot be easily predicted from species monocultures. Here, we used a biodiversity experiment with a pool of nine potentially dominant grassland species to relate the species richness-productivity relationship to responses in density, size and aboveground allocation patterns of individual species. Aboveground community biomass increased strongly with the transition from monocultures to two-species mixtures but only slightly with the transition from two- to nine-species mixtures. Tripartite partitioning showed that the strong increase shown by the former was due to trait-independent complementarity effects, while the slight increase shown by the latter was due to dominance effects. Trait-dependent complementarity effects depended on species composition. Relative yield total (RYT) was greater than 1 (RYT>1) in mixtures but did not increase with species richness, which is consistent with the constant complementarity effect. The relative yield (RY) of only one species, Arrhenatherum elatius, continually increased with species richness, while those of the other species studied decreased with species richness or varied among different species compositions within richness levels. High observed/expected RYs (RYo/RYe>1) of individual species were mainly due to increased module densities, whereas low observed/expected RYs (RYo/RYe<1) were due to more pronounced decreases in module density (species with stoloniferous or creeping growth) or module size (species with clearly-defined plant individuals). The trade-off between module density and size, typical for plant populations under the law of constant final yield, was compensated among species. The positive trait-independent complementarity effect could be explained by an increase in community module density, which reached a maximum at low species richness. In contrast, the increasing dominance effect was attributable to the species-specific ability, in particular that of A. elatius, to increase module size, while intrinsic growth limitations led to a suppression of the remaining species in many mixtures.

  19. Automatic Exposure Control Systems Designed to Maintain Constant Image Noise: Effects on Computed Tomography Dose and Noise Relative to Clinically Accepted Technique Charts

    PubMed Central

    Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.

    2015-01-01

    Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214

  20. Constraining the phantom braneworld model from cosmic structure sizes

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourav; Kousvos, Stefanos R.

    2017-11-01

    We consider the phantom braneworld model in the context of the maximum turnaround radius, RTA ,max, of a stable, spherical cosmic structure with a given mass. The maximum turnaround radius is the point where the attraction due to the central inhomogeneity gets balanced with the repulsion of the ambient dark energy, beyond which a structure cannot hold any mass, thereby giving the maximum upper bound on the size of a stable structure. In this work we derive an analytical expression of RTA ,max for this model using cosmological scalar perturbation theory. Using this we numerically constrain the parameter space, including a bulk cosmological constant and the Weyl fluid, from the mass versus observed size data for some nearby, nonvirial cosmic structures. We use different values of the matter density parameter Ωm, both larger and smaller than that of the Λ cold dark matter, as the input in our analysis. We show in particular, that (a) with a vanishing bulk cosmological constant the predicted upper bound is always greater than what is actually observed; a similar conclusion holds if the bulk cosmological constant is negative (b) if it is positive, the predicted maximum size can go considerably below than what is actually observed and owing to the involved nature of the field equations, it leads to interesting constraints on not only the bulk cosmological constant itself but on the whole parameter space of the theory.

  1. Optical Characterization of the SPT-3G Camera

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (centered at 95, 150 and 220 GHz) with ˜ 16,000 transition-edge sensor (TES) bolometers. Each multichroic array element on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarizations, via lumped element filters. Ten detector wafers populate the detector array, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the detector array. The detectors have frequency bands consistent with our simulations and have high average optical efficiency which is 86, 77 and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers.

  2. Optical Characterization of the SPT-3G Focal Plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Z.; et al.

    The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafer has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarization directions, via lumped element filters. Ten detector wafers populate the focal plane, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, andmore » optical and polarization efficiencies of the focal plane. The detectors have frequency bands consistent with our simulations, and have high average optical efficiency which is 86%, 77% and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 ms and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers« less

  3. A New Bond Albedo for Performing Orbital Debris Brightness to Size Transformations

    NASA Technical Reports Server (NTRS)

    Mulrooney, Mark K.; Matney, Mark J.

    2008-01-01

    We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.

  4. Microstructural indicators of convection: insights from the Little Minch Sill Complex, Scotland

    NASA Astrophysics Data System (ADS)

    Nicoli, Gautier; Holness, Marian; Neufeld, Jerome; Farr, Robert

    2017-04-01

    The fluid dynamic behaviour of crystal-bearing magmas is a key parameter to understand the formation of magmatic bodies. There are two opposite views on the subject: Some argue that solidification in intrusive bodies is affected by convection whereas others claim solidification happens in a static environment. A consensus on the question may be reached by carefully studying the grain size distribution in the settled accumulations of cargo crystals. In the absence of significant crystal growth or particle coarsening by agglomeration, settling of a polydisperse crystal load will always result in a fining-upwards sequence in static magmas as well as in convecting environments. If we assume the particle concentration is always sufficiently low to prevent hindered settling, gravitational settling in a static magma leads to the settling of individual crystals at a constant rate determined by their Stokes' velocity. Each size class is deposited at a constant rate, until all the grains of that size class have fallen out of suspension, leading to a well-stratified sequence and the complete disappearance of progressively smaller size classes upwards in the accumulation. In contrast, in a vigorously convecting magma crystals settle when they enter the stagnant basal boundary layer. In a system containing a polydisperse crystal population most of the bigger particles are removed rapidly from the bulk magma, leading to the creation of a fining-upwards sequence on the floor. However, in detail the structure of this fining-upwards sequence is critically different from that created by settling from a stagnant magma, with the gradual phasing out of each size class instead of the abrupt termination of size classes seen in static systems. This provides us with the opportunity to distinguish between settling from static or convecting magma using the spatial variation of grain size in settled accumulations. We focus on the Little Minch Sill Complex in Scotland, which formed from olivine-phyric magma and is characterised by both composite and single-injection bodies with significant accumulation of olivine on their lower margins. Comparison of the fining-upwards sequences in the picrodolerite/crinanite unit of the composite Shiant Isles Main Sill,and related single-injection sills on the Trotternish Peninsula, Skye, illustrate the ability of this method to distinguish between convecting and non-convecting magma bodies.

  5. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process

    PubMed Central

    Haines, Aaron M.; Zak, Matthew; Hammond, Katie; Scott, J. Michael; Goble, Dale D.; Rachlow, Janet L.

    2013-01-01

    Simple Summary The objective of our study was to evaluate the mention of uncertainty (i.e., variance) associated with population size estimates within U.S. recovery plans for endangered animals. To do this we reviewed all finalized recovery plans for listed terrestrial vertebrate species. We found that more recent recovery plans reported more estimates of population size and uncertainty. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty. We recommend that updated recovery plans combine uncertainty of population size estimates with a minimum detectable difference to aid in successful recovery. Abstract United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data. PMID:26479531

  6. Effects of scarcity and excess of larval food on life history traits of Aedes aegypti (Diptera: Culicidae).

    PubMed

    Romeo Aznar, Victoria; Alem, Iris; De Majo, María Sol; Byttebier, Barbara; Solari, Hernán G; Fischer, Sylvia

    2018-06-01

    Few studies have assessed the effects of food scarcity or excess on the life history traits of Aedes aegypti (L.) (Diptera: Culicidae) independently from larval density. We assessed immature survival, development time, and adult size in relation to food availability. We reared cohorts of 30 Ae. aegypti larvae from newly hatched to adult emergence with different food availability. Food conditions were kept constant by transferring larvae each day to a new food solution. Immature development was completed by some individuals in all treatments. The shortest development time, the largest adults, and the highest survival were observed at intermediate food levels. The most important effects of food scarcity were an extension in development time, a decrease in the size of adults, and a slight decrease in survival, while the most important effects of food excess were an important decrease in survival and a slight decrease in the size of adults. The variability in development time and adult size within sex and treatment increased at decreasing food availability. The results suggest that although the studied population has adapted to a wide range of food availabilities, both scarcity and excess of food have important negative impacts on fitness. © 2018 The Society for Vector Ecology.

  7. Draft Tube Baffle (DTB) crystallizers: A study of stationary and dynamically behaving Crystal Size Distributions (CSD)

    NASA Astrophysics Data System (ADS)

    Deleer, B. G. M.

    1981-11-01

    Based on population balance, CSD behavior as a function of geometrical and operating variables was studied, using a crystallizer. A potash alum-water system, involving a separation technique which uses surface active agents and an apolar, organic liquid to separate potash alum crystals from mother liquid under the influence of gravity was used to check experimental findings against literature data. Results show action of annular settling spaces is strongly influenced by fluid velocities perpendicular to those directed upwards. The well-mixed volume decreases with increasing crystallizer size until a minimum effective volume is reached. As supersaturation is constant throughout the crystallizer volume under stationary operating conditions, the annular settling space behaves like a growth chamber for crystals in its volume. Swirl in the lower part of the annular volume introduces significant back mixing. Crystals within this space either grow and return to the well-mixed part, or withdraw from the annular volume permanently.

  8. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention

    PubMed Central

    Nestor, P.G.; Han, S.D.; Niznikiewicz, M.; Salisbury, D.; Spencer, K.; Shenton, M.E.; McCarley, R.W.

    2010-01-01

    We view schizophrenia as producing a failure of attentional modulation that leads to a breakdown in the selective enhancement or inhibition of semantic/lexical representations whose biological substrata are widely distributed across left (dominant) temporal and frontal lobes. Supporting behavioral evidence includes word recall studies that have pointed to a disturbance in connectivity (associative strength) but not network size (number of associates) in patients with schizophrenia. Paralleling these findings are recent neural network simulation studies of the abnormal connectivity effect in schizophrenia through ‘lesioning’ network connection weights while holding constant network size. Supporting evidence at the level of biology are in vitro studies examining N-methyl-d-aspartate (NMDA) receptor antagonists on recurrent inhibition; simulations in neural populations with realistically modeled biophysical properties show NMDA antagonists produce a schizophrenia-like disturbance in pattern association. We propose a similar failure of NMDA-mediated recurrent inhibition as a candidate biological substrate for attention and semantic anomalies of schizophrenia. PMID:11454433

  9. Electronic transport in two-dimensional high dielectric constant nanosystems

    DOE PAGES

    Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; ...

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less

  10. Electronic transport in two-dimensional high dielectric constant nanosystems.

    PubMed

    Ortuño, M; Somoza, A M; Vinokur, V M; Baturina, T I

    2015-04-10

    There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.

  11. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  12. Redistribution and growth of the Caspian Tern population in the Pacific Coast region of north America, 1981-2000

    USGS Publications Warehouse

    Suryan, R.M.; Craig, D.P.; Roby, D.D.; Chelgren, N.D.; Collis, K.; Shuford, W.D.; Lyons, Donald E.

    2004-01-01

    We examined nesting distribution and demography of the Pacific Coast population of Caspian Terns (Sterna caspia) using breeding records and band recoveries spanning two decades since the first population assessment. Since 1980, population size has more than doubled to about 12 900 pairs, yet the proportion of the population nesting at inland (18%) versus coastal sites (82%) has remained constant. Although the breeding range of the Pacific Coast population has expanded northward into Alaska and farther south in Mexico, there was no net latitudinal shift in the distribution of breeding pairs or new colonies. The distribution of breeding birds among areas changed dramatically, however, with 69% of breeding terns now nesting in Oregon (primarily in the Columbia River estuary) versus 4% during the late 1970s. During the past 20 years, there has continued to be a greater proportion of Caspian Terns breeding at anthropogenic sites compared to natural sites. Estimated annual survival rates for hatch-year and after-third-year birds during 1981-1998 were greater than during 1955-1980, consistent with the higher rate of population increase in recent decades. Fecundity required to maintain a stable population (?? = 1) was estimated at 0.32-0.74 fledglings pair-1, depending on band recovery probabilities for sub-adults. Caspian Terns readily moved among breeding sites and rapidly colonized new areas; however, a greater concentration of breeding Caspian Terns among fewer colonies in response to anthropogenic factors is an important conservation concern for this species.

  13. Dilemma of Dilemmas: How Collective and Individual Perspectives Can Clarify the Size Dilemma in Voluntary Linear Public Goods Dilemmas

    PubMed Central

    Shank, Daniel B.; Kashima, Yoshihisa; Saber, Saam; Gale, Thomas; Kirley, Michael

    2015-01-01

    Empirical findings on public goods dilemmas indicate an unresolved dilemma: that increasing size—the number of people in the dilemma—sometimes increases, decreases, or does not influence cooperation. We clarify this dilemma by first classifying public goods dilemma properties that specify individual outcomes as individual properties (e.g., Marginal Per Capita Return) and group outcomes as group properties (e.g., public good multiplier), mathematically showing how only one set of properties can remain constant as the dilemma size increases. Underpinning decision-making regarding individual and group properties, we propose that individuals are motivated by both individual and group preferences based on a theory of collective rationality. We use Van Lange's integrated model of social value orientations to operationalize these preferences as an amalgamation of outcomes for self, outcomes for others, and equality of outcomes. Based on this model, we then predict how the public good's benefit and size, combined with controlling individual versus group properties, produce different levels of cooperation in public goods dilemmas. A two (low vs. high benefit) by three (2-person baseline vs. 5-person holding constant individual properties vs. 5-person holding constant group properties) factorial experiment (group n = 99; participant n = 390) confirms our hypotheses. The results indicate that when holding constant group properties, size decreases cooperation. Yet when holding constant individual properties, size increases cooperation when benefit is low and does not affect cooperation when benefit is high. Using agent-based simulations of individual and group preferences vis-à-vis the integrative model, we fit a weighted simulation model to the empirical data. This fitted model is sufficient to reproduce the empirical results, but only when both individual (self-interest) and group (other-interest and equality) preference are included. Our research contributes to understanding how people's motivations and behaviors within public goods dilemmas interact with the properties of the dilemma to lead to collective outcomes. PMID:25799355

  14. Different Amounts of DNA in Newborn Cells of Escherichia coli Preclude a Role for the Chromosome in Size Control According to the "Adder" Model.

    PubMed

    Huls, Peter G; Vischer, Norbert O E; Woldringh, Conrad L

    2018-01-01

    According to the recently-revived adder model for cell size control, newborn cells of Escherichia coli will grow and divide after having added a constant size or length, ΔL , irrespective of their size at birth. Assuming exponential elongation, this implies that large newborns will divide earlier than small ones. The molecular basis for the constant size increment is still unknown. As DNA replication and cell growth are coordinated, the constant ΔL could be based on duplication of an equal amount of DNA, ΔG , present in newborn cells. To test this idea, we measured amounts of DNA and lengths of nucleoids in DAPI-stained cells growing in batch culture at slow and fast rates. Deeply-constricted cells were divided in two subpopulations of longer and shorter lengths than average; these were considered to represent large and small prospective daughter cells, respectively. While at slow growth, large and small prospective daughter cells contained similar amounts of DNA, fast growing cells with multiforked replicating chromosomes, showed a significantly higher amount of DNA (20%) in the larger cells. This observation precludes the hypothesis that Δ L is based on the synthesis of a constant ΔG . Growth curves were constructed for siblings generated by asymmetric division and growing according to the adder model. Under the assumption that all cells at the same growth rate exhibit the same time between initiation of DNA replication and cell division (i.e., constant C+D -period), the constructions predict that initiation occurs at different sizes ( Li ) and that, at fast growth, large newborn cells transiently contain more DNA than small newborns, in accordance with the observations. Because the state of segregation, measured as the distance between separated nucleoids, was found to be more advanced in larger deeply-constricted cells, we propose that in larger newborns nucleoid separation occurs faster and at a shorter length, allowing them to divide earlier. We propose a composite model in which both differential initiation and segregation leads to an adder-like behavior of large and small newborn cells.

  15. Role of patch size, disease, and movement in rapid extinction of bighorn sheep

    USGS Publications Warehouse

    Singer, F.J.; Zeigenfuss, L.C.; Spicer, L.

    2001-01-01

    The controversy (Berger 1990, 1999; Wehausen 1999) over rapid extinction in bighorn sheep (Ovis canadensis) has focused on population size alone as a correlate to persistence time. We report on the persistence and population performance of 24 translocated populations of bighorn sheep. Persistence in these sheep was strongly correlated with larger patch sizes, greater distance to domestic sheep, higher population growth rates, and migratory movements, as well as to larger population sizes. Persistence was also positively correlated with larger average home-range size (p = 0.058, n = 10 translocated populations) and home-range size of rams (p = 0.087, n = 8 translocated populations). Greater home-range size and dispersal rates of bighorn sheep were positively correlated to larger patches. We conclude that patch size and thus habitat carrying capacity, not population size per se, is the primary correlate to both population performance and persistence. Because habitat carrying capacity defines the upper limit to population size, clearly the amount of suitable habitat in a patch is ultimately linked to population size. Larger populations (250+ animals) were more likely to recover rapidly to their pre-epizootic survey number following an epizootic (p = 0.019), although the proportion of the population dying in the epizootic also influenced the probability of recovery (p = 0.001). Expensive management efforts to restore or increase bighorn sheep populations should focus on large habitat patches located ≥23 km from domestic sheep, and less effort should be expended on populations in isolated, small patches of habitat.

  16. 120 Years of U.S. Residential Housing Stock and Floor Space.

    PubMed

    Moura, Maria Cecilia P; Smith, Steven J; Belzer, David B

    2015-01-01

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891-2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891-2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.

  17. 120 years of U.S. residential housing stock and floor space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  18. 120 Years of U.S. Residential Housing Stock and Floor Space

    PubMed Central

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.

    2015-01-01

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO2 emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million square feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade. PMID:26263391

  19. 120 years of U.S. residential housing stock and floor space

    DOE PAGES

    Moura, Maria Cecilia P.; Smith, Steven J.; Belzer, David B.; ...

    2015-08-11

    Residential buildings are a key driver of energy consumption and also impact transportation and land-use. Energy consumption in the residential sector accounts for one-fifth of total U.S. energy consumption and energy-related CO₂ emissions, with floor space a major driver of building energy demands. In this work a consistent, vintage-disaggregated, annual long-term series of U.S. housing stock and residential floor space for 1891–2010 is presented. An attempt was made to minimize the effects of the incompleteness and inconsistencies present in the national housing survey data. Over the 1891–2010 period, floor space increased almost tenfold, from approximately 24,700 to 235,150 million squaremore » feet, corresponding to a doubling of floor space per capita from approximately 400 to 800 square feet. While population increased five times over the period, a 50% decrease in household size contributed towards a tenfold increase in the number of housing units and floor space, while average floor space per unit remains surprisingly constant, as a result of housing retirement dynamics. In the last 30 years, however, these trends appear to be changing, as household size shows signs of leveling off, or even increasing again, while average floor space per unit has been increasing. GDP and total floor space show a remarkably constant growth trend over the period and total residential sector primary energy consumption and floor space show a similar growth trend over the last 60 years, decoupling only within the last decade.« less

  20. Constant phycobilisome size in chromatically adapted cells of the cyanobacterium Tolypothrix tenuis, and variation in Nostoc sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohki, K.; Gantt, E.; Lipschultz, C.A.

    1985-12-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a physocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, andmore » size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution.« less

  1. Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends

    USGS Publications Warehouse

    Korman, Josh; Yard, Mike

    2017-01-01

    Article for outlet: Fisheries Research. Abstract: Quantifying temporal and spatial trends in abundance or relative abundance is required to evaluate effects of harvest and changes in habitat for exploited and endangered fish populations. In many cases, the proportion of the population or stock that is captured (catchability or capture probability) is unknown but is often assumed to be constant over space and time. We used data from a large-scale mark-recapture study to evaluate the extent of spatial and temporal variation, and the effects of fish density, fish size, and environmental covariates, on the capture probability of rainbow trout (Oncorhynchus mykiss) in the Colorado River, AZ. Estimates of capture probability for boat electrofishing varied 5-fold across five reaches, 2.8-fold across the range of fish densities that were encountered, 2.1-fold over 19 trips, and 1.6-fold over five fish size classes. Shoreline angle and turbidity were the best covariates explaining variation in capture probability across reaches and trips. Patterns in capture probability were driven by changes in gear efficiency and spatial aggregation, but the latter was more important. Failure to account for effects of fish density on capture probability when translating a historical catch per unit effort time series into a time series of abundance, led to 2.5-fold underestimation of the maximum extent of variation in abundance over the period of record, and resulted in unreliable estimates of relative change in critical years. Catch per unit effort surveys have utility for monitoring long-term trends in relative abundance, but are too imprecise and potentially biased to evaluate population response to habitat changes or to modest changes in fishing effort.

  2. Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process.

    PubMed

    Haines, Aaron M; Zak, Matthew; Hammond, Katie; Scott, J Michael; Goble, Dale D; Rachlow, Janet L

    2013-08-13

    United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.

  3. The demographic consequences of growing older and bigger in oyster populations.

    PubMed

    Moore, Jacob L; Lipcius, Romuald N; Puckett, Brandon; Schreiber, Sebastian J

    2016-10-01

    Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions. © 2016 by the Ecological Society of America.

  4. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  5. Do Class Size Effects Differ across Grades?

    ERIC Educational Resources Information Center

    Nandrup, Anne Brink

    2016-01-01

    This paper contributes to the class size literature by analysing whether short-run class size effects are constant across grade levels in compulsory school. Results are based on administrative data on all pupils enrolled in Danish public schools. Identification is based on a government-imposed class size cap that creates exogenous variation in…

  6. Strengthening and Improving Yield Asymmetry of Magnesium Alloys by Second Phase Particle Refinement Under the Guidance of Integrated Computational Materials Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Lavender, Curt

    2015-05-08

    Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO 2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size andmore » volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.« less

  7. Multiscale Modeling of Particle-Solidification Front Dynamics, Part 3: Theoretical Aspects and Parametric Study (Preprint)

    DTIC Science & Technology

    2007-09-01

    are investigated, i.e. the Hamaker constant, the particle size, the thermal conductivity ratio of the particle to the melt, and the solid- liquid...36 d A π =Π (1) where A is the Hamaker constant and d is the distance between the two surfaces. In this work, the disjoining pressure is...defined such that a negative Hamaker constant results in a repulsive force between the two interfaces whereas a positive Hamaker constant results in an

  8. Microstructures and dielectric properties of CaCu3Ti4O12 ceramics via combustion method

    NASA Astrophysics Data System (ADS)

    Yuan, W. X.; Li, Z. J.

    2012-01-01

    CaCu3Ti4O12 (CCTO) powder was synthesized by the combustion method. The effect of sintering temperature was studied on dielectric properties of the prepared ceramic samples. They have the dielectric constant of ~31 000 and 80 000 for the grain size of 0.3 and 30-100 μm. It is unusual for CCTO with a grain size of 0.3 μm to have a dielectric constant of ~31 000. Their giant dielectric constant could be explained by a two-step internal-barrier-layer-capacitor model, associated with grain boundaries and domain boundaries. The existence of domain boundaries helped to explain the contradiction of the dielectric mechanisms between polycrystalline and single-crystal CCTO.

  9. Proper shoe sizes for Thai elderly.

    PubMed

    Chaiwanichsiri, Dootchai; Tantisiriwat, Natthiya; Janchai, Siriporn

    2008-12-01

    Problems from improper shoe fitting are common, but there are limited foot data for the older Thai population. To study foot dimensions and determine proper shoe sizes for Thai elderly. Healthy older people: 108 men, 105 women, aged 60-80 years, who were independent in walking, were recruited. Thirteen foot dimensions and current shoes used were measured. Side-to-side, gender difference, and correlations of main foot measurements were analyzed. About 50% women and 34% men wore too narrow shoes, and this was found to be associated with foot pain. At the same foot length (FL), men had larger foot width (FW) and toe depth. Foot width=2.39+(0.29 x FL), r=0.50, p=0.001 for women and=2.48+(0.31 x FL), r=0.56, p=0.002 for men. Arch length=1.0+(0.7 x FL), r=0.93, p=0.001 for both genders. Toe depth had constant values in all shoe sizes of each gender. Correlations of other foot parameters were reported. These anthropometric data is essential for proper shoe fitting in order to provide foot ergonomics and prevent foot problems for older Thai people.

  10. Equalisation of alcohol participation among socioeconomic groups over time: an analysis based on the total differential approach and longitudinal data from Sweden

    PubMed Central

    2011-01-01

    Background Health inequality and its social determinants are well-studied, but the determinants of inequality of alcohol consumption are less well-investigated. Methods The total differential approach of decomposition of changes in the concentration index of the probability of participation in alcohol consumption was applied to 8-year longitudinal data for Swedish women aged 28-76 in 1988/89. Results Alcohol consumption showed a pro-rich inequality, with income being a strong contributor. Overall participation remained fairly constant, but the inequality decreased over time as abstinence became less common among the poor and more common among the rich. This was mainly due to changes in the relative weights of certain population groups, such as a decrease in the proportional size of the oldest cohorts. Conclusions Inequality in participation in alcohol consumption is pro-rich in Sweden. This inequality has tended to decrease over time, due to changes in population composition rather than to policy intervention. PMID:21306654

  11. The evolutionary dynamics of canid and mongoose rabies virus in Southern Africa.

    PubMed

    Davis, P L; Rambaut, A; Bourhy, H; Holmes, E C

    2007-01-01

    Two variants of rabies virus (RABV) currently circulate in southern Africa: canid RABV, mainly associated with dogs, jackals, and bat-eared foxes, and mongoose RABV. To investigate the evolutionary dynamics of these variants, we performed coalescent-based analyses of the G-L inter-genic region, allowing for rate variation among viral lineages through the use of a relaxed molecular clock. This revealed that mongoose RABV is evolving more slowly than canid RABV, with mean evolutionary rates of 0.826 and 1.676 x 10(-3) nucleotide substitutions per site, per year, respectively. Additionally, mongoose RABV exhibits older genetic diversity than canid RABV, with common ancestors dating to 73 and 30 years, respectively, and while mongoose RABV has experienced exponential population growth over its evolutionary history in Africa, populations of canid RABV have maintained a constant size. Hence, despite circulating in the same geographic region, these two variants of RABV exhibit striking differences in evolutionary dynamics which are likely to reflect differences in their underlying ecology.

  12. Phylodynamic and Phylogeographic Patterns of the HIV Type 1 Subtype F1 Parenteral Epidemic in Romania

    PubMed Central

    Hué, Stéphane; Buckton, Andrew J.; Myers, Richard E.; Duiculescu, Dan; Ene, Luminita; Oprea, Cristiana; Tardei, Gratiela; Rugina, Sorin; Mardarescu, Mariana; Floch, Corinne; Notheis, Gundula; Zöhrer, Bettina; Cane, Patricia A.; Pillay, Deenan

    2012-01-01

    Abstract In the late 1980s an HIV-1 epidemic emerged in Romania that was dominated by subtype F1. The main route of infection is believed to be parenteral transmission in children. We sequenced partial pol coding regions of 70 subtype F1 samples from children and adolescents from the PENTA-EPPICC network of which 67 were from Romania. Phylogenetic reconstruction using the sequences and other publically available global subtype F sequences showed that 79% of Romanian F1 sequences formed a statistically robust monophyletic cluster. The monophyletic cluster was epidemiologically linked to parenteral transmission in children. Coalescent-based analysis dated the origins of the parenteral epidemic to 1983 [1981–1987; 95% HPD]. The analysis also shows that the epidemic's effective population size has remained fairly constant since the early 1990s suggesting limited onward spread of the virus within the population. Furthermore, phylogeographic analysis suggests that the root location of the parenteral epidemic was Bucharest. PMID:22251065

  13. Empirical analysis on the connection between power-law distributions and allometries for urban indicators

    NASA Astrophysics Data System (ADS)

    Alves, L. G. A.; Ribeiro, H. V.; Lenzi, E. K.; Mendes, R. S.

    2014-09-01

    We report on the existing connection between power-law distributions and allometries. As it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.

  14. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  15. Introgression Makes Waves in Inferred Histories of Effective Population Size.

    PubMed

    Hawks, John

    2017-01-01

    Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent "wave" of larger effective population sizes, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. I carried out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have visible effects on the inference of effective population size.

  16. Local extinction and recolonization, species effective population size, and modern human origins.

    PubMed

    Eller, Elise; Hawks, John; Relethford, John H

    2004-10-01

    A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.

  17. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS.

    PubMed

    Markey, R; Stein, H; Morgan, J

    1998-03-01

    The technique described in this paper represents the modification and combination of two previously existing methods, alkaline fusion and negative thermal ion mass spectrometry (NTIMS). We have used this technique to analyze repeatedly a homogeneous molybdenite powder used as a reference standard in our laboratory. Analyses were made over a period of 18 months, using four different calibrations of two different spike solutions. The age of this standard reproduces at a level of +/-0.13%. Each individual age analysis carries an uncertainty of about 0.4% that includes the uncertainty in the decay constant for (187)Re. This new level of resolution has allowed us to recognize real differences in ages for two grain-size populations of molybdenite from some Archean samples.

  18. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS

    USGS Publications Warehouse

    Markey, R.; Stein, H.; Morgan, J.

    1998-01-01

    The technique described in this paper represents the modification and combination of two previously existing methods, alkaline fusion and negative thermal ion mass spectrometry (NTIMS). We have used this technique to analyze repeatedly a homogeneous molybdenite powder used as a reference standard in our laboratory. Analyses were made over a period of 18 months, using four different calibrations of two different spike solutions. The age of this standard reproduces at a level of ?? 0.13%. Each individual age analysis carries an uncertainty of about 0.4% that includes the uncertainty in the decay constant for 187Re. This new level of resolution has allowed us to recognize real differences in ages for two grain-size populations of molybdenite from some Archean samples.

  19. A half-baked solution: drivers of water crises in Mexico

    NASA Astrophysics Data System (ADS)

    Godinez Madrigal, Jonatan; van der Zaag, Pieter; van Cauwenbergh, Nora

    2018-02-01

    Mexico is considered a regional economic and political powerhouse because of the size of its economy, and a large population in constant growth. However, this same growth accompanied by management and governance failures are causing several water crises across the country. The paper aims at identifying and analyzing the drivers of water crises. Water authorities seem to focus solely on large infrastructural schemes to counter the looming water crises, but fail to structure a set of policies for the improvement of management and governance institutions. The paper concludes with the implications of a business-as-usual policy based on infrastructure for solving water problems, which include a non-compliance to the human right to water and sanitation, ecosystem collapses and water conflicts.

  20. Genetic Diversity in Introduced Populations with an Allee Effect

    PubMed Central

    Wittmann, Meike J.; Gabriel, Wilfried; Metzler, Dirk

    2014-01-01

    A phenomenon that strongly influences the demography of small introduced populations and thereby potentially their genetic diversity is the demographic Allee effect, a reduction in population growth rates at small population sizes. We take a stochastic modeling approach to investigate levels of genetic diversity in populations that successfully overcame either a strong Allee effect, in which populations smaller than a certain critical size are expected to decline, or a weak Allee effect, in which the population growth rate is reduced at small sizes but not negative. Our results indicate that compared to successful populations without an Allee effect, successful populations with a strong Allee effect tend to (1) derive from larger founder population sizes and thus have a higher initial amount of genetic variation, (2) spend fewer generations at small population sizes where genetic drift is particularly strong, and (3) spend more time around the critical population size and thus experience more genetic drift there. In the case of multiple introduction events, there is an additional increase in diversity because Allee-effect populations tend to derive from a larger number of introduction events than other populations. Altogether, a strong Allee effect can either increase or decrease genetic diversity, depending on the average founder population size. By contrast, a weak Allee effect tends to decrease genetic diversity across the entire range of founder population sizes. Finally, we show that it is possible in principle to infer critical population sizes from genetic data, although this would require information from many independently introduced populations. PMID:25009147

  1. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods. PMID:23651527

  2. Is the incidence of constant esotropia in childhood reducing?

    PubMed

    Carney, C V; Lysons, D A; Tapley, J V

    1995-01-01

    Episodes of strabismus surgery in the under-14 year age group in West Berkshire have reduced by 42%, from 22.7 to 13.2 per 10,000 population, between 1968 and 1985. Clinical audit of patterns of referral shows that the incidence of constant esotropia has reduced by 55%, from 28.3 to 12.8 per 10,000 population, between 1971 and 1991.

  3. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  4. Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites

    NASA Astrophysics Data System (ADS)

    Davalos, Jorge A. G.; Carvano, Jorge Márcio; Blanco, Julio

    2017-03-01

    Radiative transfer models in particulate media (Hapke, 1981, 1993, 2012b; Shkuratov et al., 1999) are the most versatile tool that can be used to retrieve both composition and surface physical properties from observation of asteroids and other atmosphereless bodies of the Solar System. One caveat is that these methods require as input a sufficiently comprehensive set of optical constants of suitable template materials. These optical constants are the real and imaginary parts of the refractive indexes of the material as function of wavelength, and have to be derived from laboratory measurements of samples of minerals and meteorites. Optical constants can be calculated from a variety of types of measurements, and each has its problems and limitations. In particular, a problem with the determination of optical constants from measurement of reflectance is that the measurements need to be themselves interpreted using radiative transfer models. This is an issue because the number of parameters used in the most accurate versions of the radiative transfer models is large, and for most of the samples many of these parameters were not measured independently. As a result, attempts in the literature to retrieve optical constants from reflectance measurements tend to assume values for the unknown parameters, which can lead to uncertainties in the retrieved optical constants that can be difficult to quantify. In this work we propose a numerical method that allows the simultaneous inversion of the optical constant and the model parameters. This model is then applied to a set of reflectance spectra of 5 HED meteorites from the RELAB database that were measured with the same setup for samples with several particle size intervals. Our results indicate that our method is able to retrieve optical constants which are able to reproduce the measured reflectance of the samples over a large range (25-500 μm) of particle diameters. It is also found that the solutions obtained in this way are non-unique, in the sense that many combination of the model parameters can yield different sets of optical constants that fit equally well the reflectance spectra. Thus, in the absence of the independent determination of at least some of the model parameter the method is unable to decide which solution correspond to the physical optical constants of the materials. Even so, the dispersion of the model parameters (in particular effective particle diameter and porosity) for acceptable solutions (defined as the ones that reproduce the measured reflectance spectra at all size range with residues smaller than 10%) is within a radius of around 30% of the value of the best fit solution for each parameter. Given the ability of the optical constants derived with this method to reproduce the sample spectra over a large range of particle sizes, they can be used without other restriction to assess if a given meteorite assemblage is contributing to the observed spectra of asteroids. However, quantitative informations that can also be derived using these optical constants, like particle sizes, porosity and volumetric fractions of each end-member in a mixture should be regarded only as rough estimates.

  5. Effective population size of korean populations.

    PubMed

    Park, Leeyoung

    2014-12-01

    Recently, new methods have been developed for estimating the current and recent changes in effective population sizes. Based on the methods, the effective population sizes of Korean populations were estimated using data from the Korean Association Resource (KARE) project. The overall changes in the population sizes of the total populations were similar to CHB (Han Chinese in Beijing, China) and JPT (Japanese in Tokyo, Japan) of the HapMap project. There were no differences in past changes in population sizes with a comparison between an urban area and a rural area. Age-dependent current and recent effective population sizes represent the modern history of Korean populations, including the effects of World War II, the Korean War, and urbanization. The oldest age group showed that the population growth of Koreans had already been substantial at least since the end of the 19th century.

  6. Estimating the size of hidden populations using respondent-driven sampling data: Case examples from Morocco

    PubMed Central

    Johnston, Lisa G; McLaughlin, Katherine R; Rhilani, Houssine El; Latifi, Amina; Toufik, Abdalla; Bennani, Aziza; Alami, Kamal; Elomari, Boutaina; Handcock, Mark S

    2015-01-01

    Background Respondent-driven sampling is used worldwide to estimate the population prevalence of characteristics such as HIV/AIDS and associated risk factors in hard-to-reach populations. Estimating the total size of these populations is of great interest to national and international organizations, however reliable measures of population size often do not exist. Methods Successive Sampling-Population Size Estimation (SS-PSE) along with network size imputation allows population size estimates to be made without relying on separate studies or additional data (as in network scale-up, multiplier and capture-recapture methods), which may be biased. Results Ten population size estimates were calculated for people who inject drugs, female sex workers, men who have sex with other men, and migrants from sub-Sahara Africa in six different cities in Morocco. SS-PSE estimates fell within or very close to the likely values provided by experts and the estimates from previous studies using other methods. Conclusions SS-PSE is an effective method for estimating the size of hard-to-reach populations that leverages important information within respondent-driven sampling studies. The addition of a network size imputation method helps to smooth network sizes allowing for more accurate results. However, caution should be used particularly when there is reason to believe that clustered subgroups may exist within the population of interest or when the sample size is small in relation to the population. PMID:26258908

  7. Evolution of the Selfing Syndrome in Arabis alpina (Brassicaceae).

    PubMed

    Tedder, Andrew; Carleial, Samuel; Gołębiewska, Martyna; Kappel, Christian; Shimizu, Kentaro K; Stift, Marc

    2015-01-01

    The transition from cross-fertilisation (outcrossing) to self-fertilisation (selfing) frequently coincides with changes towards a floral morphology that optimises self-pollination, the selfing syndrome. Population genetic studies have reported the existence of both outcrossing and selfing populations in Arabis alpina (Brassicaceae), which is an emerging model species for studying the molecular basis of perenniality and local adaptation. It is unknown whether its selfing populations have evolved a selfing syndrome. Using macro-photography, microscopy and automated cell counting, we compared floral syndromes (size, herkogamy, pollen and ovule numbers) between three outcrossing populations from the Apuan Alps and three selfing populations from the Western and Central Alps (Maritime Alps and Dolomites). In addition, we genotyped the plants for 12 microsatellite loci to confirm previous measures of diversity and inbreeding coefficients based on allozymes, and performed Bayesian clustering. Plants from the three selfing populations had markedly smaller flowers, less herkogamy and lower pollen production than plants from the three outcrossing populations, whereas pistil length and ovule number have remained constant. Compared to allozymes, microsatellite variation was higher, but revealed similar patterns of low diversity and high Fis in selfing populations. Bayesian clustering revealed two clusters. The first cluster contained the three outcrossing populations from the Apuan Alps, the second contained the three selfing populations from the Maritime Alps and Dolomites. We conclude that in comparison to three outcrossing populations, three populations with high selfing rates are characterised by a flower morphology that is closer to the selfing syndrome. The presence of outcrossing and selfing floral syndromes within a single species will facilitate unravelling the genetic basis of the selfing syndrome, and addressing which selective forces drive its evolution.

  8. Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study

    NASA Astrophysics Data System (ADS)

    Grill, A.; Patel, V.; Rodbell, K. P.; Huang, E.; Baklanov, M. R.; Mogilnikov, K. P.; Toney, M.; Kim, H.-C.

    2003-09-01

    The low dielectric constant (k) of plasma enhanced chemical vapor deposited SiCOH films has been attributed to porosity in the films. We have shown previously that the dielectric constant of such materials can be extended from the typical k values of 2.7-2.9 to ultralow-k values of k=2.0. The reduction in the dielectric constants has been achieved by enhancing the porosity in the films through the addition of an organic material to the SiCOH precursor and annealing the films to remove the thermally less-stable organic fractions. In order to confirm the relation between dielectric constant and film porosity the latter has been evaluated for SiCOH films with k values from 2.8 to 2.05 using positron annihilation spectroscopy, positron annihilation lifetime spectroscopy, small angle x-ray scattering, specular x-ray reflectivity, and ellipsometric porosimetry measurements. It has been found that the SiCOH films with k=2.8 had no detectable porosity, however the porosity increased with decreasing dielectric constant reaching values of 28%-39% for k values of 2.05. The degree of porosity and the pore size determined by the dissimilar techniques agreed within reasonable limits, especially when one takes into account the small pore size in these films and the different assumptions used by the different techniques. The pore size increases with decreasing k, however the diameter remains below 5 nm for k=2.05, most of the pores being smaller than 2.5 nm.

  9. Assessing tiger population dynamics using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.

    2006-01-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.

  10. The demographic transition: an attempt to reformulate a population theory.

    PubMed

    Hofsten, E

    1981-01-01

    In this effort to reformulate the demographic transition theory, attention is directed to the following: Malthus and Karl Marx's criticism of his principle of population; the 1st stage of transition, i.e., high mortality, high fertility, and slow population growth; the 2nd stage of declining mortality; the 3rd stage of declining fertility; the 4th stage when mortality and fertility are both low; the growth potential; and the demographic transition in the 3rd world countries. The demographic transition theory has become popular among demographers, economists, historians, and others interested in studying the development of population over time since the end of World War 2. This interest has most likely been created by the anxiety over the population explosion in the 3rd world countries. Transition has made demographers believe that the period of rapid population growth will be automatically succeeded by a period of more or less constant population size. The question that arises is whether it is as simple as that. Demographic transition has to a great extent taken the place of Malthus' principle of population as a general theory of population. Demographic transition appears to describe in a satisfactory way the development of population which all currently industrialized countires have passed through, when going from the preindustrial to the present industrialized stage. The objectives to demographic transition as a general theory are considered. Some of the factors which have accounted for the decline in fertility in Europe may also apply to the 3rd world countries. 1 such factor is the effect of reduced infant and child mortality on the individual level. The fertility decline, caused by reduced infant and child mortality may, however, be of limited size. The great amount of unemployment in the 3rd world may affect fertility in a downward direction. The fertility decline in Europe occurred simultaneously with an industrialization process, which gradually covered the entire population. In most 3rd world countries the "modernization" that is going on implies that a small industrialized sector with its subsistence agriculture is left more or less untouched. There remains a strong incentive for many children in this kind of society. A rapid decline in fertility cannot be expected under these circumstances. To realize a thorough change in the social structure and in the social relations is necessary.

  11. Assessing tiger population dynamics using photographic capture-recapture sampling.

    PubMed

    Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E

    2006-11-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.

  12. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis.

    PubMed Central

    Hey, Jody; Nielsen, Rasmus

    2004-01-01

    The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526

  13. The evolution of complex life cycles when parasite mortality is size- or time-dependent.

    PubMed

    Ball, M A; Parker, G A; Chubb, J C

    2008-07-07

    In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.

  14. Effect of particle size distribution on 3D packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang

    2017-06-01

    We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.

  15. Determining size and dispersion of minimum viable populations for land management planning and species conservation

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, John F.

    1984-03-01

    The concept of minimum populations of wildlife and plants has only recently been discussed in the literature. Population genetics has emerged as a basic underlying criterion for determining minimum population size. This paper presents a genetic framework and procedure for determining minimum viable population size and dispersion strategies in the context of multiple-use land management planning. A procedure is presented for determining minimum population size based on maintenance of genetic heterozygosity and reduction of inbreeding. A minimum effective population size ( N e ) of 50 breeding animals is taken from the literature as the minimum shortterm size to keep inbreeding below 1% per generation. Steps in the procedure adjust N e to account for variance in progeny number, unequal sex ratios, overlapping generations, population fluctuations, and period of habitat/population constraint. The result is an approximate census number that falls within a range of effective population size of 50 500 individuals. This population range defines the time range of short- to long-term population fitness and evolutionary potential. The length of the term is a relative function of the species generation time. Two population dispersion strategies are proposed: core population and dispersed population.

  16. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Kery, M.; Matthies, D.

    2004-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  18. Reduced fecundity in small populations of the rare plant Gentianopsis ciliate (Gentianaceae)

    USGS Publications Warehouse

    Robbins, C.S.

    1983-01-01

    Habitat destruction is the main cause for the biodiversity crisis. Surviving populations are often fragmented, i.e., small and isolated from each other. Reproduction of plants in small populations is often reduced, and this has been attributed to inbreeding depression, reduced attractiveness for pollinators, and reduced habitat quality in small populations. Here we present data on the effects of fragmentation on the rare, self-compatible perennial herb Gentianopsis ciliata (Gentianaceae), a species with very small and presumably well-dispersed seeds. We studied the relationship between population size, plant size, and the number of flowers produced in 63 populations from 1996-1998. In one of the years, leaf and flower size and the number of seeds produced per fruit was studied in a subset of 25 populations. Plant size, flower size, and the number of seeds per fruit and per plant increased with population size, whereas leaf length and the number of flowers per plant did not. The effects of population size on reproduction and on flower size remained significant if the effects were adjusted for differences in plant size, indicating that they could not be explained by differences in habitat quality. The strongly reduced reproduction in small populations may be due to pollination limitation, while the reduced flower size could indicate genetic effects.

  19. Boundary effects on population dynamics in stochastic lattice Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Heiba, Bassel; Chen, Sheng; Täuber, Uwe C.

    2018-02-01

    We investigate spatially inhomogeneous versions of the stochastic Lotka-Volterra model for predator-prey competition and coexistence by means of Monte Carlo simulations on a two-dimensional lattice with periodic boundary conditions. To study boundary effects for this paradigmatic population dynamics system, we employ a simulation domain split into two patches: Upon setting the predation rates at two distinct values, one half of the system resides in an absorbing state where only the prey survives, while the other half attains a stable coexistence state wherein both species remain active. At the domain boundary, we observe a marked enhancement of the predator population density. The predator correlation length displays a minimum at the boundary, before reaching its asymptotic constant value deep in the active region. The frequency of the population oscillations appears only very weakly affected by the existence of two distinct domains, in contrast to their attenuation rate, which assumes its largest value there. We also observe that boundary effects become less prominent as the system is successively divided into subdomains in a checkerboard pattern, with two different reaction rates assigned to neighboring patches. When the domain size becomes reduced to the scale of the correlation length, the mean population densities attain values that are very similar to those in a disordered system with randomly assigned reaction rates drawn from a bimodal distribution.

  20. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  1. Does source population size affect performance in new environments?

    PubMed Central

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  2. Spray Gun With Constant Mixing Ratio

    NASA Technical Reports Server (NTRS)

    Simpson, William G.

    1987-01-01

    Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.

  3. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  4. Optimal balance of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeffery R

    2013-04-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.

  5. Recent advances in life history of Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee River, Florida, USA: A synopsis

    USGS Publications Warehouse

    Sulak, K.J.; Clugston, James P.

    1999-01-01

    Gulf sturgeon spawn on portions of three sites in the upper Suwannee River, which may appropriately be described as spawning reefs. The same areas are utilized from year to year. Habitat factors important in spawning site determination include gravel/cobble substrate, the presence of eddy fields, a neutral to slightly alkaline pH, and an empirically observed range in calcium ion content (6-18 mg/L Ca++, corresponding to a conductivity range of 40-110??S). Eggs are deposited contagiously within a small area ( 3 m) when water temperatures drop in mid-December, but final destinations in mid-winter remain unknown. Age-2 through 6 juveniles remain in the river mouth estuary over winter. In late January through early February YOY migrate downriver for the first time, joining larger juveniles to overwinter and feed. Tag and recapture data yield a Suwannee River population of Gulf sturgeon estimated at 7,650 individuals, with an annual turnover rate of 16%. Based on stability in cumulative recapture rates from 1991-1998, population size is stable with an effective balance between recruitment and mortality. However, population structure is dynamic, controlled by the juxtaposition, conjunction, and summation of successive strong and weak year classes. Length/age frequency distributions for 1995 and 1998 populations censuses are very different. The 1995 distribution is bimodal with a dominant mode of 9-14 year old subadults/adults, and a sub-dominant of mode of 2-4 year old juveniles. The 1998 distribution is trimodal, but overwhelmingly dominated by 6-9 year old subadults. Erosion by 1998 of the major subadult/adult mode from the 1995 census illustrates that large adults encounter the same high mortality as smaller fish. Ultimate adult size in the population has remained constant at 2.2 cm TL over 13 years, indicating a maximum life expectancy of 25 years for Suwannee River Gulf sturgeon.

  6. Optimal Balance of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeffery R.

    2013-01-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation. PMID:23592954

  7. Humpback whale-generated ambient noise levels provide insight into singers' spatial densities.

    PubMed

    Seger, Kerri D; Thode, Aaron M; Urbán-R, Jorge; Martínez-Loustalot, Pamela; Jiménez-López, M Esther; López-Arzate, Diana

    2016-09-01

    Baleen whale vocal activity can be the dominant underwater ambient noise source for certain locations and seasons. Previous wind-driven ambient-noise formulations have been adjusted to model ambient noise levels generated by random distributions of singing humpback whales in ocean waveguides and have been combined to a single model. This theoretical model predicts that changes in ambient noise levels with respect to fractional changes in singer population (defined as the noise "sensitivity") are relatively unaffected by the source level distributions and song spectra of individual humpback whales (Megaptera novaeangliae). However, the noise "sensitivity" does depend on frequency and on how the singers' spatial density changes with population size. The theoretical model was tested by comparing visual line transect surveys with bottom-mounted passive acoustic data collected during the 2013 and 2014 humpback whale breeding seasons off Los Cabos, Mexico. A generalized linear model (GLM) estimated the noise "sensitivity" across multiple frequency bands. Comparing the GLM estimates with the theoretical predictions suggests that humpback whales tend to maintain relatively constant spacing between one another while singing, but that individual singers either slightly increase their source levels or song duration, or cluster more tightly as the singing population increases.

  8. Population demographics and genetic diversity in remnant and translocated populations of sea otters

    USGS Publications Warehouse

    Bodkin, James L.; Ballachey, Brenda E.; Cronin, M.A.; Scribner, K.T.

    1999-01-01

    The effects of small population size on genetic diversity and subsequent population recovery are theoretically predicted, but few empirical data are available to describe those relations. We use data from four remnant and three translocated sea otter (Enhydra lutris) populations to examine relations among magnitude and duration of minimum population size, population growth rates, and genetic variation. Metochondrial (mt)DNA haplotype diversity was correlated with the number of years at minimum population size (r = -0.741, p = 0.038) and minimum population size (r = 0.709, p = 0.054). We found no relation between population growth and haplotype diversity, altough growth was significantly greater in translocated than in remnant populations. Haplotype diversity in populations established from two sources was higher than in a population established from a single source and was higher than in the respective source populations. Haplotype frequencies in translocated populations of founding sizes of 4 and 28 differed from expected, indicating genetic drift and differential reproduction between source populations, whereas haplotype frequencies in a translocated population with a founding size of 150 did not. Relations between population demographics and genetic characteristics suggest that genetic sampling of source and translocated populations can provide valuable inferences about translocations.

  9. Evidence for r- and K-selection in a wild bird population: a reciprocal link between ecology and evolution.

    PubMed

    Sæther, Bernt-Erik; Visser, Marcel E; Grøtan, Vidar; Engen, Steinar

    2016-04-27

    Understanding the variation in selection pressure on key life-history traits is crucial in our rapidly changing world. Density is rarely considered as a selective agent. To study its importance, we partition phenotypic selection in fluctuating environments into components representing the population growth rate at low densities and the strength of density dependence, using a new stochastic modelling framework. We analysed the number of eggs laid per season in a small song-bird, the great tit, and found balancing selection favouring large clutch sizes at small population densities and smaller clutches in years with large populations. A significant interaction between clutch size and population size in the regression for the Malthusian fitness reveals that those females producing large clutch sizes at small population sizes also are those that show the strongest reduction in fitness when population size is increased. This provides empirical support for ongoing r- and K-selection in this population, favouring phenotypes with large growth rates r at small population sizes and phenotypes with high competitive skills when populations are close to the carrying capacity K This selection causes long-term fluctuations around a stable mean clutch size caused by variation in population size, implying that r- and K-selection is an important mechanism influencing phenotypic evolution in fluctuating environments. This provides a general link between ecological dynamics and evolutionary processes, operating through a joint influence of density dependence and environmental stochasticity on fluctuations in population size. © 2016 The Author(s).

  10. Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao; Bocharova, Vera; Ma, Mengze

    Backbone rigidity, counterion size and the static dielectric constant affect the glass transition temperature, segmental relaxation time and decoupling between counterion and segmental dynamics in significant manners.

  11. Morphological and colour morph clines along an altitudinal gradient in the meadow grasshopper Pseudochorthippus parallelus.

    PubMed

    Köhler, Günter; Samietz, Jörg; Schielzeth, Holger

    2017-01-01

    Many animals show altitudinal clines in size, shape and body colour. Increases in body size and reduction in the length of body appendices in colder habitats are usually attributed to improved heat conservation at lower surface-to-volume ratios (known as Bergmann's and Allen's rule, respectively). However, the patterns are more variable and sometimes reversed in small ectotherms that are affected by shortened growing seasons. Altitude can also affect colouration. The thermal melanism hypothesis predicts darker colours under cooler conditions because of a thermoregulatory advantage. Darker colours may also be favoured at high altitudes for reasons of UV protection or habitat-dependent crypsis. We studied altitudinal variation in morphology and colour in the colour-polymorphic meadow grasshopper Pseudochorthippus parallelus based on 563 individuals from 17 populations sampled between 450 and 2,500 m asl. Pronotum length did not change with altitude, while postfemur length decreased significantly in both sexes. Tegmen (forewing) length decreased in males, but not in females. The results indicate that while body size, as best quantified by pronotum length, was remarkably constant, extended appendices were reduced at high altitudes. The pattern thus follows Allen's rule, but neither Bergmann's nor converse Bergmann's rule. These results indicate that inference of converse Bergmann's rule based on measurements from appendices should be treated with some caution. Colour morph ratios showed significant changes in both sexes from lowland populations dominated by green individuals to high-altitude populations dominated by brown ones. The increase of brown morphs was particularly steep between 1,500 and 2,000 m asl. The results suggest shared control of colour in males and females and local adaptation along the altitudinal gradient following the predictions of the thermal melanism hypothesis. Interestingly, both patterns, the reduction of body appendices and the higher frequency of brown individuals, may be explained by a need for efficient thermoregulation under high-altitude conditions.

  12. A Mw 6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations

    NASA Astrophysics Data System (ADS)

    Salichon, Jérome; Kohrs-Sansorny, Carine; Bertrand, Etienne; Courboulex, Françoise

    2010-07-01

    The southern Alps-Ligurian basin junction is one of the most seismically active zone of the western Europe. A constant microseismicity and moderate size events (3.5 < M < 5) are regularly recorded. The last reported historical event took place in February 1887 and reached an estimated magnitude between 6 and 6.5, causing human losses and extensive damages (intensity X, Medvedev-Sponheuer-Karnik). Such an event, occurring nowadays, could have critical consequences given the high density of population living on the French and Italian Riviera. We study the case of an offshore Mw 6.3 earthquake located at the place where two moderate size events (Mw 4.5) occurred recently and where a morphotectonic feature has been detected by a bathymetric survey. We used a stochastic empirical Green’s functions (EGFs) summation method to produce a population of realistic accelerograms on rock and soil sites in the city of Nice. The ground motion simulations are calibrated on a rock site with a set of ground motion prediction equations (GMPEs) in order to estimate a reasonable stress-drop ratio between the February 25th, 2001, Mw 4.5, event taken as an EGF and the target earthquake. Our results show that the combination of the GMPEs and EGF techniques is an interesting tool for site-specific strong ground motion estimation.

  13. Nitrogen allocation to offspring and milk production in a capital breeder.

    PubMed

    Taillon, Joëlle; Barboza, Perry S; Côté, Steeve D

    2013-08-01

    Nitrogen (N) is a limiting nutrient for many herbivores, especially when plant availability and N content are low during the period of maternal investment, which is common for arctic ungulates. We used natural abundance of N isotopes to quantify allocation of maternal nitrogen to neonatal calves and milk in wild migratory caribou (Rangifer tarandus). We contrasted female-calf pairs from two herds in northern Quebec/Labrador, Canada: Rivière-George herd (RG; low population size with heavy calves) and the Rivière-aux-Feuilles herd (RAF; high population size and small calves). We assessed whether females of both herds relied on body protein or dietary N to produce the neonatal calf and milk at calving and weaning. Female caribou of both herds relied mostly on body N for fetal development. RAF females allocated less body N to calves than did RG females (92% vs. 95% of calf N), which was consistent with the production of calves that were 8% smaller in RAF than in RG. Allocation of body N to milk was also high for both herds, similar at calving for RAF and RG females (88% vs. 91% of milk N, respectively), but lower in RAF than RG females (95% vs. 99% of milk N) at weaning, which was consistent with a small but significantly greater reliance on dietary N supplies to support milk production at weaning. Female caribou used body protein stores to ensure a constant supply of N for fetal growth and milk production that minimized the effects of trophic mismatches on reproduction. The combination of migration and capital investment may therefore allow females to produce calves and attenuate the effects of both temporal and spatial mismatches between vegetation green-up and calf growth, which ultimately would reduce trophic feedbacks on population growth. Our data suggest that small changes in maternal allocation of proteins over the long period of gestation produce significant changes in calf mass as females respond to changes in resources that accompany changes in the size and distribution of the population.

  14. Ultrasonics and Optics Would Control Shot Size

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    Feedback system assures production of silicon shot of uniform size. Breakup of silicon stream into drops is controlled, in part, by varying frequency of vibrations imparted to stream by ultrasonic transducer. Drop size monitored by photodetector. Control method particularly advantageous in that constant size is maintained even while other process variables are changed deliberately or inadvertently. Applicable to materials other than silicon.

  15. Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus

    PubMed Central

    2010-01-01

    Background The dynamic geological and climatic histories of temperate South America have played important roles in shaping the contemporary distributions and genetic diversity of endemic freshwater species. We use mitochondria and nuclear sequence variation to investigate the consequences of mountain barriers and Quaternary glacial cycles for patterns of genetic diversity in the diadromous fish Galaxias maculatus in Patagonia (~300 individuals from 36 locations). Results Contemporary populations of G. maculatus, east and west of the Andes in Patagonia, represent a single monophyletic lineage comprising several well supported groups. Mantel tests using control region data revealed a strong positive relationship when geographic distance was modeled according to a scenario of marine dispersal. (r = 0.69, P = 0.055). By contrast, direct distance between regions was poorly correlated with genetic distance (r = -0.05, P = 0.463). Hierarchical AMOVAs using mtDNA revealed that pooling samples according to historical (pre-LGM) oceanic drainage (Pacific vs. Atlantic) explained approximately four times more variance than pooling them into present-day drainage (15.6% vs. 3.7%). Further post-hoc AMOVA tests revealed additional genetic structure between populations east and west of the Chilean Coastal Cordillera (coastal vs. interior). Overall female effective population size appears to have remained relatively constant until roughly 0.5 Ma when population size rapidly increased several orders of magnitude [100× (60×-190×)] to reach contemporary levels. Maximum likelihood analysis of nuclear alleles revealed a poorly supported gene tree which was paraphyletic with respect to mitochondrial-defined haplogroups. Conclusions First diversifying in the central/north-west region of Patagonia, G. maculatus extended its range into Argentina via the southern coastal regions that join the Pacific and Atlantic oceans. More recent gene flow between northern populations involved the most ancient and most derived lineages, and was likely facilitated by drainage reversal(s) during one or more cooling events of the late Pleistocene. Overall female effective population size represents the end result of a widespread and several hundred-fold increase over approximately 0.5 Ma, spanning several climatic fluctuations of the Pleistocene. The minor influence of glacial cycles on the genetic structure and diversity of G. maculatus likely reflects the access to marine refugia during repeated bouts of global cooling. Evidence of genetic structure that was detected on a finer scale between lakes/rivers is most likely the result of both biological attributes (i.e., resident non-migratory behavior and/or landlocking and natal homing in diadromous populations), and the Coastal Cordillera as a dispersal barrier. PMID:20211014

  16. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  17. Extensions to the instantaneous normal mode analysis of cluster dynamics: Diffusion constants and the role of rotations in clusters

    NASA Astrophysics Data System (ADS)

    Adams, John E.; Stratt, Richard M.

    1990-08-01

    For the instantaneous normal mode analysis method to be generally useful in studying the dynamics of clusters of arbitrary size, it ought to yield values of atomic self-diffusion constants which agree with those derived directly from molecular dynamics calculations. The present study proposes that such agreement indeed can be obtained if a sufficiently sophisticated formalism for computing the diffusion constant is adopted, such as the one suggested by Madan, Keyes, and Seeley [J. Chem. Phys. 92, 7565 (1990)]. In order to implement this particular formalism, however, we have found it necessary to pay particular attention to the removal from the computed spectra of spurious rotational contributions. The utility of the formalism is demonstrated via a study of small argon clusters, for which numerous results generated using other approaches are available. We find the same temperature dependence of the Ar13 self-diffusion constant that Beck and Marchioro [J. Chem. Phys. 93, 1347 (1990)] do from their direct calculation of the velocity autocorrelation function: The diffusion constant rises quickly from zero to a liquid-like value as the cluster goes through (the finite-size equivalent of) the melting transition.

  18. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.

    PubMed

    Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G

    2015-11-03

    Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.

    PubMed

    Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien

    2018-05-21

    Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  1. Making It Count: Improving Estimates of the Size of Transgender and Gender Nonconforming Populations.

    PubMed

    Deutsch, Madeline B

    2016-06-01

    An accurate estimate of the number of transgender and gender nonconforming people is essential to inform policy and funding priorities and decisions. Historical reports of population sizes of 1 in 4000 to 1 in 50,000 have been based on clinical populations and likely underestimate the size of the transgender population. More recent population-based studies have found a 10- to 100-fold increase in population size. Studies that estimate population size should be population based, employ the two-step method to allow for collection of both gender identity and sex assigned at birth, and include measures to capture the range of transgender people with nonbinary gender identities.

  2. Extracting Diffusion Constants from Echo-Time-Dependent PFG NMR Data Using Relaxation-Time Information

    NASA Astrophysics Data System (ADS)

    Vandusschoten, D.; Dejager, P. A.; Vanas, H.

    Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.

  3. Recovery and radiation corrections and time constants of several sizes of shielded and unshielded thermocouple probes for measuring gas temperature

    NASA Technical Reports Server (NTRS)

    Glawe, G. E.; Holanda, R.; Krause, L. N.

    1978-01-01

    Performance characteristics were experimentally determined for several sizes of a shielded and unshielded thermocouple probe design. The probes are of swaged construction and were made of type K wire with a stainless steel sheath and shield and MgO insulation. The wire sizes ranged from 0.03- to 1.02-mm diameter for the unshielded design and from 0.16- to 0.81-mm diameter for the shielded design. The probes were tested through a Mach number range of 0.2 to 0.9, through a temperature range of room ambient to 1420 K, and through a total-pressure range of 0.03 to 0.2.2 MPa (0.3 to 22 atm). Tables and graphs are presented to aid in selecting a particular type and size. Recovery corrections, radiation corrections, and time constants were determined.

  4. The economics of urban size.

    PubMed

    Alonso, W

    1971-01-01

    An aggregative economic approach to the theory of city size is presented along with some empirical findings which suggest that even the largest cities have not yet reached excessive sizes from the point of view of growth and productivity. Urban magnitude is no simple 1 dimensional phenomenon. Modern urban centers are surrounded by very large, diffuse zonal boundaries, within which there are marked variations in the proportion of firms and people associated with that center, and in the intensity of the association. In sum, population does not constitute a conventional, countable set. In general, population will be considered as the basic magnitude and as a conventionally definable number. Most approaches to city size have emphasized the presumed diseconomy of urban scale and have sought to establish that population at which costs per capita are least, regarding this as optimal. It is argued here that both the logic and the factual basis of this approach are faulty. The argument of minimum costs is insufficient in its own terms. Such an objective is reasonable only if output per capita is constant, but it appears that output per capita is an increasing function of urban size. In that case, a more sensible objective of public policy would deal with the relation of outputs and inputs, rather than only with inputs. In every country for which evidence was found, local product per capita (or some index for it, such as income or wages) rises with urban size, and where comparable figures on cost are available, these rise far more slowly if at all. Although all of the data desirable are not available for any single country, the overall pattern is clear. Possibly the most surprising element in the data is the marked decline with increasing density in Social Overhead Captial Stocks (SOCS) per capita. This runs counter to common belief that the bigger the city the more infrastructure per capita is needed and may be the result of such effects as the greater linear quantities of roads per capita necessary in low density areas. Since it appears that the biggest cities are not too big from the perspective of economic efficiency, it may be that higher average incomes of bigger cities do not mask sharper inequalities among their citizens, so that efficiency is gained at the cost of equity. This does not appear to be the case at least for the US. On the contrary, some studies indicate that there is less poverty and a more equal distribution of incomes in big cities than in smaller cities. There are some weak indications of a downturn in the product curve at the largest urban sizes, but even should the downturn be real, this would not be inconsistent with the efficiency of those larger sizes in a hierarchical system of cities.

  5. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile cutthroat trout of variable sizes

    USGS Publications Warehouse

    Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.

    2004-01-01

    The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.

  6. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    NASA Astrophysics Data System (ADS)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  7. Information slows down hierarchy growth

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A.

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  8. Information slows down hierarchy growth.

    PubMed

    Czaplicka, Agnieszka; Suchecki, Krzysztof; Miñano, Borja; Trias, Miquel; Hołyst, Janusz A

    2014-06-01

    We consider models of growing multilevel systems wherein the growth process is driven by rules of tournament selection. A system can be conceived as an evolving tree with a new node being attached to a contestant node at the best hierarchy level (a level nearest to the tree root). The proposed evolution reflects limited information on system properties available to new nodes. It can also be expressed in terms of population dynamics. Two models are considered: a constant tournament (CT) model wherein the number of tournament participants is constant throughout system evolution, and a proportional tournament (PT) model where this number increases proportionally to the growing size of the system itself. The results of analytical calculations based on a rate equation fit well to numerical simulations for both models. In the CT model all hierarchy levels emerge, but the birth time of a consecutive hierarchy level increases exponentially or faster for each new level. The number of nodes at the first hierarchy level grows logarithmically in time, while the size of the last, "worst" hierarchy level oscillates quasi-log-periodically. In the PT model, the occupations of the first two hierarchy levels increase linearly, but worse hierarchy levels either do not emerge at all or appear only by chance in the early stage of system evolution to further stop growing at all. The results allow us to conclude that information available to each new node in tournament dynamics restrains the emergence of new hierarchy levels and that it is the absolute amount of information, not relative, which governs such behavior.

  9. A Study of School Size among Alabama's Public High Schools

    ERIC Educational Resources Information Center

    Lindahl, Ronald A.; Cain, Patrick M., Sr.

    2012-01-01

    The purpose of this study was to examine the relationship between the size of Alabama's public high schools, selected school quality and financial indicators, and their students' performance on standardized exams. When the socioeconomic level of the student bodies is held constant, the size of high schools in Alabama has relatively little…

  10. Protein composition of different sized casein micelles in milk after the binding of lactoferrin or lysozyme.

    PubMed

    Anema, Skelte G; de Kruif, C G Kees

    2013-07-24

    Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.

  11. Evaluation of a Perforated Drug Delivery System in Mice for Prolonged and Constant Release of a Hydrophilic Drug

    DTIC Science & Technology

    2012-02-17

    A drug delivery system (DDS) consisting of a perforated microtube ( polyimide , inside diameter= 1.8 mm, tube length= 20 mm, hole size= 0.15 mm) was... biocompatible and capable of long-term constant release of hydrophilic drugs such as sodium fluorescein.

  12. Teaching Nanochemistry: Madelung Constants of Nanocrystals

    ERIC Educational Resources Information Center

    Baker, Mark D.; Baker, A. David

    2010-01-01

    The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…

  13. Recalculation of the Critical Size and Multiplication Constant of a Homogeneous UO{sub 2}-D{sub 2}O Mixtures

    DOE R&D Accomplishments Database

    Wigner, E. P.; Weinberg, A. M.; Stephenson, J.

    1944-02-11

    The multiplication constant and optimal concentration of a slurry pile is recalculated on the basis of Mitchell's experiments on resonance absorption. The smallest chain reacting unit contains 45 to 55 m{sup 3}of d{sub 2}O. (auth).

  14. Recalculation of the Critical Size and Multiplication Constant of a Homogeneous UO{sub 2} - D{sub 2}O Mixtures

    DOE R&D Accomplishments Database

    Wigner, E. P.; Weinberg, A. M.; Stephenson, J.

    1944-02-11

    The multiplication constant and optimal concentration of a slurry pile is recalculated on the basis of Mitchell`s experiments on resonance absorption. The smallest chain reacting unit contains 45 to 55 m{sup 3}of D{sub 2}O. (auth)

  15. Constraining dust properties in circumstellar envelopes of C-stars in the Small Magellanic Cloud: optical constants and grain size of carbon dust

    NASA Astrophysics Data System (ADS)

    Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara

    2016-10-01

    We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.

  16. The ancestral selection graph under strong directional selection.

    PubMed

    Pokalyuk, Cornelia; Pfaffelhuber, Peter

    2013-08-01

    The ancestral selection graph (ASG) was introduced by  Neuhauser and Krone (1997) in order to study populations of constant size which evolve under selection. Coalescence events, which occur at rate 1 for every pair of lines, lead to joint ancestry. In addition, splitting events in the ASG at rate α, the scaled selection coefficient, produce possible ancestors, such that the real ancestor depends on the ancestral alleles. Here, we use the ASG in the case without mutation in order to study fixation of a beneficial mutant. Using our main tool, a reversibility property of the ASG, we provide a new proof of the fact that a beneficial allele fixes roughly in time (2logα)/α if α is large. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The effect of solid interaction forces on pneumatic handling of sorbent powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.J.; Fan, L.S.

    1993-06-01

    This study shows that a comparison of powder characteristics--particle morphologies, particle size distributions, and static dielectric and Hamaker constants--can be used to interpret differences in dispersion and transport behavior between powders. These differences are attributed to the relative values of the solid-solid interaction forces experience by each powder in the process. The static dielectric constants of the powders are used as the material properties related to the relative magnitudes of the electrostatic forces. Similarly, the Hamaker constants are the material properties used to indicate the relative magnitudes of the van der Waals forces. The effects of differences in particle morphologiesmore » and size distributions are used to evaluate the dispersibility and efficiency of transport of four calcium-based powder materials used as sorbents in flue-gas desulfurization.« less

  18. Microwave Heating of Crystals with Gold Nanoparticles and Synovial Fluid under Synthetic Skin Patches

    PubMed Central

    2017-01-01

    Gout is a disease with elusive treatment options. Reduction of the size of l-alanine crystals as a model crystal for gouty tophi with the use of a monomode solid-state microwave was examined as a possible therapeutic aid. The effect of microwave heating on l-alanine crystals in the presence of gold nanoparticles (Au NPs) in solution and synovial fluid (SF) in a plastic pouch through a synthetic skin patch was investigated. In this regard, three experimental paradigms were employed: Paradigm 1 includes the effect of variable microwave power (5–10 W) and variable heating time (5–60 s) and Au NPs in water (20 nm size, volume of 10 μL) in a plastic pouch (1 × 2 cm2 in size). Paradigm 2 includes the effect of a variable volume of 20 nm Au NPs in a variable volume of SF up to 100 μL in a plastic pouch at a constant microwave power (10 W) for 30 s. Paradigm 3 includes the effect of constant microwave power (10 W) and microwave heating time (30 s), constant volume of Au NPs (100 μL), and variable size of Au NPs (20–200 nm) placed in a plastic pouch through a synthetic skin patch. In these experiments, an average of 60–100% reduction in the size of an l-alanine crystal (initial size = 450 μm) without damage to the synthetic skin or increasing the temperature of the samples beyond the physiological range was reported. PMID:28983527

  19. Temperature-dependent body size effects determine population responses to climate warming.

    PubMed

    Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna

    2018-02-01

    Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  20. Altitudinal variation in age and body size in Yunnan pond frog (Pelophylax pleuraden).

    PubMed

    Lou, Shang Ling; Jin, Long; Liu, Yan Hong; Mi, Zhi Ping; Tao, Gang; Tang, Yu Mei; Liao, Wen Bo

    2012-08-01

    Large-scale systematic patterns of body size are a basic concern of evolutionary biology. Identifying body size variation along altitudinal gradients may help us to understand the evolution of life history of animals. In this study, we investigated altitudinal variation in body size, age and growth rate in Chinese endemic frog, Pelophylax pleuraden. Data sampled from five populations covering an altitudinal span of 1413 to 1935 m in Sichuan province revealed that body size from five populations did not co-vary with altitudes, not following Bergmann's rule. Average adult SVL differed significantly among populations in males, but not in females. For both sexes, average adult age differed significantly among populations. Post-metamorphic growth rate did not co-vary with altitude, and females grew faster than males in all populations. When controlling the effect of age, body size did not differ among populations in both sexes, suggesting that age did not affect variation in body size among populations. For females, there may be other factors, such as the allocation of energy between growth and reproduction, that eliminated the effect of age on body size. To our minds, the major reason of body size variation among populations in male frogs may be related to individual longevity. Our findings also suggest that factors other than age and growth rate may contribute to size differences among populations.

  1. Both population size and patch quality affect local extinctions and colonizations.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  2. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  3. Does wine glass size influence sales for on-site consumption? A multiple treatment reversal design.

    PubMed

    Pechey, Rachel; Couturier, Dominique-Laurent; Hollands, Gareth J; Mantzari, Eleni; Munafò, Marcus R; Marteau, Theresa M

    2016-06-07

    Wine glass size can influence both perceptions of portion size and the amount poured, but its impact upon purchasing and consumption is unknown. This study aimed to examine the impact of wine glass size on wine sales for on-site consumption, keeping portion size constant. In one establishment (with separate bar and restaurant areas) in Cambridge, England, wine glass size (Standard; Larger; Smaller) was changed over eight fortnightly periods. The bar and restaurant differ in wine sales by the glass vs. by the bottle (93 % vs. 63 % by the glass respectively). Daily wine volume purchased was 9.4 % (95 % CI: 1.9, 17.5) higher when sold in larger compared to standard-sized glasses. This effect seemed principally driven by sales in the bar area (bar: 14.4 % [3.3, 26.7]; restaurant: 8.2 % [-2.5, 20.1]). Findings were inconclusive as to whether sales were different with smaller vs. standard-sized glasses. The size of glasses in which wine is sold, keeping the portion size constant, can affect consumption, with larger glasses increasing consumption. The hypothesised mechanisms for these differential effects need to be tested in a replication study. If replicated, policy implications could include considering glass size amongst alcohol licensing requirements. ISRCTN registry: ISRCTN12018175 . Registered 12(th) May 2015.

  4. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data

    PubMed Central

    Jewett, Ethan M.; Steinrücken, Matthias; Song, Yun S.

    2016-01-01

    Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. PMID:27550904

  5. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates

    PubMed Central

    Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.

    2016-01-01

    Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344

  6. Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta)

    PubMed Central

    2010-01-01

    Background Diatoms are one of the most species-rich groups of eukaryotic microbes known. Diatoms are also the only group of eukaryotic micro-algae with a diplontic life history, suggesting that the ancestral diatom switched to a life history dominated by a duplicated genome. A key mechanism of speciation among diatoms could be a propensity for additional stable genome duplications. Across eukaryotic taxa, genome size is directly correlated to cell size and inversely correlated to physiological rates. Differences in relative genome size, cell size, and acclimated growth rates were analyzed in isolates of the diatom Ditylum brightwellii. Ditylum brightwellii consists of two main populations with identical 18s rDNA sequences; one population is distributed globally at temperate latitudes and the second appears to be localized to the Pacific Northwest coast of the USA. These two populations co-occur within the Puget Sound estuary of WA, USA, although their peak abundances differ depending on local conditions. Results All isolates from the more regionally-localized population (population 2) possessed 1.94 ± 0.74 times the amount of DNA, grew more slowly, and were generally larger than isolates from the more globally distributed population (population 1). The ITS1 sequences, cell sizes, and genome sizes of isolates from New Zealand were the same as population 1 isolates from Puget Sound, but their growth rates were within the range of the slower-growing population 2 isolates. Importantly, the observed genome size difference between isolates from the two populations was stable regardless of time in culture or the changes in cell size that accompany the diatom life history. Conclusions The observed two-fold difference in genome size between the D. brightwellii populations suggests that whole genome duplication occurred within cells of population 1 ultimately giving rise to population 2 cells. The apparent regional localization of population 2 is consistent with a recent divergence between the populations, which are likely cryptic species. Genome size variation is known to occur in other diatom genera; we hypothesize that genome duplication may be an active and important mechanism of genetic and physiological diversification and speciation in diatoms. PMID:20044934

  7. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  8. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    PubMed

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  9. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.

    PubMed

    Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude

    2015-06-01

    It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. Activation of Peptide ions by blackbody radiation: factors that lead to dissociation kinetics in the rapid energy exchange limit.

    PubMed

    Price, W D; Williams, E R

    1997-11-20

    Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)(n) (n = 2-32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very "tight" (A(infinity) = 10(9.9) s(-1)) to "loose" (A(infinity) = 10(16.8) s(-1)) were selected to represent dissociation parameters within the experimental temperature range (300-520 K) and kinetic window (k(uni) = 0.001-0.20 s(-1)) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules.

  11. Activation of Peptide Ions by Blackbody Radiation: Factors That Lead to Dissociation Kinetics in the Rapid Energy Exchange Limit

    PubMed Central

    Price, William D.

    2005-01-01

    Unimolecular rate constants for blackbody infrared radiative dissociation (BIRD) were calculated for the model protonated peptide (AlaGly)n (n = 2–32) using a variety of dissociation parameters. Combinations of dissociation threshold energies ranging from 0.8 to 1.7 eV and transition entropies corresponding to Arrhenius preexponential factors ranging from very “tight” (A∞ = 109.9 s−1) to “loose” (A∞ = 1016.8 s−1) were selected to represent dissociation parameters within the experimental temperature range (300–520 K) and kinetic window (kuni = 0.001–0.20 s−1) typically used in the BIRD experiment. Arrhenius parameters were determined from the temperature dependence of these values and compared to those in the rapid energy exchange (REX) limit. In this limit, the internal energy of a population of ions is given by a Boltzmann distribution, and kinetics are the same as those in the traditional high-pressure limit. For a dissociation process to be in this limit, the rate of photon exchange between an ion and the vacuum chamber walls must be significantly greater than the dissociation rate. Kinetics rapidly approach the REX limit either as the molecular size or threshold dissociation energy increases or as the transition-state entropy or experimental temperature decreases. Under typical experimental conditions, peptide ions larger than 1.6 kDa should be in the REX limit. Smaller ions may also be in the REX limit depending on the value of the threshold dissociation energy and transition-state entropy. Either modeling or information about the dissociation mechanism must be known in order to confirm REX limit kinetics for these smaller ions. Three principal factors that lead to the size dependence of REX limit kinetics are identified. With increasing molecular size, rates of radiative absorption and emission increase, internal energy distributions become relatively narrower, and the microcanonical dissociation rate constants increase more slowly over the energy distribution of ions. Guidelines established here should make BIRD an even more reliable method to obtain information about dissociation energetics and mechanisms for intermediate size molecules. PMID:16604162

  12. Stepwise formation of H3O(+)(H2O)n in an ion drift tube: Empirical effective temperature of association/dissociation reaction equilibrium in an electric field.

    PubMed

    Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M

    2016-06-14

    We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.

  13. Adaptively resizing populations: Algorithm, analysis, and first results

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Smuda, Ellen

    1993-01-01

    Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.

  14. Comparison of methods for estimating the attributable risk in the context of survival analysis.

    PubMed

    Gassama, Malamine; Bénichou, Jacques; Dartois, Laureen; Thiébaut, Anne C M

    2017-01-23

    The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox's model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points. Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort. In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.

  15. Rapid population divergence in thermal reaction norms for an invading species: breaking the temperature-size rule.

    PubMed

    Kingsolver, J G; Massie, K R; Ragland, G J; Smith, M H

    2007-05-01

    The temperature-size rule is a common pattern of phenotypic plasticity in which higher temperature during development results in a smaller adult body size (i.e. a thermal reaction norm with negative slope). Examples and exceptions to the rule are known in multiple groups of organisms, but rapid population differentiation in the temperature-size rule has not been explored. Here we examine the genetic and parental contributions to population differentiation in thermal reaction norms for size, development time and survival in the Cabbage White Butterfly Pieris rapae, for two geographical populations that have likely diverged within the past 150 years. We used split-sibship experiments with two temperature treatments (warm and cool) for P. rapae from Chapel Hill, NC, and from Seattle, WA. Mixed-effect model analyses demonstrate significant genetic differences between NC and WA populations for adult size and for thermal reaction norms for size. Mean adult mass was 12-24% greater in NC than in WA populations for both temperature treatments; mean size was unaffected or decreased with temperature (the temperature-size rule) for the WA population, but size increased with temperature for the NC population. Our study shows that the temperature-size rule and related thermal reaction norms can evolve rapidly within species in natural field conditions. Rapid evolutionary divergence argues against the existence of a simple, general mechanistic constraint as the underlying cause of the temperature-size rule.

  16. Growth and condition of alewives in Lake Michigan, 1984-2001

    USGS Publications Warehouse

    Madenjian, Charles P.; Holuszko, Jeffrey D.; DeSorcie, Timothy J.

    2003-01-01

    Diets of salmonines in Lake Michigan have been dominated by alewives Alosa pseudoharengus since the 1960s, and information on alewife population dynamics is critical to the management of salmonine fisheries. We monitored alewife size at age and condition (K) at several different locations in Lake Michigan during fall 1984–2001. Alewives were aged by enumerating annuli on otoliths. The results indicated that alewife length at age did not trend upward or downward between 1984 and the late 1990s but decreased from the late 1990s to 2001. Alewife weight at age was relatively constant between 1984 and the mid-1990s but decreased from the mid-1990s to 2001. Mean condition for a given alewife age was, on average, 13.7% higher during 1984–1994 than during 1995–2001. This decline in alewife condition was not a density-dependent response by the alewife population because alewife abundance trended neither upward nor downward during 1984–2001. The decline in alewife condition was possibly due to the lakewide decrease in the abundance of Diporeia spp. during the 1990s. Apparently, the availability of the large-bodied invertebrates Diporeia and Mysis spp. was an important regulator of adult alewife growth because alewives attained a substantially larger size in Lake Michigan, where these invertebrates were relatively important constituents of the adult alewife diet, than in Lake Ontario, where these invertebrates were not readily eaten by adult alewives. For age-2 or older females, mean length was 2–9 mm greater than for males. Alewife size at age and condition were slightly higher on the eastern side of Lake Michigan than on the western side.

  17. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.

    PubMed

    Eggert, L S; Eggert, J A; Woodruff, D S

    2003-06-01

    African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.

  18. Provider-identified barriers and facilitators to implementing a supported employment program in spinal cord injury.

    PubMed

    Cotner, Bridget A; Ottomanelli, Lisa; O'Connor, Danielle R; Trainor, John K

    2018-06-01

    In a 5-year study, individual placement and support (IPS) significantly increased employment rate of United States Veterans with spinal cord injury (SCI), a historically underemployed population. In a follow-up study, data on barriers and facilitators to IPS implementation were identified. Over 24 months of implementation, 82 key medical and vocational staff underwent semi-structured interviews (n = 130). Interviews were digitally recorded and qualitatively analyzed (ATLAS.ti v0.7) using a constant comparative method to generate themes. Some barriers to implementation occurred throughout the study, such as Veterans' lack of motivation and providers' difficulty integrating vocational and medical rehabilitation. Other barriers emerged at specific stages, for example, early barriers included a large geographic service area and a large patient caseload, and late barriers included need for staff education. Facilitators were mostly constant throughout implementation and included leadership support and successful integration of vocational staff into the medical care team. Implementation strategies need to be adjusted as implementation progresses and matures. The strategies that succeeded in this setting, which were situated in a real-world context of providing IPS as a part of SCI medical care, may inform implementation of IPS for other populations with physical disabilities. Implications for Rehabilitation Key facilitators to IPS in SCI implementation are integrating vocational staff with expertise in IPS and SCI on clinical rehabilitation teams and providing leadership support. Ongoing barriers to IPS in SCI include patient specific and program administration factors such as caseload size and staffing patterns. Varying implementation strategies are needed to address barriers as they arise and facilitate successful implementation.

  19. Determination of the optimal sample size for a clinical trial accounting for the population size.

    PubMed

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation.

    PubMed

    Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J

    2018-05-21

    Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.

  1. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  2. Not putting all their eggs in one basket: bet-hedging despite extraordinary annual reproductive output of desert tortoises

    USGS Publications Warehouse

    Lovich, Jeffrey E.; Ennen, Joshua R.; Yackulic, Charles B.; Meyer-Wilkins, Kathie; Agha, Mickey; Loughran, Caleb L.; Bjurlin, Curtis; Austin, Meaghan; Madrak, Sheila V.

    2015-01-01

    Bet-hedging theory makes the counter-intuitive prediction that, if juvenile survival is low and unpredictable, organisms should consistently reduce short-term reproductive output to minimize the risk of reproductive failure in the long-term. We investigated the long-term reproductive output of an Agassiz's desert tortoise (Gopherus agassizii) population and conformance to a bet-hedging strategy of reproduction in an unpredictable but comparatively productive environment. Most females reproduced every year, even during periods of low precipitation and poor germination of food plants, and the mean percentage of reproducing females did not differ significantly on an annual basis. Although mean annual egg production (clutch size × clutch frequency) differed significantly among years, mean clutch size and mean clutch frequency remained relatively constant. During an El Niño year, mean annual egg production and mean annual clutch frequency were the highest ever reported for this species. Annual egg production was positively influenced by maternal body size but clutch size and clutch frequency were not. Our long-term results confirm earlier conclusions based on short-term research that desert tortoises have a bet-hedging strategy of producing small clutches almost every year. The risk of long-term reproductive failure is minimized in unpredictable environments, both through time by annually producing multiple small clutches over a long reproductive lifespan, even in years of low resource availability, and through space by depositing multiple annual clutches in different locations. The extraordinary annual reproductive output of this population appears to be the result of a typically high but unpredictable biomass of annual food plants at the site relative to tortoise habitat in dryer regions. Under the comparatively productive but unpredictable conditions, tortoises conform to predictions of a bet-hedging strategy of reproduction with relatively small but consistent clutch sizes.

  3. Magnetic and structural studies of trivalent Co-substituted Cd-Mn ferrites

    NASA Astrophysics Data System (ADS)

    Amer, M. A.; Meaz, T. M.; El-Kestawy, M.; Ghoneim, A. I.

    2016-05-01

    Series of polycrystalline Cd0.4Mn0.6CoxFe2-xO4 ferrites, 0≤x≤1, were prepared by solid state reaction method. The samples were characterized by inductive coupling plasma, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectra and vibrating sample magnetometry. This study proved that all samples have single-phase cubic spinel structure. The true lattice constant, saturation magnetization, magnetic moment and trend of grain size and IR band νA showed decrease against x, whereas the trend of crystallite size, threshold frequency, Debye temperature, IR bands ν1 and ν2 and force constants F1 and F2, coercivity, anisotropy constant and residual magnetization showed increase. The IR analysis proved existence of Fe2+, Co2+, Fe4+, Co4+ and/or Mn4+ ions amongst the crystal sublattices. The characteristic bands ν1 and ν2 and force constants F1 and F2 showed decrease versus the tetrahedral- and octahedral-site bond length, respectively. The strain, specific surface area, refractive index, velocity, jump rate and remnant magnetization proved dependence on Co3+ ion content x.

  4. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis.

    PubMed

    Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie

    2002-09-01

    Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.

  5. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it

    2011-12-15

    Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less

  6. Effect of the cosmological constant on halo size

    NASA Astrophysics Data System (ADS)

    Kulchoakrungsun, Ekapob; Lam, Adrian; Lowe, David A.

    2018-04-01

    In this work, we consider the effect of the cosmological constant on galactic halo size. As a model, we study the general relativistic derivation of orbits in the Schwarzschild-de Sitter metric. We find that there exists a length scale rΛ corresponding to a maximum size of a circular orbit of a test mass in a gravitationally bound system, which is the geometric mean of the cosmological horizon size squared and the Schwarzschild radius. This agrees well with the size of a galactic halo when the effects of dark matter are included. The size of larger structures such as galactic clusters and superclusters are also well-approximated by this scale. This model provides a simplified approach to computing the size of such structures without the usual detailed dynamical models. Some of the more detailed approaches that appear in the literature are reviewed, and we find the length scales agree to within a factor of order one. Finally, we note the length scale associated with the effects of MOND or Verlinde’s emergent gravity, which offer explanations of the flattening of galaxy rotation curves without invoking dark matter, may be expressed as the geometric mean of the cosmological horizon size and the Schwarzschild radius, which is typically 100 times smaller than rΛ.

  7. Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants

    PubMed Central

    Saleem, Imran Y.; Smyth, Hugh D. C.

    2013-01-01

    Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381

  8. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data.

    PubMed

    Jewett, Ethan M; Steinrücken, Matthias; Song, Yun S

    2016-11-01

    Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright-Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Research on Grid Size Suitability of Gridded Population Distribution in Urban Area: A Case Study in Urban Area of Xuanzhou District, China.

    PubMed

    Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao

    2017-01-01

    The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.

  10. Research on Grid Size Suitability of Gridded Population Distribution in Urban Area: A Case Study in Urban Area of Xuanzhou District, China

    PubMed Central

    Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao

    2017-01-01

    The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050

  11. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata.

    PubMed

    Wos, Guillaume; Willi, Yvonne

    2018-05-26

    Over very short spatial scales, the habitat of a species can differ in multiple abiotic and biotic factors. These factors may impose natural selection on several traits and can cause genetic differentiation within a population. We studied multivariate genetic differentiation in a plant species of a sand dune landscape by linking environmental variation with differences in genotypic trait values and gene expression levels to find traits and candidate genes of microgeographical adaptation. Maternal seed families of Arabidopsis lyrata were collected in Saugatuck Dunes State Park, Michigan, USA, and environmental parameters were recorded at each collection site. Offspring plants were raised in climate chambers and exposed to one of three temperature treatments: regular occurrence of frost, heat, or constant control conditions. Several traits were assessed: plant growth, time to flowering, and frost and heat resistance. The strongest trait-environment association was between a fast switch to sexual reproduction and weaker growth under frost, and growing in the open, away from trees. The second strongest association was between the trait combination of small plant size and early flowering under control conditions combined with large size under frost, and the combination of environmental conditions of growing close to trees, at low vegetation cover, on dune bottoms. Gene expression analysis by RNA-seq revealed candidate genes involved in multivariate trait differentiation. The results support the hypothesis that in natural populations, many environmental factors impose selection, and that they affect multiple traits, with the relative direction of trait change being complex. The results highlight that heterogeneity in the selection environment over small spatial scales is a main driver of the maintenance of adaptive genetic variation within populations.

  12. Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control.

    PubMed

    Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A

    2015-06-01

    We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.

  13. Ada (Trade Name) Compiler Validation Summary Report. OASYS, OASYS VADS Ada Compiler, Version 1.7 InterPro 32 (NSC 32000).

    DTIC Science & Technology

    1986-06-19

    C148008A CA3005A throueh CA3005D (14 tests) 85120011 C14A015A CE2107E BC32014C C92005A C35904A C940OACA See Appendix D for the eat descriptions. 3.5...constant NAME :a ipro sysv; STORAGE UNIT : constant :a 8; MEMORY SIZE c onstant :a 16 77 14; - System-Dependent Named N- ubers MIN INT : constant : -2

  14. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  15. A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy.

    PubMed

    Hongo, Kenta; Maezono, Ryo

    2017-11-14

    We propose a computational scheme to evaluate Hamaker constants, A, of molecules with practical sizes and anisotropies. Upon the increasing feasibility of diffusion Monte Carlo (DMC) methods to evaluate binding curves for such molecules to extract the constants, we discussed how to treat the averaging over anisotropy and how to correct the bias due to the nonadditivity. We have developed a computational procedure for dealing with the anisotropy and reducing statistical errors and biases in DMC evaluations, based on possible validations on predicted A. We applied the scheme to cyclohexasilane molecule, Si 6 H 12 , used in "printed electronics" fabrications, getting A ≈ 105 ± 2 zJ, being in plausible range supported even by other possible extrapolations. The scheme provided here would open a way to use handy ab initio evaluations to predict wettabilities as in the form of materials informatics over broader molecules.

  16. Modeling Systematic Change in Stopover Duration Does Not Improve Bias in Trends Estimated from Migration Counts.

    PubMed

    Crewe, Tara L; Taylor, Philip D; Lepage, Denis

    2015-01-01

    The use of counts of unmarked migrating animals to monitor long term population trends assumes independence of daily counts and a constant rate of detection. However, migratory stopovers often last days or weeks, violating the assumption of count independence. Further, a systematic change in stopover duration will result in a change in the probability of detecting individuals once, but also in the probability of detecting individuals on more than one sampling occasion. We tested how variation in stopover duration influenced accuracy and precision of population trends by simulating migration count data with known constant rate of population change and by allowing daily probability of survival (an index of stopover duration) to remain constant, or to vary randomly, cyclically, or increase linearly over time by various levels. Using simulated datasets with a systematic increase in stopover duration, we also tested whether any resulting bias in population trend could be reduced by modeling the underlying source of variation in detection, or by subsampling data to every three or five days to reduce the incidence of recounting. Mean bias in population trend did not differ significantly from zero when stopover duration remained constant or varied randomly over time, but bias and the detection of false trends increased significantly with a systematic increase in stopover duration. Importantly, an increase in stopover duration over time resulted in a compounding effect on counts due to the increased probability of detection and of recounting on subsequent sampling occasions. Under this scenario, bias in population trend could not be modeled using a covariate for stopover duration alone. Rather, to improve inference drawn about long term population change using counts of unmarked migrants, analyses must include a covariate for stopover duration, as well as incorporate sampling modifications (e.g., subsampling) to reduce the probability that individuals will be detected on more than one occasion.

  17. Genetic Evidence of Geographical Groups among Neanderthals

    PubMed Central

    Fabre, Virginie; Condemi, Silvana; Degioanni, Anna

    2009-01-01

    The Neanderthals are a well-distinguished Middle Pleistocene population which inhabited a vast geographical area extending from Europe to western Asia and the Middle East. Since the 1950s paleoanthropological studies have suggested variability in this group. Different sub-groups have been identified in western Europe, in southern Europe and in the Middle East. On the other hand, since 1997, research has been published in paleogenetics, carried out on 15 mtDNA sequences from 12 Neanderthals. In this paper we used a new methodology derived from different bioinformatic models based on data from genetics, demography and paleoanthropology. The adequacy of each model was measured by comparisons between simulated results (obtained by BayesianSSC software) and those estimated from nucleotide sequences (obtained by DNAsp4 software). The conclusions of this study are consistent with existing paleoanthropological research and show that Neanderthals can be divided into at least three groups: one in western Europe, a second in the Southern area and a third in western Asia. Moreover, it seems from our results that the size of the Neanderthal population was not constant and that some migration occurred among the demes. PMID:19367332

  18. Our "increasingly mobile society"? The curious persistence of a false belief.

    PubMed

    Wolf, Douglas A; Longino, Charles F

    2005-02-01

    We call attention to the widespread belief that the United States is an "increasingly mobile society," despite the fact that overall mobility has generally declined since about 1950, and interstate mobility has generally not increased during the same period. We review and extend past research documenting these mobility trends. We describe population-level mobility for people of all ages as well as for several adult age groups, using published data from the U.S. Current Population Survey. We use simple regression methods to estimate the size and significance of mobility trends. Overall mobility rates have declined for individuals of all ages and among all age groups. The largest average annual declines occur for 20- to 29-year-olds, although the rate of decline for those aged 65 and older is also large. Interstate mobility has declined slightly or remained constant, except among adults between 45 and 64 years old. Although there may be good reasons to worry about the future of family care provided to elderly individuals, increased geographic mobility does not appear to be one of them. We speculate on reasons why the false belief persists.

  19. The signature of positive selection at randomly chosen loci.

    PubMed

    Przeworski, Molly

    2002-03-01

    In Drosophila and humans, there are accumulating examples of loci with a significant excess of high-frequency-derived alleles or high levels of linkage disequilibrium, relative to a neutral model of a random-mating population of constant size. These are features expected after a recent selective sweep. Their prevalence suggests that positive directional selection may be widespread in both species. However, as I show here, these features do not persist long after the sweep ends: The high-frequency alleles drift to fixation and no longer contribute to polymorphism, while linkage disequilibrium is broken down by recombination. As a result, loci chosen without independent evidence of recent selection are not expected to exhibit either of these features, even if they have been affected by numerous sweeps in their genealogical history. How then can we explain the patterns in the data? One possibility is population structure, with unequal sampling from different subpopulations. Alternatively, positive selection may not operate as is commonly modeled. In particular, the rate of fixation of advantageous mutations may have increased in the recent past.

  20. Traffic effects on bird counts on North American Breeding Bird Survey routes

    USGS Publications Warehouse

    Griffith, Emily H.; Sauer, John R.; Royle, J. Andrew

    2010-01-01

    The North American Breeding Bird Survey (BBS) is an annual roadside survey used to estimate population change in >420 species of birds that breed in North America. Roadside sampling has been criticized, in part because traffic noise can interfere with bird counts. Since 1997, data have been collected on the numbers of vehicles that pass during counts at each stop. We assessed the effect of traffic by modeling total vehicles as a covariate of counts in hierarchical Poisson regression models used to estimate population change. We selected species for analysis that represent birds detected at low and high abundance and birds with songs of low and high frequencies. Increases in vehicle counts were associated with decreases in bird counts in most of the species examined. The size and direction of these effects remained relatively constant between two alternative models that we analyzed. Although this analysis indicated only a small effect of incorporating traffic effects when modeling roadside counts of birds, we suggest that continued evaluation of changes in traffic at BBS stops should be a component of future BBS analyses.

  1. [THE ENVIRONMENTAL BASES AND MECHANISM FOR NATURAL OPISTHORCHIASIS FOCUS PULSATION IN THE COMBINED FOCUS OF OPISTHORCHIASIS AND TULAREMIA].

    PubMed

    Ushakov, A V

    2015-01-01

    A cyclic change in the epizootic activity of a tularemia activity underlies the mechanism of natural opisthorchiasis focus pulsation in the combined focus of opisthorchiasis and tularemia in the ecosystem of the Konda River. This is due to mass breeding and depression in the water vole (Arvicola terrestris) population. The mass breeding is predetermined by high population reproduction constants. The rodents' potential fecundity occurs with the high capacity of lands, which is caused by the hydrological regime of rivers. The size depression is predetermined by the epizootics of tularemia. The water vole is a host of the pathogens of opisthorchiasis and tularemia. So the mass rodent breeding in the combined infection and invasion focus causes an increase in the number of real invasion sources. The epizootic of tularemia is responsible for elimination of these invasion sources and for decreases in the flow of invasion material, the infection rate of Codiella and hence the amount of their produced cercarae, the extensive and intensive indicators of fish contamination, and the intensity of an epizootic process in the opisthorchiasis focus.

  2. The fossilized size distribution of the main asteroid belt

    NASA Astrophysics Data System (ADS)

    Bottke, William F.; Durda, Daniel D.; Nesvorný, David; Jedicke, Robert; Morbidelli, Alessandro; Vokrouhlický, David; Levison, Hal

    2005-05-01

    Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law QD∗. In contrast to previous efforts, we find our derived QD∗ function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a "fossil" from this violent early epoch. We find that most diameter D≳120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D˜100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D<1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.

  3. Annual variation in the distribution, abundance, and habitat response of the palila (Loxioides bailleui)

    USGS Publications Warehouse

    Scott, J.M.; Mountainspring, S.; van Riper, Charles; Kepler, C.B.; Jacobi, J.D.; Burr, T.A.; Giffen, J.G.

    1984-01-01

    We studied the distribution, population size, and habitat response of the Palila (Loxioides bailleui) during the 1980-1984 nonbreeding seasons to infer factors that limit the population and to develop management strategies. Distribution was fairly constant from year to year. Palila were confined to the subalpine woodland on Mauna Kea on the island of Hawaii, occurred between 2,000 and 2,850 m elevation, and reached highest densities on the southwest slopes. The population showed large annual fluctuations, from 6,400 birds in 1981 to 2,000 in 1984. The width of woodland was the most important variable in determining habitat response. Palila were more common in areas with greater crown cover, taller trees, and a higher proportion of native plants in the understory. Annual variation in Palila density within a habitat reflected variation in levels of their staple food, mamane pods. The main limiting factors of the population appeared to be the availability of good habitat and levels of their staple food. Palila had strongly depressed densities in the Pohakuloa flats area. This low density could not be explained by gross habitat features or food levels. Site tenacity, thermal stress, disturbance, and disease were hypothesized explanations. Our study indicated that the most effective management strategies would be the removal of feral ungulates and certain noxious plants from Palila habitat and the extension of the woodland zone to areas now intensively grazed.

  4. Temporal stability of an endemic Mexican treefrog

    PubMed Central

    Cruz-Ruiz, Griselda; Venegas-Barrera, Crystian S.; Sanchez-Sanchez, Hermilo

    2015-01-01

    The demographic characteristics of an amphibian population fluctuate independently over time, mainly in response to the temporal variation of environmental factors, especially precipitation and temperature. These temporal fluctuations may contribute to the size of an amphibian population and could be used to determine the current conservation status of a species. During a five year (2004–2008) period, we studied the relative abundance, sex ratio, and age-sex structure of a population of metamorphosed individuals of the endemic treefrog Hyla eximia in Central Mexico. We also studied the species’ relationship with climatic variables such as temperature and precipitation. We found an interannual constant abundance during the study period. However, interannual differences were observed in the population structure by age-sex category (males, females, or juveniles), with decreased abundance of males and juveniles during the rainy months (August–November). The annual abundance of H. eximia was positively correlated with rainfall, but negatively with monthly temperature. We found the sex ratio was male-biased (2:1), except for year 2008. Also, differences in snout-vent length (SVL) were found between years, suggesting changes in recruitment of new individuals. We conclude that variations in abundance, and frequencies by age-sex category, of H. eximia are related to seasonal variations in temperature and precipitation characteristics of temperate zones. However, this temporal stability may suggest that anurans have an unusual capacity to persist even in the face of human-induced habitat change. PMID:26421242

  5. Trends in Vitamin A, C, D, E, K Supplement Prescriptions From Military Treatment Facilities: 2007 to 2011.

    PubMed

    Morioka, Travis Y; Bolin, Jeremy T; Attipoe, Selasi; Jones, Donnamaria R; Stephens, Mark B; Deuster, Patricia A

    2015-07-01

    Although prior studies have examined the prevalence of dietary supplement use among various populations, data on single vitamins prescribed by health care providers are limited. This study examined trends in single-vitamin supplement (A, C, D, E, K) prescriptions by providers from military treatment facilities from 2007 to 2011. We examined prescription data from the Department of Defense Pharmacy Data Transaction Service to determine trends in the aforementioned single-vitamin supplement prescriptions. Prescription rates per 1,000 active duty personnel were estimated using population data retrieved from the Defense Medical Epidemiology Database (i.e., [number of prescriptions/population size] × 1,000). Across the 5-year period, the number of vitamin D prescriptions per 1,000 active duty personnel increased 454%. In contrast, the number of vitamin A, vitamin E, and vitamin K prescriptions per 1,000 active duty personnel decreased by 32%, 53%, and 29% respectively. Vitamin C prescriptions remained relatively constant. Across all age groups, total single-vitamin supplement prescriptions increased by 180%. Together, prescriptions examined in this study increased steadily from 2007 to 2011, primarily because of the increase in vitamin D prescriptions. The exhibited trend reflects the current general-population pattern of dietary supplement use, with large increases in vitamin D and declines in vitamin E. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  6. Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment.

    PubMed

    Sutherland, Andrew M; Parrella, Michael P

    2011-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.

  7. Estimation of population size using open capture-recapture models

    USGS Publications Warehouse

    McDonald, T.L.; Amstrup, Steven C.

    2001-01-01

    One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.

  8. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change.

    PubMed

    Kašparová, Eva; Van de Putte, Anton P; Marshall, Craig; Janko, Karel

    2015-01-01

    Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.

  9. Effect of doping ions on the structural defect and the electrical behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn

    Graphical abstract: The dielectric constant decreases with Ta doping, increases with Y doping and keeps almost constant with Zr doping compared with that of pure CCTO. - Highlights: • Y and Ta doping cause different defect types and concentration. • Defect influences the grain boundary mobility and results in different grain size. • Y doping increases the dielectric constant and decreases the nonlinear property. • Ta doping decreases the dielectric constant and enhances the nonlinear property. • Zr doped sample has nearly the defect type and dielectric properties as CaCu{sub 3}Ti{sub 4}O{sub 12}. - Abstract: The microstructure, dielectric and electricalmore » properties of CaCu{sub 3}Ti{sub 4−x}R{sub x}O{sub 12} (R = Y, Zr, Ta; x = 0 and 0.005) ceramics were investigated by XRD, Raman spectra, SEM and dielectric spectrum measurements. Positron annihilation measurements have been performed to investigate the influence of doping on the defects. The results show that all samples form a single crystalline phase. Y and Ta doping cause different defect types and increase the defect size and concentration, which influence the mobility of grain boundary and result in the different grain size. Y doping increases the dielectric constant and decreases the nonlinear property while Ta doping lead to an inverse result. Zr-doped sample has nearly the defect type, grain morphology and dielectric properties as pure CaCu{sub 3}Ti{sub 4}O{sub 12}. The effects of microstructure including the grain morphology and the vacancy defects on the mechanism of the dielectric and electric properties by doping are discussed.« less

  10. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size

    PubMed Central

    Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.

    2016-01-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940

  11. A BASIC Program for Use in Teaching Population Dynamics.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1984-01-01

    Describes an interactive simulation model which can be used to demonstrate population growth with discrete or overlapping populations and the effects of random, constant, or density-dependent mortality. The program listing (for Commodore PET 4032 microcomputer) is included. (Author/DH)

  12. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  13. Single Droplet Combustion of Decane in Microgravity: Experiments and Numerical Modeling

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegam, M.; Xu, G.

    2004-01-01

    This paper presents experimental data on single droplet combustion of decane in microgravity and compares the results to a numerical model. The primary independent experiment variables are the ambient pressure and oxygen mole fraction, pressure, droplet size (over a relatively small range) and ignition energy. The droplet history (D(sup 2) history) is non-linear with the burning rate constant increasing throughout the test. The average burning rate constant, consistent with classical theory, increased with increasing ambient oxygen mole fraction and was nearly independent of pressure, initial droplet size and ignition energy. The flame typically increased in size initially, and then decreased in size, in response to the shrinking droplet. The flame standoff increased linearly for the majority of the droplet lifetime. The flame surrounding the droplet extinguished at a finite droplet size at lower ambient pressures and an oxygen mole fraction of 0.15. The extinction droplet size increased with decreasing pressure. The model is transient and assumes spherical symmetry, constant thermo-physical properties (specific heat, thermal conductivity and species Lewis number) and single step chemistry. The model includes gas-phase radiative loss and a spherically symmetric, transient liquid phase. The model accurately predicts the droplet and flame histories of the experiments. Good agreement requires that the ignition in the experiment be reasonably approximated in the model and that the model accurately predict the pre-ignition vaporization of the droplet. The model does not accurately predict the dependence of extinction droplet diameter on pressure, a result of the simplified chemistry in the model. The transient flame behavior suggests the potential importance of fuel vapor accumulation. The model results, however, show that the fractional mass consumption rate of fuel in the flame relative to fuel vaporized is close to 1.0 for all but the lowest ambient oxygen mole fractions.

  14. Population dynamics of Amur tigers (Panthera tigris altaica) in Sikhote-Alin Biosphere Zapovednik: 1966-2012.

    PubMed

    Miquelle, Dale G; Smirnov, Evgeny N; Zaumyslova, Olga Yu; Soutyrina, Svetlana V; Johnson, Douglas H

    2015-07-01

    In 2010, the world's tiger (Panthera tigris) range countries agreed to the goal of doubling tiger numbers over 12 years, but whether such an increase is biologically feasible has not been assessed. Long-term monitoring of tigers in Sikhote-Alin Biosphere Zapovednik (SABZ), Russia provided an opportunity to determine growth rates of a recovering population. A 41-year growth phase was followed by a rapid decline in tiger numbers. Annual growth rates during the growth phase averaged 4.6%, beginning near 10% in the earliest years but quickly dropping below 5%. Sex ratio (females per male) mirrored growth rates, declining as population size increased. The rapid decline from 2009 to 2012 appeared to be tied to multiple factors, including poaching, severe winters and disease. Reproductive indicators of this population are similar to those of Bengal tiger populations, suggesting that growth rates may be similar. These results suggest that, first, tiger populations likely in general grow slowly: 3-5% yearly increases are realistic and larger growth rates are likely only when populations are highly depressed, mortality rates are low and prey populations are high relative to numbers of adult females. Second, while more research is needed, it should not be assumed that tiger populations with high prey densities will necessarily grow more quickly than populations with low prey densities. Third, while growth is slow, decline can be rapid. Fourth, because declines can happen so quickly, there is a constant need to monitor populations and be ready to respond with appropriate and timely conservation interventions if tiger populations are to remain secure. Finally, an average annual growth rate across all tiger populations of 6%, required to reach the Global Tiger Initiative's goal of doubling tiger numbers in 12 years, is a noble but unlikely scenario. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  15. Propagation properties of cylindrical sinc Gaussian beam

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Bayraktar, Mert

    2016-09-01

    We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.

  16. The fracture strength of cryomilled 99.7 Al nanopowders consolidated by high frequency induction sintering

    NASA Astrophysics Data System (ADS)

    El-Danaf, Ehab A.; Baig, Muneer; Almajid, Abdulhakim A.; Soliman, Mahmoud S.

    2014-08-01

    Mechanical Attrition of metallic powders induces severe plastic deformation and consequently reduces the average grain size. Powders of 99.7 Al (45μm particle size), cryomilled for 7 hrs having a crystal size of ~ 20 nm, were consolidated by high frequency induction sintering under a constant pressure of 50 MPa and at two temperatures of 500 and 550 °C for two sintering dwell times of 1 and 3 minutes at a constant heating rate of 400 °C/min. The bright field TEM image and X-ray line broadening technique, for the cryomilled powders, were used to measure-the crystallite size. Simple compression at an initial strain rate of 10-4 s-1 was conducted at room temperature, 373 and 473 K, and the yield strength was documented and correlated with the sintering parameters. The as-received 99.7 Al powders-consolidated using one of the sintering parameters was used as a reference material to compare the mechanical properties. Hardness, density and crystal size of the consolidated sample, that gave the highest yield and fracture strength, were measured.

  17. The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study

    PubMed Central

    Esqué-de los Ojos, Daniel; Pellicer, Eva; Sort, Jordi

    2016-01-01

    In general, the influence of pore size is not considered when determining the Young’s modulus of nanoporous materials. Here, we demonstrate that the pore size needs to be taken into account to properly assess the mechanical properties of these materials. Molecular dynamics simulations of spherical indentation experiments on single crystalline nanoporous Cu have been undertaken in systems with: (i) a constant degree of porosity and variable pore diameter; and (ii) a constant pore diameter and variable porosity degree. The classical Gibson and Ashby expression relating Young’s modulus with the relative density of the nanoporous metal is modified to include the influence of the pore size. The simulations reveal that, for a fixed porosity degree, the mechanical behavior of materials with smaller pores differs more significantly from the behavior of the bulk, fully dense counterpart. This effect is ascribed to the increase of the overall surface area as the pore size is reduced, together with the reduced coordination number of the atoms located at the pores edges. PMID:28773476

  18. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    PubMed

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  19. Constancy of the relation between floc size and density in San Francisco Bay

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Murrell, M.C.; Gartner, J.W.; Wright, S.A.; ,

    2007-01-01

    The size and density of fine-sediment aggregates, or flocs, govern their transport and depositional properties. While the mass and volume concentrations of flocs can be measured directly or by optical methods, they must be determined simultaneously to gain an accurate density measurement. Results are presented from a tidal cycle study in San Francisco Bay, where mass concentration was determined directly, and volume concentration was measured in 32 logarithmically spaced size bins by laser-diffraction methods. The relation between floc size and density is investigated assuming a constant primary particle size and fractal floc dimension. This relation is validated with measurements from several sites throughout San Francisco Bay. The constancy of this relation implies a uniform primary particle size throughout the Bay, as well as uniform aggregation/disaggregation mechanisms (which modify fractal dimension). The exception to the relation is identified during near-bed measurements, when advected flocs mix with recently resuspended flocs from the bed, which typically have a higher fractal dimension than suspended flocs. The constant relation for suspended flocs simplifies monitoring and numerical modeling of suspended sediment in San Francisco Bay. ?? 2007 Elsevier B.V. All rights reserved.

  20. Laboratory Simulation of Impacts upon Aluminum Foils of the Stardust Spacecraft: Calibration of Dust Particle Size from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Horz, F.; Cole, M. J.; Schwandt, C. S.

    2006-01-01

    Metallic aluminium alloy foils exposed on the forward, comet-facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminium alloy to record hypervelocity impacts as bowl-shaped craters offers an opportunistic substrate for recognition of impacts by particles of a wide potential size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild 2, with a known and constant spacecraft-particle relative velocity and effective surface-perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration programme we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well-documented particle size range from 10 microns to nearly 100 microns. Light gas gun buckshot firings of these particles at approximately 6km s)exp -1) onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild 2, independent of the active impact detector instruments aboard the Stardust spacecraft.

  1. Analytical Framework for Identifying and Differentiating Recent Hitchhiking and Severe Bottleneck Effects from Multi-Locus DNA Sequence Data

    DOE PAGES

    Sargsyan, Ori

    2012-05-25

    Hitchhiking and severe bottleneck effects have impact on the dynamics of genetic diversity of a population by inducing homogenization at a single locus and at the genome-wide scale, respectively. As a result, identification and differentiation of the signatures of such events from DNA sequence data at a single locus is challenging. This study develops an analytical framework for identifying and differentiating recent homogenization events at multiple neutral loci in low recombination regions. The dynamics of genetic diversity at a locus after a recent homogenization event is modeled according to the infinite-sites mutation model and the Wright-Fisher model of reproduction withmore » constant population size. In this setting, I derive analytical expressions for the distribution, mean, and variance of the number of polymorphic sites in a random sample of DNA sequences from a locus affected by a recent homogenization event. Based on this framework, three likelihood-ratio based tests are presented for identifying and differentiating recent homogenization events at multiple loci. Lastly, I apply the framework to two data sets. First, I consider human DNA sequences from four non-coding loci on different chromosomes for inferring evolutionary history of modern human populations. The results suggest, in particular, that recent homogenization events at the loci are identifiable when the effective human population size is 50000 or greater in contrast to 10000, and the estimates of the recent homogenization events are agree with the “Out of Africa” hypothesis. Second, I use HIV DNA sequences from HIV-1-infected patients to infer the times of HIV seroconversions. The estimates are contrasted with other estimates derived as the mid-time point between the last HIV-negative and first HIV-positive screening tests. Finally, the results show that significant discrepancies can exist between the estimates.« less

  2. Injuries, Death, and Disability Associated with 11 Years of Conflict in Baghdad, Iraq: A Randomized Household Cluster Survey.

    PubMed

    Lafta, Riyadh; Al-Shatari, Sahar; Cherewick, Megan; Galway, Lindsay; Mock, Charles; Hagopian, Amy; Flaxman, Abraham; Takaro, Tim; Greer, Anna; Kushner, Adam; Burnham, Gilbert

    2015-01-01

    The objective of this study was to characterize injuries, deaths, and disabilities arising during 11 years of conflict in Baghdad. Using satellite imagery and administrative population estimated size for Baghdad, 30 clusters were selected, proportionate to population size estimates. Interviews were conducted during April and May 2014 in 900 households containing 5148 persons. Details about injuries and disabilities occurring from 2003 through May 2014 and resultant disabilities were recorded. There were 553 injuries reported by Baghdad residents, 225 of which were intentional, and 328 unintentional. For intentional injuries, the fatality rate was 39.1% and the disability rate 56.0%. Gunshots where the major cause of injury through 2006 when blasts/explosions became the most common cause and remained so through 2014. Among unintentional injuries, the fatality rate was 7.3% and the disability rate 77.1%. The major cause of unintentional injuries was falls (131) which have increased dramatically since 2008, followed by traffic related injuries (81), which have steadily increased. The proportion of injuries ending in disabilities remained fairly constant through the survey period. Intentional injuries added substantially to the burden of unintentional injuries for the population. For Baghdad, the phases of the Iraqi conflict are reflected in the patterns of injuries and consequent deaths reported. The scale of injuries during conflict is most certainly under-reported. Difficulties recalling injuries in a survey covering 11 years is a limitation, but it is likely that minor injuries were under-reported more than severe injuries. The in- and out-migration of Baghdad populations likely had effects on the events reported which we could not measure or estimate. Damage to the health infrastructure and the flight of health workers may have contributed to mortality and morbidity. Civilian injuries as well as mortality should be measured during conflicts, though not currently done.

  3. Injuries, Death, and Disability Associated with 11 Years of Conflict in Baghdad, Iraq: A Randomized Household Cluster Survey

    PubMed Central

    Lafta, Riyadh; Al-Shatari, Sahar; Cherewick, Megan; Galway, Lindsay; Mock, Charles; Hagopian, Amy; Flaxman, Abraham; Takaro, Tim; Greer, Anna; Kushner, Adam; Burnham, Gilbert

    2015-01-01

    Background The objective of this study was to characterize injuries, deaths, and disabilities arising during 11 years of conflict in Baghdad. Methods Using satellite imagery and administrative population estimated size for Baghdad, 30 clusters were selected, proportionate to population size estimates. Interviews were conducted during April and May 2014 in 900 households containing 5148 persons. Details about injuries and disabilities occurring from 2003 through May 2014 and resultant disabilities were recorded. Findings There were 553 injuries reported by Baghdad residents, 225 of which were intentional, and 328 unintentional. For intentional injuries, the fatality rate was 39.1% and the disability rate 56.0%. Gunshots where the major cause of injury through 2006 when blasts/explosions became the most common cause and remained so through 2014. Among unintentional injuries, the fatality rate was 7.3% and the disability rate 77.1%. The major cause of unintentional injuries was falls (131) which have increased dramatically since 2008, followed by traffic related injuries (81), which have steadily increased. The proportion of injuries ending in disabilities remained fairly constant through the survey period. Interpretation Intentional injuries added substantially to the burden of unintentional injuries for the population. For Baghdad, the phases of the Iraqi conflict are reflected in the patterns of injuries and consequent deaths reported. The scale of injuries during conflict is most certainly under-reported. Difficulties recalling injuries in a survey covering 11 years is a limitation, but it is likely that minor injuries were under-reported more than severe injuries. The in- and out-migration of Baghdad populations likely had effects on the events reported which we could not measure or estimate. Damage to the health infrastructure and the flight of health workers may have contributed to mortality and morbidity. Civilian injuries as well as mortality should be measured during conflicts, though not currently done. PMID:26252879

  4. Influence of Population Density on Offspring Number and Size in Burying Beetles

    ERIC Educational Resources Information Center

    Rauter, Claudia M.

    2010-01-01

    This laboratory exercise investigates the influence of population density on offspring number and size in burying beetles. Students test the theoretical predictions that brood size declines and offspring size increases when competition over resources becomes stronger with increasing population density. Students design the experiment, collect and…

  5. Nonharmonic oscillations of nanosized cantilevers due to quantum-size effects

    NASA Astrophysics Data System (ADS)

    Olsen, Martin; Gradin, Per; Lindefelt, Ulf; Olin, Håkan

    2010-02-01

    Using a one-dimensional jellium model and standard beam theory we calculate the spring constant of a vibrating nanowire cantilever. By using the asymptotic energy eigenvalues of the standing electron waves over the nanometer-sized cross-section area, the change in the grand canonical potential is calculated and hence the force and the spring constant. As the wire is bent more electron states fits in its cross section. This has an impact on the spring “constant” which oscillates slightly with the bending of the wire. In this way we obtain an amplitude-dependent resonance frequency of the oscillations that should be detectable.

  6. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  7. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  8. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  9. Simulation analysis of receptive-field size of retinal horizontal cells by ionic current model.

    PubMed

    Aoyama, Toshihiro; Kamiyama, Yoshimi; Usui, Shiro

    2005-01-01

    The size of the receptive field of retinal horizontal cells changes with the state of dark/light adaptation. We have used a mathematical model to determine how changes in the membrane conductance affect the receptive-field properties of horizontal cells. We first modeled the nonlinear membrane properties of horizontal cells based on ionic current mechanisms. The dissociated horizontal cell model reproduced the voltage-current (V-I) relationships for various extracellular glutamate concentrations measured in electrophysiological studies. Second, a network horizontal cell model was also described, and it reproduced the V-I relationship observed in vivo. The network model showed a bell-shaped relationship between the receptive-field size and constant glutamate concentration. The simulated results suggest that the calcium current is a candidate for the bell-shaped length constant relationship.

  10. European Guidelines for AP/PA chest X-rays: routinely satisfiable in a paediatric radiology division?

    PubMed

    Tschauner, Sebastian; Marterer, Robert; Gübitz, Michael; Kalmar, Peter I; Talakic, Emina; Weissensteiner, Sabine; Sorantin, Erich

    2016-02-01

    Accurate collimation helps to reduce unnecessary irradiation and improves radiographic image quality, which is especially important in the radiosensitive paediatric population. For AP/PA chest radiographs in children, a minimal field size (MinFS) from "just above the lung apices" to "T12/L1" with age-dependent tolerance is suggested by the 1996 European Commission (EC) guidelines, which were examined qualitatively and quantitatively at a paediatric radiology division. Five hundred ninety-eight unprocessed chest X-rays (45% boys, 55% girls; mean age 3.9 years, range 0-18 years) were analysed with a self-developed tool. Qualitative standards were assessed based on the EC guidelines, as well as the overexposed field size and needlessly irradiated tissue compared to the MinFS. While qualitative guideline recommendations were satisfied, mean overexposure of +45.1 ± 18.9% (range +10.2% to +107.9%) and tissue overexposure of +33.3 ± 13.3% were found. Only 4% (26/598) of the examined X-rays completely fulfilled the EC guidelines. This study presents a new chest radiography quality control tool which allows assessment of field sizes, distances, overexposures and quality parameters based on the EC guidelines. Utilising this tool, we detected inadequate field sizes, inspiration depths, and patient positioning. Furthermore, some debatable EC guideline aspects were revealed. • European Guidelines on X-ray quality recommend exposed field sizes for common examinations. • The major failing in paediatric radiographic imaging techniques is inappropriate field size. • Optimal handling of radiographic units can reduce radiation exposure to paediatric patients. • Constant quality control helps ensure optimal chest radiographic image acquisition in children.

  11. Solutions of Smoluchowski's coagulation equation at large cluster sizes

    NASA Astrophysics Data System (ADS)

    Van Dongen, P. G. J.

    1987-09-01

    In this paper we determine the behavior of solutions ck( t) of Smoluchowski's coagulation equation for cluster sizes much larger than the mean cluster size s( t). We consider in general the homogeneous rate constants K( i, j), behaving as K( i, j) ∼ iμjv as j → ∞, where special attention is paid to models with an exponent v = 1. The behavior of ck( t) is studied in three different limits: (i) the short-time limit ( t ↓ 0), with k ≫ 1, (ii) the limit k → ∞, with t > 0 fixed, and (iii) the scaling limit, with k ≫ s( t). The two most important conclusions of this paper are, first, that the detailed behavior of ck( t) at large cluster sizes ( k ≫ s( t)) may be drastically different for different rate constants K( i, j) and, secondly, that the results for ck( t), obtained in the limits (i), (ii) and (iii), are closely related.

  12. User's Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms - and Associated Programs

    USGS Publications Warehouse

    Eberl, Dennis D.; Drits, V.A.; Srodon, J.

    2000-01-01

    GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).

  13. Application of random effects to the study of resource selection by animals

    USGS Publications Warehouse

    Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, Cameron L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.

    2006-01-01

    1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence.2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability.3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed.4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects.5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection.6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.

  14. Application of random effects to the study of resource selection by animals.

    PubMed

    Gillies, Cameron S; Hebblewhite, Mark; Nielsen, Scott E; Krawchuk, Meg A; Aldridge, Cameron L; Frair, Jacqueline L; Saher, D Joanne; Stevens, Cameron E; Jerde, Christopher L

    2006-07-01

    1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.

  15. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk.

    PubMed

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.

  16. Andean Condor (Vultur gryphus) in Ecuador: Geographic Distribution, Population Size and Extinction Risk

    PubMed Central

    Naveda-Rodríguez, Adrián; Vargas, Félix Hernán; Kohn, Sebastián; Zapata-Ríos, Galo

    2016-01-01

    The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation. PMID:26986004

  17. Geostatistics and Geographic Information Systems to Study the Spatial Distribution of Grapholita molesta (Busck) (Lepidoptera: Tortricidae) in Peach Fields.

    PubMed

    Duarte, F; Calvo, M V; Borges, A; Scatoni, I B

    2015-08-01

    The oriental fruit moth, Grapholita molesta (Busck), is the most serious pest in peach, and several insecticide applications are required to reduce crop damage to acceptable levels. Geostatistics and Geographic Information Systems (GIS) are employed to measure the range of spatial correlation of G. molesta in order to define the optimum sampling distance for performing spatial analysis and to determine the current distribution of the pest in peach orchards of southern Uruguay. From 2007 to 2010, 135 pheromone traps per season were installed and georeferenced in peach orchards distributed over 50,000 ha. Male adult captures were recorded weekly from September to April. Structural analysis of the captures was performed, yielding 14 semivariograms for the accumulated captures analyzed by generation and growing season. Two sets of maps were constructed to describe the pest distribution. Nine significant models were obtained in the 14 evaluated periods. The range estimated for the correlation was from 908 to 6884 m. Three hot spots of high population level and some areas with comparatively low populations were constant over the 3-year period, while there is a greater variation in the size of the population in different generations and years in other areas.

  18. Morphological adaptation to climate in modern Homo sapiens crania: the importance of basicranial breadth.

    PubMed

    Nowaczewska, Wioletta; Dabrowski, Paweł; Kuźmiński, Łukasz

    2011-09-01

    The aim of this study is to investigate whether the variation in breadth of the cranial base among modern human populations that inhabit different regions of the world is linked with climatic adaptation. This work provides an examination of two hypotheses. The first hypothesis is that the correlation between basicranial breadth and ambient temperature is stronger than the correlation between temperature and other neurocranial variables, such as maximum cranial breadth, maximum neurocranial length, and the endocranial volume. The second hypothesis is that the correlation between the breadth of the cranial base and the ambient temperature is significant even when other neurocranial features used in this study (including the size of the neurocranium) are constant. For the sake of this research, the necessary neurocranial variables for fourteen human populations living in diverse environments were obtained from Howells' data (except for endocranial volume which was obtained by means of estimation). The ambient temperature (more precisely, the mean yearly temperature) of the environments inhabited by these populations was used as a major climatic factor. Data were analysed using Pearson correlation coefficients, linear regression and partial correlation analyses. The results supported the two hypotheses, thus suggesting that ambient temperature may contribute to the observed differences in the breadth of the cranial base in the studied modern humans.

  19. Experimental reduction in interaction intensity strongly affects biotic selection.

    PubMed

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  20. Melanin-specific life-history strategies.

    PubMed

    Emaresi, Guillaume; Bize, Pierre; Altwegg, Res; Henry, Isabelle; van den Brink, Valentijn; Gasparini, Julien; Roulin, Alexandre

    2014-02-01

    The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs.

  1. The evolutionary legacy of size-selective harvesting extends from genes to populations

    PubMed Central

    Uusi-Heikkilä, Silva; Whiteley, Andrew R; Kuparinen, Anna; Matsumura, Shuichi; Venturelli, Paul A; Wolter, Christian; Slate, Jon; Primmer, Craig R; Meinelt, Thomas; Killen, Shaun S; Bierbach, David; Polverino, Giovanni; Ludwig, Arne; Arlinghaus, Robert

    2015-01-01

    Size-selective harvesting is assumed to alter life histories of exploited fish populations, thereby negatively affecting population productivity, recovery, and yield. However, demonstrating that fisheries-induced phenotypic changes in the wild are at least partly genetically determined has proved notoriously difficult. Moreover, the population-level consequences of fisheries-induced evolution are still being controversially discussed. Using an experimental approach, we found that five generations of size-selective harvesting altered the life histories and behavior, but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to high positively size selective fishing pressure invested more in reproduction, reached a smaller adult body size, and were less explorative and bold. Phenotypic changes seemed subtle but were accompanied by genetic changes in functional loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced phenotypic and evolutionary change when harvesting is intensive and size selective. According to a life-history model, the observed life-history changes elevated population growth rate in harvested conditions, but slowed population recovery under a simulated moratorium. Hence, the evolutionary legacy of size-selective harvesting includes populations that are productive under exploited conditions, but selectively disadvantaged to cope with natural selection pressures that often favor large body size. PMID:26136825

  2. Spatial variation in egg size of a top predator: Interplay of body size and environmental factors?

    NASA Astrophysics Data System (ADS)

    Louzao, Maite; Igual, José M.; Genovart, Meritxell; Forero, Manuela G.; Hobson, Keith A.; Oro, Daniel

    2008-09-01

    It is expected that nearby populations are constrained by the same ecological features shaping in turn similarity in their ecological traits. Here, we studied the spatio-temporal variability in egg size among local populations of the critically endangered Balearic shearwater Puffinus mauretanicus, a top marine predator endemic to the western Mediterranean region. Specifically we assessed whether this trait was influenced by maternal body size, as an indicator of a genetic component, and feeding ecology (through stable-carbon and nitrogen-isotope measurements), as an indicator of environmental factors. We found that egg size varied among local populations, an unexpected result at such a small spatial scale. Body size differences at the local population level only partially explained such differences. Blood isotope measurements also differed among local populations. Values of δ 15N suggested inter-population differences in trophic level, showing a similar general pattern with egg size, and suggesting a nutritional link between them whereby egg size was affected by differences in feeding resources and/or behaviour. Values of δ 13C suggested that local populations did not differ in foraging habits with respect to benthic- vs. pelagic-based food-webs. Egg size did not vary among years as did breeding performance, suggesting that a differential temporal window could affect both breeding parameters in relation to food availability. The absence of a relationship between breeding performance and egg size suggested that larger eggs might only confer an advantage during harsh conditions. Alternatively parental quality could greatly affect breeding performance. We showed that inter-population differences in egg size could be influenced by both body size and environmental factors.

  3. Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.

    PubMed

    Millán, Mónica; Caraballo, Isidoro

    2006-03-09

    The main objective of this work is to study the influence of the drug particle size on the pharmaceutical availability of ultrasound compacted tablets. Inert matrix systems containing different drug particle sizes were prepared using both, an ultrasound-assisted press and a traditional eccentric machine. Potassium chloride was used as drug model and Eudragit RS-PM as matrix forming excipient. The excipient particle size was kept constant. The cross-sectional microphotographs of ultrasound tablets show the existence of a quasi-continuum medium. Keeping constant the drug load, US-tablets showed very similar release rates, whereas for traditional tablets, an increase in the particle size resulted in a clear decrease in the release rate. In these tablets, the excipient forms an almost continuum medium. In an infinite theoretical system of these characteristics, the size of the drug particles will not modify the percolation threshold. The percolation of the excipient in this system can be assimilated to a continuum percolation model. In accordance with the proposed model, a lower influence of the drug particle size on the drug release rate was obtained for the US-tablets in comparison with traditional tablets. This fact can be indicative of the similarity of the drug percolation thresholds in these systems.

  4. Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata.

    PubMed

    Heather, F J; Childs, D Z; Darnaude, A M; Blanchard, J L

    2018-01-01

    Accurate information on the growth rates of fish is crucial for fisheries stock assessment and management. Empirical life history parameters (von Bertalanffy growth) are widely fitted to cross-sectional size-at-age data sampled from fish populations. This method often assumes that environmental factors affecting growth remain constant over time. The current study utilized longitudinal life history information contained in otoliths from 412 juveniles and adults of gilthead seabream, Sparus aurata, a commercially important species fished and farmed throughout the Mediterranean. Historical annual growth rates over 11 consecutive years (2002-2012) in the Gulf of Lions (NW Mediterranean) were reconstructed to investigate the effect of temperature variations on the annual growth of this fish. S. aurata growth was modelled linearly as the relationship between otolith size at year t against otolith size at the previous year t-1. The effect of temperature on growth was modelled with linear mixed effects models and a simplified linear model to be implemented in a cohort Integral Projection Model (cIPM). The cIPM was used to project S. aurata growth, year to year, under different temperature scenarios. Our results determined current increasing summer temperatures to have a negative effect on S. aurata annual growth in the Gulf of Lions. They suggest that global warming already has and will further have a significant impact on S. aurata size-at-age, with important implications for age-structured stock assessments and reference points used in fisheries.

  5. Dynamics and optimal control of a non-linear epidemic model with relapse and cure

    NASA Astrophysics Data System (ADS)

    Lahrouz, A.; El Mahjour, H.; Settati, A.; Bernoussi, A.

    2018-04-01

    In this work, we introduce the basic reproduction number R0 for a general epidemic model with graded cure, relapse and nonlinear incidence rate in a non-constant population size. We established that the disease free-equilibrium state Ef is globally asymptotically exponentially stable if R0 < 1 and globally asymptotically stable if R0 = 1. If R0 > 1, we proved that the system model has at least one endemic state Ee. Then, by means of an appropriate Lyapunov function, we showed that Ee is unique and globally asymptotically stable under some acceptable biological conditions. On the other hand, we use two types of control to reduce the number of infectious individuals. The optimality system is formulated and solved numerically using a Gauss-Seidel-like implicit finite-difference method.

  6. The Use of Propensity Scores and Observational Data to Estimate Randomized Controlled Trial Generalizability Bias

    PubMed Central

    Pressler, Taylor R.; Kaizar, Eloise E.

    2014-01-01

    While randomized controlled trials (RCT) are considered the “gold standard” for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non-constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis-specified models. PMID:23553373

  7. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  8. Quasar populations in a cosmological constant-dominated flat universe

    NASA Technical Reports Server (NTRS)

    Malhotra, Sangeeta; Turner, Edwin L.

    1995-01-01

    Most physical properties derived for quasars, as single entities or as a population, depend upon the cosmology assumed. In this paper, we calculate the quasar luminosity function and some related quantities for a flat universe dominated by a cosmological constant Lambda (Lambda = 0.9, Omega = 0.1) and compare them with those deduced for a flat universe with zero cosmological constant (Lambda = 0, Omega = 1). We use the ATT quasar survey data (Boyle et al. 1990) as input in both cases. The data are fitted well by a pure luminosity evolution model for both the cosmologies but with different evolutionary parameters. From the luminosity function, we predict (extrapolate) a greater number of quasars at faint apparent magnitudes (twice the number at B = 24, z is less than 2.2) for the Lambda-dominated universe. This population of faint quasars at high redshift would result in a higher incidence of gravitational lensing. The total luminosity of the quasar population and the total mass tied up in black hole remnants of quasars is not sensitive to the cosmology. However, for a Lambda cosmology, this mass is tied up in fewer but more massive black holes.

  9. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.

    PubMed

    Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R

    2016-07-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Testing the 'island rule' for a tenebrionid beetle (Coleoptera, Tenebrionidae)

    NASA Astrophysics Data System (ADS)

    Palmer, Miquel

    2002-05-01

    Insular populations and their closest mainland counterparts commonly display body size differences that are considered to fit the island rule, a theoretical framework to explain both dwarfism and gigantism in isolated animal populations. The island rule is used to explain the pattern of change of body size at the inter-specific level. But the model implicitly makes also a prediction for the body size of isolated populations of a single species. It suggests that, for a hypothetical species covering a wide range of island sizes, there exists a specific island size where this species reaches the largest body size. Body size would be small (in relative terms) in the smallest islets of the species range. It would increase with island size, and reach a maximum at some specific island size. However, additional increases from such a specific island size would instead promote body size reduction, and small (in relative terms) body sizes would be found again on the largest islands. The biogeographical patterns predicted by the island rule have been described and analysed for vertebrates only (mainly mammals), but remain largely untested for insects or other invertebrates. I analyse here the pattern of body size variation between seven isolated insular populations of a flightless beetle, Asida planipennis (Coleoptera, Tenebrionidae). This is an endemic species of Mallorca, Menorca and a number of islands and islets in the Balearic archipelago (western Mediterranean). The study covers seven of the 15 known populations (i.e., there are only 15 islands or islets inhabited by the species). The populations studied fit the pattern advanced above and we could, therefore, extrapolate the island rule to a very different kind of organism. However, the small sample size of some of the populations invites some caution at this early stage.

  11. A New Method for Estimating the Effective Population Size from Allele Frequency Changes

    PubMed Central

    Pollak, Edward

    1983-01-01

    A new procedure is proposed for estimating the effective population size, given that information is available on changes in frequencies of the alleles at one or more independently segregating loci and the population is observed at two or more separate times. Approximate expressions are obtained for the variances of the new statistic, as well as others, also based on allele frequency changes, that have been discussed in the literature. This analysis indicates that the new statistic will generally have a smaller variance than the others. Estimates of effective population sizes and of the standard errors of the estimates are computed for data on two fly populations that have been discussed in earlier papers. In both cases, there is evidence that the effective population size is very much smaller than the minimum census size of the population. PMID:17246147

  12. Colonial, more widely distributed and less abundant bird species undergo wider population fluctuations independent of their population trend

    PubMed Central

    Møller, Anders P.

    2017-01-01

    Understanding temporal variability in population size is important for conservation biology because wide population fluctuations increase the risk of extinction. Previous studies suggested that certain ecological, demographic, life-history and genetic characteristics of species might be related to the degree of their population fluctuations. We checked whether that was the case in a large sample of 231 European breeding bird species while taking a number of potentially confounding factors such as population trends or similarities among species due to common descent into account. When species-specific characteristics were analysed one by one, the magnitude of population fluctuations was positively related to coloniality, habitat, total breeding range, heterogeneity of breeding distribution and natal dispersal, and negatively related to urbanisation, abundance, relative number of subspecies, parasitism and proportion of polymorphic loci. However, when abundance (population size) was included in the analyses of the other parameters, only coloniality, habitat, total breeding range and abundance remained significantly related to population fluctuations. The analysis including all these predictors simultaneously showed that population size fluctuated more in colonial, less abundant species with larger breeding ranges. Other parameters seemed to be related to population fluctuations only because of their association with abundance or coloniality. The unexpected positive relationship between population fluctuations and total breeding range did not seem to be mediated by abundance. The link between population fluctuations and coloniality suggests a previously unrecognized cost of coloniality. The negative relationship between population size and population fluctuations might be explained by at least three types of non-mutually exclusive stochastic processes: demographic, environmental and genetic stochasticity. Measurement error in population indices, which was unknown, may have contributed to the negative relationship between population size and fluctuations, but apparently only to a minor extent. The association between population size and fluctuations suggests that populations might be stabilized by increasing population size. PMID:28253345

  13. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  14. Population estimates of Nearctic shorebirds

    USGS Publications Warehouse

    Morrison, R.I.G.; Gill, Robert E.; Harrington, B.A.; Skagen, S.K.; Page, G.W.; Gratto-Trevor, C. L.; Haig, S.M.

    2000-01-01

    Estimates are presented for the population sizes of 53 species of Nearctic shorebirds occurring regularly in North America, plus four species that breed occasionally. Shorebird population sizes were derived from data obtained by a variety of methods from breeding, migration and wintering areas, and formal assessments of accuracy of counts or estimates are rarely available. Accurate estimates exist only for a few species that have been the subject of detailed investigation, and the likely accuracy of most estimates is considered poor or low. Population estimates range from a few tens to several millions. Overall, population estimates most commonly fell in the range of hundreds of thousands, particularly the low hundreds of thousands; estimated population sizes for large shorebird species currently all fall below 500,000. Population size was inversely related to size (mass) of the species, with a statistically significant negative regression between log (population size) and log (mass). Two outlying groups were evident on the regression graph: one, with populations lower than predicted, included species considered either to be "at risk" or particularly hard to count, and a second, with populations higher than predicted, included two species that are hunted. Population estimates are an integral part of conservation plans being developed for shorebirds in the United States and Canada, and may be used to identify areas of key international and regional importance.

  15. Estimates of shorebird populations in North America

    USGS Publications Warehouse

    Morrison, R.I.G.; Gill, Robert E.; Harrington, B.A.; Skagen, S.K.; Page, G.W.; Gratto-Trevor, C. L.; Haig, S.M.

    2001-01-01

    Estimates are presented for the population sizes of 53 species of Nearctic shorebirds occurring regularly in North America, plus four species that breed occasionally. Population estimates range from a few tens to several millions. Overall, population estimates most commonly fall in the range of hundreds of thousands, particularly the low hundreds of thousands; estimated population sizes for large shorebird species currently all fall below 500 000. Population size is inversely related to size (mass) of the species, with a statistically significant negative regression between log(population size) and log(mass). Two outlying groups are evident on the regression graph: one, with populations lower than predicted, includes species considered to be either “at risk” or particularly hard to count, and a second, with populations higher than predicted, includes two species that are hunted. Shorebird population sizes were derived from data obtained by a variety of methods from breeding, migration, and wintering areas, and formal assessments of accuracy of counts or estimates are rarely available. Accurate estimates exist only for a few species that have been the subject of detailed investigation, and the likely accuracy of most estimates is considered poor or low. Population estimates are an integral part of conservation plans being developed for shorebirds in the United States and Canada and may be used to identify areas of key international and regional importance.

  16. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  17. PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells.

    PubMed

    Zessin, Patrick J M; Sporbert, Anje; Heilemann, Mike

    2016-01-13

    DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules.

  18. Population size estimation of men who have sex with men through the network scale-up method in Japan.

    PubMed

    Ezoe, Satoshi; Morooka, Takeo; Noda, Tatsuya; Sabin, Miriam Lewis; Koike, Soichi

    2012-01-01

    Men who have sex with men (MSM) are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel) they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.

  19. 75 FR 48815 - Medicaid Program and Children's Health Insurance Program (CHIP); Revisions to the Medicaid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... size may be reduced by the finite population correction factor. The finite population correction is a statistical formula utilized to determine sample size where the population is considered finite rather than... program may notify us and the annual sample size will be reduced by the finite population correction...

  20. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches

    Treesearch

    Gordon Luikart; Nils Ryman; David A. Tallmon; Michael K. Schwartz; Fred W. Allendorf

    2010-01-01

    Population census size (NC) and effective population sizes (Ne) are two crucial parameters that influence population viability, wildlife management decisions, and conservation planning. Genetic estimators of both NC and Ne are increasingly widely used because molecular markers are increasingly available, statistical methods are improving rapidly, and genetic estimators...

  1. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  2. Postdispersal seed predation limits the abundance of a long-lived perennial forb (Lithospermum ruderale).

    PubMed

    Bricker, Mary; Maron, John

    2012-03-01

    Loss of seeds to consumers is common in plant communities, but the degree to which these losses influence plant abundance or population growth is often unclear. This is particularly the case for postdispersal seed predation by rodents, as most studies of rodent seed predation have focused on the sources of spatiotemporal variation in seed loss but not quantified the population consequences of this loss. In previous work we showed that seed predation by deer mice (Peromyscus maniculatus) substantially reduced seedling recruitment and establishment of Lithospermum ruderale (Boraginaceae), a long-lived perennial forb. To shed light on how rodent seed predation and the near-term effects on plant recruitment might influence longer-term patterns of L. ruderale population growth, we combined experimental results with demographic data in stage-based population models. Model outputs revealed that rodent seed predation had a significant impact on L. ruderale population growth rate (lambda). With the removal of postdispersal seed predation, the projected population growth rates increased between 0.06 and 0.12, depending on site (mean deltalambda across sites = 0.08). Seed predation shifted the projected stable stage distribution of populations from one with a high proportion of young plants to one in which larger adult size classes dominate. Elasticities of vital rates also changed, with germination and growth of seedlings and young plants becoming more important with the removal of seed predation. Simulations varying the magnitude of seed predation pressure while holding other vital rates constant showed that seed predation could lower lambda even if only 40% of available seeds were consumed. These results demonstrate that rodent granivory can be a potent force limiting the abundance of a long-lived perennial forb.

  3. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs.

    PubMed

    Edwards, Ceiridwen J; Bollongino, Ruth; Scheu, Amelie; Chamberlain, Andrew; Tresset, Anne; Vigne, Jean-Denis; Baird, Jillian F; Larson, Greger; Ho, Simon Y W; Heupink, Tim H; Shapiro, Beth; Freeman, Abigail R; Thomas, Mark G; Arbogast, Rose-Marie; Arndt, Betty; Bartosiewicz, László; Benecke, Norbert; Budja, Mihael; Chaix, Louis; Choyke, Alice M; Coqueugniot, Eric; Döhle, Hans-Jürgen; Göldner, Holger; Hartz, Sönke; Helmer, Daniel; Herzig, Barabara; Hongo, Hitomi; Mashkour, Marjan; Ozdogan, Mehmet; Pucher, Erich; Roth, Georg; Schade-Lindig, Sabine; Schmölcke, Ulrich; Schulting, Rick J; Stephan, Elisabeth; Uerpmann, Hans-Peter; Vörös, István; Voytek, Barbara; Bradley, Daniel G; Burger, Joachim

    2007-06-07

    The extinct aurochs (Bos primigenius primigenius) was a large type of cattle that ranged over almost the whole Eurasian continent. The aurochs is the wild progenitor of modern cattle, but it is unclear whether European aurochs contributed to this process. To provide new insights into the demographic history of aurochs and domestic cattle, we have generated high-confidence mitochondrial DNA sequences from 59 archaeological skeletal finds, which were attributed to wild European cattle populations based on their chronological date and/or morphology. All pre-Neolithic aurochs belonged to the previously designated P haplogroup, indicating that this represents the Late Glacial Central European signature. We also report one new and highly divergent haplotype in a Neolithic aurochs sample from Germany, which points to greater variability during the Pleistocene. Furthermore, the Neolithic and Bronze Age samples that were classified with confidence as European aurochs using morphological criteria all carry P haplotype mitochondrial DNA, suggesting continuity of Late Glacial and Early Holocene aurochs populations in Europe. Bayesian analysis indicates that recent population growth gives a significantly better fit to our data than a constant-sized population, an observation consistent with a postglacial expansion scenario, possibly from a single European refugial population. Previous work has shown that most ancient and modern European domestic cattle carry haplotypes previously designated T. This, in combination with our new finding of a T haplotype in a very Early Neolithic site in Syria, lends persuasive support to a scenario whereby gracile Near Eastern domestic populations, carrying predominantly T haplotypes, replaced P haplotype-carrying robust autochthonous aurochs populations in Europe, from the Early Neolithic onward. During the period of coexistence, it appears that domestic cattle were kept separate from wild aurochs and introgression was extremely rare.

  4. Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation.

    PubMed

    Robinson, John D; Hall, David W; Wares, John P

    2013-05-01

    Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography. © 2013 Blackwell Publishing Ltd.

  5. Founder representation and effective population size in old versus young breeds-genetic diversity of Finnish and Nordic Spitz.

    PubMed

    Kumpulainen, M; Anderson, H; Svevar, T; Kangasvuo, I; Donner, J; Pohjoismäki, J

    2017-10-01

    Finnish Spitz is 130-year-old breed and has been highly popular in Finland throughout its history. Nordic Spitz is very similar to Finnish Spitz by origin and use, but is a relatively recent breed with much smaller population size. To see how breed age and breeding history have influenced the current population, we performed comprehensive population genetic analysis using pedigree data of 28,119 Finnish and 9,009 Nordic Spitzes combined with genomewide single nucleotide polymorphism (SNP) data from 135 Finnish and 110 Nordic Spitzes. We found that the Finnish Spitz has undergone repeated male bottlenecks resulting in dramatic loss of genetic diversity, reflected by 20 effective founders (f a ) and mean heterozygosity (Hz) of 0.313. The realized effective population size in the breed based on pedigree analysis (N¯ec) is 168, whereas the genetic effective population size (N eg ) computed the decay of linkage disequilibrium (r 2 ) is only 57 individuals. Nordic Spitz, although once been near extinction, has not been exposed to similar repeated bottlenecks than Finnish Spitz and had f a of 27 individuals. However, due to the smaller total population size, the breed has also smaller effective population size than Finnish Spitz (N¯ec = 98 and N eg  = 49). Interestingly, the r 2 data show that the effective population size has contracted dramatically since the establishment of the breed, emphasizing the role of breed standards as constrains for the breeding population. Despite the small population size, Nordic Spitz still maintains SNP heterozygosity levels similar to mixed breed dogs (mean Hz = 0.409). Our study demonstrates that although pedigree analyses cannot provide estimates of the present diversity within a breed, the effective population sizes inferred from them correlate with the genotyping results. The genetic relationships of the northern Spitz breeds and the benefits of the open breed registry are discussed. © 2017 Blackwell Verlag GmbH.

  6. Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).

    PubMed

    Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien

    2016-07-01

    Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.

  7. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  8. Software Technology for Adaptable, Reliable Systems (STARS) (User Manual). Ada Command Environment (ACE) Version 8.0 Sun OS Implementation

    DTIC Science & Technology

    1990-10-29

    the equivalent type names in the basic X libary . 37. Intrinsics Contains the type declarations common to all Xt toolkit routines. 38. Widget-Package...Memory-Size constant Integer 1; MinInt constant I-reger Integer’First; MaxInt const-i’ integer Integer’Last; -- Max- Digits constant Integer 1; -- MaxMan...connection between some type names used by Xt routines and the equivalent type names in the basic X libary . .package RenamedXlibTypes is P;’ge 65 29

  9. Nuclear shielding constants by density functional theory with gauge including atomic orbitals

    NASA Astrophysics Data System (ADS)

    Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.

    2000-08-01

    Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.

  10. Size and age structure of anadromous and landlocked populations of Rainbow Smelt

    USGS Publications Warehouse

    O'Malley, Andrew; Enterline, Claire; Zydlewski, Joseph D.

    2017-01-01

    Rainbow Smelt Osmerus mordax are widely distributed in both anadromous and landlocked populations throughout northeastern North America; abundance, size at age, and maximum size vary widely among populations and life histories. In the present study, size at age, von Bertalanffy growth parameters, population age distributions, and precision and bias in age assessment based on scales and sectioned otoliths were compared between ecotypes and among populations of Rainbow Smelt. To compare the ecotypes, we collected spawning adults from four anadromous and three landlocked populations in Maine during spring 2014. A significant bias was identified in only one of four scale comparisons but in four of seven otolith comparisons; however, a comparable level of precision was indicated. Anadromous populations had larger and more variable size at age and von Bertalanffy growth parameters than landlocked fish. Populations were composed of ages 1–4; six populations were dominated by age-2 or age-3 individuals, and one population was dominated by age-1 fish. These data suggest the presence of considerable plasticity among populations. A latitudinal gradient was observed in the anadromous Rainbow Smelt, which may show signs of population stress at the southern extent of their distribution.

  11. On the number of New World founders: a population genetic portrait of the peopling of the Americas.

    PubMed

    Hey, Jody

    2005-06-01

    The founding of New World populations by Asian peoples is the focus of considerable archaeological and genetic research, and there persist important questions on when and how these events occurred. Genetic data offer great potential for the study of human population history, but there are significant challenges in discerning distinct demographic processes. A new method for the study of diverging populations was applied to questions on the founding and history of Amerind-speaking Native American populations. The model permits estimation of founding population sizes, changes in population size, time of population formation, and gene flow. Analyses of data from nine loci are consistent with the general portrait that has emerged from archaeological and other kinds of evidence. The estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1% of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian and New World data support a model of a recent founding of the New World by a population of quite small effective size.

  12. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  13. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  14. Formation and resuscitation of viable but nonculturable Salmonella typhi.

    PubMed

    Zeng, Bin; Zhao, Guozhong; Cao, Xiaohong; Yang, Zhen; Wang, Chunling; Hou, Lihua

    2013-01-01

    Salmonella typhi is a pathogen that causes the human disease of typhoid fever. The aim of this study was to investigate the viable but nonculturable (VBNC) state of S. typhi. Some samples were stimulated at 4°C or -20°C, while others were induced by different concentrations of CuSO4. Total cell counts remained constant throughout several days by acridine orange direct counting; however, plate counts declined to undetectable levels within 48 hours by plate counting at -20°C. The direct viable counts remained fairly constant at this level by direct viable counting. Carbon and nitrogen materials slowly decreased which indicated that a large population of cells existed in the VBNC state and entered the VBNC state in response to exposure to 0.01 or 0.015 mmol/L CuSO4 for more than 14 or 12 days, respectively. Adding 3% Tween 20 or 1% catalase enabled cells to become culturable again, with resuscitation times of 48 h and 24 h, respectively. The atomic force microscope results showed that cells gradually changed in shape from short rods to coccoids, and decreased in size when they entered the VBNC state. Further animal experiments suggested that resuscitated cells might regain pathogenicity.

  15. Stable, semi-stable populations and growth potential.

    PubMed

    Bourgeois-Pichat, J

    1971-07-01

    Abstract Starting from the definition of a Malthusian population given by Alfred J. Lotka, the author recalls how the concept of stable population is introduced in demography, first as a particular case of stable populations, and secondly as a limit of a demographic evolutionary process in which female age-specific fertility rates and age-specific mortality rates remain constant. Then he defines a new concept: the semi-stable population which is a population with a constant age distribution. He shows that such a population coincides at any point of time with the stable population corresponding to the mortality and the fertility at this point of time. In the remaining part of the paper it is shown how the concept of a stable population can be used for defining a coefficient of inertia which measures the resistance of a population to modification of its course as a consequence of changing fertility and mortality. Some formulae are established to calculate this coefficient first for an arbitrary population, and secondly for a semistable population. In this second case the formula is particularly simple. It appears as a product of three terms: the expectation of life at birth in years, the crude birth rate, and a coefficient depending on the rate of growth and for which a numerical table is easy to establish.

  16. Assessing the roles of population density and predation risk in the evolution of offspring size in populations of a placental fish

    PubMed Central

    Schrader, Matthew; Travis, Joseph

    2012-01-01

    Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. PMID:22957156

  17. Probability of fixation under weak selection: a branching process unifying approach.

    PubMed

    Lambert, Amaury

    2006-06-01

    We link two-allele population models by Haldane and Fisher with Kimura's diffusion approximations of the Wright-Fisher model, by considering continuous-state branching (CB) processes which are either independent (model I) or conditioned to have constant sum (model II). Recent works by the author allow us to further include logistic density-dependence (model III), which is ubiquitous in ecology. In all models, each allele (mutant or resident) is then characterized by a triple demographic trait: intrinsic growth rate r, reproduction variance sigma and competition sensitivity c. Generally, the fixation probability u of the mutant depends on its initial proportion p, the total initial population size z, and the six demographic traits. Under weak selection, we can linearize u in all models thanks to the same master formula u = p + p(1 - p)[g(r)s(r) + g(sigma)s(sigma) + g(c)s(c)] + o(s(r),s(sigma),s(c), where s(r) = r' - r, s(sigma) = sigma-sigma' and s(c) = c - c' are selection coefficients, and g(r), g(sigma), g(c) are invasibility coefficients (' refers to the mutant traits), which are positive and do not depend on p. In particular, increased reproduction variance is always deleterious. We prove that in all three models g(sigma) = 1/sigma and g(r) = z/sigma for small initial population sizes z. In model II, g(r) = z/sigma for all z, and we display invasion isoclines of the 'mean vs variance' type. A slight departure from the isocline is shown to be more beneficial to alleles with low sigma than with high r. In model III, g(c) increases with z like ln(z)/c, and g(r)(z) converges to a finite limit L > K/sigma, where K = r/c is the carrying capacity. For r > 0 the growth invasibility is above z/sigma when z < K, and below z/sigma when z > K, showing that classical models I and II underestimate the fixation probabilities in growing populations, and overestimate them in declining populations.

  18. Directionality theory and the evolution of body size.

    PubMed

    Demetrius, L

    2000-12-07

    Directionality theory, a dynamic theory of evolution that integrates population genetics with demography, is based on the concept of evolutionary entropy, a measure of the variability in the age of reproducing individuals in a population. The main tenets of the theory are three principles relating the response to the ecological constraints a population experiences, with trends in entropy as the population evolves under mutation and natural selection. (i) Stationary size or fluctuations around a stationary size (bounded growth): a unidirectional increase in entropy; (ii) prolonged episodes of exponential growth (unbounded growth), large population size: a unidirectional decrease in entropy; and (iii) prolonged episodes of exponential growth (unbounded growth), small population size: random, non-directional change in entropy. We invoke these principles, together with an allometric relationship between entropy, and the morphometric variable body size, to provide evolutionary explanations of three empirical patterns pertaining to trends in body size, namely (i) Cope's rule, the tendency towards size increase within phyletic lineages; (ii) the island rule, which pertains to changes in body size that occur as species migrate from mainland populations to colonize island habitats; and (iii) Bergmann's rule, the tendency towards size increase with increasing latitude. The observation that these ecotypic patterns can be explained in terms of the directionality principles for entropy underscores the significance of evolutionary entropy as a unifying concept in forging a link between micro-evolution, the dynamics of gene frequency change, and macro-evolution, dynamic changes in morphometric variables.

  19. Evaluation of mist-netting, nest-searching and other methods for monitoring demographic processes in landbird populations

    Treesearch

    Nadav Nur; Geoffrey R. Geupel

    1993-01-01

    Demographic processes (reproductive success, survival of young and adults, recruitment of young into the breeding population) are critical to monitoring and managing landbird populations. We discuss different techniques that have been used to monitor these demographic processes in landbird populations, focusing on constant-effort mist-netting (CEM). We assess whether...

  20. Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.

    2017-03-01

    Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.

  1. Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops.

    PubMed

    Linde, Celeste C; Smith, Leon M; Peakall, Rod

    2016-05-12

    The outcome of the arms race between hosts and pathogens depends heavily on the interactions between their genetic diversity, population size and transmission ability. Theory predicts that genetically diverse hosts will select for higher virulence and more diverse pathogens than hosts with low genetic diversity. Cultivated hosts typically have lower genetic diversity and thus small effective population sizes, but can potentially harbour large pathogen population sizes. On the other hand, hosts, such as weeds, which are genetically more diverse and thus have larger effective population sizes, usually harbour smaller pathogen population sizes. Large pathogen population sizes may lead to more opportunities for mutation and hence more diverse pathogens. Here we test the predictions that pathogen neutral genetic diversity will increase with large pathogen population sizes and host diversity, whereas diversity under selection will increase with host diversity. We assessed and compared the diversity of a fungal pathogen, Rhynchosporium commune, on weedy barley grass (which have a large effective population size) and cultivated barley (low genetic diversity) using microsatellites, effector locus nip1 diversity and pathogen aggressiveness in order to assess the importance of weeds in the evolution of the neutral and selected diversity of pathogens. The findings indicated that the large barley acreage and low host diversity maintains higher pathogen neutral genetic diversity and lower linkage disequilibrium, while the weed maintains more pathotypes and higher virulence diversity at nip1. Strong evidence for more pathogen migration from barley grass to barley suggests transmission of virulence from barley grass to barley is common. Pathogen census population size is a better predictor for neutral genetic diversity than host diversity. Despite maintaining a smaller pathogen census population size, barley grass acts as an important ancillary host to R. commune, harbouring highly virulent pathogen types capable of transmission to barley. Management of disease on crops must therefore include management of weedy ancillary hosts, which may harbour disproportionate supplies of virulent pathogen strains.

  2. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  3. Ab initio estimates of the size of the observable universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Don N., E-mail: profdonpage@gmail.com

    2011-09-01

    When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and withmore » a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.« less

  4. [Are simple time lags responsible for cyclic variation of population density? : A comparison of laboratory population dynamics of Brachionus calyciflorus pallas (rotatoria) with computer simulations].

    PubMed

    Halbach, Udo; Burkhardt, Heinz Jürgen

    1972-09-01

    Laboratory populations of the rotifer Brachionus calyciflorus were cultured at different temperatures (25, 20, 15°C) but otherwise at constant conditions. The population densities showed relatively constant oscillations (Figs. 1 to 3A-C). Amplitudes and frequencies of the oscillations were positively correlated with temperature (Table 1). A test was made, whether the logistic growth function with simple time lag is able to describe the population curves. There are strong similarities between the simulations (Figs. 1-3E) and the real population dynamics if minor adjustments of the empirically determined parameters are made. There-fore it is suggested that time lags are responsible for the observed oscillations. However, the actual time lags probably do not act in the simple manner of the model, because birth and death rates react with different time lags, and both parameters are dependent on individual age and population density. A more complex model, which incorporates these modifications, should lead to a more realistic description of the observed oscillations.

  5. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    USGS Publications Warehouse

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  6. Whitebark Pine, Population Density, and Home-Range Size of Grizzly Bears in the Greater Yellowstone Ecosystem

    PubMed Central

    Bjornlie, Daniel D.; Van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size. PMID:24520354

  7. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    PubMed

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  8. Dispersal and population state of an endangered island lizard following a conservation translocation.

    PubMed

    Angeli, Nicole F; Lundgren, Ian F; Pollock, Clayton G; Hillis-Starr, Zandy M; Fitzgerald, Lee A

    2018-03-01

    Population size is widely used as a unit of ecological analysis, yet to estimate population size requires accounting for observed and latent heterogeneity influencing dispersion of individuals across landscapes. In newly established populations, such as when animals are translocated for conservation, dispersal and availability of resources influence patterns of abundance. We developed a process to estimate population size using N-mixture models and spatial models for newly established and dispersing populations. We used our approach to estimate the population size of critically endangered St. Croix ground lizards (Ameiva polops) five years after translocation of 57 individuals to Buck Island, an offshore island of St. Croix, United States Virgin Islands. Estimates of population size incorporated abiotic variables, dispersal limits, and operative environmental temperature available to the lizards to account for low species detection. Operative environmental temperature and distance from the translocation site were always important in fitting the N-mixture model indicating effects of dispersal and species biology on estimates of population size. We found that the population is increasing its range across the island by 5-10% every six months. We spatially interpolated site-specific abundance from the N-mixture model to the entire island, and we estimated 1,473 (95% CI, 940-1,802) St. Croix ground lizards on Buck Island in 2013 corresponding to survey results. This represents a 26-fold increase since the translocation. We predicted the future dispersal of the lizards to all habitats on Buck Island, with the potential for the population to increase by another five times in the future. Incorporating biologically relevant covariates as explicit parameters in population models can improve predictions of population size and the future spread of species introduced to new localities. © 2018 by the Ecological Society of America.

  9. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.

  10. Mechanics of Constriction during Cell Division: A Variational Approach

    PubMed Central

    Almendro-Vedia, Victor G.; Monroy, Francisco; Cao, Francisco J.

    2013-01-01

    During symmetric division cells undergo large constriction deformations at a stable midcell site. Using a variational approach, we investigate the mechanical route for symmetric constriction by computing the bending energy of deformed vesicles with rotational symmetry. Forces required for constriction are explicitly computed at constant area and constant volume, and their values are found to be determined by cell size and bending modulus. For cell-sized vesicles, considering typical bending modulus of , we calculate constriction forces in the range . The instability of symmetrical constriction is shown and quantified with a characteristic coefficient of the order of , thus evidencing that cells need a robust mechanism to stabilize constriction at midcell. PMID:23990888

  11. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  12. Low-Dielectric Constant Polyimide Nanoporous Films: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Mehdipour-Ataei, S.; Rahimi, A.; Saidi, S.

    2007-08-01

    Synthesis of high temperature polyimide foams with pore sizes in the nanometer range was developed. Foams were prepared by casting graft copolymers comprising a thermally stable block as the matrix and a thermally labile material as the dispersed phase. Polyimides derived from pyromellitic dianhydride with new diamines (4BAP and BAN) were used as the matrix material and functionalized poly(propylene glycol) oligomers were used as a thermally labile constituent. Upon thermal treatment the labile blocks were subsequently removed leaving pores with the size and shape of the original copolymer morphology. The polyimides and foamed polyimides were characterized by some conventional methods including FTIR, H-NMR, DSC, TGA, SEM, TEM, and dielectric constant.

  13. Extinction-effective population index: incorporating life-history variations in population viability analysis.

    PubMed

    Fujiwara, Masami

    2007-09-01

    Viability status of populations is a commonly used measure for decision-making in the management of populations. One of the challenges faced by managers is the need to consistently allocate management effort among populations. This allocation should in part be based on comparison of extinction risks among populations. Unfortunately, common criteria that use minimum viable population size or count-based population viability analysis (PVA) often do not provide results that are comparable among populations, primarily because they lack consistency in determining population size measures and threshold levels of population size (e.g., minimum viable population size and quasi-extinction threshold). Here I introduce a new index called the "extinction-effective population index," which accounts for differential effects of demographic stochasticity among organisms with different life-history strategies and among individuals in different life stages. This index is expected to become a new way of determining minimum viable population size criteria and also complement the count-based PVA. The index accounts for the difference in life-history strategies of organisms, which are modeled using matrix population models. The extinction-effective population index, sensitivity, and elasticity are demonstrated in three species of Pacific salmonids. The interpretation of the index is also provided by comparing them with existing demographic indices. Finally, a measure of life-history-specific effect of demographic stochasticity is derived.

  14. Differences in the effective population sizes of males and females do not require differences in their distribution of offspring number.

    PubMed

    Mendez, Fernando L

    2017-04-01

    Difference in male and female effective population sizes has, at times, been attributed to both sexes having unequal variance in their number of offspring. Such difference is paralleled by the relative effective sizes of autosomes, sex chromosomes, and mitochondrial DNA. I develop a simple framework to calculate the inbreeding effective population sizes for loci with different modes of inheritance. In this framework, I separate the effects due to mating strategy and those due to genetic transmission. I then show that, in addition to differences in the variance in offspring number, skew in the male/female effective sizes can also be caused by family composition. This approach can be used to illustrate the effect of induced behaviors on the relative male and female effective population sizes. In particular, I show the impact of the one-child policy formerly implemented in the People's Republic of China on the relative male and female effective population sizes. Furthermore, I argue that, under some strong constraints on family structure, the concepts of male and female effective population sizes are invalid. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. The Exponential Function--Part VIII

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1978-01-01

    Presents part eight of a continuing series on the exponential function in which, given the current population of the Earth and assuming a constant growth rate of 1.9 percent backward looks at world population are made. (SL)

  16. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments.

    PubMed

    Walsby, Anthony E

    2005-11-01

    The ability of the Planktothrix rubescens to stratify in Lake Zürich is related to the size and shape of the cyanobacterial filaments. Detailed measurements made in the lake are used in a dynamic computer model of buoyancy regulation to investigate the vertical movements of filaments tracking the depth at which the irradiance would support neutral buoyancy. The movement of the filament lags behind the constantly changing target depth owing to (a) the time taken for the filament to respond to the irradiance by changing its density and (b) the time it takes to move by sinking down or floating up through the water column. The model simulates the stratification depth over a 5-month period of the summer from the continuous measurements of irradiance and weekly measurements of light attenuation and temperature, without any further adjustment over the period. Models using filaments of the size observed in Lake Zürich explain several details of the observed depth changes: smaller planktonic cyanobacteria (e.g. Limnothrix sp.) are unable to migrate fast enough and larger ones (e.g. Anabaena spp.) will overshoot and become entrained in the epilimnion. The model can be used to simulate recruitment of Planktothrix filaments from different depths after vernal stratification. Recruitment of filaments from depths down to 45 m will contribute to the metalimnetic population increase in early July.

  17. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans

    PubMed Central

    Kihara, Terue C.; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima’s D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid populations are generally large and continuously undergoing population growth. Benthic and pelagic species abundance data support these findings. PMID:27732624

  18. Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Dirivultidae) across Different Oceans.

    PubMed

    Gollner, Sabine; Stuckas, Heiko; Kihara, Terue C; Laurent, Stefan; Kodami, Sahar; Martinez Arbizu, Pedro

    2016-01-01

    Communities in spatially fragmented deep-sea hydrothermal vents rich in polymetallic sulfides could soon face major disturbance events due to deep-sea mineral mining, such that unraveling patterns of gene flow between hydrothermal vent populations will be an important step in the development of conservation policies. Indeed, the time required by deep-sea populations to recover following habitat perturbations depends both on the direction of gene flow and the number of migrants available for re-colonization after disturbance. In this study we compare nine dirivultid copepod species across various geological settings. We analyze partial nucleotide sequences of the mtCOI gene and use divergence estimates (FST) and haplotype networks to infer intraspecific population connectivity between vent sites. Furthermore, we evaluate contrasting scenarios of demographic population expansion/decline versus constant population size (using, for example, Tajima's D). Our results indicate high diversity, population expansion and high connectivity of all copepod populations in all oceans. For example, haplotype diversity values range from 0.89 to 1 and FST values range from 0.001 to 0.11 for Stygiopontius species from the Central Indian Ridge, Mid Atlantic Ridge, East Pacific Rise, and Eastern Lau Spreading Center. We suggest that great abundance and high site occupancy by these species favor high genetic diversity. Two scenarios both showed similarly high connectivity: fast spreading centers with little distance between vent fields and slow spreading centers with greater distance between fields. This unexpected result may be due to some distinct frequency of natural disturbance events, or to aspects of individual life histories that affect realized rates of dispersal. However, our statistical performance analyses showed that at least 100 genomic regions should be sequenced to ensure accurate estimates of migration rate. Our demography parameters demonstrate that dirivultid populations are generally large and continuously undergoing population growth. Benthic and pelagic species abundance data support these findings.

  19. The Arrow of Time In a Universe with a Positive Cosmological Constant Λ

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    There is a mounting evidence that our universe is propelled into an accelerated expansion driven by Dark Energy. The simplest form of Dark Energy is a cosmological constant Λ, which is woven into the fabric of spacetime. For this reason it is often referred to as vacuum energy. It has the "strange" property of maintaining a constant energy density despite the expanding volume of the universe. Universes whose energy ismade of Λ posses an event horizon with and eternally finite constant temperature and entropy, and are known as DeSitter geometries. Since the entropy of DeSitter spaces remains a finite constant, then the meaning of a thermodynamic arrow of time becomes unclear. Here we explore the consequences of a fundamental cosmological constant Λ for our universe. We show that when the gravitational entropy of a pure DeSitter state ultimately dominates over the matter entropy, then the thermodynamic arrow of time in our universe may reverse in scales of order a Hubble time. We find that due to the dynamics of gravity and entanglement with other domain, a finite size system such as a DeSitter patch with horizon size H 0 -1 has a finite lifetime ∆t. This phenomenon arises from the dynamic gravitational instabilities that develop during a DeSitter epoch and turn catastrophic. A reversed arrow of time is in disagreementwith observations. Thus we explore the possibilities that: Nature may not favor a fundamental Λ, or else general relativity may be modified in the infrared regime when Λ dominates the expansion of the Universe.

  20. Effective population size and genetic conservation criteria for bull trout

    Treesearch

    Bruce E. Rieman; F. W. Allendorf

    2001-01-01

    Effective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus confluentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively....

Top