Temperature crossover of decoherence rates in chaotic and regular bath dynamics.
Sanz, A S; Elran, Y; Brumer, P
2012-03-01
The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.
Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Hsiang, Jen-Tsung; Hu, B. L.
2015-11-01
This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.
Novikov Engine with Fluctuating Heat Bath Temperature
NASA Astrophysics Data System (ADS)
Schwalbe, Karsten; Hoffmann, Karl Heinz
2018-04-01
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry
NASA Astrophysics Data System (ADS)
Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.
2010-07-01
A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.
Viscosity and density of methanol/water mixtures at low temperatures
NASA Technical Reports Server (NTRS)
Austin, J. G.; Kurata, F.; Swift, G. W.
1968-01-01
Viscosity and density are measured at low temperatures for three methanol/water mixtures. Viscosity is determined by a modified falling cylinder method or a calibrated viscometer. Density is determined by the volume of each mixture contained in a calibrated glass cell placed in a constant-temperature bath.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
Statistical mechanics of Fermi-Pasta-Ulam chains with the canonical ensemble
NASA Astrophysics Data System (ADS)
Demirel, Melik C.; Sayar, Mehmet; Atılgan, Ali R.
1997-03-01
Low-energy vibrations of a Fermi-Pasta-Ulam-Β (FPU-Β) chain with 16 repeat units are analyzed with the aid of numerical experiments and the statistical mechanics equations of the canonical ensemble. Constant temperature numerical integrations are performed by employing the cubic coupling scheme of Kusnezov et al. [Ann. Phys. 204, 155 (1990)]. Very good agreement is obtained between numerical results and theoretical predictions for the probability distributions of the generalized coordinates and momenta both of the chain and of the thermal bath. It is also shown that the average energy of the chain scales linearly with the bath temperature.
Dynamics of a spin-boson model with structured spectral density
NASA Astrophysics Data System (ADS)
Kurt, Arzu; Eryigit, Resul
2018-05-01
We report the results of a study of the dynamics of a two-state system coupled to an environment with peaked spectral density. An exact analytical expression for the bath correlation function is obtained. Validity range of various approximations to the correlation function for calculating the population difference of the system is discussed as function of tunneling splitting, oscillator frequency, coupling constant, damping rate and the temperature of the bath. An exact expression for the population difference, for a limited range of parameters, is derived.
NASA Astrophysics Data System (ADS)
Chattopadhyay, P.; Karim, B.; Guha Roy, S.
2013-12-01
The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.
Laser Initiated Ignition of Liquid Propellant
1991-01-31
containers held in a water bath of constant temperature 70*C. A larger vessel containing approximately 2ml of propellant was also heated in each experiment and...controller. A stirrer and forced water circulation ensured that all samples were kept at the same temperature. The water wai first heated to the final 5... electrolysed samples. 3 .. .. ....... ......................... volume of 10 ....... . 5 ....... I • . ... .. . .... .. ...... .. . . .. . . ... . .61.8 2 22i
NASA Astrophysics Data System (ADS)
Schiebl, M.; Zelenka, Z.; Buchner, C.; Pohl, R.; Steindl, D.
2018-02-01
In this study, the influence of the unknown sinker temperature on the measured density of liquids is evaluated. Generally, due to the intrinsic temperature instability of the heat bath temperature controller, the system will never reach thermal equilibrium but instead will oscillate around a mean temperature. The sinker temperature follows this temperature oscillation with a certain time lag. Since the sinker temperature is not measured directly in a hydrostatic weighing apparatus, the temperature of the sinker, and thus in turn the volume of the sinker, is not known exactly. As a consequence, this leads to uncertainty in the value of the density of the liquid. From an analysis of the volume relaxation of the sinker immersed into a heat bath with time-dependent temperature characteristics, the heat transfer coefficient can be estimated, and thus a characteristic time constant for achieving quasi thermal equilibrium for a hydrostatic weighing apparatus is proposed. Additionally, from a theoretical analysis of the transient behavior of the sinker volume, the systematic deviation of the theoretical to the actual measured liquid density is calculated.
NASA Astrophysics Data System (ADS)
Taheri, Hesam; Nóbrega, João Miguel; Samyn, Pieter; Covas, José Antonio
2014-05-01
In this work, the simultaneous effect of both temperature and drawing ratio during processing of polypropylene monofilaments has been investigated. The basis of this work specifically aims at emphasizing the conditions of temperature and drawing ratio applied in the cooling bath, in order to find out under which conditions the named parameters can be applied in a processing line under continuous extrusion. The effects of temperature are studied for a constant total drawing ratio to analyze the influences on mechanical properties and structural differences of the final polypropylene monofilament. The quenched monofilaments were drawn around an adjustable guide assembly in the quench bath and first drawing stage, imparting thermal and mechanical treatments to the filaments. In the heating stage, monofilaments are affected to high-speed draw rolls while passing through the oven. As such, the best conditions to produce a polypropylene monofilament with high tenacity strength were determined. Results of this study show that the monofilament properties are significantly affected by temperature in the cooling zone. The nature of the first drawing had a significant effect on the end properties and monofilaments with modulus of 637 MPa have finally been manufactured. We have also proposed a new hypothesis, which is termed "gap nucleation" and determine this phenomenon in the gap between die and cooling bath.
Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.
Kim, Ilki; Mahler, Günter
2010-01-01
We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.
Supercooling Water in Cylindrical Capsules
NASA Astrophysics Data System (ADS)
Guzman, J. J. Milón; Braga, S. L.
2005-11-01
An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.
1994-10-27
The kinetics of the unimolecular decomposition of the sec-C[sub 4]H[sub 9] radical has been studied experimentally in a heated tubular flow reactor coupled to a photoionization mass spectrometer. Rate constants for the decomposition were determined in time-resolved experiments as a function of temperature (598-680 K) and bath gas density (3-18) [times] 10[sup 16] molecules cm[sup [minus]3] in three bath gases: He, Ar, and N[sub 2]. The rate constants are in the falloff region under the conditions of the experiments. The results of earlier studies of the reverse reaction were reanalyzed and used to create a transition state model of themore » reaction. This transition state model was used to obtain values of the microcanonical rate constants, k (E). Falloff behavior was reproduced using master equation modeling with the energy barrier height for decomposition (necessary to calculate k(E)) obtained from optimization of the agreement between experimental and calculated rate constants. The resulting model of the reaction provides the high-pressure limit rate constants for the decomposition reaction and the reverse reaction. 52 refs., 7 figs., 3 tabs.« less
Physiological and subjective responses to standing showers, sitting showers, and sink baths.
Ohnaka, T; Tochihara, Y; Kubo, M; Yamaguchi, C
1995-09-01
The purpose of this study was to investigate physiological and subjective responses during and after bathing in three different bathing methods. Eight healthy males bathed for 10 minutes, and then rested for 30 minutes. Three kinds of bathing methods - standing shower, sitting shower and sink bath - were adopted in this experiment. Water temperature and flow volume of the showers were kept at 41 degrees C and 11 liter/min, while water temperature of the bath was kept at 40 degrees C. Rectal temperature, skin temperatures and heart rate of the subjects were measured continuously during bathing and the subsequent 30-minute rest. Blood pressure and votes for thermal sensations were recorded before bathing, after 5 and 10 minutes of bathing, and 5, 10, 20 and 30 minutes after bathing. The following results were obtained. 1) Although rectal temperature rose, on the average, by 0.15 degrees C in all bathing methods, there were no significant differences among the three bathing methods at any time in the experiment. 2) Mean skin temperature (Tsk) during the sink bath was significantly higher than that in the standing or sitting shower. After bathing, Tsk of sink bath was slightly higher than those of the remaining conditions, but did not significantly differ among the bathing methods. 3) Heart rate increased gradually during all the bathing methods, however, only HR in the standing shower exceeded 100 beats/min which was significantly higher than those of the two remaining bathing methods. 4) Blood pressure (BP) decreased rapidly during the sink bath in contrast to an increased BP in the sitting and standing showers.
NASA Astrophysics Data System (ADS)
Pranesh Rao, K. M.; Narayan Prabhu, K.
2017-10-01
Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.
Annealing effect on structural and optical properties of chemical bath deposited MnS thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr; Gumus, Cebrail
2016-03-25
MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized inmore » the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.« less
Model for calorimetric measurements in an open quantum system
NASA Astrophysics Data System (ADS)
Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay
2018-05-01
We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.
Inorganic Halogen Oxidizer Research.
1980-03-17
Synthesis, Novel Oxidizers, Solid-Propellant NF3 /F2 Gas Generators, Perfluoro- a- ammonium Salts, Perchlorates, Pentafluorooxouranate, Fluorosulfate...kcal mol I previously reported.’ by immersion into i constant-temperature 140.05 () circulating oil The fact that the small mole fraction ranges of...reactor higher tenperatures over almost t he entire nnole fraction () into the hot oil bath. the reactor was evacnaied. and the pressure range A mxpical
Electrodeposition of CdTe thin film from acetate-based ionic liquid bath
NASA Astrophysics Data System (ADS)
Waldiya, Manmohansingh; Bhagat, Dharini; Mukhopadhyay, Indrajit
2018-05-01
CdTe being a direct band gap semiconductor, is mostly used in photovoltaics. Here we present, the synthesis of CdTe thin film on fluorine doped tin oxide (FTO) substrate potentiostatically using 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) ionic liquid (IL) bath at 90 °C. Major advantages of using electrodeposition involves process simplicity, large scalability & economic viability. Some of the benefits offered by IL electrolytic bath are low vapour pressure, wide electrochemical window, and good ionic mobility. Cd(CH3COO)2 (anhydrous) and TeO2 were used as the source precursors. The IL electrolytic bath temperature was kept at 90 °C for deposition, owing to the limited solubility of TeO2 in [Bmim][Ac] IL at room temperature. Cathodic electrodeposition was carried out using a three electrode cell setup at a constant potential of -1.20 V vs. platinum (Pt) wire. The CdTe/FTO thin film were annealed in argon (Ar) atmosphere. Optical study of nanostructured CdTe film were done using UV-Vis-IR and Raman spectroscopy. Raman analysis confirms the formation of CdTe having surface optics (SO) mode at 160.6 cm-1 and transverse optics (TO) mode at 140.5 cm-1. Elemental Te peaks at 123, 140.5 and 268 cm-1 were also observed. The optical band gap of Ar annealed CdTe thin film were found to be 1.47 eV (absorbance band edge ˜ 846 nm). The optimization of deposition parameters using acetate-based IL electrolytic bath to get nearly stoichiometric CdTe thin film is currently being explored.
Extended Operation of Stirling Convertors at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Oriti, Salvatore
2011-01-01
Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.
Effect of trunk-to-head bathing on physiological responses in newborns.
So, Hyun-Sook; You, Mi-Ae; Mun, Je-Yung; Hwang, Myeong-Jin; Kim, Hyun-Kyung; Pyeon, Suk-Jin; Shin, Mi-Young; Chang, Bong-Hee
2014-01-01
To determine the effect of trunk-to-head bathing versus the traditional head-to-trunk bathing on newborns' body temperature, heart rate, and oxygen saturation. A prospective, two-group, quasi-experimental repeated measures design. A newborn nursery in an urban university hospital. Sixty-two healthy full-term newborns. Newborns were randomly assigned to two groups. The newborns in the experimental group were bathed from trunk to head; those in the control group were bathed from head to trunk. Measurements of body temperature, heart rate, and oxygen saturation were obtained at four time points: before the bath, immediately after the bath, 30 minutes after the bath, and 60 minutes after the bath. No significant differences in body temperature, heart rate, or oxygen saturation were observed between groups. However, body temperature was significantly different across measurement times, and there was a significant interaction between group and measurement time. The mean body temperature dropped 0.2°C after bathing in both groups, but the experimental group returned to their initial body temperature more rapidly than the control group. These findings suggest that newborns who were bathed from trunk to head and whose heads were wet for shorter periods of time benefited with a more rapid recovery of body temperature and decreased heat loss due to evaporation. © 2014 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
Kudo, Yukiko; Sasaki, Makiko; Kikuchi, Yukiko; Sugiyama, Reiko; Hasebe, Makiko; Ishii, Noriko
2018-06-19
The present study was conducted in order to clarify the effects of a warm hand bath at 40°C for 10 min on the blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort in healthy women. The study's participants were 40 healthy adult women who were randomly assigned to either a structured hand bath first and no hand bath second (Group A) or to no hand bath first and a hand bath second (Group B). The blood flow in the shoulder, skin and deep body temperature, autonomic nervous activity, and subjective comfort then were recorded in all the participants. A repeated-measures ANOVA revealed no significant difference in the blood flow in the right shoulder or deep body temperature between groups. The skin temperature of the hands, forearms, and arms was significantly increased, but not of the face and upper back. The skin temperature of the forearms was maintained at 0.5°C-1°C higher for 30 min in the hand bath group, compared with the no hand bath group. The hand bath group had a significantly higher heart rate while bathing and a significantly lower parasympathetic nerve activity level during bathing. No significant difference was seen in the sympathetic activity level between groups. The hand bath group had a significantly higher subjective comfort level. Hand baths can improve the level of subjective comfort and increase the heart rate and might affect autonomic nervous activity. The skin temperature of the forearms was maintained for 30 min in the hand bath group. © 2018 Japan Academy of Nursing Science.
Accurate Measurements of the Dielectric Constant of Seawater at L Band
NASA Technical Reports Server (NTRS)
Lang, Roger H.; Utku, Cuneyt; Tarkocin, Yalcin; LeVine, David M.
2010-01-01
This report describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz that is at the center of the L-Sand radiometric protected frequency spectrum. Aquarius will be sensing the sea surface salinity from space in this band. The objective of the project is to refine the model function for the dielectric constant as a function of salinity and temperature so that remote sensing measurements can be made with the accuracy needed to meet the measurement goals (0.2 psu) of the Aquarius mission. The measurements were made, using a microwave cavity operated in the transmission configuration. The cavity's temperature was accurately regulated to 0.02 C by immersing it in a temperature controlled bath of distilled water and ethanol glycol. Seawater had been purchased from Ocean Scientific International Limited (OS1L) at salinities of 30, 35 and 38 psu. Measurements of these seawater samples were then made over a range of temperatures, from l0 C to 35 C in 5 C intervals. Repeated measurements were made at each temperature and salinity, Mean values and standard deviations were then computed. Total error budgets indicated that the real and imaginary parts of the dielectric constant had a relative accuracy of about l%.
Dynamic thermoregulation of the sample in flow cytometry.
Graves, Steven W; Habbersett, Robert C; Nolan, John P
2002-05-01
Fine control of temperature is an important capability for any analytical platform. A circulating water bath has been the traditional means of maintaining constant temperature in the sample chamber of a flow cytometer, but this approach does not permit rapid changes in sample temperature. This unit explains the use of Peltier modules for regulation of sample temperature. The heat pumping generated by the passage of current through properly matched semiconductors, known as the Peltier effect, makes it possible for these thermoelectric modules to both heat and cool. The authors describe the construction of a Peltier module based thermoregulation unit in step-by-step detail and present a demonstration of flow cytometry measurements as a function of temperature.
Method of freezing living cells and tissues with improved subsequent survival
Senkan, Selim M.; Hirsch, Gerald P.
1980-01-01
This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.
An investigation of preload relaxation behaviour of three zinc- aluminum alloys
NASA Astrophysics Data System (ADS)
Mir, A. A.
2016-08-01
Zinc alloy castings are usually assembled together or mounted by screwed steel fasteners, and are tightened to a predetermined torque to develop the required tensile preload in the fastener. Due to relaxation processes in the castings, creep may cause a partial preload loss at an elevated temperature. The equipment used for load relaxation tests consists of a loadmonitoring device, an oil bath, and a data-acquisition system. A load cell monitoring device is used to monitor the load loss in an ISO-metric M6*1 steel screw set into sand castings made from alloys No. 3, No. 5 and No. 2 and tightened to produce an initial preload of 6 kN. The castings were held at constant temperature in the range 80 - 120°C in an oil bath. The oil bath maintains the desired test temperature throughout the experiment. All tests were conducted for periods of up to 160 h. For all alloys, the initial load loss was high, decreasing gradually with time, but not ceasing. The load loss increased rapidly with test temperature, and almost all of the relaxation curves approximated to a logarithmic decay of load with time. Alloy No. 2 had the best resistance to load loss, with No. 5 next and No. 3 worst at all temperatures. The lower resistance to relaxation of alloy No. 3 was mainly due to the lower relaxation strength of copper-free primary dendrites, whereas in alloys No. 5 and No. 2, the higher copper contents contribute greatly to their relaxation strength in the form of second-phase particles.
Kinetics of corneal thermal shrinkage
NASA Astrophysics Data System (ADS)
Borja, David; Manns, Fabrice; Lee, William E.; Parel, Jean-Marie
2004-07-01
Purpose: The purpose of this study was to determine the effects of temperature and heating duration on the kinetics of thermal shrinkage in corneal strips using a custom-made shrinkage device. Methods: Thermal shrinkage was induced and measured in corneal strips under a constant load placed while bathed in 25% Dextran irrigation solution. A study was performed on 57 Florida Lions Eye Bank donated human cadaver eyes to determine the effect of temperature on the amount and rate of thermal shrinkage. Further experiments were performed on 20 human cadaver eyes to determine the effects of heating duration on permanent shrinkage. Data analysis was performed to determine the effects of temperature, heating duration, and age on the amount and kinetics of shrinkage. Results: Shrinkage consisted of two phases: a shrinkage phase during heating and a regression phase after heating. Permanent shrinkage increased with temperature and duration. The shrinkage and regression time constants followed Arrhenius type temperature dependence. The shrinkage time constants where calculated to be 67, 84, 121, 560 and 1112 (s) at 80, 75, 70, 65, and 60°C respectively. At 65°C the permanent shrinkage time constant was calculated to be 945s. Conclusion: These results show that shrinkage treatments need to raise the temperature of the tissue above 75°C for several seconds in order to prevent regression of the shrinkage effect immediately after treatment and to induce the maximum amount of permanent irreversible shrinkage.
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
Phan, Manh-Huong; Mandrus, David
2016-12-01
A new type of rotary coolers based on the temperature change (ΔT rot) of an anisotropic superconductor when rotated in a constant magnetic field is proposed.We show that at low temperature the Sommerfeld coefficient (B,Θ) of a single crystalline superconductor, such as MgB 2 and NbS 2, sensitively depends on the applied magnetic field (B) and the orientation of the crystal axis (Θ), which is related to the electronic entropy (S E) and temperature (T) via the expression: S E = T. A simple rotation of the crystal from one axis to one another in a constant magnetic field resultsmore » in a change in and hence S E: ΔSE = ΔγT. A temperature change -ΔT rot ~ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔT rot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Manh-Huong; Mandrus, David
A new type of rotary coolers based on the temperature change (ΔT rot) of an anisotropic superconductor when rotated in a constant magnetic field is proposed.We show that at low temperature the Sommerfeld coefficient (B,Θ) of a single crystalline superconductor, such as MgB 2 and NbS 2, sensitively depends on the applied magnetic field (B) and the orientation of the crystal axis (Θ), which is related to the electronic entropy (S E) and temperature (T) via the expression: S E = T. A simple rotation of the crystal from one axis to one another in a constant magnetic field resultsmore » in a change in and hence S E: ΔSE = ΔγT. A temperature change -ΔT rot ~ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔT rot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.« less
Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems.
Tseluiko, D; Galvagno, M; Thiele, U
2014-04-01
A liquid film is studied that is deposited onto a flat plate that is inclined at a constant angle to the horizontal and is extracted from a liquid bath at a constant speed. We analyse steady-state solutions of a long-wave evolution equation for the film thickness. Using centre manifold theory, we first obtain an asymptotic expansion of solutions in the bath region. The presence of an additional temperature gradient along the plate that induces a Marangoni shear stress significantly changes these expansions and leads to the presence of logarithmic terms that are absent otherwise. Next, we numerically obtain steady solutions and analyse their behaviour as the plate velocity is changed. We observe that the bifurcation curve exhibits collapsed (or exponential) heteroclinic snaking when the plate inclination angle is above a certain critical value. Otherwise, the bifurcation curve is monotonic. The steady profiles along these curves are characterised by a foot-like structure that is formed close to the meniscus and is preceded by a thin precursor film further up the plate. The length of the foot increases along the bifurcation curve. Finally, we prove with a Shilnikov-type method that the snaking behaviour of the bifurcation curves is caused by the existence of an infinite number of heteroclinic orbits close to a heteroclinic chain that connects in an appropriate three-dimensional phase space the fixed point corresponding to the precursor film with the fixed point corresponding to the foot and then with the fixed point corresponding to the bath.
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, Robert V.
1993-01-01
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infra-red sensing devices.
Quantitative method for measuring heat flux emitted from a cryogenic object
Duncan, R.V.
1993-03-16
The present invention is a quantitative method for measuring the total heat flux, and of deriving the total power dissipation, of a heat-fluxing object which includes the steps of placing an electrical noise-emitting heat-fluxing object in a liquid helium bath and measuring the superfluid transition temperature of the bath. The temperature of the liquid helium bath is thereafter reduced until some measurable parameter, such as the electrical noise, exhibited by the heat-fluxing object or a temperature-dependent resistive thin film in intimate contact with the heat-fluxing object, becomes greatly reduced. The temperature of the liquid helum bath is measured at this point. The difference between the superfluid transition temperature of the liquid helium bath surrounding the heat-fluxing object, and the temperature of the liquid helium bath when the electrical noise emitted by the heat-fluxing object becomes greatly reduced, is determined. The total heat flux from the heat-fluxing object is determined as a function of this difference between these temperatures. In certain applications, the technique can be used to optimize thermal design parameters of cryogenic electronics, for example, Josephson junction and infrared sensing devices.
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko
2014-07-01
To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB-head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB-head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF-HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Miwa, Chihiro; Kataoka, Yumiko; Kobayashi, Chihiro; Suzuki, Takahiro; Shigaraki, Masayuki; Maeda, Yoichi; Takada, Hiroki; Watanabe, Yoriko
2014-07-01
To reduce the risks of Japanese-style bathing, half-body bathing (HBLB) has been recommended in Japan, but discomfort due to the cold environment in winter prevents its widespread adoption. The development of the mist sauna, which causes a gradual core temperature rise with sufficient thermal comfort, has reduced the demerits of HBLB. We examined head-out 42 °C mist bathing with 38 °C HBLB up to the navel to see if it could improve thermal comfort without detracting from the merits of HBLB, with and without the effects of facial fanning (FF). The subjects were seven healthy males aged 22-25 years. The following bathing styles were provided: (1) HBLB—head-out half-body low bathing of 38 °C up to the navel (20 min); (2) HOMB—head-out mist bathing of 42 °C and HBLB of 38 °C (20 min); and (3) HOMBFF—HOMB with FF (20 min). HOMB raised the core temperature gradually. HOMBFF suppressed the core temperature rise in a similar fashion to HOMB. Increases in blood pressure and heart rate usually observed in Japanese traditional-style bathing were less marked in HOMBs with no significant difference with and without FF. The greatest body weight loss was observed after Japanese traditional-style bathing, with only one-third of this amount lost after mist bathing, and one-sixth after HBLB. HOMB increased thermal sensation, and FF also enhanced post-bathing invigoration. We conclude that HOMB reduces the risks of Japanese traditional style bathing by mitigating marked changes in the core temperature and hemodynamics, and FF provides thermal comfort and invigoration.
NASA Astrophysics Data System (ADS)
Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo
2015-09-01
Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.
Lee, Soomin; Fujimura, Hiroko; Shimomura, Yoshihiro; Katsuura, Tetsuo
2015-09-01
Recently, a growing number in Japan are switching to taking baths in the morning (morning bathing). However, the effects of the morning bathing on human physiological functions and work efficiency have not yet been revealed. Then, we hypothesized that the effect of morning bathing on physiological functions would be different from those of night bathing. In this study, we measured the physiological functions and work efficiency during the day following the morning bathing (7:10-7:20) including showering, mist sauna bathing, and no bathing as a control. Ten male healthy young adults participated in this study as the subjects. We evaluated the rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), heart rate variability (HRV), blood pressure (BP), the relative power density of the alpha wave (α-wave ratio) of electroencephalogram, alpha attenuation coefficient (AAC), and the error rate of the task performance. As a result, we found that the HR after the mist sauna bathing was significantly lower than those after no bathing rest 3 (11:00). Furthermore, we verified that the α-wave ratio of the Pz after the mist sauna bathing was significantly lower than those after no bathing during the task 6 (15:00). On the other hand, the α-wave ratio of the Pz after the mist sauna bathing was significantly higher than those after showering during the rest 3 (11:00). Tsk after the mist sauna bathing was higher than those after the showering at 9:00 and 15:00. In addition, the error rate of the task performance after the mist sauna bathing was lower than those after no bathing and showering at 14:00. This study concludes that a morning mist sauna is safe and maintains both skin temperature compared to other bathing methods. Moreover, it is presumed that the morning mist sauna bathing improves work efficiency comparing other bathing methods during the task period of the day following the morning bathing.
Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang
2018-04-28
The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.
NASA Astrophysics Data System (ADS)
Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang
2018-04-01
The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Suchitra, E-mail: suchitrayadav87@gmail.com; Pandya, Dinesh K.; Chaudhary, Sujeet
2016-05-23
CoSb{sub 3} thin films are deposited on conducting glass substrates (FTO) by electrodeposition at different bath temperatures (60°C, 70°C and 80°C) and the resulting influence of the bath temperature on the structure, morphology and electrical properties of films is investigated. X-ray diffraction confirms the formation of CoSb{sub 3} phase in the films. Scanning electron microscopy reveals that different morphologies ranging from branched nano-flakes to nano-needles evolve as bath temperature increases. It is concluded that a growth temperature of 80°C is suitable for producing CoSb{sub 3} films with such properties that show potential feasibility for thermoelectric applications.
Cerebral autoregulation during whole-body hypothermia and hyperthermia stimulus.
Doering, T J; Aaslid, R; Steuernagel, B; Brix, J; Niederstadt, C; Breull, A; Schneider, B; Fischer, G C
1999-01-01
The purpose of the study contained herein was to investigate the effects of old traditional physiotherapeutic treatments on cerebral autoregulation. Treatment consisted of complete body immersion in cold or warm water baths. Fifteen volunteers were investigated by means of transcranial Doppler sonography and a servo-controlled noninvasive device for blood pressure measuring. One group of 8 volunteers (mean age, 27.2+/-3.5 yr; gender, 3 females/5 males) was subjected to cold baths of 22 degrees C for 20 min Another group of 7 volunteers (mean age, 52.1+/-8.5 yr; gender, 4 females/3 males) took hyperthermic baths at rising water temperatures from 36 degrees to 42 degrees C, increased by 1 degree C every 5 min. Each volunteer in both groups underwent autoregulation tests two to four times before, during, and after the thermic bath. Dynamic autoregulation was measured by the response of cerebral blood flow velocity to a transient decrease of the mean arterial blood pressure, induced by rapid deflation of thigh cuffs. The autoregulation index, i.e., a measure of the speed of change of cerebral autoregulation, was used to quantify the response. Further parameters were core temperature, blood pressure (mm Hg) and CO2et. During hypothermic baths, core temperature decreased by 0.3 degrees C (P = 0.001), measured between preliminary phase and the end of the bath; the autoregulation index decreased significantly (P < 0.05) from 5.3 before the bath to 4.25 during the bath. During hyperthermic baths, the autoregulation index increased from 6.0 to 7.5 and 8.9 (P < 0.001), with an increase of core temperature of 0.4 degrees C. The main cerebral autoregulation system is dependent on changes of core temperature, provoked by hypothermic or hyperthermic whole-body thermostimulus. Application of hyperthermic baths increased the autoregulation index, and hypothermic baths decreased the autoregulation index. Further studies are needed to prove the positive effects of thermo-stimulating water applications on cerebral hemodynamics in patients with cerebral diseases.
Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming
NASA Astrophysics Data System (ADS)
Taylan, Fatih
2011-04-01
In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.
High-Temperature Nonequilibrium Bose Condensation Induced by a Hot Needle.
Schnell, Alexander; Vorberg, Daniel; Ketzmerick, Roland; Eckardt, André
2017-10-06
We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.
Employing a new bath- and liquidus temperature sensor for molten salts
NASA Astrophysics Data System (ADS)
Verstreken, P.
1997-11-01
In this article, a newly developed sensor that measures bath and liquidus temperatures is described. The accuracy and reproducibility of the sensor are discussed, and the sensor’s output is compared with results obtained using other techniques. A series of measurements in point-feed and center-worked cells are given. Finally, the evolution of bath and liquidus temperature is shown with respect to feed strategies.
NASA Astrophysics Data System (ADS)
Kannan, R.; Devaki, P.; Premkumar, P. S.; Selvambikai, M.
2018-04-01
Electrodeposition of nanocrystalline NiFe and NiFeW thin films were carried out from ammonium citrate bath at a constant current density and controlled pH of 8 by varying the bath temperature from 40 °C to 70 °C. The surface morphology and chemical composition of the electrodeposited NiFe and NiFeW soft magnetic thin films were studied by using SEM and EDAX. The SEM micrographs of the films coated at higher electrodeposited bath temperature have no micro cracks and also the films have more uniform surface morphology. The existence of crystalline nature of the coated films were analysed by XRD. The presence of predominant peaks in x-ray diffraction pattern (compared with JCPDS data) reveal that the average crystalline size was in the order of few tens of nano meters. The magnetic properties such as coercivity, saturation magnetization and magnetic flux density have been calculated from vibrating sample magnetometer analysis. The VSM result shows that the NiFeW thin film synthesised at 70 °C exhibit the lower coercivity with higher saturation magnetization. The hardness and adhesion of the electroplated films have been investigated. Reasons for variation in magnetic properties and structural characteristics are also discussed. The electroplated NiFe and NiFeW thin films can be used for Micro Electro Mechanical System (MEMS) applications due to their excellent soft magnetic behaviour.
Influence of the cooling method on the structure of 55AlZn coatings
NASA Astrophysics Data System (ADS)
Mendala, J.
2011-05-01
In metallization processes, metals or metal alloys are used which have a low melting point and good anticorrosion properties. Moreover, they must form durable intermetallic compounds with iron or its alloys. The most common hot-dip metallization technology involves galvanizing, however, molten multi-component metal alloys are used as well. An addition of aluminium to the zinc bath causes an increase in corrosion resistance of the obtained coatings. The article presents results of tests of obtaining coatings by the batch hot-dip method in an 55AlZn bath. Kinetics of the coating growth in the tested alloys were determined in the changeable conditions of bath temperature, dip time and type of cooling. The structure of coatings and their phase composition were revealed. As a result of the tests performed, it has been found that an increase in total thickness of the coatings as a function of the dipping time at a constant temperature is almost of a parabolic nature, whereas an increase in the transient layer is of a linear nature. The structure was identified by the XRD analysis and the morphology of the coatings was tested by means of SEM. It has been found that the cooling process with the use of higher rates of cooling causes a size reduction of the structure in the outer layer and a reduction of thickness of both the intermediate diffusion layer and the whole coating by ca. 25 %.
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
A Calorimetric Investigation of Deuterated Palladium Electrodes
1991-05-01
cells comprised either a Pd cathode in a solution of lithium hydroxide (LiOH) in water (H20) or a Pt cathode in a solution of LiOD in D2 0. 1...measuring cells mounted to TED, which in turn are mounted to a large aluminum block. This unit is then submerged in a constant- temperature water bath...Vcell - Vtn) X I, where Vtn is the thermal neutral potential of water Vtn = 1.53 V for D2 0 (1) Vtn = 1.48 V for H2 0. (2) The heat power output
DSMC modeling of flows with recombination reactions
NASA Astrophysics Data System (ADS)
Gimelshein, Sergey; Wysong, Ingrid
2017-06-01
An empirical microscopic recombination model is developed for the direct simulation Monte Carlo method that complements the extended weak vibrational bias model of dissociation. The model maintains the correct equilibrium reaction constant in a wide range of temperatures by using the collision theory to enforce the number of recombination events. It also strictly follows the detailed balance requirement for equilibrium gas. The model and its implementation are verified with oxygen and nitrogen heat bath relaxation and compared with available experimental data on atomic oxygen recombination in argon and molecular nitrogen.
NASA Astrophysics Data System (ADS)
Adelkhani, H.; Ghaemi, M.; Jafari, S. M.
Pulse current electrodeposition (PCD) method has been applied to the preparation of novel electrolytic manganese dioxide (EMD) in order to enhance the cycle life of rechargeable alkaline MnO 2-Zn batteries (RAM). The investigation was carried out under atmospheric pressure through a systematic variation of pulse current parameters using additive free sulfuric acid-MnSO 4 electrolyte solutions. On time (t on) was varied from 0.1 to 98.5 ms, off time (t off) from 0.25 to 19.5 ms, pulse frequencies (f) from 10 to 1000 Hz and duty cycles (θ) from 0.02 to 0.985. A constant pulse current density (I p) of 0.8 A dm -2 and average current densities (I a) in the range of 0.08-0.8 A dm -2 were applied in all experiments. Resultant materials were characterized by analyzing their chemical compositions, X-ray diffractions (XRD) and scanning electron microscopy (SEM). Electrochemical characterizations carried out by charge/discharge cycling of samples in laboratory designed RAM batteries and cyclic voltammetric experiments (CV). It has been proved that specific selection of duty cycle, in the order of 0.25, and a pulse frequency of 500 Hz, results in the production of pulse deposited samples (pcMDs) with more uniform distribution of particles and more compact structure than those obtained by direct current techniques (dcMDs). Results of the test batteries demonstrated that, in spite of reduction of bath temperature in the order of 40 °C, the cycle life of batteries made of pcMDs (bath temperature: 60 °C) was rather higher than those made of conventional dcMDs (boiling electrolyte solution). Under the same conditions of EMD synthesis temperature of 80 °C and battery testing, the maximum obtainable cycle life of optimized pcMD was nearly 230 cycles with approximately 30 mAh g -1 MnO 2, compared to that of dcMD, which did not exceed 20 cycles. In accordance to these results, CV has confirmed that the pulse duty cycle is the most influential parameter on the cycle life than the pulse frequency. Because of operating at lower bath temperatures, the presented synthetic mode could improve its competitiveness in economical aspects.
NASA Astrophysics Data System (ADS)
Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.
2015-06-01
Entropy barriers and aging states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and aging harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, nonactivated delay time for seeded parent-phase austenite to convert to product-phase martensite arises from an identified entropy barrier in Fourier space. In an aging state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways to enter a Brillouin zone "golf hole" enclosing negative-energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
NASA Astrophysics Data System (ADS)
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
Liao, Wen-Chun; Wang, Lee; Kuo, Ching-Pyng; Lo, Chyi; Chiu, Ming-Jang; Ting, Hua
2013-12-01
The decrease in core body temperature before sleep onset and during sleep is associated with dilation of peripheral blood vessels, which permits heat dissipation from the body core to the periphery. A lower core temperature coupled with a higher distal (hands and feet) temperature before sleep are associated with shorter sleep latency and better sleep quality. A warm footbath is thought to facilitate heat dissipation to improve sleep outcomes. This study examined the effect of a warm footbath (40°C water temperature, 20-min duration) on body temperature and sleep in older adults (≥55 years) with good and poor sleep. Two groups and an experimental crossover design was used. Forty-three adults responded to our flyer and 25 participants aged 59.8±3.7 years (poor sleeper with a Pittsburgh Sleep Quality Index score≥5=17; good sleepers with a Pittsburgh Sleep Quality Index score<5=8) completed this study. All participants had body temperatures (core, abdomen, and foot) and polysomnography recorded for 3 consecutive nights. The first night was for adaptation and sleep apnea screening. Participants were then randomly assigned to either the structured foot bathing first (second night) and non-bathing second (third night) condition or the non-bathing first (second night) and foot bathing second (third night) condition. A footbath before sleep significantly increased and retained foot temperatures in both good and poor sleepers. The pattern of core temperatures during foot bathing was gradually elevated (poor sleepers vs. good sleepers=+0.40±0.58°C vs. +0.66±0.17°C). There were no significant changes in polysomnographic sleep and perceived sleep quality between non-bathing and bathing nights for both groups. A footbath of 40°C water temperature and 20-min duration before sleep onset increases foot temperatures and distal-proximal skin temperature gradients to facilitate vessel dilatation and elevates core temperature to provide heat load to the body. This footbath does not alter sleep in older adults with good and poor sleep. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laatar, F., E-mail: fakher8laatar@gmail.com; Harizi, A.; Smida, A.
2016-06-15
Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphologymore » and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.« less
Comparative study of the thermal properties of mud and peat solutions applied in clinical practice.
Beer, A M; Grozeva, A; Sagorchev, P; Lukanov, J
2003-11-01
Different peloids as e.g. mud and peat have been traditionally used for therapeutic purposes successfully, especially of there thermal actions. It was the aim of the experimental study to compare the thermal properties of two peloids, mud and peat, with a view to assessing their thermal effects when they are applied in clinical practice. The studies were carried out using peat of the marsh type of peats (Hochmoor), and curative Pomorie (Bulgaria) mud. As important parameters were determined the specific thermal capacity at constant pressure (Cp), the density of solutions (rho), the cooling rate (m), the coefficient of temperature transfer (a) of solutions and the coefficient of thermal conductivity (lambda) of solutions of peat and curative mud, compared to water bath. The comparative studies of the thermal properties of water and water solutions of peat and curative mud show that the thermal effect of the water bath is substantially smaller than that of the peat and mud applications. This difference is due to a greater extent to the high values of the dynamic viscosity, not allowing cooling by convection and protecting the surface of the skin upon applications of peloid solutions with a higher temperature.
NASA Astrophysics Data System (ADS)
Ewing, Jacob; Wang, Yuzheng; Arnold, David P.
2018-05-01
This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
NASA Astrophysics Data System (ADS)
Segal, Dvira
2014-04-01
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Shizgal, Bernie D
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.
2018-05-01
This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].
NASA Astrophysics Data System (ADS)
Lam, Mie K.; de Greef, Martijn; Bouwman, Job G.; Moonen, Chrit T. W.; Viergever, Max A.; Bartels, Lambertus W.
2015-10-01
The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method’s performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method’s ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.
Dutta, Rajesh; Bagchi, Kaushik
2017-01-01
Kubo’s fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo’s stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics. PMID:28527457
NASA Astrophysics Data System (ADS)
Levai, Gabor; Godzsák, Melinda; Török, Tamas I.; Hakl, Jozsef; Takáts, Viktor; Csik, Attila; Vad, Kalman; Kaptay, George
2016-07-01
The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10 °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagier, B.; Rousset, B.; Hoa, C.
Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and themore » refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.« less
A Calorimetric Investigation of Deuterated Palladium Electrodes
1991-05-01
of lithium hydroxide (LiOH) in water (H2 0) or a Pt cathode in a solution of LiOD in D20. i i ! i1 EXPERIMENTAL Electrochemical cells Two types of...are mounted to a largp aluminum Dlock. This unit is then submerged in a constant- temperature water bath. The aluminum block acts as a heat sink 2 c a...Vcell - Vtn) X I, where Vtn is the thermal neutral potential of water Vtn 1.53 V for D20 (1) Vtn = 1.48 V for H2 0. (2) The heat power output (Hout (mW
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2018-02-01
In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.
Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle
NASA Astrophysics Data System (ADS)
Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.
2012-08-01
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.
Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.
Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2012-08-31
A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.
Freitas, Patrícia de; Marques, Silvia Rezende; Alves, Taisy Bezerra; Takahashi, Juliana; Kimura, Amélia Fumiko
2014-08-01
Objective To verify the effect of bathing on the body temperature of preterm infants (PTI). Method Systematic review conducted in the following bibliographic electronic sources: Biblioteca Virtual em Saúde/Lilacs (BVS), Cumulated Index of Nursing and Allied Health Literature (CINAHL), Cochrane Library, Google Scholar, PubMed, SCOPUS and Web of Science, using a combination of search terms, keywords and free terms. The review question was adjusted to the PICO acronym (Patient/population, Intervention, Control/comparative intervention, Outcome). The selected publications were evaluated according to levels of evidence and grades of recommendation for efficacy/effectiveness studies, as established by the Joanna Briggs Institute. Results Eight hundred and twenty four (824) publications were identified and four studies met the inclusion criteria, of which three analyzed the effect of sponge baths and the effect of immersion baths. Conclusion Sponge baths showed a statistically significant drop in body temperature, while in immersion baths the body temperature remained stable, although they studied late preterm infants.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-01-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
NASA Astrophysics Data System (ADS)
Oki, Sae; Natsui, Shungo; Suzuki, Ryosuke O.
2018-06-01
System design of a thermoelectric (TE) power generation module is pursued in order to improve the TE performance. Square truncated pyramid shaped P-N pairs of TE elements are connected electronically in series in the open space between two flat insulator boards. The performance of the TE module consisting of 2-paired elements is numerically simulated using commercial software and original TE programs. Assuming that the heat radiating into the hot surface is regulated, i.e., the amount of heat from the hot surface to the cold one is steadily constant, as it happens for solar radiation heating, the performance is significantly improved by changing the shape and the alignment pattern of the elements. When the angle θ between the edge and the base is smaller than 72°, and when the cold surface is kept at a constant temperature, two patterns in particular, amongst the 17 studied, show the largest TE power and efficiency. In comparison to other geometries, the smarter square truncated pyramid shape can provide higher performance using a large cold bath and constant heat transfer by heat radiation.
Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.
2016-05-06
ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.
Development of a 300 L Calibration Bath for Oceanographic Thermometers
NASA Astrophysics Data System (ADS)
Baba, S.; Yamazawa, K.; Nakano, T.; Saito, I.; Tamba, J.; Wakimoto, T.; Katoh, K.
2017-11-01
The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been developing a 300 L calibration bath to calibrate 24 oceanographic thermometers (OT) simultaneously and thereby reduce the calibration work load necessary to service more than 180 OT every year. This study investigated characteristics of the developed 300 L calibration bath using a SBE 3plus thermometer produced by an OT manufacturer. We also used 11 thermistor thermometers that were calibrated to be traceable to the international temperature scale of 1990 (ITS-90) within 1 mK of standard uncertainty through collaboration of JAMSTEC and NMIJ/AIST. Results show that the time stability of temperature of the developed bath was within ± 1 mK. Furthermore, the temperature uniformity was ± 1.3 mK. The expanded uncertainty (k=2) components for the characteristics of the developed 300 L calibration bath were estimated as 2.9 mK, which is much less than the value of 10 mK: the required specification for uncertainty of calibration for the OT. These results demonstrated the utility of this 300 L calibration bath as a device for use with a new calibration system.
[Turpentine white emulsion baths in the rehabilation in patients with sexual dysfunctions].
Karpukhin, I V; Li, A A; Gusev, M E
2000-01-01
100 patients with sexual dysfunction (SD) and 20 SD patients took turpentine white emulsion baths and sodium chloride baths, respectively. The turpentine baths were given with step-by-step rise in turpentine concentration from 20 to 50 ml per 200 l of water, temperature 36-37 degrees C, duration of the procedure 10-15 min. The course consisted of 10-12 procedures which were conducted daily or each other day. The turpentine baths were more effective than sodium chloride baths (85 vs 50%, respectively).
[The use of sodium chloride baths in patients with chronic bronchitis].
Anisimkina, A N; Aĭrapetova, N S; Davydova, O B; Doronina, Iu V; Derevnina, N A; Gontar', E V
1996-01-01
80 patients with chronic bronchitis took baths with sodium chloride concentration 20, 40, 60 g/l and temperature 37-38 degrees C. The baths produced a positive effect on central and regional hemodynamics, reduced inflammation and sensitization.
Lai, K P K; Dolan, K D; Ng, P K W
2009-06-01
Thermal and moisture effects on grape anthocyanin degradation were investigated using solid media to simulate processing at temperatures above 100 degrees C. Grape pomace (anthocyanin source) mixed with wheat pastry flour (1: 3, w/w dry basis) was used in both isothermal and nonisothermal experiments by heating the same mixture at 43% (db) initial moisture in steel cells in an oil bath at 80, 105, and 145 degrees C. To determine the effect of moisture on anthocyanin degradation, the grape pomace-wheat flour mixture was heated isothermally at 80 degrees C at constant moisture contents of 10%, 20%, and 43% (db). Anthocyanin degradation followed a pseudo first-order reaction with moisture. Anthocyanins degraded more rapidly with increasing temperature and moisture. The effects of temperature and moisture on the rate constant were modeled according to the Arrhenius and an exponential relationship, respectively. The nonisothermal reaction rate constant and activation energy (mean +/- standard error) were k(80 degrees C, 43% (db) moisture) = 2.81 x 10(-4)+/- 1.1 x 10(-6) s(-1) and DeltaE = 75273 +/- 197 J/g mol, respectively. The moisture parameter for the exponential model was 4.28 (dry basis moisture content)(-1). One possible application of this study is as a tool to predict the loss of anthocyanins in nutraceutical products containing grape pomace. For example, if the process temperature history and moisture history in an extruded snack fortified with grape pomace is known, the percentage anthocyanin loss can be predicted.
Approach to thermal equilibrium in atomic collisions.
Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K
2008-03-14
The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Dunkel, Jörn
2006-07-01
We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.
Infrared thermography in newborns: the first hour after birth.
Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold
2003-01-01
It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel
Characteristic functions of quantum heat with baths at different temperatures
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-06-01
This paper is about quantum heat defined as the change in energy of a bath during a process. The presentation takes into account recent developments in classical strong-coupling thermodynamics and addresses a version of quantum heat that satisfies quantum-classical correspondence. The characteristic function and the full counting statistics of quantum heat are shown to be formally similar. The paper further shows that the method can be extended to more than one bath, e.g., two baths at different temperatures, which opens up the prospect of studying correlations and heat flow. The paper extends earlier results on the expected quantum heat in the setting of one bath [E. Aurell and R. Eichhorn, New J. Phys. 17, 065007 (2015), 10.1088/1367-2630/17/6/065007; E. Aurell, Entropy 19, 595 (2017), 10.3390/e19110595].
Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements
NASA Technical Reports Server (NTRS)
Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.
2009-01-01
Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be compared with permittivity values generated from the Kline and Swift relationship. Two methods of calibration will be discussed, The errors that each technique introduces into the measurement resulls will be reviewed. Temperature stability, frequency drift and the effect of increasing cavity transmission loss on the unloaded cavity Q will also be discussed.
Performance of Inductors Attached to a Galvanizing Bath
NASA Astrophysics Data System (ADS)
Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao
2013-12-01
By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.
Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Seifert, Udo
2018-05-01
Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.
Zhang, Peng; Watanabe, Kunio; Eishi, Tokida
2007-12-01
Japanese macaques (Macaca fuscata) in a free-ranging group in Jigokudani valley, Nagano prefecture, are known to bathe in a hot spring. We used scan sampling in a study aimed at elucidating the causal factors and possible social transmission of this behavior. From 1980-2003, 31% of a total 114 females in the group habitually bathed in the hot spring. The habit was more widespread in dominant matrilines than in subordinate matrilines. Infants whose mothers bathed were more likely to bathe than infants of mothers who did not bathe. The number of monkeys bathing was clearly influenced by ambient air temperature. More monkeys bathed in the hot spring in winter than in summer. The results support the thermoregulation hypothesis of hot-spring bathing. Bathing behavior varies among age and sex categories of monkeys, with adult females and juveniles bathing more often than adult males and subadults. We compared hot-spring bathing with other thermoregulatory behaviors in various primate populations. (c) 2007 Wiley-Liss, Inc.
Effect of Process Parameters on the Structure and Properties of Galvanized Sheets
NASA Astrophysics Data System (ADS)
Shukla, S. K.; Saha, B. B.; Triathi, B. D.; Avtar, Ram
2010-07-01
The effect of galvanizing parameters on the structure (spangle size and coating microstructure) and properties (formability and corrosion resistance) of galvanized sheets was studied in a hot dip process simulator (HDPS) in a conventional Pb bearing (0.08-0.10%) zinc bath by varying zinc bath Al level (0.10-0.28%), bath temperature (718-743 K), dipping time (1.5-3.5 s), wiping gas flow rate (200-450 lpm), nozzle distance (15-17 mm) and wiping delay time (0.1-2.1 s). Al level in the range of 0.18-0.24% in combination with dipping time of 1.5-2.5 s and bath temperature of 718-733 K results in superior formability ( E cv: ~9.3 mm) of the composite (thickness: 0.8 mm). High post-dip cooling rates (~25 K/s) suppress spangle growth (spangle size: ~2 mm). The spangle size of the GI sheet strongly influences the corrosion rate which increases from 5.8 to 9.2 mpy with a decrease in spangle size from 17.5 to 3 mm. By controlling the Al level (0.20%) in zinc bath and bath temperature (733 K), the corrosion rate of mini-spangle GI sheet can be controlled to a level of 5.5 mpy.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-10-01
Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.
Comparison of Foot Bathing and Foot Massage in Chemotherapy-Induced Peripheral Neuropathy.
Park, Ranhee; Park, Chaisoon
2015-01-01
In a clinical setting, patients have been observed to complain of discomfort and to discontinue treatment because of chemotherapy-induced peripheral neuropathy (CIPN), but few data exist regarding the quality of life in these patients in Korea. The purpose of this quasi-experimental study was to analyze the effects of foot bathing and massage in patients with CIPN. Subjects included 48 patients with CIPN, who were hospitalized in C University Hospital. The subjects were alternately assigned to 1 of 2 groups according to their registration order. The interventions consisted of 8 treatments of foot bathing or massage over a period of 2 weeks, at 30 minutes per session, every other day. The foot skin temperature increased significantly in the foot bathing group, whereas it decreased significantly in the massage group. Quality of life was significantly increased in the foot bathing group, whereas it was significantly decreased in the massage group. Although foot bathing and foot massage are both supportive care techniques for CIPN patients, foot bathing was more effective than foot massage on skin temperature, grade of neurotoxicity, and quality of life. Additional well-designed studies are recommended, so that the effectiveness of foot bathing and foot massage is confirmed. Foot bathing is more useful as supportive care with respect to nonpharmacologic interventions for alleviating CIPN and promoting the quality of life in cancer patients.
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Th. M.; Allahverdyan, A. E.
2002-09-01
The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of bath modes around the particle starts to play a nontrivial role, namely, when the bath temperature T is smaller than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not imply standard equilibrium thermodynamics for the particle itself at low T. Various formulations of the second law are found to be invalid at low T. First, the Clausius inequality can be violated, because heat can be extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it follows that the equivalence between different formulations of the second law (e.g., those by Clausius and Thomson) can be violated at low temperatures. These effects are the consequence of quantum entanglement in the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the characteristic quantum time scale ħ/kBT is larger than or comparable to other time scales of the system. They show that there is no general consensus between standard thermodynamics and quantum mechanics. The known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures. Experimental setups for testing the effects are discussed.
Nieuwenhuizen, Th M; Allahverdyan, A E
2002-09-01
The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of bath modes around the particle starts to play a nontrivial role, namely, when the bath temperature T is smaller than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not imply standard equilibrium thermodynamics for the particle itself at low T. Various formulations of the second law are found to be invalid at low T. First, the Clausius inequality can be violated, because heat can be extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it follows that the equivalence between different formulations of the second law (e.g., those by Clausius and Thomson) can be violated at low temperatures. These effects are the consequence of quantum entanglement in the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the characteristic quantum time scale variant Planck's over 2pi /k(B)T is larger than or comparable to other time scales of the system. They show that there is no general consensus between standard thermodynamics and quantum mechanics. The known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures. Experimental setups for testing the effects are discussed.
Ness, H; Stella, L; Lorenz, C D; Kantorovich, L
2017-04-28
We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.
Fluctuation relation for heat exchange in Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Ramezani, M.; Golshani, M.; Rezakhani, A. T.
2018-04-01
A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.
Fluctuation relation for heat exchange in Markovian open quantum systems.
Ramezani, M; Golshani, M; Rezakhani, A T
2018-04-01
A fluctuation relation for the heat exchange of an open quantum system under a thermalizing Markovian dynamics is derived. We show that the probability that the system absorbs an amount of heat from its bath, at a given time interval, divided by the probability of the reverse process (releasing the same amount of heat to the bath) is given by an exponential factor which depends on the amount of heat and the difference between the temperatures of the system and the bath. Interestingly, this relation is akin to the standard form of the fluctuation relation (for forward-backward dynamics). We also argue that the probability of the violation of the second law of thermodynamics in the form of the Clausius statement (i.e., net heat transfer from a cold system to its hot bath) drops exponentially with both the amount of heat and the temperature differences of the baths.
Dynamics and protection of tripartite quantum correlations in a thermal bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jin-Liang, E-mail: guojinliang80@163.com; Wei, Jin-Long
2015-03-15
We study the dynamics and protection of tripartite quantum correlations in terms of genuinely tripartite concurrence, lower bound of concurrence and tripartite geometric quantum discord in a three-qubit system interacting with independent thermal bath. By comparing the dynamics of entanglement with that of quantum discord for initial GHZ state and W state, we find that W state is more robust than GHZ state, and quantum discord performs better than entanglement against the decoherence induced by the thermal bath. When the bath temperature is low, for the initial GHZ state, combining weak measurement and measurement reversal is necessary for a successfulmore » protection of quantum correlations. But for the initial W state, the protection depends solely upon the measurement reversal. In addition, the protection cannot usually be realized irrespective of the initial states as the bath temperature increases.« less
Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants
NASA Astrophysics Data System (ADS)
Halder, S.; Fruehan, R. J.
2008-12-01
A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.
Persistent Currents in a Rotating Superleak Partially Filled with Superfluid Helium.
1982-12-01
the difference in pressure of the helium bath Po and the reduced vapor pressure in the cell P. In the region from 1.0 to 0.1 the log Po-P has been seen...easily measurable quantities of temperature, T, the helium bath pressure, Po, and the cell pressure P to the film thickness d. Alpha is a measure of the...rotation is controlled by a motor and power supply. The temperature is controlled by the pumping rate and a feedback heater in the helium bath and -maybe
Peukert, S L; Michael, J V
2013-10-10
The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Akihito, E-mail: kato@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) andmore » between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.« less
A brain slice bath for physiology and compound microscopy, with dual-sided perifusion.
Heyward, P M
2010-12-01
Contemporary in vitro brain slice studies can employ compound microscopes to identify individual neurons or their processes for physiological recording or imaging. This requires that the bath used to maintain the tissue fits within the working distances of a water-dipping objective and microscope condenser. A common means of achieving this is to maintain thin tissue slices on the glass floor of a recording bath, exposing only one surface of the tissue to oxygenated bathing medium. Emerging evidence suggests that physiology can be compromised by this approach. Flowing medium past both sides of submerged brain slices is optimal, but recording baths utilizing this principle are not readily available for use on compound microscopes. This paper describes a tissue bath designed specifically for microscopy and physiological recording, in which temperature-controlled medium flows past both sides of the slices. A particular feature of this design is the use of concentric mesh rings to support and transport the live tissue without mechanical disturbance. The design is also easily adapted for use with thin acute slices, cultured slices, and acutely dispersed or cultured cells maintained either on cover slips or placed directly on the floor of the bath. The low profile of the bath provides a low angle of approach for electrodes, and allows use of standard condensers, nosepieces and water-dipping objective lenses. If visualization of individual neurons is not required, the bath can be mounted on a simple stand and used with a dissecting microscope. Heating is integral to the bath, and any temperature controller capable of driving a resistive load can be used. The bath is robust, readily constructed and requires minimal maintenance. Full construction and operation details are given. © 2010 The Author Journal of Microscopy © 2010 The Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng
2013-07-01
We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.
Effect of Anode Change on Heat Transfer and Magneto-hydrodynamic Flow in Aluminum Reduction Cell
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Baokuan; Fafard, Mario
2016-02-01
In order to explore the impact of anode replacement on heat transfer and magneto-hydrodynamic flow in aluminum smelting cells, a transient three-dimensional coupled mathematical model has been developed. With a steady state magnetic field, an electrical potential approach was used to obtain electromagnetic fields. Joule heating and Lorentz force, which were the source terms in the energy and momentum equations, were updated at each iteration. The phase change of molten electrolyte (bath) was modeled by an enthalpy-based technique in which the mushy zone was treated as a porous medium with porosity equal to the liquid fraction. A reasonable agreement between the test data and simulated results was achieved. Under normal conditions, the bath at the middle of the cell is hotter, while becoming colder at the four corners. Due to the heat extracted from the bath, the temperature of the new cold anode increases over time. The temperature of the bath under the new cold anode therefore quickly drops, resulting in a decrease of the electrical conductivity. More Joule effect is created. In addition, the bath under the new cold anode gradually freezes and flows more slowly. The temperature of the new anode located at the middle of the cell rises faster because of the warmer bath. It is easier to eliminate the effect of anode change when it occurs in the middle of the cell.
NASA Astrophysics Data System (ADS)
Ke, Yaling; Zhao, Yi
2018-04-01
The hierarchy of stochastic Schrödinger equation, previously developed under the unpolarised initial bath states, is extended in this paper for open quantum dynamics under polarised initial bath conditions. The method is proved to be a powerful tool in investigating quantum dynamics exposed to an ultraslow Ohmic bath, as in this case the hierarchical truncation level and the random sampling number can be kept at a relatively small extent. By systematically increasing the system-bath coupling strength, the symmetric Ohmic spin-boson dynamics is investigated at finite temperature, with a very small cut-off frequency. It is confirmed that the slow bath makes the system dynamics extremely sensitive to the initial bath conditions. The localisation tendency is stronger in the polarised initial bath conditions. Besides, the oscillatory coherent dynamics persists even when the system-bath coupling is very strong, in correspondence with what is found recently in the deep sub-Ohmic bath, where also the low-frequency modes dominate.
Quantum refrigerators and the third law of thermodynamics.
Levy, Amikam; Alicki, Robert; Kosloff, Ronnie
2012-06-01
The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined.
Gianni, Carola; Atoui, Moustapha; Mohanty, Sanghamitra; Trivedi, Chintan; Bai, Rong; Al-Ahmad, Amin; Burkhardt, J David; Gallinghouse, G Joseph; Hranitzky, Patrick M; Horton, Rodney P; Sanchez, Javier E; Di Biase, Luigi; Lakkireddy, Dhanunjaya R; Natale, Andrea
2016-11-01
Luminal esophageal temperature monitoring is performed with a variety of temperature probes, but little is known about the relationship between the structure of a given probe and its thermodynamic characteristics. The purpose of this study was to evaluate the difference in thermodynamics between a 9Fr standard esophageal probe and an 18Fr esophageal stethoscope. In the experimental setting, each probe was submerged in a constant temperature water bath maintained at 42°C; in the patient setting, we monitored the temperature with both probes at the same time. The time constant of the stethoscope was higher than that of the probe (33.5 vs 8.3 s). Compared to the probe, the mean temperature measured by the stethoscope at 10 seconds was significantly lower (22.5°C ± 0.4°C vs 33.5°C ± 0.3°C, P<.0001), whereas the time to reach the peak temperature was significantly longer (132.6 ± 5.9 s vs 38.8 ± 1.0 s, P<.0001). Even in the ablation cases we observed that when the esophageal probe reached a peak temperature of 39.6°C ± 0.3°C, the esophageal stethoscope still displayed a temperature of 37.3°C ± 0.2°C (a mean of 2.39°C ± 0.3°C lower, P<.0001), showing a <0.5°C increase in temperature half of the times. The 18Fr esophageal stethoscope has a significantly slower time response compared to the 9Fr esophageal probe. In the clinical setting, this might result in a considerable underestimation of the luminal esophageal temperature with potentially fatal consequences. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Electrothermal feedback in kinetic inductance detectors
NASA Astrophysics Data System (ADS)
Guruswamy, T.; Thomas, C. N.; Withington, S.; Goldie, D. J.
2017-06-01
In kinetic inductance detectors (KIDs) and other similar applications of superconducting microresonators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconductor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the noise equivalent power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth.
USDA-ARS?s Scientific Manuscript database
Falling number, a procedure that indirectly gauges germination enzyme activity in wheat by its measurement of the viscous behavior of a heated starch-water mixture, is affected by the immersion water bath temperature. Maintained at boiling point, the water bath temperature is determined by barometr...
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
Ion Exchange Method - Diffusion Barrier Investigations
NASA Astrophysics Data System (ADS)
Pielak, G.; Szustakowski, M.; Kiezun, A.
1990-01-01
Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.
Hashiguchi, Nobuko; Tochihara, Yutaka
2009-02-01
In the present study we investigated the effects of low relative humidity (RH) and high air velocity (VA) on physiological and subjective responses after bathing in order to present the evidence for required nursing intervention after bathing. Eight healthy male subjects participated in this experiment. There were four thermal conditions which combined RH (20% of 60%) and VA (low: less than 0.2 m/s or high: from 0.5 to 0.7 m/s). After taking a tub bath, subjects sat for 80 min in the test room under each condition. In addition, one condition under which the subjects were exposed to 20% RH and high VA condition for 80 min without bathing condition was conducted. A decrease in mean skin temperature (T sk), dryness of the skin and eyes were observed, though thermal comfort and warmth retained, due to spending time after bathing in a low RH and high VA environment, compared to the condition without bathing. Moreover, dryness of the skin, a decrease in hydration of the skin and an increase in transepidermal water loss (TEWL) after bathing were significantly affected by RH levels, on the other hand subjective coolness, discomfort and perception of dryness in the eye were significantly affected by VA levels. The decrease in T sk after bathing was significantly affected by both RH and VA. From our findings we concluded that low RH and high VA have negative effects on humans after bathing, for example a decrease in body temperature and dryness of the skin and eyes. Moreover, it was indicated that the negative effects could be kept to a minimum and thermal comfort remain higher, if RH and VA levels were controlled within the optimum ranges.
Matos, C; Briga-Sá, A; Bentes, I; Faria, D; Pereira, S
2017-05-15
Nowadays, water and energy consumption is intensifying every year in most of the countries. This perpetual increase will not be supportable in the long run, making urgently to manage these resources on a sustainable way. Domestic consumptions of water and electric energy usually are related and it's important to study that relation, identifying opportunities for use efficient improvement. In fact, without an understanding of water-energy relations, there are water efficiency measures that may lead to unintentional costs in the energy efficiency field. In order to take full advantage of combined effect between water and energy water management methodologies, it is necessary to collect data to ensure that the efforts are directed through the most effective paths. This paper presents a study based in the characterization, measurement and analysis of water and electricity consumption in a single family house (2months period) in order to find an interdependent relationship between consumptions at the end user level. The study was carried out on about 200 baths, divided in four different scenarios where the influence of two variables was tested: the flow reducer valve and the bath temperature. Data showed that the presence of flow reducer valve decreased electric energy consumption and water consumption, but increased the bath duration. Setting a lower temperature in water-heater, decreased electric consumption, water consumption and bath duration. Analysing the influence of the flow reducer valve and 60°C temperature simultaneously, it was concluded that it had a significant influence on electric energy consumption and on the baths duration but had no influence on water consumption. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Chamberlin, Ralph V; Davis, Bryce F
2013-10-01
Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.
Tarazona, P; Marini Bettolo Marconi, Umberto
2008-04-28
Motivated by recent studies on the dynamics of colloidal solutions in narrow channels, we consider the steady state properties of an assembly of noninteracting particles subject to the action of a traveling potential moving at a constant speed, while the solvent is modeled by a heat bath at rest in the laboratory frame. Here, since the description we propose takes into account the inertia of the colloidal particles, it is necessary to consider the evolution of both positions and momenta and study the governing equation for the one-particle phase-space distribution. First, we derive the asymptotic form of its solutions as an expansion in Hermite polynomials and their generic properties, such as the force and energy balance, and then we particularize our study to the case of an inverted parabolic potential barrier. We numerically obtain the steady state density and temperature profile and show that the expansion is rapidly convergent for large values of the friction constant and small drifting velocities. On the one hand, the present results confirm the previous studies based on the dynamic density functional theory (DDFT): On the other hand, when the friction constant is large, it display effects such as the presence of a wake behind the barrier and a strong inhomogeneity in the temperature field which are beyond the DDFT description.
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Mahato, Neelima
Nanocrystalline nickel was deposited on annealed copper substrate of unit surface area (1 cm2) via pulsed electrodeposition technique using potentiostat (model 263A, Princeton Applied Research, USA) from Watts bath containing nickel sulfate, nickel chloride ,boric acid and sodium citrate. Diamond particles of three different dimensions, viz., 1, 3, and 6 micron were added separately (5 g/L) to the watts bath and co-deposited along with nanocrystalline nickel. The temperature was kept constant at 55 °C. The solution was ultrasonicated for 45-60 minutes prior to deposition to disperse the diamond particles uniformly in the bath. Depositions were carried out at different current densities, viz., 50, 100,150 and 200 mA/ cm2 for different durations, i.e.7, 14 and 21 minutes and best results are optimized for 200mA/cm2 so it is used for all process here .Scanning electron micrographs (SEM) show uniform deposition of microstructure of micron diamond on the surface of copper embedded in the nickel matrix. Elemental mapping confirmed uniform deposition of nickel and diamond with almost no cracks or pits. Mechanical properties of the sample such as, Vicker's hardness increased abruptly after the electrodeposition. Improved microstructural and mechanical properties were found in the case of electrodeposited surfaces containing followed by 3 and 6 micron diamond. The properties were also found better than those processed via stirring the solution during deposition.
Reduced temperature aluminum production in an electrolytic cell having an inert anode
Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.
2000-01-01
Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.
Electrical properties of Er-doped CdS thin films
NASA Astrophysics Data System (ADS)
Dávila-Pintle, J. A.; Lozada-Morales, R.; Palomino-Merino, M. R.; Rivera-Márquez, J. A.; Portillo-Moreno, O.; Zelaya-Angel, O.
2007-01-01
Cadmium sulfide thin films were prepared by chemical bath on glass substrates at 80°C. CdS was Er-doped during the growth process by adding water-diluted Er(NO3)33•H2O to the CdS aqueous growing solution. The relative volume of the doping solution was varied in order to obtain different doping levels. The crystalline structure of CdS:Er films was cubic zinc blende for all the doped layers prepared. The (111) interplanar distance has an irregular variation with the Er doping level. Consequently, the band gap energy (Eg) firstly increases and afterward diminishes becoming, at last, approximately constant at around Eg=2.37eV. For higher doping levels, in the as-grown films, dark electrical conductivity (σ ) values reach 1.8×10-2Ω-1cm-1 at room temperature. The logarithm of σ vs 1/kT plot, where k is Boltzmann's constant and T the absolute temperature, indicates an effective doping of CdS as a result of the Er introduction into the lattice of the material. Hall effect measurements reveal a n-type doping with 2.8×1019cm-3 as maximum carrier density.
Observation of an anomalous decoherence effect in a quantum bath at room temperature
Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng
2011-01-01
The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
NASA Astrophysics Data System (ADS)
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
Thermal diode utilizing asymmetric contacts to heat baths.
Komatsu, Teruhisa S; Ito, Nobuyasu
2010-01-01
We propose a simple thermal diode passively acting as a rectifier of heat current. The key design of the diode is the size asymmetry of the areas in contact with two distinct heat baths. The heat-conducting medium is liquid, inside of which gaslike regions are induced depending on the applied conditions. Simulating nanoscale systems of this diode, the rectification of heat current is demonstrated. If the packing density of the medium and the working regime of temperature are properly chosen, the heat current is effectively cut off when the heat bath with narrow contact is hotter, but it flows normally under opposite temperature conditions. In the former case, the gaslike region is induced in the system and it acts as a thermal insulator because it covers the entire narrow area of contact with the bath.
Low Thermal Conductance Transition Edge Sensor (TES) for SPICA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosropanah, P.; Dirks, B.; Kuur, J. van der
2009-12-16
We fabricated and characterized low thermal conductance transition edge sensors (TES) for SAFARI instrument on SPICA. The device is based on a superconducting Ti/Au bilayer deposited on suspended SiN membrane. The critical temperature of the device is 113 mK. The low thermal conductance is realized by using long and narrow SiN supporting legs. All measurements were performed having the device in a light-tight box, which to a great extent eliminates the loading of the background radiation. We measured the current-voltage (IV) characteristics of the device in different bath temperatures and determine the thermal conductance (G) to be equal to 320more » fW/K. This value corresponds to a noise equivalent power (NEP) of 3x10{sup -19} W/{radical}(Hz). The current noise and complex impedance is also measured at different bias points at 55 mK bath temperature. The measured electrical (dark) NEP is 1x10{sup -18} W/{radical}(Hz), which is about a factor of 3 higher than what we expect from the thermal conductance that comes out of the IV curves. Despite using a light-tight box, the photon noise might still be the source of this excess noise. We also measured the complex impedance of the same device at several bias points. Fitting a simple first order thermal-electrical model to the measured data, we find an effective time constant of about 2.7 ms and a thermal capacity of 13 fJ/K in the middle of the transition.« less
NASA Technical Reports Server (NTRS)
Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack;
2007-01-01
We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.
NASA Astrophysics Data System (ADS)
Passarelli, G.; De Filippis, G.; Cataudella, V.; Lucignano, P.
2018-02-01
We investigate the quantum annealing of the ferromagnetic p -spin model in a dissipative environment (p =5 and p =7 ). This model, in the large-p limit, codifies Grover's algorithm for searching in an unsorted database [L. K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219]. The dissipative environment is described by a phonon bath in thermal equilibrium at finite temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many spins and extrapolate expected trends for large N and p . While at weak system-bath coupling the dissipative environment has detrimental effects on the annealing results, we show that in the intermediate-coupling regime, the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or the classical limit.
Tapia-Rombo, Carlos Antonio; Mendoza-Cortés, Ulises; Uscanga-Carrasco, Herminia; Sánchez-García, Luisa; Tena-Reyes, Daniel; López-Casillas, Elsa Claudia
2012-01-01
To determine the variability of the vital signs (temperature, heart rate and respiratory frequency), skin coloration and peripheral oxygen saturation in critically ill preterm newborns (CI PTNB) before, during and after sponge bathing as well as to determine the possible presence of secondary complications of this procedure. We performed a quasi-experimental study (experimental, prospective, comparative and clinical study with intervention) May to December 2008, in a Neonatal Intensive Care Unit. We included CI PTNB of 0 to 28 days of extrauterine life who have practiced in the routine sponge bathing. Area of significance was considered when p < 0.05. During or after the events in any of the patients presented any complications after 12 h of monitoring, but it was necessary to increase the inspired fraction of oxygen and temperature in the incubator or radiant heat cradle temporarily. We conclude that the sponge bath is not safe for a CI PTNB and this should be performed in the shortest time possible, and the medical must be very alert to the possibility that patients require more support than they had prior to sponge bathing, mainly in the temperature of the incubator or radiant heat cradle and inspired fraction of oxygen for the required time according to the evolution of these variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.M.; Pate, M.B.
1999-06-15
The report discusses miscibility, solubility, viscosity, and density data for the refrigerant hydrofluorocarbon (HFC)-236ea (or R-236ea) and four lubricants supplied by Exxon Corporation. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath, precisely controlled over a range of {minus}50 to 90 C. Critical solution temperatures obtained from the miscibility data are presented for each refrigerant/lubricant combination. Data for the R-236ea in each of the test lubricants have been collected for refrigerant concentrations of 10--90%. The raw data have been presented, and the results have been summarized.more » Solubility, viscosity, and density data were also obtained for R-236ea mixed with the same four oils for a refrigerant concentration range of 0--40 wt% refrigerant over a temperature range of 30--100 C.« less
NASA Astrophysics Data System (ADS)
Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede
2017-05-01
The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.
Experimental study of a SINIS detector response time at 350 GHz signal frequency
NASA Astrophysics Data System (ADS)
Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.
2018-03-01
Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.
Shannon entropic temperature and its lower and upper bounds for non-Markovian stochastic dynamics
NASA Astrophysics Data System (ADS)
Ray, Somrita; Bag, Bidhan Chandra
2014-09-01
In this article we have studied Shannon entropic nonequilibrium temperature (NET) extensively for a system which is coupled to a thermal bath that may be Markovian or non-Markovian in nature. Using the phase-space distribution function, i.e., the solution of the generalized Fokker Planck equation, we have calculated the entropy production, NET, and their bounds. Other thermodynamic properties like internal energy of the system, heat, and work, etc. are also measured to study their relations with NET. The present study reveals that the heat flux is proportional to the difference between the temperature of the thermal bath and the nonequilibrium temperature of the system. It also reveals that heat capacity at nonequilibrium state is independent of both NET and time. Furthermore, we have demonstrated the time variations of the above-mentioned and related quantities to differentiate between the equilibration processes for the coupling of the system with the Markovian and the non-Markovian thermal baths, respectively. It implies that in contrast to the Markovian case, a certain time is required to develop maximum interaction between the system and the non-Markovian thermal bath (NMTB). It also implies that longer relaxation time is needed for a NMTB compared to a Markovian one. Quasidynamical behavior of the NMTB introduces an oscillation in the variation of properties with time. Finally, we have demonstrated how the nonequilibrium state is affected by the memory time of the thermal bath.
Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V
2016-07-15
A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.
Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect
NASA Astrophysics Data System (ADS)
He, Dahai; Thingna, Juzar; Cao, Jianshu
2018-05-01
We study the effect of system-bath coupling strength on quantum thermal transport through the interface of two weakly coupled anharmonic molecular chains by using a quantum self-consistent phonon approach. The approach inherently assumes that the two segments (anharmonic molecular chains) are approximately in local thermal equilibrium with respect to the baths that they are connected to and transforms the strongly anharmonic system into an effective harmonic one with a temperature-dependent transmission. Despite the approximations, the approach is ideal for our setup, wherein the weak interfacial coupling guarantees an approximate local thermal equilibrium of each segment and short chain length (less than the phonon mean-free path) ensues from the effective harmonic approximation. Remarkably, the heat current shows a resonant to bi-resonant transition due to the variations in the interfacial coupling and temperature, which is attributed to the delocalization of phonon modes. Delocalization occurs only in the strong system-bath coupling regime and we utilize it to model a thermal rectifier whose ratio can be nonmonotonically tuned not only with the intrinsic system parameters but also with the external temperature.
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
Long, Blaine C; Jutte, Lisa S; Knight, Kenneth L
2010-01-01
Thermocouples and electrothermometers are used in therapeutic modality research. Until recently, researchers assumed that these instruments were valid and reliable. To examine 3 different thermocouple types in 5 degrees C, 15 degrees C, 18.4 degrees C, 25 degrees C, and 35 degrees C water baths. Randomized controlled trial. Therapeutic modality laboratory. Eighteen thermocouple leads were inserted through the wall of a foamed polystyrene cooler. The cooler was filled with water. Six thermocouples (2 of each model) were plugged into the 6 channels of the Datalogger and 6 randomly selected channels in the 2 Iso-Thermexes. A mercury thermometer was immersed into the water and was read every 10 seconds for 4 minutes during each of 6 trials. The entire process was repeated for each of 5 water bath temperatures (5 degrees C, 15 degrees C, 18.4 degrees C, 25 degrees C, 35 degrees C). Temperature and absolute temperature differences among 3 thermocouple types (IT-21, IT-18, PT-6) and 3 electrothermometers (Datalogger, Iso-Thermex calibrated from -50 degrees C to 50 degrees C, Iso-Thermex calibrated from -20 degrees C to 80 degrees C). Validity and reliability were dependent on thermocouple type, electrothermometer, and water bath temperature (P < .001; modified Levene P < .05). Statistically, the IT-18 and PT-6 thermocouples were not reliable in each electrothermometer; however, these differences were not practically different from each other. The PT-6 thermocouples were more valid than the IT-18s, and both thermocouple types were more valid than the IT-21s, regardless of water bath temperature (P < .001). The validity and reliability of thermocouples interfaced to an electrothermometer under experimental conditions should be tested before data collection. We also recommend that investigators report the validity, the reliability, and the calculated uncertainty (validity + reliability) of their temperature measurements for therapeutic modalities research. With this information, investigators and clinicians will be better able to interpret and compare results and conclusions.
NASA Astrophysics Data System (ADS)
Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha
2018-03-01
In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.
Constructal vascularized structures
NASA Astrophysics Data System (ADS)
Cetkin, Erdal
2015-06-01
Smart features such as self-healing and selfcooling require bathing the entire volume with a coolant or/and healing agent. Bathing the entire volume is an example of point to area (or volume) flows. Point to area flows cover all the distributing and collecting kinds of flows, i.e. inhaling and exhaling, mining, river deltas, energy distribution, distribution of products on the landscape and so on. The flow resistances of a point to area flow can be decreased by changing the design with the guidance of the constructal law, which is the law of the design evolution in time. In this paper, how the flow resistances (heat, fluid and stress) can be decreased by using the constructal law is shown with examples. First, the validity of two assumptions is surveyed: using temperature independent Hess-Murray rule and using constant diameter ducts where the duct discharges fluid along its edge. Then, point to area types of flows are explained by illustrating the results of two examples: fluid networks and heating an area. Last, how the structures should be vascularized for cooling and mechanical strength is documented. This paper shows that flow resistances can be decreased by morphing the shape freely without any restrictions or generic algorithms.
Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo
2012-08-01
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.
Becerra, Rosa; Bowes, Sarah-Jane; Ogden, J Steven; Cannady, J Pat; Adamovic, Ivana; Gordon, Mark S; Almond, Matthew J; Walsh, Robin
2005-08-07
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O(2). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: [see text] The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H(2)SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O+SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T-->S process in H2SiOO. This process has a small spin-orbit coupling matrix element, consistent with an estimate of its rate constant of 1x10(9) s-1 obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2+O2 and SiCl2+O2.
Kanda, K; Tsuchiya, J; Seto, M; Ohnaka, T; Tochihara, Y
1995-06-01
Thermal conditions in the bathroom and physiological responses were examined during winter and summer. The subjects were 22 male and 20 female elderly people, between 65 and 88 years old living in 25 houses in Gunma Prefecture, Japan. Heart rate, blood pressure, skin temperature and thermal sensation were measured during bathing. Changes in thermal sensation due to bathing were assessed in the living room and dressing room on a 9-point scale. Then they were asked about the purposes of bathing and the facilities of bathroom and dressing room. The results are summarized as follows: 1. The purpose of bathing in winter was to warm up for more than 80% of the subjects. In summer, all subjects felt refreshed by bathing. Eighty-five percent of the subjects took a bath every other day in both seasons. 2. Fifty-two percent of the bathrooms had no ventilating fans and 32% had no exclusive dressing rooms. 3. The average room temperature in the dressing rooms was 13-14 degrees C in winter. Thermal sensation was 'cool', 'slightly cold' or 'cold' for more than two-thirds of the subjects when they were partially nude, and there were no heaters in most dressing rooms. 4. The heart rate increased steadily, and reached a maximum value in a partially dressed condition in both seasons. 5. In winter, a marked increase of systolic blood pressure was observed in the partially nude condition. There was a significant difference between the before bathing condition and partially nude condition in winter.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-05-01
Cadmium selenide (CdSe) nanostructured thin films have been grown on fluorine doped tin oxide (FTO) coated glass substrates by potentiostatic electrochemical deposition (ECD) technique for use in solar energy conversion devices. The effect of bath temperature on the structural, morphological and optical properties of prepared CdSe films has been explored. X-ray diffraction (XRD) and Raman spectroscopy clearly show that the CdSe films are polycrystalline and exhibit phase transformation from wurtzite to zincblende structure with increase in bath temperature. Optical spectra reveal that the nanostructured CdSe films have high absorbance in visible region and the films show a red shift in direct optical energy band gap from 1.90 to 1.65 eV with increase in bath temperature due to change in phase and bandgap tuning related to quantum confinement effect.
Maestre, Yolanda; Parés, David; Salvans, Silvia; Ibáñez-Zafón, Inés; Nve, Esther; Pons, Maria-José; Martínez-Casas, Isidro; Pascual, Marta; Pera, Miguel; Grande, Luis
2010-08-01
The popular belief advocates the use of sitz (sitting) baths with cold water for the treatment of acute anal pain, but clinical practice guides recommend the use of hot water for its known effect on the at-rest anal pressure. The objective of the study was to examine the analgesic effect on the quality of life, manometer data and clinical progress, of the two temperatures in sitz baths in patients with anal pain. A randomised clinical trial on patients with acute anal pain due to haemorrhoids or anal fissures, divided into Group 1: Sitz baths with water at a temperature of less than 15 degrees C, and Group 2: Baths with a water temperature above 30 degrees C. The analgesia was the same in both groups. An analysis was made of the pain at 7 days (visual analogue scale), quality of life (SF-36), anal at-rest pressure and disease progress. Of the 27 eligible patients, 24 were randomised (Group 1: n=12 y Group 2: n=12). There were no statistical differences in pain, but it remained stable in Group 1, but gradually decreased in the patients of Group 2, the difference being in the pain scores on the first day compared to the seventh in Group 2 (p=0.244). The rest of the variables were similar. There were no statistically significant differences in pain control from day 1 to day 7 in the Group with sitz baths with hot water. (ISRCTN Number: 50105150).
Baroni, S; Marazziti, D; Consoli, G; Picchetti, M; Catena-Dell'Osso, M; Galassi, A
2012-05-01
Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 30 healthy volunteers before (t0) and 30 minutes after (t1) thermal balneotherapy with ozonized water, as compared with a similar group who underwent a bath in non-mineral water. MATERIALS AN METHODS: The SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of 3H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.
Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.
Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio
2007-10-01
Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.
Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang
2015-03-01
At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation point). There is a difference each other of the structure and the texture of the four manner annealing aluminum alloy (the innovation point). There is a little difference at the recrystallization processes course reflectived by the observe results of structure transform and by the examination results of texture transmission.
Changes in the haemostatic system after thermoneutral and hyperthermic water immersion.
Boldt, Leif-Hendrik; Fraszl, Waltraud; Röcker, Lothar; Schefold, Jörg Christian; Steinach, Mathias; Noack, Thilo; Gunga, Hanns-Christian
2008-03-01
Warm water bathing is a popular recreational activity and is frequently used in rehabilitation medicine. Although well tolerated in most cases, there are reports indicating an increased risk of thrombotic events after hot tub bathing. The effects of a 45 min thermoneutral bath followed by a 50 min bath with increasing water temperature (maximum 41 degrees C) until reaching a body core temperature of 39 degrees C on factors of blood coagulation and fibrinolysis were studied in eight healthy male volunteers. Blood was obtained after a 45-min resting period as control and after the thermoneutral and hyperthermic bath as well as after another 45 min recovery period at the end of the study. Hyperthermic immersion (HI) lead to a shortening of activated partial thromboplastin time (aPTT) (P < 0.05). Fibrinogen concentration decreased immediately after HI (P < 0.05) but increased during recovery (P < 0.05). Plasminogen activator inhibitor (PAI) activity decreased during HI (P < 0.05), D-dimer concentration was not found to change. Thrombocyte count increased (P < 0.05) during HI. The increases in tissue-type plasminogen activator concentration as well as leucocyte count during HI were due to haemoconcentration. Prothrombin time, PAI-activity and granulocyte count decreased during thermoneutral immersion (P < 0.05). Warm water bathing leads to haemoconcentration and minimal activation of coagulation. The PAI-1 activity is decreased. A marked risk for thrombotic or bleeding complications during warm water bathing in healthy males could not be ascertained.
Heat transport in an anharmonic crystal
NASA Astrophysics Data System (ADS)
Acharya, Shiladitya; Mukherjee, Krishnendu
2018-04-01
We study transport of heat in an ordered, anharmonic crystal in the form of slab geometry in three dimensions. Apart from attaching baths of Langevin type to two extreme surfaces, we also attach baths of same type to the intermediate surfaces of the slab. Since the crystal is uninsulated, it exchanges energy with the intermediate heat baths. We find that both Fourier’s law of heat conduction and the Newton’s law of cooling hold to leading order in anharmonic coupling. The leading behavior of the temperature profile is exponentially falling from high to low temperature surface of the slab. As the anharmonicity increases, profiles fall more below the harmonic one in the log plot. In the thermodynamic limit thermal conductivity remains independent of the environment temperature and its leading order anharmonic contribution is linearly proportional to the temperature change between the two extreme surfaces of the slab. A fast crossover from one-dimensional (1D) to three-dimensional (3D) behavior of the thermal conductivity is observed in the system.
Texture related unusual phenomena in electrodeposition and vapor deposition
NASA Astrophysics Data System (ADS)
Lee, D. N.; Han, H. N.
2015-04-01
The tensile strength of electrodeposits generally decreases with increasing bath temperature because the grain size increases and the dislocation density decreases with increasing bath temperature. Therefore, discontinuities observed in the tensile strength vs. bath temperature curves in electrodeposition of copper are unusual. The tensile strength of electrodeposits generally increases with increasing cathode current density because the rate of nucleation in electrodeposits increases with increasing current density, which in turn gives rise to a decrease in the grain size and in turn an increase in the strength. Therefore, a decrease in the tensile strength of copper electrodeposits at a high current density is unusual. The grain size of vapor deposits is expected to decrease with decreasing substrate temperature. However, rf sputtered Co-Cr deposits showed that deposits formed on water-cooled polyimide substrates had a larger grain size than deposits formed on polyimide substrates at 200 °C. These unusual phenomena can be explained by the preferred growth model for deposition texture evolution.
Pitteri, Sharon J.; Chrisman, Paul A.; McLuckey, Scott A.
2005-01-01
In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (~100%) was observed for small peptides (≤7 amino acids). For medium-sized peptides composed of 8–11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum. PMID:16131079
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Sugenoya, Junichi
2016-05-01
To examine the effects of micro mist sauna bathing, produced by water crushing method, we exposed ten male subjects to five cases of micro mist sauna, namely (1) room temperature (RT) 38 °C with 100 % (actually 91 %) relative humidity (RH), (2) RT 41.5 °C with 80 % (actually 81 %) RH, (3) RT 41.5 °C with 100 % (actually 96 %) RH, (4) RT 45.0 °C with 64 % (actually 61 %) RH, and (5) RT 45.0 °C with 100 % (actually 86 %) RH, and measured tympanic temperature, mean skin temperature, heart rate (HR), and cheek moisture content, as well as ratings of thermal and sweating sensation tympanic temperatures at RT 45 °C were significantly higher at 86 % RH than those at 61 % RH; however, those at RT 45 °C with 61 % RH were higher than those with 86 % RH during recovery. There were no significant differences at RT 41.5 °C between with 81 % RH and with 96 % RH. Mean skin temperature was the highest at RT 45 °C 86 % RH case, followed by at RT 41.5 °C 96 % RH, RT 45 °C 61 % RH, RT 41.5 °C 81 % RH, and finally at RT 38 °C 91 % RH. HR change showed the same order as for mean skin temperature. A significant difference in cheek moisture content was observed between RT 41.5 °C with 81 % RH and RT 45 °C with 86 % RH 10 min after the micro mist bathing. There were no significant differences between ratings of thermal sensation at RT 41.5 °C with 81 % RH and at RT 45 °C with 61 % RH and RT 45 °C with 61 % RH and RT 45 °C with 86 % RH. Between RT 45 °C with 86 % RH and RT 41.5 °C with 81 % RH, there was a tendency for interaction (0.05 < p < 0.1). Other cases showed significant higher ratings of thermal sensation at higher room temperature or higher relative humidity. The ratings of sweating sensation 10 min after the mist sauna bathing were significantly higher at higher RT and RH except between RT 41.5 °C 96 % RH and RT 45 °C 86 % RH which exhibited no significant difference. We concluded that the micro mist sauna produced by water crushing method induced more moderate and effective thermal effect during micro mist sauna bathing than the conventional mist sauna bathing. In addition, micro mist sauna is as effective for heating the human subjects as bathtub bathing as well as more moderate thermal and sweating sensations.
The Formation and Properties of Thin Lipid Membranes from HK and LK Sheep Red Cell Lipids
Andreoli, Thomas E.; Bangham, J. Andrew; Tosteson, Daniel C.
1967-01-01
Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, T ion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. T Na and T K were approximately equal (∼0.8) and considerably greater than T Cl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract. PMID:6034765
Study on the method of maintaining bathtub water temperature
NASA Astrophysics Data System (ADS)
Wang, Xiaoyan
2017-05-01
In order to make the water temperature constant and the spillage to its minimum, we use finite element method and grid transformation and have established an optimized model for people in the bathtub both in time and space, which is based on theories of heat convection and heat conduction and three-dimensional second-order equation. For the first question, we have worked out partial differential equations for three-dimensional heat convection. In the meantime, we also create an optimized temperature model in time and space by using initial conditions and boundary conditions. For the second question we have simulated the shape and volume of the tub and the human gestures in the tub based on the first question. As for the shape and volume of the tub, we draw conclusion that the tub whose surface area is little contains water with higher temperature. Thus, when we are designing bathtubs we can decrease the area so that we'll have less loss heat. For different gestures when people are bathing, we have found that gestures have no obvious influence on variations of water temperature. Finally, we did some simulating calculations, and did some analysis on precision and sensitivity
Effects of system-bath coupling on a photosynthetic heat engine: A polaron master-equation approach
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Zhao, X. L.; Yi, X. X.
2017-07-01
Stimulated by suggestions of quantum effects in energy transport in photosynthesis, the fundamental principles responsible for the near-unit efficiency of the conversion of solar to chemical energy became active again in recent years. Under natural conditions, the formation of stable charge-separation states in bacteria and plant reaction centers is strongly affected by the coupling of electronic degrees of freedom to a wide range of vibrational motions. These inspire and motivate us to explore the effects of the environment on the operation of such complexes. In this paper, we apply the polaron master equation, which offers the possibilities to interpolate between weak and strong system-bath coupling, to study how system-bath couplings affect the exciton-transfer processes in the Photosystem II reaction center described by a quantum heat engine (QHE) model over a wide parameter range. The effects of bath correlation and temperature, together with the combined effects of these factors are also discussed in detail. We interpret these results in terms of noise-assisted transport effect and dynamical localization, which correspond to two mechanisms underpinning the transfer process in photosynthetic complexes: One is resonance energy transfer and the other is the dynamical localization effect captured by the polaron master equation. The effects of system-bath coupling and bath correlation are incorporated in the effective system-bath coupling strength determining whether noise-assisted transport effect or dynamical localization dominates the dynamics and temperature modulates the balance of the two mechanisms. Furthermore, these two mechanisms can be attributed to one physical origin: bath-induced fluctuations. The two mechanisms are manifestations of the dual role played by bath-induced fluctuations depending on the range of parameters. The origin and role of coherence are also discussed. It is the constructive interplay between noise and coherent dynamics, rather than the mere presence or absence of coherence or noise, that is responsible for the optimal heat engine performance. In addition, we find that the effective voltage of QHE exhibits superior robustness against the bath noise as long as the system-bath coupling is not very strong.
Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths
NASA Astrophysics Data System (ADS)
Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping
2017-02-01
Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.
Poberskaia, V A; Dement'eva, O I
1997-01-01
Children exposed to low-dose radiation are often treated in sanatoria with mineral baths. Of the latter balneoprocedures widely practiced are sodium chloride (SC) baths with mineralization 20-30 g/l. Mineralization 40 g/l is less frequently used. To specify changes in the function of cardiovascular system induced by SC baths of different concentration (40 versus 20 g/l) 131 senior schoolchildren exposed to low-dose radiation or other environmental pollutants were examined both after a single balneological procedure and after the course treatment (maximum 10 procedures). The baths lasted 8-15 min at water temperature 36-38 OC in a day intervals. The response was assessed by ECG, tetrapolar chest rheography, bicycle exercise. All the children had cardiovascular disorders of non-rheumatic origin. Therapeutic effect was more pronounced after baths with SC concentration 40 g/l. These baths are recommended for improvement of vegetative regulation of the heart, correction of hemodynamic defects. Baths with mineralization 20 g/l are better in upgrading function of the autonomic nervous system.
Temperature uniformity in hyperthermal tumor therapy
NASA Technical Reports Server (NTRS)
Harrison, G. H.; Robinson, J. E.; Samaras, G. M.
1978-01-01
Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.
Chemical bath deposition of II-VI compound thin films
NASA Astrophysics Data System (ADS)
Oladeji, Isaiah Olatunde
II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.
Quantum Otto engine using a single ion and a single thermal bath
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Chand, Suman
2016-05-01
Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.
2005-01-01
Patients with chronic prostatitis complicated by sexual dysfunction took turpentine baths with yellow solution in concentration rising from 5 to 55 ml solution per 200 l water, temperature 35-40 degrees C, duration 5-16 min, daily, 12-15 procedures. Yellow turpentine baths raise efficacy of treatment of patients with copulative dysfunction to 64% due to intensive arterial blood inflow to the sexual organs including the cavernous bodies of the penis.
NASA Astrophysics Data System (ADS)
Detrich, Kahlil T.; Goulbourne, Nakhiah C.
2009-03-01
The purpose of this research is to evaluate three polymer electroding techniques in developing a novel in situ sensor for an RO system using the electrical response of a thin film composite sensor. Electrical impedance spectroscopy (EIS) was used to measure the sensor response when exposed to sodium chloride solutions with concentrations from 0.1 M to 0.8 M in both single and double bath configurations. An insulated carbon grease sensor was mechanically stable while a composite Direct Assembly Process (DAP) sensor was fragile upon hydration. Scanning electron microscopy results from an impregnation-reduction technique showed gold nanoparticles were deposited most effectively when presoaked in a potassium hydroxide solution and on an uncoated membrane; surface resistances remained too high for sensor implementation. Through thickness carbon grease sensors showed a transient response to changes in concentration, and no meaningful concentration sensitivity was noted for the time scales over which EIS measurements were taken. Surface carbon grease electrodes attached to the polyamide thin film were not sensitive to concentration. The impedance spectra indicated the carbon grease sensor was unable to detect changes in concentration in double bath experiments when implemented with the polyamide surface exposed to salt solutions. DAP sensors lacked a consistent response to changes in concentration too. A reverse double bath experiment with the polysulfone layer exposed to a constant concentration exhibited a transient impedance response similar to through thickness carbon grease sensors in a single bath at constant concentration. These results suggest that the microporous polysulfone layer is responsible for sensor response to concentration.
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
NASA Technical Reports Server (NTRS)
Baird, James K.
1987-01-01
For the purpose of determining diffusion coefficients as required for electrodeposition studies and other applications, a diaphragm cell and an isothermal water bath were constructed. the calibration of the system is discussed. On the basis of three calibration runs on the diaphram cell, researchers concluded that the cell constant beta equals 0.12 cm -2 . Other calibration runs in progress should permit the cell constant to be determined with an accuracy of one percent.
DESIGN OF A SIMPLE SLOW COOLING DEVICE FOR CRYOPRESERVATION OF SMALL BIOLOGICAL SAMPLES.
de Paz, Leonardo Juan; Robert, Maria Celeste; Graf, Daniel Adolfo; Guibert, Edgardo Elvio; Rodriguez, Joaquin Valentin
2015-01-01
Slow cooling is a cryopreservation methodology where samples are cooled to its storage temperature at controlled cooling rates. Design, construction and evaluation of a simple and low cost device for slow cooling of small biological samples. The device was constructed based on Pye's freezer idea. A Dewar flask filled with liquid nitrogen was used as heat sink and a methanol bath containing the sample was cooled at constant rates using copper bars as heat conductor. Sample temperature may be lowered at controlled cooling rate (ranging from 0.4°C/min to 6.0°C/min) down to ~-60°C, where it could be conserved at lower temperatures. An example involving the cryopreservation of Neuro-2A cell line showed a marked influence of cooling rate over post preservation cell viability with optimal values between 2.6 and 4.6°C/min. The cooling device proved to be a valuable alternative to more expensive systems allowing the assessment of different cooling rates to evaluate the optimal condition for cryopreservation of such samples.
Extracting maximum power from active colloidal heat engines
NASA Astrophysics Data System (ADS)
Martin, D.; Nardini, C.; Cates, M. E.; Fodor, É.
2018-03-01
Colloidal heat engines extract power out of a fluctuating bath by manipulating a confined tracer. Considering a self-propelled tracer surrounded by a bath of passive colloids, we optimize the engine performances based on the maximum available power. Our approach relies on an adiabatic mean-field treatment of the bath particles which reduces the many-body description into an effective tracer dynamics. It leads us to reveal that, when operated at constant activity, an engine can only produce less maximum power than its passive counterpart. In contrast, the output power of an isothermal engine, operating with cyclic variations of the self-propulsion without any passive equivalent, exhibits an optimum in terms of confinement and activity. Direct numerical simulations of the microscopic dynamics support the validity of these results even beyond the mean-field regime, with potential relevance to the design of experimental engines.
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium.
Green, Jason R; Costa, Anthony B; Grzybowski, Bartosz A; Szleifer, Igal
2013-10-08
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov-Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov-Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes.
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium
Green, Jason R.; Costa, Anthony B.; Grzybowski, Bartosz A.; Szleifer, Igal
2013-01-01
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov–Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov–Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes. PMID:24065832
NASA Astrophysics Data System (ADS)
Meng, Wei; Virkar, Anil V.
1999-12-01
A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.
Kendrick, Denise; Stewart, Jane; Coupland, Carol; Hayes, Michael; Hopkins, Nick; McCabe, Debbie; Murphy, Robert; O'Donnell, George; Phillips, Ceri; Radford, David; Ryan, Jackie; Smith, Sherie; Groom, Lindsay; Towner, Elizabeth
2008-01-01
Background Each year in the UK 2000 children attend emergency departments and 500 are admitted to hospital following a bath water scald. The long term effects can include disability, disfigurement or psychological harm and repeated skin grafts may be required as the child grows. The costs of treating a severe scald are estimated at 250,000 GBP. Children living in the most deprived wards are at greatest risk of thermal injuries; hospital admission rates are three times that for children living in the least deprived wards. Domestic hot water, which is usually stored at around 60 degrees Celsius, can result in a second-degree burn after 3 seconds and a third-degree burn after 5 seconds. Educational strategies to encourage testing of tap water temperature and reduction of hot water thermostat settings have largely proved unsuccessful. Legislation in the USA mandating pre-setting hot water heater thermostats at 49 degrees Celsius was effective in reducing scald injuries, suggesting passive measures may have a greater impact. Thermostatic mixer valves (TMVs), recently developed for the domestic market, fitted across the hot and cold water supply pipes of the bath, allow delivery of water set at a fixed temperature from the hot bath tap. These valves therefore offer the potential to reduce scald injuries. Design/Methods A pragmatic, randomised controlled trial to assess the effectiveness of TMVs in reducing bath hot tap water temperatures in the homes of families with young children in rented social housing. Two parallel arms include an intervention group and a control group where the intervention will be deferred. The intervention will consist of fitting a TMV (set at 44 degrees Celsius) by a qualified plumber and provision of educational materials. The control arm will not receive a TMV or the educational materials for the study duration but will be offered the intervention after collection of follow-up data 12 months post randomisation. The primary outcome measure will be the bath hot tap water temperature. Fifteen families per arm are required to detect a reduction in the mean bath hot tap water temperature from 60.4 degrees Celsius (SD 9.1) in the control group to 46 degrees Celsius in the intervention group, with 90% power and a 5% significance level (2 sided). Secondary outcome measures including acceptability will require a sample size of 120 participants. Discussion Whilst TMVs have the potential to reduce scald injuries, to date there have been no randomised controlled trials assessing their effectiveness, acceptability and cost effectiveness. Trial Registration ISRCTN21179067 PMID:18348736
Ultralow noise performance of an 8.4-GHz maser-feedhorn system
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Petty, S. M.; Kovatch, J. J.; Glass, G. W.
1990-01-01
A total system noise temperature of 6.6 K was demonstrated with an 8.4-GHz traveling wave maser and feedhorn operating in a cryogenic environment. Both the maser and feedhorn were inserted in the helium cryostat, with the maser operating in the 1.6-K liquid bath and the feedhorn cooled in the helium gas, with a temperature gradient along the horn ranging from the liquid bath temperature at its lower end to room temperature at its top. The ruby maser exhibited 43 dB of gain with a bandwidth of 76 MHz(-3 dB) centered at 8400 MHz. Discussions of the maser, cooled feedhorn, and cryostat designs are presented along with a discussion of the noise temperature measurements.
Reaction OH + OH studied over the 298-834 K temperature and 1-100 bar pressure ranges.
Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N
2012-06-21
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.
Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J
1987-01-01
To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.
Ho, S M
1997-01-01
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221
Sakai, A; Otsuka, K
1967-12-01
Experiments were carried out with cortical cells in twig bark of mulberry trees in winter in order to clarify the mechanism of survival at super-low temperatures with rapid cooling and rewarming. Attention was given to the relation between the existence of intracellular ice crystals and survival.Cortical cells were cooled rapidly by direct immersion into liquid nitrogen or isopentane cooled at various temperatures. After immersion, they were freeze-substituted with absolute ethanol at -78 degrees . They were then embedded, sectioned and examined under the electron microscope for the presence and distribution of cavities left after ice removal.Cells were found to remain alive and contain no ice cavities when immersed rapidly into isopentane baths kept below -60 degrees . Those cells at intermediate temperatures from -20 degrees to -45 degrees , were almost all destroyed. It was also observed that many ice cavities were contained in the cells immersed rapidly into isopentane baths at -30 degrees . The data seem to indicate that no ice crystals were formed when cooled rapidly by direct immersion into isopentane baths below -60 degrees or into liquid nitrogen.The tissue sections immersed in liquid nitrogen were rapidly transferred to isopentane baths at temperatures ranging from -70 degrees to -10 degrees before rapid rewarming. There was little damage when samples were held at temperatures below -50 degrees for 10 minutes or below -60 degrees for 16 hours. No cavities were found in these cells. Above -45 degrees , and especially at -30 degrees , however, all cells were completely destroyed even when exposed only for 1 minute. Many ice cavities were observed throughout these cells. The results obtained may be explained in terms of the growth rate of intracellular ice crystals.
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
NASA Astrophysics Data System (ADS)
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
Grain growth kinetics in liquid-phase-sintered zinc oxide-barium oxide ceramics
NASA Technical Reports Server (NTRS)
Yang, Sung-Chul; German, Randall M.
1991-01-01
Grain growth of ZnO in the presence of a liquid phase of the ZnO-BaO system has been studied for temperatures from 1300 to 1400 C. The specimens were treated in boiling water and the grains were separated by dissolving the matrix phase in an ultrasonic bath. As a consequence 3D grain size measurements were possible. Microstructural examination shows some grain coalescence with a wide range of neck size ratios and corresponding dihedral angles, however, most grains are isolated. Lognormal grain size distributions show similar shapes, indicating that the growth mechanism is invariant over this time and temperature. All regressions between G exp n and time for n = 2 and 3 proved statistically significant. The rate constants calculated with the growth exponent set to n = 3 are on the same order of magnitude as in metallic systems. The apparent activation energy for growth is estimated between 355 and 458 kJ/mol.
Stability and normal zone propagation in YBCO CORC cables
Majoros, M.; Sumption, M. D.; Collings, E. W.; ...
2016-03-11
In this study, a two layer conductor on round core cable was tested for stability and normal zone propagation at 77 K in a liquid nitrogen bath. The cable was instrumented with voltage taps and wires on each strand over the cable’s central portion (i.e. excluding the end connections of the cable with the outside world). A heater was placed in the central zone on the surface of the cable, which allowed pulses of various powers and durations to be generated. Shrinking (recovering) and expanding (not recovering) normal zones have been detected, as well as stationary zones which were inmore » thermal equilibrium. Such stationary thermal equilibrium zones did not expand or contract, and hit a constant upper temperature while the heater current persisted; they are essentially a form of Stekly stability. Overall, the cable showed a high degree of stability. Notably, it was able to carry a current of 0.45I c cable with maximum temperature of 123 K for one minute without damage.« less
[Thermal energy balance during hemodialysis: the role of the filter membrane].
Panzetta, G; Bianco, F; Galli, G; Ianche, M; Savoldi, S; Vianello, S; Vidi, E; Cicinato, P
2002-01-01
Body temperature tends to increase during conventional haemodialysis; this might interfere with normal cardiovascular response to dialytic ultrafiltration, thus facilitating the occurrence of symptomatic hypotension. Putative factors responsible for changes in thermal balance during haemodialysis include heat load from the dialysis bath, reduction in convective heat loss secondary to skin vessel vasoconstriction, heat overproduction due to central stimulation by bioincompatibility reactions to the filter membranes. The aim of the present study was twofold: to define thermal energy balance (ET) during dialysis and to investigate the effect of membrane bioincompatibility on energy balance We measured ET in 12 patients (9M, 3F) during two identical dialysis sessions, differing only in the membrane composition of the filters used: cuprophane 1.3- 1.6 mq and LF polysulphone 1.3- 1.6 mq. Thermal energy balance studies were performed by the Blood Temperature Monitor (Fresenius Medical Care) under conditions in which the core temperature of the patients was maintained unchanged from the start to the end of the dialysis procedure. Arterial blood temperatures were constant, while dialysate and venous blood temperatures progressively decreased (from 36.9 to 35.4 C and from 36.5 to 35.1 C for cuprophane; from 36.9 to 35.2 and from 36.9 to 35.1 for polysulphone membrane). Mean thermal energy transfer was negative (removal of energy from the patients to the extracorporeal circuit) with both filters, equal to 146 KJ with cuprophane and to 163 KJ with polysulphone. When a stepwise multiregression analysis was applied, hourly energy transfer (ET) was significantly and independently correlated with both ultrafiltration rate (UF=% b.w.) and heart rate changes (HR) according to the equation: ET= -92.03+41.29 UF+1.04 HR (p<0.0003). Conclusions. In this study we present experimental evidence that increased body temperature during dialysis is not caused by heat load from the dialysis bath, nor by heat over production secondary to bioincompatibility reactions. Consequently, haemodynamic responses to dialytic ultrafiltration may be regarded as the main regulatory factor of thermal balance.
The effects of aroma massage and foot bath on psychophysiological response in stroke patients.
Lee, Jeong Hoon; Seo, Eun Kyung; Shim, Jae Soon; Chung, Sung Pil
2017-08-01
[Purpose] This research aimed to examine the effects of back massage and foot bath with blended essential oil on psychophysiological response in stroke patients. [Subjects and Methods] The subjects were 14 adult stroke patients randomly divided into the experimental group (7 patients) and the control group (7 patients). Physical and psychological stress, mood state and sleep satisfaction was measured using evaluation instruments and body temperature was measured with infrared thermography (T-1000). [Results] Measurements included physical and psychological stress, and mood state of the experiment group became significantly lower than that of the control group. The body temperature and sleeping satisfaction of the experimental group became significantly higher than that of the control group. [Conclusion] The present study suggested that aroma therapy and foot bath that can be used as alternative physical therapy that offers an overall beneficial effect on psychophysiological response such as reduced stress, mood state and increased body temperature, sleeping satisfaction of stroke patients.
The effects of aroma massage and foot bath on psychophysiological response in stroke patients
Lee, Jeong Hoon; Seo, Eun Kyung; Shim, Jae Soon; Chung, Sung Pil
2017-01-01
[Purpose] This research aimed to examine the effects of back massage and foot bath with blended essential oil on psychophysiological response in stroke patients. [Subjects and Methods] The subjects were 14 adult stroke patients randomly divided into the experimental group (7 patients) and the control group (7 patients). Physical and psychological stress, mood state and sleep satisfaction was measured using evaluation instruments and body temperature was measured with infrared thermography (T-1000). [Results] Measurements included physical and psychological stress, and mood state of the experiment group became significantly lower than that of the control group. The body temperature and sleeping satisfaction of the experimental group became significantly higher than that of the control group. [Conclusion] The present study suggested that aroma therapy and foot bath that can be used as alternative physical therapy that offers an overall beneficial effect on psychophysiological response such as reduced stress, mood state and increased body temperature, sleeping satisfaction of stroke patients. PMID:28878450
Quantum Zeno and anti-Zeno effects in open quantum systems
NASA Astrophysics Data System (ADS)
Zhou, Zixian; Lü, Zhiguo; Zheng, Hang; Goan, Hsi-Sheng
2017-09-01
The traditional approach to the quantum Zeno effect (QZE) and quantum anti-Zeno effect (QAZE) in open quantum systems (implicitly) assumes that the bath (environment) state returns to its original state after each instantaneous projective measurement on the system and thus ignores the cross-correlations of the bath operators between different Zeno intervals. However, this assumption is not generally true, especially for a bath with a considerably nonnegligible memory effect and for a system repeatedly projected into an initial general superposition state. We find that, in stark contrast to the result of a constant value found in the traditional approach, the scaled average decay rate in unit Zeno interval of the survival probability is generally time dependent or shows an oscillatory behavior. In the case of a strong bath correlation, the transition between the QZE and the QAZE depends sensitively on the number of measurements N . For a fixed N , a QZE region predicted by the traditional approach may in fact already be in the QAZE region. We illustrate our findings using an exactly solvable open qubit system model with a Lorentzian bath spectral density, which is directly related to realistic circuit cavity quantum electrodynamics systems. Thus the results and dynamics presented here can be verified with current superconducting circuit technology.
Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.
Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H
2018-01-01
Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P < 0.010), with the lowest bias for the myTemp system (P < 0.001). A systematic difference was found between trial 1 and trial 2 for CorTemp (0.017°C ± 0.083°C; P = 0.030) and e-Celsius (-0.007°C ± 0.033°C; P = 0.019), whereas temperature values of myTemp (0.001°C ± 0.008°C) and VitalSense (0.002°C ± 0.014°C) did not differ (P > 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P < 0.001). Although differences in temperature and inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.
Kerr, Katherine E; Alecu, Ionut M; Thompson, Kristopher M; Gao, Yide; Marshall, Paul
2015-07-16
The overall rate constant for H + CH3SH has been studied over 296-1007 K in an Ar bath gas using the laser flash photolysis method at 193 nm. H atoms were generated from CH3SH and in some cases NH3. They were detected via time-resolved resonance fluorescence. The results are summarized as k = (3.45 ± 0.19) × 10(-11) cm(3) molecule(-1) s(-1) exp(-6.92 ± 0.16 kJ mol(-1)/RT) where the errors in the Arrhenius parameters are the statistical uncertainties at the 2σ level. Overall error limits of ±9% for k are proposed. In the overlapping temperature range there is very good agreement with the resonance fluorescence measurements of Wine et al. Ab initio data and transition state theory yield moderate accord with the total rate constant, but not with prior mass spectrometry measurements of the main product channels leading to CH3S + H2 and CH3 + H2S by Amano et al.
NASA Astrophysics Data System (ADS)
Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan
2016-04-01
In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.
Prospects for indirect detection of frozen-in dark matter
NASA Astrophysics Data System (ADS)
Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo
2018-03-01
We study observational consequences arising from dark matter (DM) of nonthermal origin, produced by dark freeze-out from a hidden sector heat bath. We assume this heat bath was populated by feebly coupled mediator particles, produced via a Higgs portal interaction with the Standard Model (SM). The dark sector then attained internal equilibrium with a characteristic temperature different from the SM photon temperature. We find that even if the coupling between the DM and the SM sectors is very weak, the scenario allows for indirect observational signals. We show how the expected strength of these signals depends on the temperature of the hidden sector at DM freeze-out.
Lee, Elaine C; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E; Kraemer, William; Vingren, Jakob L; Spiering, Barry A; Maresh, Carl M
2012-01-01
Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Controlled laboratory study. Human performance laboratory Patients or Other Participants: Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg(-1) min(-1)). Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (-69.76% ± 15.23%). We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies.
NASA Technical Reports Server (NTRS)
Jahnke, L. L.
1992-01-01
Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.
1992-01-01
Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the Delta9, Delta10, and Delta11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 C cells and the lowest in 50 C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Optical Properties of Silver Nanoparticulate Glasses
NASA Astrophysics Data System (ADS)
Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.
The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.
NASA Astrophysics Data System (ADS)
Aziz, Tengku Norazman Tengku Abd; Rosli, Aimi Bazilah; Yusoff, Marmeezee Mohd; Herman, Sukreen Hana; Zulkifli, Zurita
2018-05-01
This paper demonstrates the transfer of graphene at low temperature using water bath. Graphene in water solution (highly opaque) was transferred onto Platinum/Glass (Pt/Glass) substrate and the technique involves no additional chemicals. We obtained high transparency and large area of graphene film that is free of contaminants. The transferred graphene is characterized using FESEM, Raman spectroscopy and I-V measurements. This transfer method enables us to transfer graphene onto ZnO thin film for memristive devices.
On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion
NASA Astrophysics Data System (ADS)
Lim, Soon Hoe; Wehr, Jan; Lampo, Aniello; García-March, Miguel Ángel; Lewenstein, Maciej
2018-01-01
We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal m = m0 ɛ , the reduced Planck constant to equal \\hbar = ɛ and the cutoff frequency to equal Λ = E_{Λ}/ɛ , where m_0 and E_{Λ} are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as ɛ → 0. We study the limit as ɛ → 0 of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.
Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A
2015-09-14
The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.
NASA Astrophysics Data System (ADS)
Cheng, Xiaolu; Cina, Jeffrey A.
2014-07-01
A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.
Heat, temperature and Clausius inequality in a model for active Brownian particles
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-01-01
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787
Heat, temperature and Clausius inequality in a model for active Brownian particles.
Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio
2017-04-21
Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.
Dissociation rate of bromine diatomics in an argon heat bath
NASA Technical Reports Server (NTRS)
Razner, R.; Hopkins, D.
1973-01-01
The evolution of a collection of 300 K bromine diatomics embedded in a heat bath of argon atoms at 1800 K was studied by computer, and a dissociation-rate constant for the reaction Br2 + BR + Ar yields Br + Ar was determined. Previously published probability distributions for energy and angular momentum transfers in classical three-dimensional Br2-Ar collisions were used in conjunction with a newly developed Monte Carlo scheme for this purpose. Results are compared with experimental shock-tube data and the predictions of several other theoretical models. A departure from equilibrium is obtained which is significantly greater than that predicted by any of these other theories.
Thermally assisted infrared multiphoton photodissociation in a quadrupole ion trap.
Payne, A H; Glish, G L
2001-08-01
Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (< or = 10(-5) Torr) is not that required for optimal performance of the QITMS (10(-3) Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an approximately 1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.
Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E
2017-11-22
The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.
Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films
NASA Astrophysics Data System (ADS)
Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.
2000-11-01
Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.
Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films
NASA Astrophysics Data System (ADS)
Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.
2018-03-01
α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range
2000-07-07
The Transient Dentritic Solidification Experiment (TDSE) is being developed as a candidate for flight aboard the International Space Station. TDSE will study the growth of dentrites (treelike crystalline structures) in a transparent material (succinonitrile or SCN) that mimics the behavior of widely used iron-based metals. Basic work by three Space Shuttle flights (STS-62, STS-75, and STS-87) of the Isothermal Dendritic Growth Experiment (IDGE) is yielding new insights into virtually all industrially relevant metal and alloy forming operations. The TDSE is similar to IDGE, but will maintain a constant temperature while varying pressure on the dentrites. Shown here is a cutaway of the isothermal bath containing its growth cell at the heart of the TDSE. The principal investigator is Matthew Koss of College of the Holy Cross in Worcester, MA. Note: an Acrobat PDF version is available from http://microgravity.nasa.gov/gallery
SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques
NASA Astrophysics Data System (ADS)
Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.
2016-05-01
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less
Spin-phase-space-entropy production
NASA Astrophysics Data System (ADS)
Santos, Jader P.; Céleri, Lucas C.; Brito, Frederico; Landi, Gabriel T.; Paternostro, Mauro
2018-05-01
Quantifying the degree of irreversibility of an open system dynamics represents a problem of both fundamental and applied relevance. Even though a well-known framework exists for thermal baths, the results give diverging results in the limit of zero temperature and are also not readily extended to nonequilibrium reservoirs, such as dephasing baths. Aimed at filling this gap, in this paper we introduce a phase-space-entropy production framework for quantifying the irreversibility of spin systems undergoing Lindblad dynamics. The theory is based on the spin Husimi-Q function and its corresponding phase-space entropy, known as Wehrl entropy. Unlike the von Neumann entropy production rate, we show that in our framework, the Wehrl entropy production rate remains valid at any temperature and is also readily extended to arbitrary nonequilibrium baths. As an application, we discuss the irreversibility associated with the interaction of a two-level system with a single-photon pulse, a problem which cannot be treated using the conventional approach.
Quantum thermal diode based on two interacting spinlike systems under different excitations.
Ordonez-Miranda, Jose; Ezzahri, Younès; Joulain, Karl
2017-02-01
We demonstrate that two interacting spinlike systems characterized by different excitation frequencies and coupled to a thermal bath each, can be used as a quantum thermal diode capable of efficiently rectifying the heat current. This is done by deriving analytical expressions for both the heat current and rectification factor of the diode, based on the solution of a master equation for the density matrix. Higher rectification factors are obtained for lower heat currents, whose magnitude takes their maximum values for a given interaction coupling proportional to the temperature of the hotter thermal bath. It is shown that the rectification ability of the diode increases with the excitation frequencies difference, which drives the asymmetry of the heat current, when the temperatures of the thermal baths are inverted. Furthermore, explicit conditions for the optimization of the rectification factor and heat current are explicitly found.
Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique
NASA Astrophysics Data System (ADS)
Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș
2017-06-01
Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.
The effects of daily bathing on symptoms of patients with bronchial asthma
Arimoto, Yoshihito; Homma, Chie; Takeoka, Shinjiro; Fukusumi, Munehisa; Mouri, Atsuto; Hamamoto, Yoichiro
2016-01-01
Background The influence of bathing in asthma patients is not yet fully known. Objective We conducted an observational study to investigate changes in symptoms and their degree by bathing in asthmatic patients. Methods A questionnaire focusing on ever experienced bathing-induced symptom changes and their degree, as well as contributing factors, was designed and administered to asthmatic patients in the outpatient department of our institute between January 2012 and November 2013. Results Two hundred fifteen cases were recruited. In 60 cases (27.9%), asthmatic symptoms appeared, including 20 cases of chest discomfort (33.3%), 19 cases of cough (31.7%), and 21 cases of wheezing (35.0%). The triggering factors included vapor inhalation (32 cases, 53.3%), hydrostatic pressure on the thorax due to body immersion in the bathtub (26 cases, 43.3%), and sudden change of air temperature (16 cases, 26.7%). Thirty-eight cases (17.7%) experienced improvement in active asthmatic symptoms by bathing. Vapor inhalation was the most common contributing factor (34 cases, 89.5%), followed by warming of the whole body (13 cases, 34.2%). There was no relationship between asthma severity and the appearance of bathing-induced symptoms or improvement of active asthmatic symptoms by bathing. Conclusion The effects of bathing in asthmatic patients widely differed from patient to patient and their etiology includes several factors. For those who suffer from bathing-induced asthma symptoms, preventive methods, such as premedication with bronchodilators before bathing, should be established. This study is registered in the University Hospital Medical Information Network (UMIN) clinical trials registry in Japan with the registration number UMIN000015641. PMID:27141485
Cadmium sulfide thin films growth by chemical bath deposition
NASA Astrophysics Data System (ADS)
Hariech, S.; Aida, M. S.; Bougdira, J.; Belmahi, M.; Medjahdi, G.; Genève, D.; Attaf, N.; Rinnert, H.
2018-03-01
Cadmium sulfide (CdS) thin films have been prepared by a simple technique such as chemical bath deposition (CBD). A set of samples CdS were deposited on glass substrates by varying the bath temperature from 55 to 75 °C at fixed deposition time (25 min) in order to investigate the effect of deposition temperature on CdS films physical properties. The determination of growth activation energy suggests that at low temperature CdS film growth is governed by the release of Cd2+ ions in the solution. The structural characterization indicated that the CdS films structure is cubic or hexagonal with preferential orientation along the direction (111) or (002), respectively. The optical characterization indicated that the films have a fairly high transparency, which varies between 55% and 80% in the visible range of the optical spectrum, the refractive index varies from 1.85 to 2.5 and the optical gap value of which can reach 2.2 eV. It can be suggested that these properties make these films perfectly suitable for their use as window film in thin films based solar cells.
NASA Astrophysics Data System (ADS)
Bazilah Rosli, Aimi; Awang, Zaiki; Sobihana Shariffudin, Shafinaz; Herman, Sukreen Hana
2018-03-01
Zinc Oxide (ZnO) nanostructures were deposited using chemical bath deposition (CBD) technique in water bath at 95 °C for 4 h. Post-deposition heat treatment in air ambient at various temperature ranging from 200-600 °C for 30 min was applied in order to enhance the electrical properties of ZnO nanostructures as the sensing membrane of extended-gate field effect transistor (EGFET) pH sensor. The as-deposited sample was prepared for comparison. The samples were characterized in terms of physical and sensing properties. FESEM images showed that scattered ZnO nanorods were formed for the as-deposited sample, and the morphology of the ZnO nanorods changed to ZnO nanoflowers when the heat treatment was applied from 200-600 °C. For sensing properties, the samples heated at 300 °C showed the higher sensitivity which was 39.9 mV/pH with the linearity of 0.9792. The sensing properties was increased with the increasing annealing treatment temperature up to 300 °C before decreased drastically.
Thermal emergence of laser-induced spin dynamics for a Ni4 cluster
NASA Astrophysics Data System (ADS)
Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.
2018-05-01
We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.
Jutte, Lisa S; Long, Blaine C; Knight, Kenneth L
2010-01-01
Thermocouples' leads are often too short, necessitating the use of an extension lead. To determine if temperature measures were influenced by extension-lead use or lead temperature changes. Descriptive laboratory study. Laboratory. Experiment 1: 10 IT-21 thermocouples and 5 extension leads. Experiment 2: 5 IT-21 and PT-6 thermocouples. In experiment 1, temperature data were collected on 10 IT-21 thermocouples in a stable water bath with and without extension leads. In experiment 2, temperature data were collected on 5 IT-21 and PT-6 thermocouples in a stable water bath before, during, and after ice-pack application to extension leads. In experiment 1, extension leads did not influence IT-21 validity (P = .45) or reliability (P = .10). In experiment 2, postapplication IT-21 temperatures were greater than preapplication and application measures (P < .05). Extension leads had no influence on temperature measures. Ice application to leads may increase measurement error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham
We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less
Characterization and Performance of a Kilo-TES Sub-Array for ACTPol
NASA Technical Reports Server (NTRS)
Grace, E. A.; Beall, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Hilton, G.; Hubmayr, J.; Irwin, K.; Klein, J.; Li, D.;
2014-01-01
ACTPol is a polarization-sensitive receiver upgrade to the Atacama CosmologyTelescope (ACT) which will make millimeterwavelength measurements of the small-scale polarization anisotropies of the cosmic microwave background to investigate the properties of inflation, dark energy, dark matter, and neutrinos in the early Universe. ACTPol will employ three arrays of transition edge sensor (TES) bolometer detectors. The detectors, with a target transition temperature of 150 mK, will be operated at a bath temperature of 100 mK provided by a dilution refrigerator. One array operating at a central frequency of 150 GHz and consisting of 1024 TESes achieved first light at the ACT site in July 2013. We anticipate fielding the remainder of the focal plane, consisting of a second 150 GHz array and a multi-chroic array sensitive to 90 and 150 GHz, at the end of the 2013 observing season. In these proceedings, we present characterization of key detector parameters from measurements performed on the first array both in the lab and during initial field testing. We comment on the design goals, measurements, and uniformity of the detector transition temperatures, saturation powers, and thermal conductivities while detailing measurement methods and results for the detector optical efficiencies and time constants.
A Waveguide-coupled Thermally-isolated Radiometric Source
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David T.; Lourie, Nathan P.; Voellmer, George M.; Wollack, Edward
2013-01-01
The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric MF-117 is well approximated by Cv(T) = 0.12 T(exp 2.06) mJ/g/K between 3.5 K and 15 K.
NASA Astrophysics Data System (ADS)
Yan, X.; Chen, Xing-Qiu; Michor, H.; Wolf, W.; Witusiewicz, V. T.; Bauer, E.; Podloucky, R.; Rogl, P.
2018-03-01
By combining theoretical density functional theory (DFT) and experimental studies, structural and magnetic phase stabilities and electronic structural, elastic, and vibrational properties of the Laves-phase compound NbMn2 have been investigated for the C14, C15, and C36 crystal structures. At low temperatures C14 is the ground-state structure, with ferromagnetic and antiferromagnetic orderings being degenerate in energy. The degenerate spin configurations result in a rather large electronic density of states at Fermi energy for all magnetic cases, even for the spin-polarized DFT calculations. Based on the DFT-derived phonon dispersions and densities of states, temperature-dependent free energies were derived for the ferromagnetic and antiferromagnetic C14 phase, demonstrating that the spin-configuration degeneracy possibly exists up to finite temperatures. The heat of formation Δ298H0=-45.05 ±3.64 kJ (molf .u .NbMn2) -1 was extracted from drop isoperibolic calorimetry in a Ni bath. The DFT-derived enthalpy of formation of NbMn2 is in good agreement with the calorimetric measurements. Second-order elastic constants for NbMn2 as well as for related compounds were calculated.
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
NASA Astrophysics Data System (ADS)
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Jasper, Ahren W; Miller, James A; Klippenstein, Stephen J
2013-11-27
The low-pressure-limit unimolecular decomposition of methane, CH4 (+M) ⇆ CH3 + H (+M), is characterized via low-order moments of the total energy, E, and angular momentum, J, transferred due to collisions. The low-order moments are calculated using ensembles of classical trajectories, with new direct dynamics results for M = H2O and new results for M = O2 compared with previous results for several typical atomic (M = He, Ne, Ar, Kr) and diatomic (M = H2 and N2) bath gases and one polyatomic bath gas, M = CH4. The calculated moments are used to parametrize three different models of the energy transfer function, from which low-pressure-limit rate coefficients for dissociation, k0, are calculated. Both one-dimensional and two-dimensional collisional energy transfer models are considered. The collision efficiency for M = H2O relative to the other bath gases (defined as the ratio of low-pressure limit rate coefficients) is found to depend on temperature, with, e.g., k0(H2O)/k0(Ar) = 7 at 2000 K but only 3 at 300 K. We also consider the rotational collision efficiency of the various baths. Water is the only bath gas found to fully equilibrate rotations, and only at temperatures below 1000 K. At elevated temperatures, the kinetic effect of "weak-collider-in-J" collisions is found to be small. At room temperature, however, the use of an explicitly two-dimensional master equation model that includes weak-collider-in-J effects predicts smaller rate coefficients by 50% relative to the use of a statistical model for rotations. The accuracies of several methods for predicting relative collision efficiencies that do not require solving the master equation and that are based on the calculated low-order moments are tested. Troe's weak collider efficiency, βc, includes the effect of saturation of collision outcomes above threshold and accurately predicts the relative collision efficiencies of the nine baths. Finally, a brief discussion is presented of mechanistic details of the energy transfer process, as inferred from the trajectories.
Status of black chrome coating research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, R.B.; Sowell, R.R.
1983-01-01
Recent results regarding the optimization of electrodeposited black chrome solar selective coatings for operation in solar collectors to temperatures up to 300/sup 0/C are summarized. Careful control of the electroplating-bath composition and special regard for bath contamination are required in order to obtain coatings that will survive daily collector operation for tens of years. An accelerated temperature aging test is presented which can be used both to estimate the coating lifetime and to monitor the coating during production. Finally, the use of sol-gel protective films to extend the lifetime of the black chrome coating is also discussed.
NASA Astrophysics Data System (ADS)
Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.
2005-04-01
Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.
Quantum Brownian motion and its conflict with the second law
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Allahverdyan, Armen E.
2002-11-01
The Brownian motion of a harmonically bound quantum particle and coupled to a harmonic quantum bath is exactly solvable. At low enough temperatures the stationary state is non-Gibbsian due to an entanglement with the bath. This happens when a cloud of bath modes around the particle is formed. Equilibrium thermodynamics for particle plus bath together, does not imply standard thermodynamics for the particle itself at low T. Various formulations of the second law are then invalid. First, the Clausius inequality can be violated. Second, when the width of the confining potential is suddenly changed, there occurs a relaxation to equilibrium during which the rate of entropy production is partly negative. Third, for non-adiabatic changes of system parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible which extract work from the bath. Conditions are put forward under which perpetuum mobile of the second kind, having several work extraction cycles, enter the realm of condensed matter physics.
Performance of Flow and Heat Transfer in a Hot-Dip Round Coreless Galvanizing Bath
NASA Astrophysics Data System (ADS)
Yue, Qiang; Zhang, Chengbo; Xu, Yong; Zhou, Li; Kong, Hui; Wang, Jia
2017-04-01
Flow field in a coreless hot-dip galvanizing pot was investigated through a water modeling experiment. The corresponding velocity vector was measured using an acoustic Doppler velocimeter. The flow field of molten zinc in the bath was also analyzed. Steel strip velocities from 1.7 to 2.7 m/s were adopted to determine the effect of steel strip velocity on the molten zinc flow in the bath. A large vortex filled the space at the right side of the sink roll, under linear speed from 1.0 to 2.7 m/s and width from 1.0 to 1.3 m of the steel strip, because of the effects of wall and shear stress. The results of the water modeling experiment were compared with those of numerical simulations. In the simulation, Maxwell equations were solved using finite element method to obtain magnetic flux density, electromagnetic force, and Joule heating. The Joule heating rate reached the maximum and minimum values near the side wall and at the core of the bath, respectively, because of the effect of skin and proximity. In an industrial-sized model, the molten zinc flow and temperature fields driven by electromagnetic force and Joule heating in the inductor of a coreless galvanizing bath were numerically simulated. The results indicated that the direction of electromagnetic force concentrated at the center of the galvanizing pot horizontal planes and exerted a pinch effect on molten zinc. Consequently, molten zinc in the pot was stirred by electromagnetic force. Under molten zinc flow and electromagnetic force stirring, the temperature of the molten zinc became homogeneous throughout the bath. This study provides a basis for optimizing electromagnetic fields in coreless induction pot and fine-tuning the design of steel strip parameters.
Voltage dependence of acetylcholine receptor channel gating in rat myoballs
1992-01-01
Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and - 100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. PMID:1460456
Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.
Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N
2012-08-30
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).
Thermoelectric converters for monitoring the temperature of salt baths
NASA Astrophysics Data System (ADS)
Spektor, Yu. A.
1985-02-01
It is recommended to use RTEC in lieu of a radiational pyrometer and an STEC to monitor and maintain the temperature automatically in high-temperature salt melts; this contributes to a marked improvement in the quality of heat-treated components.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christov, Ivan P., E-mail: ivan.christov@phys.uni-sofia.bg
2016-08-15
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the realmore » time propagation can be a challenge.« less
Thermal decomposition of FC(O)OCH3 and FC(O)OCH2CH3.
Berasategui, M; Argüello, G A; Burgos Paci, M A
2018-05-09
The thermal decomposition of methyl and ethyl formates has been extensively studied due to their importance in the oxidation of several fuels, pesticidal properties and their presence in interstellar space. We hitherto present the study of the thermal decomposition of methyl and ethyl fluoroformates, which could help in the elucidation of the reaction mechanisms. The reaction mechanisms were studied using FTIR spectroscopy in the temperature range of 453-733 K in the presence of different pressures of N2 as bath gas. For FC(O)OCH3 two different channels were observed; the unimolecular decomposition which is favored at higher temperatures and has a rate constant kFC(O)OCH3 = (5.3 ± 0.5) × 1015 exp[-(246 ± 10 kJ mol-1/RT)] (in units of s-1) and a bimolecular channel with a rate constant kFC(O)OCH3 = (1.6 ± 0.5) × 1011 exp[-(148 ± 10 kJ mol-1/RT)] (in units of s-1 (mol L)-1). However for ethyl formate, only direct elimination of CO2, HF and ethylene operates. The rate constants of the homogeneous first-order process fit the Arrhenius equation kFC(O)OCH2CH3 = (2.06 ± 0.09) × 1013 exp[-(169 ± 6 kJ mol-1/RT)] (in units of s-1). The difference between the mechanisms of the two fluoroformates relies on the stabilization of a six-centered transition state that only exists for ethyl formate. First principles calculations for the different channels were carried out to understand the dynamics of the decomposition.
NASA Astrophysics Data System (ADS)
Xu, Yang; Song, Kai; Shi, Qiang
2018-03-01
The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.
Influence of cyclic annealing on the hardness and structure of high-speed steels
NASA Astrophysics Data System (ADS)
Smol'nikov, E. A.; Orestova, L. M.
1982-08-01
In individual cases with the necessity of rapid annealing of high-speed steel together with stepless annealing at 885-675°C, which is done in a single salt bath, cyclic stepped annealing in two salt baths with temperatures of 850 and 700°C and holds in each of them at from 10 to 30 min may be used.
Lee, Elaine C.; Watson, Greig; Casa, Douglas; Armstrong, Lawrence E.; Kraemer, William; Vingren, Jakob L.; Spiering, Barry A.; Maresh, Carl M.
2012-01-01
Context Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. Objective To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Design Controlled laboratory study. Setting Human performance laboratory Patients or Other Participants Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg−1·min−1). Main Outcome Measures Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Results Whole-body cooling rates were greater in the cold water-bath condition for the first 6 minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (−69.76% ± 15.23%). Conclusions We have provided seed evidence that cold-water immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies. PMID:23182014
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
NASA Astrophysics Data System (ADS)
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different 'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition Frithjof B Anders Effects of low-frequency noise cross-correlations in coupled superconducting qubits A D'Arrigo, A Mastellone, E Paladino and G Falci From coherent motion to localization: dynamics of the spin-boson model at zero temperature Haobin Wang and Michael Thoss Phonon distributions of a single-bath mode coupled to a quantum dot F Cavaliere, G Piovano, E Paladino and M Sassetti
Bath-induced correlations in an infinite-dimensional Hilbert space
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2017-09-01
Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.
One pot synthesis of pure micro/nano photoactive α-PbO crystals
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit
2018-05-01
The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.
Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons
NASA Astrophysics Data System (ADS)
Scammell, H. D.; Sushkov, O. P.
2017-01-01
Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.
The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples
Sun, Xiaocun; Flatland, Bente
2016-01-01
Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV) of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia). Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature), while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice. Discussion Canine EDTA whole blood samples cool most rapidly and to a greater degree when placed in an ice-water bath rather than in ice. Samples stored on ice water can rapidly drop below normal refrigeration temperatures; this should be taken into consideration when using this cooling modality. PMID:27917319
Mycological flora of the Hammams, traditional Turkish bath.
Goksugur, Nadir; Karabay, Oguz; Kocoglu, Esra
2006-09-01
Traditional Turkish baths, Hammams, occupy a prominent place in public health in history and at present. It is well-known that baths are major sources of fungal skin infections, but according to our knowledge fungal flora of Turkish Hammams was not defined yet. In Bolu, Turkey, two Hammams were open to public and for detecting fungal flora, we collected 209 samples from different part of floors, tools and screened for the fungal pathogens. From floors of the dressing rooms, Trichophyton rubrum and Candida albicans; from slippers T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Candida albicans and C. tropicalis were isolated. While we could not isolate any dermatophyte species and yeasts from the vicinity of the bath windows and walls of baths, Aspergillus spp. and Penicillium spp. were isolated from the same locations. Samples taken from marble floors of baths, central massage platforms (hottest part of the Hammam) and towels did not show any fungal growth. This report reveals that components of the Turkish Hammams have low risk for fungal contamination as a result of frequent cleaning and environmental high temperature. But shared tools like slippers were found to be an important source of fungal contamination.
Dependence of transition width on current and critical current in transition-edge sensors
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Pappas, C. G.; Bennett, D. A.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.
2017-05-01
In superconducting transition-edge sensor X-ray detectors, we observe that as the thermal conductance (G) to the heat bath increases, the resistive transition broadens. Consequently, the sensitivity of films to deposited energy worsens. Using a two-fluid model for the superconducting-to-normal transition in a thin film, we show that this broadening can be attributed to the larger current (I0) necessary for biasing the film at a given point in the transition for higher-G devices, resulting in a higher Ic0/I0 ratio (Ic0 is the film's critical current at zero temperature). To recover a sharper transition, we fabricated rectangular films with varying numbers of internal normal-metal structures while keeping G constant, allowing the independent variation of both I0 and Ic0. We show that it is possible to manipulate the transition width and G independently, thus enabling fast thermal sensors with an excellent energy resolution.
Wear model simulating clinical abrasion on composite filling materials.
Johnsen, Gaute Floer; Taxt-Lamolle, Sébastien F; Haugen, Håvard J
2011-01-01
The aim of this study was to establish a wear model for testing composite filling materials with abrasion properties closer to a clinical situation. In addition, the model was used to evaluate the effect of filler volume and particle size on surface roughness and wear resistance. Each incisor tooth was prepared with nine identical standardized cavities with respect to depth, diameter, and angle. Generic composite of 3 different filler volumes and 3 different particle sizes held together with the same resin were randomly filled in respective cavities. A multidirectional wet-grinder with molar cusps as antagonist wore the surface of the incisors containing the composite fillings in a bath of human saliva at a constant temperature of 37°C. The present study suggests that the most wear resistant filling materials should consist of medium filling content (75%) and that particles size is not as critical as earlier reported.
A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature
NASA Technical Reports Server (NTRS)
Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.
2003-01-01
In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.
When your baby or infant has a fever
... a child may even cause a rise in temperature. Regardless, you should report any fever in a ... normal. Most children will feel better when their temperature drops by even one degree. A lukewarm bath ...
More Than the Brain's Drain: Does Cerebrospinal Fluid Help the Brain Convey Messages?
ERIC Educational Resources Information Center
Travis, John
1999-01-01
Examines the role of cerebrospinal fluid (CSF), a clear, colorless liquid that constantly bathes the brain and spinal cord. Scientists argue that cerebrospinal fluid carries important signals for sleep, appetite, and sex. Evaluates past and current research documenting the purpose of cerebrospinal fluid in the brain. (CCM)
Directed motion of a Brownian motor in a temperature gradient
NASA Astrophysics Data System (ADS)
Liu, Yibing; Nie, Wenjie; Lan, Yueheng
2017-05-01
Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.
Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.
Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz
2016-01-01
Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application of Generalized Feynman-Hellmann Theorem in Quantization of LC Circuit in Thermo Bath
NASA Astrophysics Data System (ADS)
Fan, Hong-Yi; Tang, Xu-Bing
For the quantized LC electric circuit, when taking the Joule thermal effect into account, we think that physical observables should be evaluated in the context of ensemble average. We then use the generalized Feynman-Hellmann theorem for ensemble average to calculate them, which seems convenient. Fluctuation of observables in various LC electric circuits in the presence of thermo bath growing with temperature is exhibited.
Clinical and anti-aging effect of mud-bathing therapy for patients with fibromyalgia.
Maeda, Toyoki; Kudo, Yoshihiro; Horiuchi, Takahiko; Makino, Naoki
2017-12-06
Spa bathing is known as a medical treatment for certain diseases causing chronic pains. Spa water contains mineral components which lower the specific heat of the water, resulting in a higher efficiency to warm body-core temperature. This phenomenon yields pain-relieving effect for rheumatoid arthritis, low back pain, sciatic neuralgia, fibromyalgia, etc. Here we introduce medical and biological effects of mud-spa-bathing therapy for fibromyalgia other than pain relief, the changes of blood examination data, and the telomere length of circulating leukocytes. The enrolled 7 patients with fibromyalgia syndrome were hospitalized and were subject to daily mud bathing at 40 °C for 10 min for about a month. Then, their subjective pain was reduced to about a quarter in average. They also showed lowered serum triglyceride and C-reactive protein level, maintaining the levels of aspartate transaminase and creatine phosphokinase, and increases of the red blood cell count, the serum albumin level, and the serum LDL-cholesterol level in comparison with cases without mud-bathing therapy, suggesting that mud bathing prevents inflammation and muscle atrophy and improves nutritional condition in fibromyalgia. In addition, the analysis of telomere length of peripheral leukocytes revealed a trend of negative correlation between telomere shortening and laboratory data change of hemoglobin and serum albumin. These telomeric changes can be explained hypothetically by an effect of mud bathing extending life-span of circulating leukocytes.
Profit is a dirty word: the development of the public baths and wash-houses in Britain 1847-1915.
Sheard, S
2000-04-01
Researh on sanitary reform in nineteenth-century Britain has focused mainly on the introduction of large-sanitary infrastructure, especially waterworks and sewage systems. Other sanitary measures such as the provision of public baths and wash-houses have been ignored, or discussed in the limited context of working-class responses to middle-class sanitarianism. Yet by 1915 public baths and wash-houses were to be found in nearly every British town and city. A detailed analysis of these 'enterprises' can provide a useful way of understanding the changing priorities of public health professionals and urban authorities as well as the changing attitudes of the working classes. Connections between personal cleanliness and disease evolved during the century, particularly after the formation of germ theory in the 1880s. This paper demonstrates how the introduction of public baths and wash-houses in Liverpool, Belfast, and Glasgow was initially a direct response to sanitary reform campaigns. It also shows that the explicit public health ideology of these developments was constantly compromised by implicit concerns about municipal finance and the potential profit that such enterprises could generate. This city-based analysis shows that this conflict hindered the full sanitary benefit which these schemes potentially offered.
Controlled electrosprayed formation of non-spherical microparticles
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.
2017-11-01
Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.
Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance
NASA Astrophysics Data System (ADS)
Liu, Jingjing; Taylor, Mark; Dorreen, Mark
2017-04-01
A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.
Brown dwarfs as close companions to white dwarfs
NASA Technical Reports Server (NTRS)
Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.
1990-01-01
The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.
Latanowicz, L
2008-01-01
Equations for the temperature dependence of the spectral densities J(is)(m)(momega(I) +/-omega(T)), where m=1, 2, omega(I) and omega(T) are the resonance and tunnel splitting angular frequencies, in the presence of a complex motion, have been derived. The spin pairs of the protons or deuterons of the methyl group perform a complex motion consisting of three component motions. Two of them involve mass transportation over the barrier and through the barrier. They are characterized by k((H)) (Arrhenius) and k((T)) (Schrödinger) rate constants, respectively. The third motion causes fluctuations of the frequencies (nomega(I)+/-omega(T)) and it is related to the lifetime of the methyl spin at the energy level influenced by the rotor-bath interactions. These interactions induce rapid transitions, changing the symmetry of the torsional sublevels either from A to E or from E(a) to E(b). The correlation function for this third motion (k((omega)) rate constant) has been proposed by Müller-Warmuth et al. The spectral densities of the methyl group hindered rotation (k((H)), k((T)) and k((omega)) rate constants) differ from the spectral densities of the proton transfer (k((H)) and k((T)) rate constants) because three compound motions contribute to the complex motion of the methyl group. The recently derived equation [Formula: see text] , where [Formula: see text] and [Formula: see text] are the fraction and energy of particles with energies from zero to E(H), is taken into account in the calculations of the spectral densities. This equation follows from Maxwell's distribution of thermal energy. The spectral densities derived are applied to analyse the experimental temperature dependencies of proton and deuteron spin-lattice relaxation rate in solids containing the methyl group. A wide range of temperatures from zero Kelvin up to the melting point is considered. It has been established that the motion characterized by k((omega)) influences the spin-lattice relaxation up to the temperature T(tun) only. This temperature is directly determined by the equation C(p)T=E(H) (thermal energy=activation energy), where C(p) is the molar heat capacity. Probably the cessation of the third motion is a result of the de Broglie wavelength related to this motion becoming too short. As shown recently, the potential barrier can be an obstacle for the de Broglie wave. The theoretical equations derived in this paper are compared to those known in the literature.
Non-equilibrium quantum heat machines
NASA Astrophysics Data System (ADS)
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Mosher, Ruby A; Coetzee, Johann F; Allen, Portia S; Havel, James A; Griffith, Gary R; Wang, Chong
2014-02-01
To determine the effects of protease inhibitors and holding times and temperatures before processing on the stability of substance P in bovine blood samples. Blood samples obtained from a healthy 6-month-old calf. Blood samples were dispensed into tubes containing exogenous substance P and 1 of 6 degradative enzyme inhibitor treatments: heparin, EDTA, EDTA with 1 of 2 concentrations of aprotinin, or EDTA with 1 of 2 concentrations of a commercially available protease inhibitor cocktail. Plasma was harvested immediately following collection or after 1, 3, 6, 12, or 24 hours of holding at ambient (20.3° to 25.4°C) or ice bath temperatures. Total substance P immunoreactivity was determined with an ELISA; concentrations of the substance P parent molecule, a metabolite composed of the 9 terminal amino acids, and a metabolite composed of the 5 terminal amino acids were determined with liquid chromatography-tandem mass spectrometry. Regarding blood samples processed immediately, no significant differences in substance P concentrations or immunoreactivity were detected among enzyme inhibitor treatments. In blood samples processed at 1 hour of holding, substance P parent molecule concentration was significantly lower for ambient temperature versus ice bath temperature holding conditions; aprotinin was the most effective inhibitor of substance P degradation at the ice bath temperature. The ELISA substance P immunoreactivity was typically lower for blood samples with heparin versus samples with other inhibitors processed at 1 hour of holding in either temperature condition. Results suggested that blood samples should be chilled and plasma harvested within 1 hour after collection to prevent substance P degradation.
Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng
1994-01-01
A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.
ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM
Wick, J.J.
1959-09-22
A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.
Trnavsky, G
1982-04-30
Measurements about maximal motor nerve conductivity of ulnaris and medianus were carried out before and after constant galvanisation from neck to hand. Significant results of conductivity, distal latency and amplitude of summation potential could not be registered neither by plus nor by minus pole at the hand.
NASA Technical Reports Server (NTRS)
Cody, R. J.; Payne, W. A.; Thorn, R. P., Jr.; Romani, P. N.; Stief, L. J.; Nesbitt, F. L.; Iannone, M. A.; Tardy, D. C.
2002-01-01
The methyl free radical (CH3) has been observed in the atmospheres of Saturn and Neptune by the ISO satellite. There are discrepancies between the column densities for the CH3 radical derived from the ISO observations and the column densities derived from atmospheric photochemical models. For Neptune the model column density is 1.5 times that derived from ISO. For Saturn the model is 6 times that from ISO. The recombination of methyl radicals is the major loss process for methyl in these atmospheres. The serious disagreement between observed and calculated levels of CH3 has led to suggestions that the atmospheric models greatly underestimated the loss of CH3 due to poor knowledge of the rate of the reaction (1) CH3 + CH3 + M goes to C2H6 + M at the low temperatures and pressures of these atmospheric systems. Although the reaction CH3 + CH3 + M goes to C2H6 + M has been extensively studied both theoretically and experimentally, the laboratory conditions have been, with only a few exceptions, higher temperatures (T greater than 298K), higher pressures (P greater than or equal to 10 Torr - 13.3 mbar) or M=Ar rather than H2 or He as the bath gas.
A waveguide-coupled thermally isolated radiometric source.
Rostem, K; Chuss, D T; Lourie, N P; Voellmer, G M; Wollack, E J
2013-04-01
The design and validation of a dual polarization source for waveguide-coupled millimeter and sub-millimeter wave cryogenic sensors is presented. The thermal source is a waveguide mounted absorbing conical dielectric taper. The absorber is thermally isolated with a kinematic suspension that allows the guide to be heat sunk to the lowest bath temperature of the cryogenic system. This approach enables the thermal emission from the metallic waveguide walls to be subdominant to that from the source. The use of low thermal conductivity Kevlar threads for the kinematic mount effectively decouples the absorber from the sensor cold stage. Hence, the absorber can be heated to significantly higher temperatures than the sensor with negligible conductive loading. The kinematic suspension provides high mechanical repeatability and reliability with thermal cycling. A 33-50 GHz blackbody source demonstrates an emissivity of 0.999 over the full waveguide band where the dominant deviation from unity arises from the waveguide ohmic loss. The observed thermal time constant of the source is 40 s when the absorber temperature is 15 K. The specific heat of the lossy dielectric, MF-117, is well approximated by C(v)(T) = 0.12 T (2.06) mJ g(-1) K(-1) between 3.5 K and 15 K.
Kovalev, Vadim M; Tse, Wang-Kong
2017-11-22
We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.
Bloch-Nordsieck thermometers: one-loop exponentiation in finite temperature QED
NASA Astrophysics Data System (ADS)
Gupta, Sourendu; Indumathi, D.; Mathews, Prakash; Ravindran, V.
1996-02-01
We study the scattering of hard external particles in a heat bath in a real-time formalism for finite temperature QED. We investigate the distribution of the 4-momentum difference of initial and final hard particles in a fully covariant manner when the scale of the process, Q, is much larger than the temperature, T. Our computations are valid for all T subject to this constraint. We exponentiate the leading infra-red term at one-loop order through a resummation of soft (thermal) photon emissions and absorptions. For T > 0, we find that tensor structures arise which are not present at T = 0. These cant' thermal signatures. As a result, external particles can serve as thermometers introduced into the heat bath. We investigate the phase space origin of log( Q/ m) and log ( Q/ T) teens.
NASA Astrophysics Data System (ADS)
Göde, F.; Güneri, E.; Kariper, A.; Ulutaş, C.; Kirmizigül, F.; Gümüş, C.
2011-11-01
Zinc sulfide films have been deposited on glass substrates at room temperature by the chemical bath deposition technique. The growth mechanism is studied using X-ray diffraction, scanning electron microscopy, optical absorption spectra and electrical measurements. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (100, 200, 300 400 and 500 °C) for 1 h. The annealed film was also characterized by structural, optical and electrical studies. The structural analyses revealed that the as-deposited film was amorphous, but after being annealed at 500 °C, it changed to polycrystalline. The optical band gap is direct with a value of 4.01 eV, but this value decreased to 3.74 eV with annealing temperature, except for the 500 °C anneal where it only decreased to 3.82 eV. The refractive index (n), extinction coefficient (k), and real (ɛ1) and imaginary (ɛ2) parts of the dielectric constant are evaluated. Raman peaks appearing at ~478 cm-1, ~546 cm-1, ~778 cm-1 and ~1082 cm-1 for the annealed film (500 °C) were attributed to [TOl+LAΣ, 2TOΓ, 2LO, 3LO phonons of ZnS. The electrical conductivities of both as-deposited and annealed films have been calculated to be of the order of ~10-10 (Ω cm)-1 .
On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model
NASA Astrophysics Data System (ADS)
Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin
2018-01-01
We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.
Improved black nickel coatings for flat plate solar collectors
NASA Technical Reports Server (NTRS)
Lin, J. H.; Peterson, R. E.
1977-01-01
A new black nickel formula was developed which had a solar absorptance of 0.92 and an infrared emittance (at 100 C) of less than 0.10 after 14 days at 38 C and 95 percent relative humidity. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, optical properties and durability were investigated.
Immunomodulation of Hyperthermia for Recurrent Prostate Cancer
2006-03-01
cells treated with Hyperthermia (HT). HT was administered either as incubation in a 43.7oC water bath or by High frequency focused ultrasound ( HIFU ...immunity and improve local and distant tumor regression. B. BODY B.1. HT induced by water bath (43.7C,1hr) in vivo was compared to HIFU in vivo... HIFU induces coagulative tissue necrosis in the focal zone by rapidly elevating tissue temperature in a short exposure (seconds) while keeping the
Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface.
Beesabathuni, Shilpa N; Lindberg, Seth E; Caggioni, Marco; Wesner, Chris; Shen, Amy Q
2015-05-01
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Iiyama, Junichi; Matsushita, Kensuke; Tanaka, Nobuyuki; Kawahira, Kazumi
2008-07-01
We have previously reported that thermal vasodilation following warm-water bathing and low-temperature sauna bathing (LTSB) at 60 °C for 15 min improves the cardiac function in patients with congestive heart failure. Through a comparative before-and-after study, we studied the hemodynamic and clinical effects of single exposure to LTSB in cerebral palsy (CP) patients who usually suffer from chilled extremities and low cardiac output. The study population comprised 16 patients ranging between 19 and 53 years with severe motor and intellectual disabilities. Noninvasive methods were used to estimate the systemic and peripheral circulatory changes before and after LTSB. Using blood flow velocity analysis, the pulsatile and resistive indexes of the peripheral arteries of the patients’ lower limbs were calculated. Following LTSB, the patients’ deep body temperature increased significantly by 1°C. Their heart rates increased and blood pressure decreased slightly. The total peripheral resistance decreased by 11%, and the cardiac output increased by 14%. There was significant improvement in the parameters that are indicative of the peripheral circulatory status, including the skin blood flow, blood flow velocity, pulsatile index, and resistive index. Numbness and chronic myalgia of the extremities decreased. There were no adverse side effects. Thus, it can be concluded that LTSB improves the peripheral circulation in CP patients.
Iiyama, Junichi; Matsushita, Kensuke; Tanaka, Nobuyuki; Kawahira, Kazumi
2008-07-01
We have previously reported that thermal vasodilation following warm-water bathing and low-temperature sauna bathing (LTSB) at 60 degrees C for 15 min improves the cardiac function in patients with congestive heart failure. Through a comparative before-and-after study, we studied the hemodynamic and clinical effects of single exposure to LTSB in cerebral palsy (CP) patients who usually suffer from chilled extremities and low cardiac output. The study population comprised 16 patients ranging between 19 and 53 years with severe motor and intellectual disabilities. Noninvasive methods were used to estimate the systemic and peripheral circulatory changes before and after LTSB. Using blood flow velocity analysis, the pulsatile and resistive indexes of the peripheral arteries of the patients' lower limbs were calculated. Following LTSB, the patients' deep body temperature increased significantly by 1 degrees C. Their heart rates increased and blood pressure decreased slightly. The total peripheral resistance decreased by 11%, and the cardiac output increased by 14%. There was significant improvement in the parameters that are indicative of the peripheral circulatory status, including the skin blood flow, blood flow velocity, pulsatile index, and resistive index. Numbness and chronic myalgia of the extremities decreased. There were no adverse side effects. Thus, it can be concluded that LTSB improves the peripheral circulation in CP patients.
Mbithi, J N; Springthorpe, V S; Sattar, S A; Pacquette, M
1993-01-01
Baths with 2% alkaline glutaraldehyde are often reused for 14 days to decontaminate flexible fiberoptic endoscopes (FFEs) between patients, but the effect of such reuse on the disinfectant's activity has not been known. Many busy endoscopy units also disinfect FFEs with contact times shorter than those recommended by the disinfectant manufacturer. We therefore collected samples of the disinfectant over the 14-day reuse period from two manual and one automatic bath used for bronchoscopes and gastroscopes at a local hospital. Control samples were also collected from a manual bath of 2% alkaline glutaraldehyde which did not receive any endoscopes. The germicidal activities of the samples were assessed in a carrier test against a mixture of hepatitis A virus, poliovirus 1 (Sabin), and Pseudomonas aeruginosa; the mixture also contained either Mycobacterium bovis or Mycobacterium gordonae. Bovine serum (5%) was the organic load. The criterion of efficacy was a minimum of a 3-log10-unit reduction in the infectivity titers of the organisms tested. The initial disinfectant concentration in all the baths was nearly 2.25%; it became about 1.8% in the control bath and fell to approximately 1% in the three test baths after 14 days. No protein was detected in the control bath, while its concentration rose gradually in the test baths to a maximum of 1,267 micrograms/ml after 14 days. With a contact time of 10 min at 20 +/- 2 degrees C, all the samples from the control bath were effective against all the test organisms and all the samples from all the test baths were also effective against P. aeruginosa. With a contact time of 10 or 20 min at 20+/-2 degrees C, the virucidal and mycobactericidal activities of the samples from the test baths showed broad-spectrum germicidal activity when the contact time was increased to 45 min and the temperature was raised to 25 degrees C. These findings emphasize the care needed in the disinfection of FFEs, especially in view of the increasing threat of AIDS and the resurgence of tuberculosis. PMID:8263184
NASA Technical Reports Server (NTRS)
Snow, W. L.
1974-01-01
The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.
Optimal state transfer of a single dissipative two-level system
NASA Astrophysics Data System (ADS)
Jirari, Hamza; Wu, Ning
2016-04-01
Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.
Northwest Manufacturing Initiative
2013-03-26
Testing of Metallic Materials] specifications. For high temperature tests, a heated water bath was use while for low temperature testing down to...Weld metal and heat affected zones were evaluated using Charpy and E399 fracture toughness methods. The influence of temperature , loading rate, CVN...determine the influence of fracture test methods and welding procedures on toughness. Room temperature E399 tests, (CTS) were carried out under
NASA Astrophysics Data System (ADS)
Edwards, Devin T.; Takahashi, Susumu; Sherwin, Mark S.; Han, Songi
2012-10-01
At 8.5 T, the polarization of an ensemble of electron spins is essentially 100% at 2 K, and decreases to 30% at 20 K. The strong temperature dependence of the electron spin polarization between 2 and 20 K leads to the phenomenon of spin bath quenching: temporal fluctuations of the dipolar magnetic fields associated with the energy-conserving spin "flip-flop" process are quenched as the temperature of the spin bath is lowered to the point of nearly complete spin polarization. This work uses pulsed electron paramagnetic resonance (EPR) at 240 GHz to investigate the effects of spin bath quenching on the phase memory times (TM) of randomly-distributed ensembles of nitroxide molecules below 20 K at 8.5 T. For a given electron spin concentration, a characteristic, dipolar flip-flop rate (W) is extracted by fitting the temperature dependence of TM to a simple model of decoherence driven by the spin flip-flop process. In frozen solutions of 4-Amino-TEMPO, a stable nitroxide radical in a deuterated water-glass, a calibration is used to quantify average spin-spin distances as large as r¯=6.6 nm from the dipolar flip-flop rate. For longer distances, nuclear spin fluctuations, which are not frozen out, begin to dominate over the electron spin flip-flop processes, placing an effective ceiling on this method for nitroxide molecules. For a bulk solution with a three-dimensional distribution of nitroxide molecules at concentration n, we find W∝n∝1/r, which is consistent with magnetic dipolar spin interactions. Alternatively, we observe W∝n for nitroxides tethered to a quasi two-dimensional surface of large (Ø ˜ 200 nm), unilamellar, lipid vesicles, demonstrating that the quantification of spin bath quenching can also be used to discern the geometry of molecular assembly or organization.
Fever and Taking Your Child's Temperature
... after the fever comes down. How Can I Help My Child Feel Better? Again, not all fevers need to ... cause the temperature to rise. Make sure your child's bedroom is a ... fever, this method only helps temporarily, if at all. In fact, sponge baths ...
Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R
2005-11-24
The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.
ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalal, Paresh V., E-mail: paresh10dalal@gmail.com; Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in; Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com
2016-05-06
Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2more » and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.« less
Stehly, G.R.; Meinertz, J.R.; Gingerich, W.H.
1998-01-01
The pharmacokinetics of benzocaine during bath exposures at 1 mg/L were determined in rainbow trout acclimated at 6 °C, 12 °C or 18 °C for at least 1 month. Individual fish were exposed to benzocaine in a recirculating system for 4 h and pharmacokinetic parameters were estimated in a unique manner from the concentration of benzocaine in the bath water vs. time curve. Elimination from plasma was also determined after the 4 h exposure. The uptake clearance and metabolic clearance increased with increased acclimatization temperatures (uptake clearance 581 ± 179 mL/min/kg at 6 °C and 1154 ± 447 mL/ min/kg at 18 °C; metabolic clearance 15.2 ± 4.1 mL/min/kg at 6 °C and 22.3 ± 4.2 mL/min/kg at 18 °C). The apparent volume of distribution had a trend for increasing with temperature that was not significant at the 5% level (2369 ± 678 mL/kg at 6 °C to 3260 ± 1182 mL/kg at 18 °C). The elimination half-life of benzocaine in plasma was variable and did not differ significantly with temperature (60.8 ± 30.3 min at 6 °C to 35.9 ± 13.0 min at 12 °C). Elimination of benzocaine from rainbow trout is relatively rapid and even more rapid at higher acclimatization temperatures based on calculated metabolic clearances and measured plasma concentrations, but was not evident by measurement of terminal plasma half-lifes.
Radiometer Calibrations: Saving Time by Automating the Gathering and Analysis Procedures
NASA Technical Reports Server (NTRS)
Sadino, Jeffrey L.
2005-01-01
Mr. Abtahi custom-designs radiometers for Mr. Hook's research group. Inherently, when the radiometers report the temperature of arbitrary surfaces, the results are affected by errors in accuracy. This problem can be reduced if the errors can be accounted for in a polynomial. This is achieved by pointing the radiometer at a constant-temperature surface. We have been using a Hartford Scientific WaterBath. The measurements from the radiometer are collected at many different temperatures and compared to the measurements made by a Hartford Chubb thermometer with a four-decimal point resolution. The data is analyzed and fit to a fifth-order polynomial. This formula is then uploaded into the radiometer software, enabling accurate data gathering. Traditionally, Mr. Abtahi has done this by hand, spending several hours of his time setting the temperature, waiting for stabilization, taking measurements, and then repeating for other temperatures. My program, written in the Python language, has enabled the data gathering and analysis process to be handed off to a less-senior member of the team. Simply by entering several initial settings, the program will simultaneously control all three instruments and organize the data suitable for computer analyses, thus giving the desired fifth-order polynomial. This will save time, allow for a more complete calibration data set, and allow for base calibrations to be developed. The program is expandable to simultaneously take any type of measurement from up to nine distinct instruments.
Core-coat conductor of lipid bilayer and micromachined silicon.
Fromherz, P; Klingler, J
1991-02-11
We have etched a groove into a (110) plane of silicon and have covered it with a bilayer of glycerol monooleate. We have varied the depth of the groove, the concentration of salt in the electrolyte and the density of gramicidin in the membrane. We have clamped one end of the groove at a constant voltage with respect to the bath keeping the other end sealed or electrically open with respect to the bath. We have measured (i) the voltage at the center of the groove and at the sealed distal end and (ii) the current through the system in sealed and open configuration. We have found that the spread of voltage is in quantitative agreement with the stationary solutions of Kelvin's equation for a homogeneous cable.
Vignac, Élie; Lebihain, Pascal; Soulé, Bastien
2017-09-01
In France, to prevent drowning accidents in public swimming pools (PSPs), bathing must be constantly supervised by qualified staff. However, fatal drowning regularly occurs in supervised aquatic facilities. A review of the literature shows that human supervision is a complex task. The aim of this research is to fully assess the periods during which supervision is not carried out, or carried out in an inadequate manner. The observations made in 108 French PSPs show that supervision is not carried out 18% of the time and that it is carried out inadequately 33% of the time. The medical literature shows that, in order to expect to survive without after-effects, an immersed victim requires intervention within a time limit of not more than three minutes; however, we noted, over a total observation time of 54 hours, 147 periods (29.8%) during which the supervision system was degraded for three minutes or more. This quantification research on the periods of degraded supervision is complemented by an identification of the causes leading to these degradations, from which we can draw interesting areas for improvement, particularly from an organizational point of view, in order to improve safety management in French PSPs.
Inverse Leidenfrost effect: self-propelling drops on a bath
NASA Astrophysics Data System (ADS)
Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team
2017-11-01
When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.
Thermal equilibrium control by frequent bang-bang modulation.
Yang, Cheng-Xi; Wang, Xiang-Bin
2010-05-01
In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.
Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty.
Lai, Po-Liang; Tai, Ching-Lung; Chu, I-Ming; Fu, Tsai-Sheng; Chen, Lih-Huei; Chen, Wen-Jer
2012-10-16
Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost.
Hypothermic manipulation of bone cement can extend the handling time during vertebroplasty
2012-01-01
Background Polymethylmethacrylate (PMMA) is commonly used for clinical applications. However, the short handling time increases the probability of a surgeon missing the crucial period in which the cement maintains its ideal viscosity for a successful injection. The aim of this article was to illustrate the effects a reduction in temperature would have on the cement handling time during percutaneous vertebroplasty. Methods The injectability of bone cement was assessed using a cement compressor. By twisting the compressor, the piston transmits its axial load to the plunger, which then pumps the bone cement out. The experiments were categorized based on the different types of hypothermic manipulation that were used. In group I (room temperature, sham group), the syringes were kept at 22°C after mixing the bone cement. In group 2 (precooling the bone cement and the container), the PMMA powder and liquid, as well as the beaker, spatula, and syringe, were stored in the refrigerator (4°C) overnight before mixing. In group 3 (ice bath cooling), the syringes were immediately submerged in ice water after mixing the bone cement at room temperature. Results The average liquid time, paste time, and handling time were 5.1 ± 0.7, 3.4 ± 0.3, and 8.5 ± 0.8 min, respectively, for group 1; 9.4 ± 1.1, 5.8 ± 0.5, and 15.2 ± 1.2 min, respectively, for group 2; and 83.8 ± 5.2, 28.8 ± 6.9, and 112.5 ± 11.3 min, respectively, for group 3. The liquid and paste times could be increased through different cooling methods. In addition, the liquid time (i.e. waiting time) for ice bath cooling was longer than for that of the precooling method (p < 0.05). Conclusions Both precooling (i.e. lowering the initial temperature) and ice bath cooling (i.e. lowering the surrounding temperature) can effectively slow polymerization. Precooling is easy for clinical applications, while ice bath cooling might be more suitable for multiple-level vertebroplasty. Clinicians can take advantage of the improved injectability without any increased cost. PMID:23072273
NASA Astrophysics Data System (ADS)
Beaulieu, L. Y.; Logan, E. R.; Gering, K. L.; Dahn, J. R.
2017-09-01
An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).
Heat exchanger development at Reaction Engines Ltd.
NASA Astrophysics Data System (ADS)
Varvill, Richard
2010-05-01
The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.
Pulse measurement of the hot spot current in a NbTiN superconducting filament
NASA Astrophysics Data System (ADS)
Harrabi, K.; Mekki, A.; Kunwar, S.; Maneval, J. P.
2018-02-01
We have studied the voltage response of superconducting NbTiN filaments to a step-pulse of over-critical current I > Ic. The current induces the destruction of the Cooper pairs and initiates different mechanisms of dissipation depending on the bath temperature T. For the sample investigated, and for T above a certain T*, not far from Tc, the resistance manifests itself in the form of a phase-slip center, which turns into a normal hot spot (HS) as the step-pulse is given larger amplitudes. However, at all temperatures below T*, the destruction of superconductivity still occurs at Ic(T), but leads directly to an ever-growing HS. By lowering the current amplitude during the pulse, one can produce a steady HS and thus define a threshold HS current Ih(T). That is achieved by combining two levels of current, the first and larger one to initiate an HS, the second one to search for constant voltage response. The double diagram of the functions Ic(T) and Ih(T) was plotted in the T-range Tc/2 < T < Tc, and their crossing found at T* = (8.07 ± 0.07) K.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Technical Reports Server (NTRS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Tucker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes;
2016-01-01
Advanced ACTPol (Adv ACT) will use an array of multichroic polarization sensitive AIMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
AlMn Transition Edge Sensors for Advanced ACTPol
NASA Astrophysics Data System (ADS)
Li, Dale; Austermann, Jason E.; Beall, James A.; Becker, Daniel T.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Hilton, Gene C.; Ho, Shuay-Pwu; Hubmayr, Johannes; Koopman, Brian J.; McMahon, Jeffrey J.; Nati, Federico; Niemack, Michael D.; Pappas, Christine G.; Salatino, Maria; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Van Lanen, Jeff; Ward, Jonathan T.; Wollack, Edward J.
2016-07-01
Advanced ACTPol (AdvACT) will use an array of multichroic polarization-sensitive AlMn transition edge sensor (TES) bolometers read out through time-division multiplexing. Aluminum doped with a low concentration of manganese can be deposited to a bulk film thickness for a more reliable superconducting critical temperature uniformity compared to thin bilayers. To build the TES, the AlMn alloy is deposited, over Nb wiring, to a specific thickness to set the TES normal resistance. The doping concentration of manganese coarsely defines the TES critical temperature, while a fine tuning is achieved by heating the deposited film to a specific temperature. The TES island is connected to the thermal bath via four silicon-nitride membranes, where their geometry defines the thermal conductance to the temperature of the bath. Lastly, the TES heat capacity is increased by addition of PdAu electrically connected to the AlMn film. Designs and performance characteristics of these AlMn TESs are presented for use in AdvACT.
Short review on chemical bath deposition of thin film and characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com
2016-05-06
This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.
NASA Astrophysics Data System (ADS)
Wang, Y. Y.; Cai, K. F.; Yao, X.
2009-12-01
A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.
NASA Astrophysics Data System (ADS)
Okamoto, Naoki; Kataoka, Kentaro; Saito, Takeyasu
2017-07-01
A manufacturing method for SnS using a one-step electrochemical technique was developed. The sulfide semiconductor was formed by electrodeposition using an aqueous bath at low temperatures. The sulfide semiconductor particles produced were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The highest current density at which SnS was formed was 1800 mA/cm2 at a bath temperature of 293 K, which is 36 times larger than that in a previous deposition process. Analysis of the chronoamperometric current-time transients indicated that in the potential range from -1100 to -2000 mV vs saturated calomel electrode (SCE), the electrodeposition of SnS can be explained by an instantaneous nucleation model.
Defining rolled metal performance for cold bolt upsetting (bolt head)
NASA Astrophysics Data System (ADS)
Pachurin, G. V.; Shevchenko, S. M.; Filippov, A. A.; Mukhina, M. V.; Kuzmin, N. A.
2018-03-01
Hardware items are one of the products for mass consumption. Rolled metal for cold forging shall have the required ductility, uniform mechanical characteristics along the mill length, corresponding chemical composition and shall be free from internal or superficial defects. Standard mechanical characteristics have been reviewed in this document and fracture criteria of calibrated rolled steel 40X have been calculated after its isothermal treatment at different temperatures in nitre bath and subsequent drawing with different deformation degrees. Comparison of synergy fracture criteria showed that rolled stock, treated as per the proposed conditions: bath patenting at the temperature of 400°C and drawing with reduction rate of 5% and 10%, are more preferable, comparing to processing conditions, existing in the industry.
An Oil-Bath-Based 293 K to 473 K Blackbody Source
Fowler, Joel B.
1996-01-01
A high temperature oil-bath-based-black-body source has been designed and constructed in the Radiometric Physics Division at the National Institute of Standards and Technology, Gaithersburg, MD. The goal of this work was to design a large aperture blackbody source with highly uniform radiance across the aperture, good temporal stability, and good reproducibility. This blackbody source operates in the 293 K to 473 K range with blackbody temperature combined standard uncertainties of 7.2 mK to 30.9 mK. The calculated emissivity of this source is 0.9997 with a standard uncertainty of 0.0003. With a 50 mm limiting aperture at the cavity entrance, the emissivity increases to 0.99996. PMID:27805082
Uokawa, Y; Yonezawa, Y; Caldwell, W M; Hahn, A W
2000-01-01
A data acquisition system employing a low power 8 bit microcomputer has been developed for heart rate variability monitoring before, during and after bathing. The system consists of three integral chest electrodes, two temperature sensors, an instrumentation amplifier, a low power 8-bit single chip microcomputer (SMC) and a 4 MB compact flash memory (CFM). The ECG from the electrodes is converted to an 8-bit digital format at a 1 ms rate by an A/D converter in the SMC. Both signals from the body and ambient temperature sensors are converted to an 8-bit digital format every 1 second. These data are stored by the CFM. The system is powered by a rechargeable 3.6 V lithium battery. The 4 x 11 x 1 cm system is encapsulated in epoxy and silicone, yielding a total volume of 44 cc. The weight is 100 g.
Master equation and two heat reservoirs.
Trimper, Steffen
2006-11-01
A simple spin-flip process is analyzed under the presence of two heat reservoirs. While one flip process is triggered by a bath at temperature T, the inverse process is activated by a bath at a different temperature T'. The situation can be described by using a master equation approach in a second quantized Hamiltonian formulation. The stationary solution leads to a generalized Fermi-Dirac distribution with an effective temperature Te. Likewise the relaxation time is given in terms of Te. Introducing a spin representation we perform a Landau expansion for the averaged spin
Fearnot, N E; Kitoh, O; Fujita, T; Okamura, H; Smith, H J; Calderini, M
1989-05-01
The effectiveness of using blood temperature change as an indicator to automatically vary heart rate physiologically was evaluated in 3 patients implanted with Model Sensor Kelvin 500 (Cook Pacemaker Corporation, Leechburg, PA, USA) pacemakers. Each patient performed two block-randomized treadmill exercise tests: one while programmed for temperature-based, rate-modulated pacing and the other while programmed without rate modulation. In 1 pacemaker patient and 4 volunteers, heart rates were recorded during exposure to a hot water bath. Blood temperature measured at 10 sec intervals and pacing rate measured at 1 min intervals were telemetered to a diagnostic programmer and data collector for storage and transfer to a computer. Observation comments and ECG-derived heart rates were manually recorded. The temperature-based pacemaker was shown to respond promptly not only to physical exertion but also to emotionally caused stress and submersion in a hot bath. These events cause increased heart rate in the normal heart. Using a suitable algorithm to process the measurement of blood temperature, it was possible to produce appropriate pacing rates in paced patients.
Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.
Stokes, Ian A. F.; Laible, Jeffrey P.; Gardner-Morse, Mack G.; Costi, John J.; Iatridis, James C.
2011-01-01
Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force–time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754
Portable Body Temperature Conditioner
2014-12-01
are homeothermic and require a narrow core body temperature range to maintain normal homeostasis. Currently, the most effective treatments for...for monitoring circulating water and patient body temperature . During breadboard testing the effectiveness of the air coil was found to be...blanket. Bath temperatures were set to 30°C, 15°C, and 10°C respectively. In order to develop a testing procedure for quantifying the effective
2012-03-01
6 4.5 Component, Furnace and Quench Bath Thermometry...................................... 6 4.6 Component Heat Treatment...7 4.6.2 Post-Retrogression Quench .................................................................... 9 4.6.3...23 5.5.2 Temperature Profile – Post-Retrogression Quenching .................... 23 5.5.3 Temperature
Stability of sugar solutions: a novel study of the epimerization kinetics of lactose in water.
Jawad, Rim; Drake, Alex F; Elleman, Carole; Martin, Gary P; Warren, Frederick J; Perston, Benjamin B; Ellis, Peter R; Hassoun, Mireille A; Royall, Paul G
2014-07-07
This article reports on the stereochemical aspects of the chemical stability of lactose solutions stored between 25 and 60 °C. The lactose used for the preparation of the aqueous solutions was α-lactose monohydrate with an anomer purity of 96% α and 4% β based on the supplied certificate of analysis (using a GC analytical protocol), which was further confirmed here by nuclear magnetic resonance (NMR) analysis. Aliquots of lactose solutions were collected at different time points after the solutions were prepared and freeze-dried to remove water and halt epimerization for subsequent analysis by NMR. Epimerization was also monitored by polarimetry and infrared spectroscopy using a specially adapted Fourier transform infrared attenuated total reflectance (FTIR-ATR) method. Hydrolysis was analyzed by ion chromatography. The three different analytical approaches unambiguously showed that the epimerization of lactose in aqueous solution follows first order reversible kinetics between 25 to 60 °C. The overall rate constant was 4.4 × 10(-4) s(-1) ± 0.9 (± standard deviation (SD)) at 25 °C. The forward rate constant was 1.6 times greater than the reverse rate constant, leading to an equilibrium constant of 1.6 ± 0.1 (±SD) at 25 °C. The rate of epimerization for lactose increased with temperature and an Arrhenius plot yielded an activation energy of +52.3 kJ/mol supporting the hypothesis that the mechanism of lactose epimerization involves the formation of extremely short-lived intermediate structures. The main mechanism affecting lactose stability is epimerization, as no permanent hydrolysis or chemical degradation was observed. When preparing aqueous solutions of lactose, immediate storage in an ice bath at 0 °C will allow approximately 3 min (180 s) of analysis time before the anomeric ratio alters significantly (greater than 1%) from the solid state composition of the starting material. In contrast a controlled anomeric composition (~38% α and ~62% β) will be achieved if an aqueous solution is left to equilibrate for over 4 h at 25 °C, while increasing the temperature up to 60 °C rapidly reduces the required equilibration time.
Transport properties of elastically coupled fractional Brownian motors
NASA Astrophysics Data System (ADS)
Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan
2015-11-01
Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.
Dingley, J; Williams, D; Douglas, P; Douglas, M; Douglas, J O
2016-12-01
The objective was to develop a sodium percarbonate/water/catalyst chemical oxygen generator that did not require compressed gas. Existing devices utilising this reaction have a very short duration of action. Preliminary experiments with a glass reaction vessel, water bath and electronic flowmeter indicated that many factors affected oxygen production rate including reagent formulation, temperature, water volume and agitation frequency. Having undertaken full-scale experiments using a stainless steel vessel, an optimum combination of reagents was found to be 1 litre water, 0.75 g manganese dioxide catalyst, 60 g sodium percarbonate granules and 800 g of custom pressed 7.21 (0.28) g sodium percarbonate tablets. This combination of granules and slower dissolution tablets produced a rapid initial oxygen flow to 'purge' an attached low-flow breathing system allowing immediate use, followed by a constant flow meeting metabolic requirements for a minimum of 1 h duration. © 2016 The Association of Anaesthetists of Great Britain and Ireland.
1980-05-30
the collector material in- creased. Schafft and French 2 used zinc-cadmium sulphide phosphors to indi- cate the surface temperature distribution on...bathed in ultraviolet radiation from a mercury lamp. As the temperature of the phosphor is increased, the intensity of luminescence decreases and finally
2013-01-01
The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into ‘unialgal’ culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration. Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition. PMID:23369619
USDA-ARS?s Scientific Manuscript database
The combined effects of heating temperature (55 to 65C), gallic acid (0 to 2.0%), and eugenol (0 to 2.0%) on thermal inactivation of Salmonella in ground chicken were assessed. Thermal death times were determined in bags submerged in a heated water bath maintained at various set temperatures, follo...
Density measurements of the lithium fluoride/lithium sulfide eutectic at high temperature
NASA Astrophysics Data System (ADS)
Lloyd, Charles L.; Gilbert, James B.
1994-10-01
A straightforward and reliable method to determine densities of molten salts at high temperatures was de-veloped by Janz and Lorenz several years ago.[1] This method was followed in order to determine the density of the LiF/Li2S eutectic[2] over the temperature range of 1176 to 1355 K in which the eutectic is liquid. The rel-ative lack of data for this eutectic is surprising given its potential usefulness in the study of advanced batteries'31 and electrowinning of metals from molten sulfides.[41] The method is based on the fact that a solid piece of metal of known volume suspended from a pan balance into a molten salt will weigh less than if it were sus-pended in air at the same temperature. This difference in weight measured in grams will be equal to the buoyant force of the liquid at that temperature. The density of the salt bath can then readily be determined by dividing this difference by the volume of the solid piece of metal that is immersed in the bath. The procedure can be re-peated to give density values over a range of temperatures.
How electronic dynamics with Pauli exclusion produces Fermi-Dirac statistics.
Nguyen, Triet S; Nanguneri, Ravindra; Parkhill, John
2015-04-07
It is important that any dynamics method approaches the correct population distribution at long times. In this paper, we derive a one-body reduced density matrix dynamics for electrons in energetic contact with a bath. We obtain a remarkable equation of motion which shows that in order to reach equilibrium properly, rates of electron transitions depend on the density matrix. Even though the bath drives the electrons towards a Boltzmann distribution, hole blocking factors in our equation of motion cause the electronic populations to relax to a Fermi-Dirac distribution. These factors are an old concept, but we show how they can be derived with a combination of time-dependent perturbation theory and the extended normal ordering of Mukherjee and Kutzelnigg for a general electronic state. The resulting non-equilibrium kinetic equations generalize the usual Redfield theory to many-electron systems, while ensuring that the orbital occupations remain between zero and one. In numerical applications of our equations, we show that relaxation rates of molecules are not constant because of the blocking effect. Other applications to model atomic chains are also presented which highlight the importance of treating both dephasing and relaxation. Finally, we show how the bath localizes the electron density matrix.
NASA Astrophysics Data System (ADS)
Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard
2018-06-01
A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.
Györy, A Z; Roby, H
1977-01-01
1. With the aid of micropuncture techniques, proximal tubular transepithelial concentration differences for Na (deltaC Na) and chloride (deltaC Cl) were measured in kidney cortex slices at bathing fluid Na concentrations from 10 to 400 m-mole. kg-1. Tissue content of water, Na and K was also measured in such slices. Under steady-state conditions of zero net flux of NaCl and water, deltaC Na represents the sum of active Na transport, factored by the tubular permeability coefficient added to a component of flux due to electrical forces. 2. The relation between bathing fluid Na concentraton and deltaC Na appeared sigmoid in form suggesting an allosteric mechanism for the transport step. 3. Transtubular potential difference, calculated from transepithelial Cl distribution ratios, did not appear constant at the various bathing fluid Na concentrations. Correcting for the effect of these potential differences on the value of each deltaC Na did not convert the sigmoid transport curve to a hyperbolic one, confirming the suggested allosteric nature of the active Na transport step. 4. Intracellular Na content varied linearly with bathing fluid Na concentrations implying free entry of this cation into the cell. This also suggests that the sigmoid transport curve is related to the properties of the active Na transport pump. PMID:856986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
NASA Astrophysics Data System (ADS)
Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun
2017-04-01
The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.
Effects of hyperoxia on thermoregulatory responses during feet immersion to hot water in humans.
Yamashita, Kazuaki; Tochihara, Yutaka
2003-07-01
This study examined effects of hyperoxia on thermoregulatory responses. Eight healthy male students (23.5+/-1.8 yrs) were involved in this study. They immersed their legs in a hot water bath (42 degrees C) for 60 minutes in a climate chamber. The conditions of oxygen concentration of a chamber were set at 21% (control), 25% (25%O(2)), and 30% (30%O(2)). Ambient temperature and relative humidity was maintained at 25 degrees C and 50% in every condition, respectively. Measurements included rectal temperature (Tre), skin temperature at 7 sites, laser Doppler flowmeter (LDF) on the back and forearm as an index of skin blood flow, heart rate, local sweat rate (Msw) on the back and forearm, and total body weight loss (BWL). Increases of Tre at 25%O(2) and 30%O(2) tended to be lower during the immersion than in the control. Mean skin temperature (Tsk) of the control increased gradually after the onset of sweating, while the Tsks at 25%O(2) and 30%O(2) maintained a constant level during sweating. LDFs on the forearm at 25%O(2) and 30%O(2) showed lower increases compared with the control. No significant differences in Msw on the back and the forearm and BWL were seen among the conditions. These results suggested that hyperoxia could not affect sweating responses but elicit an inhibitory effect on thermoregulatory skin blood flow.
Isolated core vs. superficial cooling effects on virtual maze navigation.
Payne, Jennifer; Cheung, Stephen S
2007-07-01
Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.
Oji, Vinzenz; Hautier, Juliette Mazereeuw; Ahvazi, Bijan; Hausser, Ingrid; Aufenvenne, Karin; Walker, Tatjana; Seller, Natalia; Steijlen, Peter M; Küster, Wolfgang; Hovnanian, Alain; Hennies, Hans Christian; Traupe, Heiko
2006-11-01
Bathing suit ichthyosis (BSI) is a striking and unique clinical form of autosomal recessive congenital ichthyosis characterized by pronounced scaling on the bathing suit areas but sparing of the extremities and the central face. Here we report on a series of 10 BSI patients. Our genetic, ultrastructural and biochemical investigations show that BSI is caused by transglutaminase-1 (TGase-1) deficiency. Altogether, we identified 13 mutations in TGM1-among them seven novel missense mutations and one novel nonsense mutation. Structural modeling for the Tyr276Asn mutation reveals that the residue is buried in the hydrophobic interior of the enzyme and that the hydroxyl side chain of Tyr276 is exposed to solvent in a cavity of the enzyme. Cryosections of healthy skin areas demonstrated an almost normal TGase activity, in contrast to the affected BSI skin, which only showed a cytoplasmic and clearly reduced TGase-1 activity. The distribution of TGase-1 substrates in the epidermis of affected skin corresponded to the situation in TGase-1 deficiency. Interestingly, the expression of TGase-3 and cathepsin D was reduced. Digital thermography validated a striking correlation between warmer body areas and presence of scaling in patients suggesting a decisive influence of the skin temperature. In situ TGase testing in skin of BSI patients demonstrated a marked decrease of enzyme activity when the temperature was increased from 25 to 37 degrees C. We conclude that BSI is caused by TGase-1 deficiency and suggest that it is a temperature-sensitive phenotype.
Coherence protection in coupled quantum systems
NASA Astrophysics Data System (ADS)
Cammack, H. M.; Kirton, P.; Stace, T. M.; Eastham, P. R.; Keeling, J.; Lovett, B. W.
2018-02-01
The interaction of a quantum system with its environment causes decoherence, setting a fundamental limit on its suitability for quantum information processing. However, we show that if the system consists of coupled parts with different internal energy scales then the interaction of one part with a thermal bath need not lead to loss of coherence from the other. Remarkably, we find that the protected part can remain coherent for longer when the coupling to the bath becomes stronger or the temperature is raised. Our theory will enable the design of decoherence-resistant hybrid quantum computers.
Volume holographic elements in Kodak 131 plates processed with SHSG method
NASA Astrophysics Data System (ADS)
Collados, Manuel V.; Atencia, Jesus; Lopez, Ana M.; Quintanilla, Manuel M.
2001-08-01
A SHSG procedure to register volume phase holograms in Kodak 131 plates is presented. We analyze the influence on the diffraction efficiency of the developing step and the temperature of the bleaching bath of usual SHSG processes. Applying a simple 12 steps process to form phase transmission holograms developing with D-19, bleaching with R-10 at 70 degrees C and removing the sensitizing dyes that remain in the emulsion with a diluted methanol bath after the fixation step, we obtain relative efficiencies of 100 percent and effective efficiencies of 70 percent.
Oxidation kinetics of molten copper sulfide
NASA Astrophysics Data System (ADS)
Alyaser, A. H.; Brimacombe, J. K.
1995-02-01
The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.
Steady bipartite coherence induced by non-equilibrium environment
NASA Astrophysics Data System (ADS)
Huangfu, Yong; Jing, Jun
2018-01-01
We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.
Process for preparing superconducting film having substantially uniform phase development
Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.
1995-01-01
A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.
Process for preparing superconducting film having substantially uniform phase development
Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.
1995-12-19
A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.
Pekala, Dobromila; Szkudlarek, Hanna; Raastad, Morten
2016-10-01
We studied the ability of typical unmyelinated cortical axons to conduct action potentials at fever-like temperatures because fever often gives CNS symptoms. We investigated such axons in cerebellar and hippocampal slices from 10 to 25 days old rats at temperatures between 30 and 43°C. By recording with two electrodes along axonal pathways, we confirmed that the axons were able to initiate action potentials, but at temperatures >39°C, the propagation of the action potentials to a more distal recording site was reduced. This temperature-sensitive conduction may be specific for the very thin unmyelinated axons because similar recordings from myelinated CNS axons did not show conduction failures. We found that the conduction fidelity improved with 1 mmol/L TEA in the bath, probably due to block of voltage-sensitive potassium channels responsible for the fast repolarization of action potentials. Furthermore, by recording electrically activated antidromic action potentials from the soma of cerebellar granule cells, we showed that the axons failed less if they were triggered 10-30 msec after another action potential. This was because individual action potentials were followed by a depolarizing after-potential, of constant amplitude and shape, which facilitated conduction of the following action potentials. The temperature-sensitive conduction failures above, but not below, normal body temperature, and the failure-reducing effect of the spike's depolarizing after-potential, are two intrinsic mechanisms in normal gray matter axons that may help us understand how the hyperthermic brain functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Process for forming a nickel foil with controlled and predetermined permeability to hydrogen
Engelhaupt, Darell E.
1981-09-22
The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.
Becerra, Rosa; Cannady, J Pat; Walsh, Robin
2011-05-05
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(∞) values in the range (1.9-4.5) × 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Eliminating Mercury Thermometers from the Lab.
ERIC Educational Resources Information Center
Everett, T. Stephen
1997-01-01
Compares the precision, accuracy, and response of a cooking probe to a standard mercury thermometer in side-by-side heating in temperature baths, simple and fractional distillations, and melting point determination. (DDR)
Diffusion and Electric Mobility of KCI within Isolated Cuticles of Citrus aurantium 1
Tyree, Melvin T.; Wescott, Charles R.; Tabor, Christopher A.; Morse, Anne D.
1992-01-01
Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution. PMID:16668971
Ahn, Joo-Seob; Kwon, Ji-Hye; Yang, Heesun
2013-06-01
ZnO film was grown on ZnO quantum dot seed layer-coated substrate by a low-temperature chemical bath deposition, where sodium citrate serves as a complexing agent for Zn2+ ion. The ZnO film deposited under the optimal condition exhibited a highly uniform surface morphology with a thickness of approimately 30 nm. For the fabrication of thin-film-transistor with a bottom-gate structure, ZnO film was chemically deposited on the transparent substrate of a seed layer-coated SiN(x)/ITO (indium tin oxide)/glass. As-deposited ZnO channel was baked at low temperatures of 60-200 degrees C to investigate the effect of baking temperature on electrical performances. Compared to the device with 60 degrees C-baked ZnO channel, the TFT performances of one with 200 degrees C-baked channel were substantially improved, exhibiting an on-off current ratio of 3.6 x 10(6) and a saturated field-effect mobility of 0.27 cm2/V x s.
NASA Astrophysics Data System (ADS)
Ashassi-Sorkhabi, H.; Dolati, H.; Parvini-Ahmadi, N.; Manzoori, J.
2002-01-01
Cupronickel alloys are known for their excellent corrosion resistance, especially in marine atmosphere. The development of an appropriate electroless bath involves the use of a reducing agent, complexing and stabilizing compounds and metallic salts. In this work, autocatalytic deposition of Ni-Cu-P alloys (28-95 wt.% Ni, 66-0 wt.% Cu, 7.5-3 wt.% P) has been carried out on 302 b steel sheets from bath containing: NiCl 2·6H 2O, CuCl 2·2H 2O, NaH 2PO 2, Na citrate, sulphosalicilic acid and triethanolamine. The effects of pH, temperature, and bath composition on the hardness and the composition of deposits have been studied. In addition, the deposition rates of alloy, nickel, copper and phosphorus were investigated and optimum conditions were obtained. The average rate of alloy deposition was 9 mg cm -2 h -1 and the optimum pH and temperature were 8.5 and 80 °C, respectively. The chemical stability of bath was desirable, and no spontaneous decomposition occurred. The changes in the structure of deposit by heat treatment were studied by the X-ray diffraction (XRD) method. The XRD patterns indicate that the copper content affects the structure changes. With increasing copper content, the phosphorus content decreased and the crystallinity of the deposits grew. After heat treatment of alloys with lower copper content at 400 °C for 1 h, the crystallization to Ni 3P was observed.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
Using electron-tunneling refrigerators to cool electrons, membranes, and sensors
NASA Astrophysics Data System (ADS)
Miller, Nathan A.
Many cryogenic devices require temperatures near 100 mK for optimal performance, such as thin-film, superconducting detectors. Examples include the submillimeter SCUBA camera on the James Clerk Maxwell Telescope, high-resolution X-ray sensors for semiconductor defect analysis, and a planned satellite to search for polarization in the cosmic microwave background. The cost, size, and complexity of refrigerators used to reach 100 mK (dilution and adiabatic demagnetization refrigerators) are significant and alternative technologies are desirable. We demonstrate work on developing a new option for cooling detectors to 100 mK bath temperatures. Solid-state refrigerators based on Normal metal/Insulator/Superconductor (NIS) tunnel junctions can provide cooling from pumped 3He bath temperatures (˜300 mK) to 100 mK. The cooling mechanism is the preferential tunneling of the highest energy (hottest) electrons from the normal metal through the biased tunnel junctions into the superconductor. When NIS refrigerators are combined with a micro-machined membrane, both the electrons and phonons of the membrane can be cooled. We have developed NIS-cooled membranes with both large temperature reductions and large cooling powers. We have shown the first cooling of a bulk material by cooling a neutron transmutation doped (NTD) thermistor. The fabrication of NIS refrigerators can be integrated with existing detector technology. For the first time, we have successfully integrated NIS refrigerators with both mm-wave and X-ray detectors. In particular, we have cooled X-ray detectors by more than 100 mK and have achieved a resolution of <10 eV at 6 keV at a bath temperature 85 mK above the transition temperature of the detector. The use of integrated NIS refrigerators makes the remarkable performance of cryogenic detectors available from 300 mK platforms. We have also performed preliminary work towards building a general-purpose cooling platform for microelectronics devices on separate chips.
Low temperature binary gas mixtures
NASA Astrophysics Data System (ADS)
McIntosh, Glen E.; Leonard, Kenneth R.
2017-12-01
Application of partial pressure technology to combinations of one gas above its critical temperature (helium) mixed with a two-phase liquid (nitrogen) can result in liquid temperatures down to and below the nitrogen triple point. The thermodynamics of this process is developed and an experimental apparatus is described which was used to produce a helium/nitrogen bath temperature of 59.17 K, 4 K lower than the 63.2 K nitrogen triple point and lower than any liquid nitrogen temperature reported in the literature.
X-band ultralow-noise maser amplifier performance
NASA Technical Reports Server (NTRS)
Glass, G. W.; Ortiz, G. G.; Johnson, D. L.
1994-01-01
Noise temperature measurements of an 8440-MHz ultralow noise maser amplifier (ULNA) have been performed at subatmospheric, liquid-helium temperatures. The traveling-wave maser was operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.43 +/- 0.16 K at a physical temperature of 1.60 K. At this physical temperature, the observed gain per centimeter of ruby was 4.9 dB/cm. The amplifier had a 3-dB bandwidth of 76 MHz.
On the exact solvability of the anisotropic central spin model: An operator approach
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-07-01
Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.
Molten Slag Would Boost Coal Conversion
NASA Technical Reports Server (NTRS)
Ferrall, J. F.
1984-01-01
Reactor increases residence time of uncovered char. Near-100percent carbon conversion achievable in reactor incorporating moltenslag bath. Slag maintains unconverted carbon impinging on surface at high temperatures for longer period of time, enhancing conversion.
Float processing of high-temperature complex silicate glasses and float baths used for same
NASA Technical Reports Server (NTRS)
Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)
2000-01-01
A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.
Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide
NASA Astrophysics Data System (ADS)
Hoobakht, Fatemeh; Ganji, Fariba; Vasheghani-Farahani, Ebrahim; Mousavi, Seyyed Mohammad
2013-09-01
Pyridostigmine bromide (PB) is an inhibitor of cholinesterase, which is used in the treatment of myasthenia gravis and administered for protection against exposure to toxic nerve agents. Tests were done to investigate prolonging the half-life of PB and improving its release behavior. PB was loaded in nanoparticles (NPs) of Eudragit RS PO (Eu-RS) prepared using the technique of quasi emulsion solvent diffusion. Variables of output power of the sonicator, bath temperature and mixing time, were chosen as the optimization factors to obtain the minimum sized NPs. In addition, emulsions were tested at different ratios of drug-to-polymer by dynamic light scattering to determine size and zeta potential of NPs. UV-spectroscopy was used to determine PB content of the NPs. Drug-loaded NPs were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectra. Results determined that mixing time had a significant impact on the size of Eu-RS NPs, but power output of sonicator and bath temperature had no significant effect. The particle size obtained at the optimum condition (power output of 70 W, bath temperature of 33 °C, and mixing time of 7 min) was less than 200 nm (optimum sizes were 138.9 and 179.5 nm for Eu-RS and PB-loaded Eu-RS NPs, respectively). The optimum PB-loaded Eu-RS NPs at the PB to Eu-RS weight ratio of 1-4 and 20 % of loaded PB released from the nanocarriers within 100 h.
Puhal Raj, A; Ramachandra Raja, C
2012-11-01
Nonlinear optical (NLO) organic inorganic hybrid l-Valine Zinc Sulphate (LVZS) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at 36°C using a constant temperature bath (CTB) with an accuracy of ±0.01°C. This crystal is reported with its characterization by single crystal and powder XRD, FTIR, UV-Vis-NIR, TG/DTA analysis and SHG test. Single crystal XRD study reveals that LVZS crystallizes in monoclinic system with the lattice constants a=9.969(3) Å, b=7.238(3) Å, c=24.334(9) Å and cell volume is 1736.00Å(3). Sharp peaks observed in powder X-ray diffraction studies confirm the high degree of crystallinity of grown crystal. The incorporation of sulphate ion with l-valine is confirmed by FTIR spectrum in LVZS crystal(.) A remarkable increase in optical transparency has been observed in LVZS when compared to l-valine and zinc sulphate heptahydrate Thermal properties of LVZS have been reported by using TG/DTA analysis. Kurtz powder second harmonic generation (SHG) test confirms NLO property of the crystal and SHG efficiency of LVZS was found to be 1.34 times more than pure l-valine. Copyright © 2012 Elsevier B.V. All rights reserved.
COOLING DEVICE FOR USE WITH A SONIC OSCILLATOR.
ROSETT, T
1965-03-01
A cooling cell is described that facilitates maintenance of biological materials at low temperatures during prolonged sonic treatment. Using this cell and a Branson S-75 Sonifier, I examined temperatures and the release of protein and enzyme activity from suspensions of Saccharomyces cerevisiae. With the Sonifier at full power, it was possible to maintain cell temperature within 9 C of the cooling-bath temperature, and to disrupt 10% (w/v) suspensions of S. cerevisiae in 10 min.
Liao, Yunxiang; Foster, Matthew S
2018-06-08
In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d=4-ε dimensions, and find a nontrivial fixed point corresponding to a temperature T^{*}∼ε>0 where the dephasing time diverges. Assuming that this fixed point survives to ε=2, we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d>1 spatial dimensions.
NASA Astrophysics Data System (ADS)
Liao, Yunxiang; Foster, Matthew S.
2018-06-01
In two dimensions, dephasing by a bath cuts off Anderson localization that would otherwise occur at any energy density for fermions with disorder. For an isolated system with short-range interactions, the system can be its own bath, exhibiting diffusive (non-Markovian) thermal density fluctuations. We recast the dephasing of weak localization due to a diffusive bath as a self-interacting polymer loop. We investigate the critical behavior of the loop in d =4 -ɛ dimensions, and find a nontrivial fixed point corresponding to a temperature T*˜ɛ >0 where the dephasing time diverges. Assuming that this fixed point survives to ɛ =2 , we associate it with a possible instability of the ergodic phase. Our approach may open a new line of attack against the problem of the ergodic to many-body-localized phase transition in d >1 spatial dimensions.
NASA Astrophysics Data System (ADS)
Hannachi, Amira; Maghraoui-Meherzi, Hager
2017-03-01
Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.
NASA Astrophysics Data System (ADS)
Moix, Jeremy M.; Cao, Jianshu
2013-10-01
The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
Moix, Jeremy M; Cao, Jianshu
2013-10-07
The hierarchical equations of motion technique has found widespread success as a tool to generate the numerically exact dynamics of non-Markovian open quantum systems. However, its application to low temperature environments remains a serious challenge due to the need for a deep hierarchy that arises from the Matsubara expansion of the bath correlation function. Here we present a hybrid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems. Benchmark calculations are presented on the dynamics of two level systems at both high and low temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First, exact energy transfer rates are calculated across a broad range of temperatures revealing the deviations from the Förster rates. This is followed by computations of the entanglement dynamics in a system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
A High-Emissivity Blackbody with Large Aperture for Radiometric Calibration at Low-Temperature
NASA Astrophysics Data System (ADS)
Ko, Hsin-Yi; Wen, Bor-Jiunn; Tsa, Shu-Fei; Li, Guo-Wei
2009-02-01
A newly designed high-emissivity cylindrical blackbody source with a large diameter aperture (54 mm), an internal triangular-grooved surface, and concentric grooves on the bottom surface was immersed in a temperature-controlled, stirred-liquid bath. The stirred-liquid bath can be stabilized to better than 0.05°C at temperatures between 30 °C and 70 °C, with traceability to the ITS-90 through a platinum resistance thermometer (PRT) calibrated at the fixed points of indium, gallium, and the water triple point. The temperature uniformity of the blackbody from the bottom to the front of the cavity is better than 0.05 % of the operating temperature (in °C). The heat loss of the cavity is less than 0.03 % of the operating temperature as determined with a radiation thermometer by removing an insulating lid without the gas purge operating. Optical ray tracing with a Monte Carlo method (STEEP 3) indicated that the effective emissivity of this blackbody cavity is very close to unity. The size-of-source effect (SSE) of the radiation thermometer and the effective emissivity of the blackbody were considered in evaluating the uncertainty of the blackbody. The blackbody uncertainty budget and performance are described in this paper.
Effects of microwaves on the colony-forming capacity of haemopoietic stem cells in mice.
Rotkovská, D; Vacek, A; Bartonícková, A
1987-01-01
A suspension of bone marrow cells from femurs of female (CBA X C57Bl)F1 mice was exposed to 2450 MHz CW microwaves in a specially designed waveguide exposure system. The temperature of the suspension rose, during exposure to microwaves, from 20 degrees C to 45 degrees C, and at an interval within 20 degrees C to 45 degrees C the number of haemopoietic stem cells (CFUs) was determined by the spleen exocolony method. The time of exposure of bone marrow cells to each temperature studied was 20 s. Control suspensions of bone marrow cells were exposed to a water bath temperature. There were no significant effects of the CFUs with the water bath temperature, while after exposure to microwaves the number of spleen colonies was elevated with a nadir at the temperature of 37 degrees C. With a microwave-induced increase of the temperature above 41 degrees C the number of CFUs in the bone marrow suspension decreased. The increase in the number of colonies was related to the rise in the seeding rate of the CFUs as well as to a rise in their proliferative activity, while the drop in the number of colonies was influenced also by heat-killing of the CFUs by microwave exposure.
Miscibility comparison for three refrigerant mixtures and four component refrigerants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, H.M.; Pate, M.B.
1999-07-01
Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibilitymore » tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.« less
Characterization of Kilopixel TES detector arrays for PIPER
NASA Astrophysics Data System (ADS)
Datta, Rahul; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Costen, Nicholas; Coughlin, Kevin; Dotson, Jessie; Eimer, Joseph; Fixsen, Dale; Gandilo, Natalie; Halpern, Mark; Essinger-Hileman, Thomas; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lazear, Justin; Lowe, Luke; Manos, George; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Pawlyk, Samuel; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Walts, Alexander; Wollack, Edward
2018-01-01
The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the Cosmic Microwave Background (CMB) at large angular scales. It will map 85% of the sky in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds and constrain the tensor-to-scalar ratio, r. The sky is imaged on to 32x40 pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers operating at a bath temperature of 100 mK to achieve background-limited sensitivity. Each kilopixel array is indium-bump-bonded to a 2D superconducting quantum interference device (SQUID) time-domain multiplexer (MUX) chip and read out by warm electronics. Each pixel measures total incident power over a frequency band defined by bandpass filters in front of the array, while polarization sensitivity is provided by the upstream Variable-delay Polarization Modulators (VPMs) and analyzer grids. We present measurements of the detector parameters from the laboratory characterization of the first kilopixel science array for PIPER including transition temperature, saturation power, thermal conductivity, time constant, and noise performance. We also describe the testing of the 2D MUX chips, optimization of the integrated readout parameters, and the overall pixel yield of the array. The first PIPER science flight is planned for June 2018 from Palestine, Texas.
Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH
NASA Astrophysics Data System (ADS)
Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.
2018-03-01
In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.
NASA Astrophysics Data System (ADS)
Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten
2016-03-01
Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.
Boros, Melinda; Benkó, Rita; Bölcskei, Kata; Szolcsányi, János; Barthó, Loránd; Pethő, Gábor
2013-12-01
The study aimed at validating an increasing-temperature water bath suitable for determining the noxious heat threshold for use in mice. The noxious heat threshold was determined by immersing the tail of the gently held awake mouse into a water container whose temperature was near-linearly increased at a rate of 24°C/min. until the animal withdrew its tail, that is, heating attained the noxious threshold. The effects of standard analgesic, neuroleptic and anxiolytic drugs were investigated in a parallel way on both the noxious heat threshold and the psychomotor activity assessed by the open field test. Morphine, diclofenac and metamizol (dipyrone) elevated the heat threshold of mice with minimum effective doses of 6, 30 and 1000 mg/kg i.p., respectively. These doses of morphine and diclofenac failed to induce any remarkable effect on psychomotor activity in the open field test while that of metamizol exerted a profound inhibition. The anxiolytic diazepam and the neuroleptic droperidol at doses evoking a mild and moderate, respectively, psychomotor inhibition failed to alter the heat threshold. Combination of a subliminal dose of morphine (regarding both antinociceptive and psychomotor inhibitory action) with diclofenac, metamizol, diazepam or droperidol at doses also subliminal regarding the thermal antinociceptive effect elevated the noxious heat threshold without major additional effects in the open field test. It is concluded that the increasing-temperature water bath is suitable for studying the thermal antinociceptive effects of morphine and diclofenac as well as the morphine-sparing action of diclofenac, metamizol, droperidol and diazepam. Behavioural testing is recommended when testing analgesics. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.
Statistical Contact Model for Confined Molecules
NASA Astrophysics Data System (ADS)
Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik
2016-08-01
A theory that describes in a realistic form a system of atoms under the effects of temperature and confinement is presented. The theory departs from a Lagrangian of the Zwanzig type and contains the main ingredients for describing a system of atoms immersed in a heat bath that is also formed by atoms. The equations of motion are derived according to Lagrangian mechanics. The application of statistical mechanics to describe the bulk effects greatly reduces the complexity of the equations. The resultant equations of motion are of the Langevin type with the viscosity and the temperature of the heat reservoir able to influence the trajectories of the particles. The pressure effects are introduced mechanically by using a container with an atomic structure immersed in the heat bath. The relevant variables that determine the equation of state are included in the formulation. The theory is illustrated by the derivation of the equation of state for a system with 76 atoms confined inside of a 180-atom fullerene-like cage that is immersed in fluid forming the heat bath at a temperature of 350 K and with the friction coefficient of 3.0 {ps}^{-1}. The atoms are of the type believed to form the cores of the Uranus and Neptune planets. The dynamic and the static pressures of the confined system are varied in the 3-5 KBar and 2-30 MBar ranges, respectively. The formulation can be equally used to analyze chemical reactions under specific conditions of pressure and temperature, determine the structure of clusters with their corresponding equation of state, the conditions for hydrogen storage, etc. The theory is consistent with the principles of thermodynamics and it is intrinsically ergodic, of general use, and the first of this kind.
Technical Status and Progress of Lead Recycling of Battery
NASA Astrophysics Data System (ADS)
Li, Wei-feng; Jiang, Li-hua; Zhan, Jing; Zhang, Chuan-fu
The characteristics of various components in waste lead acid battery are analyzed in this paper. The present status and the study progress situation in industry production and research field of recycling of waste lead acid battery and lead paste used broken-separation technology are introduced. The comparison of advantages and disadvantages in different industry processes is carried. The advantages of redox bath smelting of lead concentrate and lead paste are analyzed. The method of redox bath smelting will be a low-carbon, environmentally friendly and efficient processes of secondary lead production and can be intensive to desulfurize for high temperature pool.
Temperature- and field-dependent characterization of a conductor on round core cable
NASA Astrophysics Data System (ADS)
Barth, C.; van der Laan, D. C.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.
2015-06-01
The conductor on round core (CORC) cable is one of the major high temperature superconductor cable concepts combining scalability, flexibility, mechanical strength, ease of fabrication and high current density; making it a possible candidate as conductor for large, high field magnets. To simulate the boundary conditions of such magnets as well as the temperature dependence of CORC cables a 1.16 m long sample consisting of 15, 4 mm wide SuperPower REBCO tapes was characterized using the ‘FBI’ (force—field—current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a five step investigation, the CORC cable’s performance was determined at different transverse mechanical loads, magnetic background fields and temperatures as well as its response to swift current changes. In the first step, the sample’s 77 K, self-field current was measured in a liquid nitrogen bath. In the second step, the temperature dependence was measured at self-field condition and compared with extrapolated single tape data. In the third step, the magnetic background field was repeatedly cycled while measuring the current carrying capabilities to determine the impact of transverse Lorentz forces on the CORC cable sample’s performance. In the fourth step, the sample’s current carrying capabilities were measured at different background fields (2-12 T) and surface temperatures (4.2-51.5 K). Through finite element method simulations, the surface temperatures are converted into average sample temperatures and the gained field- and temperature dependence is compared with extrapolated single tape data. In the fifth step, the response of the CORC cable sample to rapid current changes (8.3 kA s-1) was observed with a fast data acquisition system. During these tests, the sample performance remains constant, no degradation is observed. The sample’s measured current carrying capabilities correlate to those of single tapes assuming field- and temperature dependence as published by the manufacturer.
Patil, Mahesh D; Shinde, Ashok S; Dev, Manoj J; Patel, Gopal; Bhilare, Kiran D; Banerjee, Uttam Chand
2018-06-08
Disruption of Pseudomonas putida KT2440 by ultrasound treatment in a bath sonicator, in presence of the glass beads, was carried out for the release of arginine deiminase (ADI) and the results were compared with that of by Dyno-mill. The release of ADI depended mainly on the bead size and cellmass concentration being disrupted in bead mill. Nearly 23 U/mL ADI was released when slurry with a cell-mass concentration of 250 g/L was disintegrated for 9 min with 80% bead loading (0.25 mm) in Dyno-mill. Marginally higher amount of ADI (24.1 U/mL) was released by the bath sonication of 250 g/L cellmass slurry for 30 min with the beads (0.1 mm) and a sonication power of 170 W. The glass beads, suspended along with the cellmass slurry in bath sonicator, efficiently disrupted the microbial cells to release ADI. Variation in the kinetic constants for the performance parameters implied that ADI release and cell disruption kinetics is a function of disruption technique used and the process variables thereof. Estimation of location factor suggested that selective release of ADI can be achieved. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Quantum simulation of the spin-boson model with a microwave circuit
NASA Astrophysics Data System (ADS)
Leppäkangas, Juha; Braumüller, Jochen; Hauck, Melanie; Reiner, Jan-Michael; Schwenk, Iris; Zanker, Sebastian; Fritz, Lukas; Ustinov, Alexey V.; Weides, Martin; Marthaler, Michael
2018-05-01
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji
2013-08-01
The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.
Verdegaal, Elisabeth-Lidwien J M M; Delesalle, Catherine; Caraguel, Charles G B; Folwell, Louise E; McWhorter, Todd J; Howarth, Gordon S; Franklin, Samantha H
2017-07-01
OBJECTIVE To evaluate use of a telemetric gastrointestinal (GI) pill to continuously monitor GI temperature in horses at rest and during exercise and to compare time profiles of GI temperature and rectal temperature. ANIMALS 8 Standardbred horses. PROCEDURES Accuracy and precision of the GI pill and a rectal probe were determined in vitro by comparing temperature measurements with values obtained by a certified resistance temperature detector (RTD) in water baths at various temperatures (37°, 39°, and 41°C). Subsequently, both GI and rectal temperature were recorded in vivo in 8 horses over 3 consecutive days. The GI temperature was recorded continuously, and rectal temperature was recorded for 3.5 hours daily. Comparisons were made between GI temperature and rectal temperature for horses at rest, during exercise, and after exercise. RESULTS Water bath evaluation revealed good agreement between the rectal probe and RTD. However, the GI pill systematically underestimated temperature by 0.14°C. In vivo, GI temperature data were captured with minimal difficulties. Most data loss occurred during the first 16 hours, after which the mean ± SD data loss was 8.6 ± 3.7%. The GI temperature was consistently and significantly higher than rectal temperature with an overall mean temperature difference across time of 0.27°C (range, 0.22° to 0.32°C). Mean measurement cessation point for the GI pill was 5.1 ± 1.0 days after administration. CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that the telemetric GI pill was a reliable and practical method for real-time monitoring of GI temperature in horses.
Stochastic thermodynamics, fluctuation theorems and molecular machines.
Seifert, Udo
2012-12-01
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Effects of tunnelling and asymmetry for system-bath models of electron transfer
NASA Astrophysics Data System (ADS)
Mattiat, Johann; Richardson, Jeremy O.
2018-03-01
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
McParland, Brent E; Paré, Peter D; Johnson, Peter R A; Armour, Carol L; Black, Judith L
2004-08-01
Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.
Computational Modeling of Arc-Slag Interaction in DC Furnaces
NASA Astrophysics Data System (ADS)
Reynolds, Quinn G.
2017-02-01
The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.
NASA Astrophysics Data System (ADS)
Kothari, Anjana
2017-05-01
ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Liu, Jienan; Yang, Yanfeng; Liu, Luming; Liu, Jiechao; Luo, Lijian; Ma, Yubao; Hong, Xin
Reduction kinetics of stainless steel slag in iron bath smelting reduction was studied at the temperature of 1500°C ˜ 1650°C. It was concluded that the reduction process consisted of two parts. That is to say smelting reduction was controlled by stainless steel slag melting initially and by interface reaction later. In order to increase smelting reaction rate, the melting point of slag should be decreased at the first stage and adjust the liquidity of slag at later stage. Smelting reaction rate will be accelerated by means of optimize the slag content. The optimal reduction result that all most all of the chromium in slag been recovered was obtained in temperature was 1500°C, basicity of slag was 1.0˜1.2, the value of Al2O3+MgO was 25%.
Volatilization of benzene and eight alkyl-substituted benzene compounds from water
Rathbun, R.E.; Tai, D.Y.
1988-01-01
Predicting the fate of organic compounds in streams and rivers often requires knowledge of the volatilization characteristics of the compounds. The reference-substance concept, involving laboratory-determined ratios of the liquid-film coefficients for volatilization of the organic compounds to the liquid-film coefficient for oxygen absorption, is used to predict liquid-film coefficients for streams and rivers. In the absence of experimental data, two procedures have been used for estimating these liquid-film coefficient ratios. These procedures, based on the molecular-diffusion coefficient and on the molecular weight, have been widely used but never extensively evaluated. Liquid-film coefficients for the volatilization of benzene and eight alkyl-substituted benzene compounds (toluene through n-octylbenzene) from water were measured in a constant-temperature, stirred water bath. Liquid-film coefficients for oxygen absorption were measured simultaneously. A range of water mixing conditions was used with a water temperature of 298.2 K. The ratios of the liquid-film coefficients for volatilization to the liquid-film coefficient for oxygen absorption for all of the organic compounds were independent of mixing conditions in the water. Experimental ratios ranged from 0.606 for benzene to 0.357 for n-octylbenzene. The molecular-diffusion-coefficient procedure accurately predicted the ratios for ethylbenzene through n-pentylbenzene with a power dependence of 0.566 on the molecular-diffusion coefficient, in agreement with published values. Predicted ratios for benzene and toluene were slightly larger than the experimental ratios. These differences were attributed to possible interactions between the molecules of these compounds and the water molecules and to benzene-benzene interactions that form dimers. Because these interactions also are likely to occur in natural waters, it was concluded that the experimental ratios are more correct than the predicted ratios for application purposes in the reference-substance concept. Predicted ratios for n-hexylbenzene, n-heptylbenzene, and n-octylbenzene were larger than the experimental ratios. These differences were attributed to a sorption-desorption process between these compounds and the surfaces of the constant-temperature water bath. Other experimental problems associated with preparing water solutions of these slightly soluble compounds also may have contributed to the differences. Because these processes are not part of the true volatilization process, it was concluded that the predicted ratios for these three compounds are probably more correct than the experimental ratios for application purposes in the reference-substance concept. Any model of the fate of these compounds in streams and rivers would have to include terms accounting for sorption processes, however. The molecular-weight procedure accurately predicted the ratios for ethylbenzene through n-pentylbenzene, but only if the power dependence on the molecular weight was decreased from the commonly used -0.500 to -0.427. Deviations for the low- and high-molecular-weight compounds were similar to those observed for the molecular-diffusion-coefficient procedure.
Hotspot relaxation dynamics in a current-carrying superconductor
NASA Astrophysics Data System (ADS)
Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.
2016-03-01
We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.
Billman, Hilary G.; Giersch, J. Joseph; Kappenman, K.M.; Muhlfeld, Clint C.; Webb, Molly A. H.
2013-01-01
Global climate change threatens to affect negatively the structure, function, and diversity of aquatic ecosystems worldwide. In alpine systems, the thermal tolerances of stream invertebrates can be assessed to understand better the potential effects of rising ambient temperatures and continued loss of glaciers and snowpack on alpine stream ecosystems. We measured the critical thermal maximum (CTM) and lethal temperature maximum (LTM) of the meltwater stonefly (Lednia tumana), a species limited to glacial and snowmelt-driven alpine streams in the Waterton–Glacier International Peace Park area and a candidate for listing under the US Endangered Species Act. We collected L. tumana nymphs from Lunch Creek in Glacier National Park, Montana (USA) and transported them to a laboratory at the University of Montana Flathead Lake Biological Station, Polson, Montana. We placed nymphs in a controlled water bath at 1 of 2 acclimation temperatures, 8.5 and 15°C. We increased water temperature at a constant rate of 0.3°C/min. We calculated the average CTM and LTM (± SD) for each acclimation temperature and compared them with Student’s t-tests. Predicted chronic temperature maxima were determined using the ⅓ rule. Mean LTMs were 32.3 ± 0.28°C and 31.05 ± 0.78°C in the 8.5 and 15°C acclimation treatments, respectively. CTM and LTM metrics were lower in the 15 than in the 8.5°C acclimation treatment, but these differences were not statistically significant (p > 0.05). The predicted chronic temperature maxima were 20.6 and 20.2°C for the 8.5 and 15°C acclimation treatments, respectively. More research is needed on the effects of chronic exposures to rising stream temperatures, but our results can be used to assess the potential effects of warming water temperatures on L. tumana and other aquatic macroinvertebrates in alpine ecosystems.
Racinais, Sébastien; Blonc, Stephen; Oksa, Juha; Hue, Olivier
2009-01-01
Seven male subjects volunteered to participate in an investigation of whether the diurnal increase in core temperature influences the effects of pre-cooling or passive warm-up on muscular power. Morning (07:00-09:00h) and afternoon (17:00-19:00h) evaluation of maximal power output during a cycling sprint was performed on different days in a control condition (room at 21.8 degrees C, 69% rh), after 30min of pre-cooling in a cold bath (16 degrees C), or after 30min of passive warm-up in a hot bath (38 degrees C). Despite an equivalent increase from morning to afternoon in core temperature in all conditions (+0.4 degrees C, P<0.05), power output displayed a diurnal increase in control condition only. A local cooling or heating of the leg in a neutral environment blunted the diurnal variation in muscular power. Because pre-cooling decreases muscle power, force and velocity irrespective of time-of-day, athletes should strictly avoid any cooling before a sprint exercise. In summary, diurnal variation in muscle power output seems to be more influenced by muscle rather than core temperature.
Continuous quantum error correction for non-Markovian decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089
2007-08-15
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less
Jiang, Z D; Zhao, G; Lu, G R
BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.
NASA Astrophysics Data System (ADS)
Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Sugenoya, Junichi; Miwa, Chihiro; Takada, Masumi
2014-08-01
To clarify the effects of isometric and isotonic exercise during mist sauna bathing on the cardiovascular function, thermoregulatory function, and metabolism, six healthy young men (22 ± 1 years old, height 173 ± 4 cm, weight 65.0 ± 5.0 kg) were exposed to a mist sauna for 10 min at a temperature of 40 °C, and relative humidity of 100 % while performing or not performing ˜30 W of isometric or isotonic exercise. The effect of the exercise was assessed by measuring tympanic temperature, heart rate, systolic and diastolic blood pressure, chest sweat rate, chest skin blood flow, and plasma catecholamine and cortisol, glucose, lactate, and free fatty acid levels. Repeated measures ANOVA showed no significant differences in blood pressure, skin blood flow, sweat rate, and total amount of sweating. Tympanic temperature increased more during isotonic exercise, and heart rate increase was more marked during isotonic exercise. The changes in lactate indicated that fatigue was not very great during isometric exercise. The glucose level indicated greater energy expenditure during isometric exercise. The free fatty acid and catecholamine levels indicated that isometric exercise did not result in very great energy expenditure and stress, respectively. The results for isotonic exercise of a decrease in lactate level and an increase in plasma free fatty acid level indicated that fatigue and energy expenditure were rather large while the perceived stress was comparatively low. We concluded that isotonic exercise may be a more desirable form of exercise during mist sauna bathing given the changes in glucose and free fatty acid levels.
THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wikus, P.; Bagdasarova, Y.; Figueroa-Feliciano, E.
2010-04-09
The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants.more » A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.« less
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
NASA Astrophysics Data System (ADS)
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Departement of Physics, Lampung University, Bandar Lampung; Triyana, K., E-mail: triyana@ugm.ac.id
In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weightmore » and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.« less
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
Oillic, Samuel; Lemoine, Eric; Gros, Jean-Bernard; Kondjoyan, Alain
2011-07-01
Cooking loss kinetics were measured on cubes and parallelepipeds of beef Semimembranosus muscle ranging from 1 cm × 1 cm × 1 cm to 7 cm × 7 cm × 28 cm in size. The samples were water bath-heated at three different temperatures, i.e. 50°C, 70°C and 90°C, and for five different times. Temperatures were simulated to help interpret the results. Pre-freezing the sample, difference in ageing time, and in muscle fiber orientation had little influence on cooking losses. At longer treatment times, the effects of sample size disappeared and cooking losses depended only on the temperature. A selection of the tests was repeated on four other beef muscles and on veal, horse and lamb Semimembranosus muscle. Kinetics followed similar curves in all cases but resulted in different final water contents. The shape of the kinetics curves suggests first-order kinetics. Copyright © 2011 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.
Thermoelectric unipolar spin battery in a suspended carbon nanotube.
Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang
2017-04-26
A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.
Versey, Nathan G; Gore, Christopher J; Halson, Shona L; Plowman, Jamie S; Dawson, Brian T
2011-09-01
We determined the validity and reliability of heat flow thermistors, flexible thermocouple probes and general purpose thermistors compared with a calibrated reference thermometer in a stirred water bath. Validity (bias) was defined as the difference between the observed and criterion values, and reliability as the repeatability (standard deviation or typical error) of measurement. Data were logged every 5 s for 10 min at water temperatures of 14, 26 and 38 °C for ten heat flow thermistors and 24 general purpose thermistors, and at 35, 38 and 41 °C for eight flexible thermocouple probes. Statistical analyses were conducted using spreadsheets for validity and reliability, where an acceptable bias was set at ±0.1 °C. None of the heat flow thermistors, 17% of the flexible thermocouple probes and 71% of the general purpose thermistors met the validity criterion for temperature. The inter-probe reliabilities were 0.03 °C for heat flow thermistors, 0.04 °C for flexible thermocouple probes and 0.09 °C for general purpose thermistors. The within trial intra-probe reliability of all three temperature probes was 0.01 °C. The results suggest that these temperature sensors should be calibrated individually before use at relevant temperatures and the raw data corrected using individual linear regression equations.
NASA Astrophysics Data System (ADS)
Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac
2018-06-01
The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.
NASA Astrophysics Data System (ADS)
Boda, Dezső; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk
2011-02-01
The selectivity filter of the L-type calcium channel works as a Ca2 + binding site with a very large affinity for Ca2 + versus Na+. Ca2 + replaces half of the Na+ ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na+) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca2 +). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca2 + versus Na+ selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.
Boda, Dezso; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk
2011-02-07
The selectivity filter of the L-type calcium channel works as a Ca(2+) binding site with a very large affinity for Ca(2+) versus Na(+). Ca(2+) replaces half of the Na(+) ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na(+)) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca(2+)). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca(2+) versus Na(+) selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.
LaGraff, John R; Chu-LaGraff, Quynh
2006-05-09
Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.
Larkin, Allie C; Nestler, Matthew J; Smith, Caleb A; Heard, George L; Setser, Donald W; Holmes, Bert E
2016-10-03
Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD=CDCl under the conditions of the experiments. The experimental rate constants were 2.7 x107 and 0.47 x107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈ 66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 x 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. Based upon the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2Cl-CHCl2 molecules with 86 kcal mol-1 of energy in order to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and... (2 in.). Immerse the impingers in an ice water bath and maintain near 0 °C (32 °F). The scrubber...
40 CFR Appendix A-6 to Part 60 - Test Methods 16 through 18
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintaining the probe, filter box, and connections at a temperature of at least 120 °C (248 °F). Moisture is... temperature is above 0 °C (32 °F). Alternatively, moisture may be eliminated by heating the sample line, and... (2 in.). Immerse the impingers in an ice water bath and maintain near 0 °C (32 °F). The scrubber...
Dilute acid pretreatment of corncob for efficient sugar production
G.S. Wang; Jae-Won Lee; Junyong Zhu; Thomas W. Jeffries
2011-01-01
Aqueous dilute acid pretreatments of corncob were conducted using cylindrical pressure vessels in an oil bath. Pretreatments were conducted in a temperature range of 160â190 °C with acid-solution-to-solid-corncob ratio of 2. The acid concentration (v/v) in the pretreatment solution was varied from 0% to 0.7%, depending on temperature. This gives acid charge on ovendry-...
Risk of hydrocyanic acid release in the electroplating industry.
Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A
2000-01-07
This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated.
Mathematical Model of Solidification During Electroslag Casting of Pilger Roll
NASA Astrophysics Data System (ADS)
Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin
A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.
Step Density Profiles in Localized Chains
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius
2017-06-01
We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum
NASA Astrophysics Data System (ADS)
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990), 10.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988), 10.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ /ωb<0.26 ), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ˜10 % ) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Quantum Kramers model: Corrections to the linear response theory for continuous bath spectrum.
Rips, Ilya
2017-01-01
Decay of the metastable state is analyzed within the quantum Kramers model in the weak-to-intermediate dissipation regime. The decay kinetics in this regime is determined by energy exchange between the unstable mode and the stable modes of thermal bath. In our previous paper [Phys. Rev. A 42, 4427 (1990)PLRAAN1050-294710.1103/PhysRevA.42.4427], Grabert's perturbative approach to well dynamics in the case of the discrete bath [Phys. Rev. Lett. 61, 1683 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.1683] has been extended to account for the second order terms in the classical equations of motion (EOM) for the stable modes. Account of the secular terms reduces EOM for the stable modes to those of the forced oscillator with the time-dependent frequency (TDF oscillator). Analytic expression for the characteristic function of energy loss of the unstable mode has been derived in terms of the generating function of the transition probabilities for the quantum forced TDF oscillator. In this paper, the approach is further developed and applied to the case of the continuous frequency spectrum of the bath. The spectral density functions of the bath of stable modes are expressed in terms of the dissipative properties (the friction function) of the original bath. They simplify considerably for the one-dimensional systems, when the density of phonon states is constant. Explicit expressions for the fourth order corrections to the linear response theory result for the characteristic function of the energy loss and its cumulants are obtained for the particular case of the cubic potential with Ohmic (Markovian) dissipation. The range of validity of the perturbative approach in this case is determined (γ/ω_{b}<0.26), which includes the turnover region. The dominant correction to the linear response theory result is associated with the "work function" and leads to reduction of the average energy loss and its dispersion. This reduction increases with the increasing dissipation strength (up to ∼10%) within the range of validity of the approach. We have also calculated corrections to the depopulation factor and the escape rate for the quantum and for the classical Kramers models. Results for the classical escape rate are in very good agreement with the numerical simulations for high barriers. The results can serve as an additional proof of the robustness and accuracy of the linear response theory.
Yun, Xiao; Quarini, Giuseppe L
2017-03-13
We demonstrate a method for the study of the heat and mass transfer and of the freezing phenomena in a subcooled brine environment. Our experiment showed that, under the proper conditions, ice can be produced when water is introduced to a bath of cold brine. To make ice form, in addition to having the brine and water mix, the rate of heat transfer must bypass that of mass transfer. When water is introduced in the form of tiny droplets to the brine surface, the mode of heat and mass transfer is by diffusion. The buoyancy stops water from mixing with the brine underneath, but as the ice grows thicker, it slows down the rate of heat transfer, making ice more difficult to grow as a result. When water is introduced inside the brine in the form of a flow, a number of factors are found to influence how much ice can form. Brine temperature and concentration, which are the driving forces of heat and mass transfer, respectively, can affect the water-to-ice conversion ratio; lower bath temperatures and brine concentrations encourage more ice to form. The flow rheology, which can directly affect both the heat and mass transfer coefficients, is also a key factor. In addition, the flow rheology changes the area of contact of the flow with the bulk fluid.
Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id
2014-02-24
ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine)more » and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.« less
NASA Astrophysics Data System (ADS)
Yazdanparast, Sanaz
2016-12-01
Cuprous oxide (Cu2O) thin films were electrodeposited cathodically from a highly alkaline bath using tartrate as complexing agent. Different microstructures for Cu2O thin films were achieved by varying the applied potential from -0.285 to -0.395 V versus a reference electrode of Ag/AgCl at 50 °C in potentiostatic mode, and separately by changing the bath temperature from 25 to 50 °C in galvanostatic mode. Characterization experiments showed that both grain size and orientation of Cu2O can be controlled by changing the applied potential. Applying a high negative potential of -0.395 V resulted in smaller grain size of Cu2O thin films with a preferred orientation in [111] direction. An increase in the bath temperature in galvanostatic electrodeposition increased the grain size of Cu2O thin films. All the films in Au/Cu2O/Au-Pd cell showed unipolar resistance switching behavior after an initial FORMING process. Increasing the grain size of Cu2O thin films and decreasing the top electrode area increased the FORMING voltage and decreased the current level of high resistance state (HRS). The current in low resistance state (LRS) was independent of the top electrode area and the grain size of deposited films, suggesting a filamentary conduction mechanism in unipolar resistance switching of Cu2O.
Fourier's law for quasi-one-dimensional chaotic quantum systems
NASA Astrophysics Data System (ADS)
Seligman, Thomas H.; Weidenmüller, Hans A.
2011-05-01
We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.
Le Goff, Anne; Quéré, David; Clanet, Christophe
2014-09-21
We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.
2012-11-05
investigate phase transformations in TiO2 NTs after annealing and as a consequence of the functionalization. Electrodeposition was performed in a...deposition Cu2O electrodeposition was performed by polarizing the Ti/TiO2 NTs electrodes at UE = - 0.4 V in the CuSO4 containing bath described in...polarization (UE = - 0.4 V) in the electrodeposition solution (see experimental section). As shown in Fig. 6, in spite of the constant polarizing voltage (i.e
Effects of heat and cold on health, with special reference to Finnish sauna bathing.
Heinonen, Ilkka; Laukkanen, Jari A
2018-05-01
Environmental stress such as extremely warm or cold temperature is often considered a challenge to human health and body homeostasis. However, the human body can adapt relatively well to heat and cold environments, and recent studies have also elucidated that particularly heat stress might be even highly beneficial for human health. Consequently, the aim of the present brief review is first to discuss general cardiovascular and other responses to acute heat stress, followed by a review of beneficial effects of Finnish sauna bathing on general and cardiovascular health and mortality as well as dementia and Alzheimer's disease risk. Plausible mechanisms included are improved endothelial and microvascular function, reduced blood pressure and arterial stiffness, and possibly increased angiogenesis in humans, which are likely to mediate the health benefits of sauna bathing. In addition to heat exposure with physiological adaptations, cold stress-induced physiological responses and brown fat activation on health are also discussed. This is important to take into consideration, as sauna bathing is frequently associated with cooling periods in cold(er) environments, but their combination remains poorly investigated. We finally propose, therefore, that possible additive effects of heat- and cold-stress-induced adaptations and effects on health would be worthy of further investigation.
Performance of three systems for warming intravenous fluids at different flow rates.
Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A
2006-02-01
This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.
Burnout Test of First- and Second-Generation HTS Tapes in Liquid-Nitrogen Bath Cooling
NASA Astrophysics Data System (ADS)
Young, M. A.; Demko, J. A.; Duckworth, R. C.; Lue, J. W.; Gouge, M. J.; Pace, M. O.
2004-06-01
A series of BSCCO-2223 and YBCO tapes were subjected to burnout tests in a liquid-nitrogen bath to observe operational stability limits when different layers of dielectric tape are added to the sample surface. In this study, the BSCCO tapes were composed of a silver/alloy sheath with nickel/copper plating, while the YBCO tapes had a 50-μm layer of copper attached to the silver surface. After attaching the tapes to a thermally insulated G-10 holder, the stability of the tapes was found by applying current greater than the critical current and holding it constant for up to 1 min. If the sample voltage increased rapidly during this period, the tape was considered unstable at this current. This was repeated at different layers of Cryoflex™, and the results were compared to a numerical simulation of the energy balance equation. This simulation was also utilized to investigate the effect of the layers on the stability limit and estimate the thermal conductivity of the Cryoflex™.
NASA Astrophysics Data System (ADS)
Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan
2017-10-01
Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.
Agrawal, M; Vasyuchka, V I; Serga, A A; Karenowska, A D; Melkov, G A; Hillebrands, B
2013-09-06
We present spatially resolved measurements of the magnon temperature in a magnetic insulator subject to a thermal gradient. Our data reveal an unexpectedly close correspondence between the spatial dependencies of the exchange magnon and phonon temperatures. These results indicate that if--as is currently thought--the transverse spin Seebeck effect is caused by a temperature difference between the magnon and phonon baths, it must be the case that the magnon temperature is spectrally nonuniform and that the effect is driven by the sparsely populated dipolar region of the magnon spectrum.
Memory Metals (MEMRYSAFE, FIRECHEK, ULTRAVALVE)
NASA Technical Reports Server (NTRS)
1991-01-01
A NASA contract led Memry Corporation to the development of commercial products based upon Shape Memory Effect, or the ability of certain metal alloys to change from one shape to another with temperature changes. MEMRYSAFE instantly restricts water flow in shower or sinks before scalding. ULTRAVALVE allows a user to preselect a bathing temperature. FIRECHEK is a fire control safety valve that detects unsafe temperatures and shuts off pneumatic pressure that operates control valves in industrial process lines containing hazardous gases or fluids.
Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.
Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J
2004-02-06
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
NASA Astrophysics Data System (ADS)
Yang, Xue-Min; Li, Jin-Yan; Chai, Guo-Ming; Duan, Dong-Ping; Zhang, Jian
2016-08-01
According to the experimental results of hot metal dephosphorization by CaO-based slags at a commercial-scale hot metal pretreatment station, the collected 16 models of equilibrium quotient k_{{P}} or phosphorus partition L_{{P}} between CaO-based slags and iron-based melts from the literature have been evaluated. The collected 16 models for predicting equilibrium quotient k_{{P}} can be transferred to predict phosphorus partition L_{{P}} . The predicted results by the collected 16 models cannot be applied to be criteria for evaluating k_{{P}} or L_{{P}} due to various forms or definitions of k_{{P}} or L_{{P}} . Thus, the measured phosphorus content [pct P] in a hot metal bath at the end point of the dephosphorization pretreatment process is applied to be the fixed criteria for evaluating the collected 16 models. The collected 16 models can be described in the form of linear functions as y = c0 + c1 x , in which independent variable x represents the chemical composition of slags, intercept c0 including the constant term depicts the temperature effect and other unmentioned or acquiescent thermodynamic factors, and slope c1 is regressed by the experimental results of k_{{P}} or L_{{P}} . Thus, a general approach to developing the thermodynamic model for predicting equilibrium quotient k_{{P}} or phosphorus partition L P or [pct P] in iron-based melts during the dephosphorization process is proposed by revising the constant term in intercept c0 for the summarized 15 models except for Suito's model (M3). The better models with an ideal revising possibility or flexibility among the collected 16 models have been selected and recommended. Compared with the predicted result by the revised 15 models and Suito's model (M3), the developed IMCT- L_{{P}} model coupled with the proposed dephosphorization mechanism by the present authors can be applied to accurately predict phosphorus partition L_{{P}} with the lowest mean deviation δ_{{L_{{P}} }} of log L_{{P}} as 2.33, as well as to predict [pct P] in a hot metal bath with the smallest mean deviation δ_{{[% {{ P}}]}} of [pct P] as 12.31.
Improved nickel plating of Inconel X-750
NASA Technical Reports Server (NTRS)
Farmer, M. E.; Feeney, J. E.; Kuster, C. A.
1969-01-01
Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
Dantsker, David; Samuni, Uri; Friedman, Joel M; Agmon, Noam
2005-06-01
Geminate CO rebinding in myoglobin is studied for two viscous solvents, trehalose and sol-gel (bathed in 100% glycerol) at several temperatures. Mutations in key distal hemepocket residues are used to eliminate or enhance specific relaxation modes. The time-resolved data are analyzed with a modified Agmon-Hopfield model which is capable of providing excellent fits in cases where a single relaxation mode is dominant. Using this approach, we determine the relaxation rate constants of specific functionally important modes, obtaining also their Arrhenius activation energies. We find a hierarchy of distal pocket modes controlling the rebinding kinetics. The "heme access mode" (HAM) is responsible for the major slow-down in rebinding. It is a solvent-coupled cooperative mode which restricts ligand return from the xenon cavities. Bulky side-chains, like those His64 and Trp29 (in the L29W mutant), operate like overdamped pendulums which move over and block the binding site. They may be either unslaved (His64) or moderately slaved (Trp29) to the solvent. Small side-chain relaxations, most notably of leucines, are revealed in some mutants (V68L, V68A). They are conjectured to facilitate inter-cavity ligand motion. When all relaxations are arrested (H64L in trehalose), we observe pure inhomogeneous kinetics with no temperature dependence, suggesting that proximal relaxation is not a factor on the investigated timescale.
Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.
Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N
2016-08-11
Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.
Delivery system for molten salt oxidation of solid waste
Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.
2002-01-01
The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.
NASA Astrophysics Data System (ADS)
Long, Fei; Zhu, Jia-Pei
2018-07-01
A Brownian particle optically trapped in an asymmetric double potential surrounded by a thermal bath was simulated. Under the cooperative action of the resultant deterministic optical force and the stochastic fluctuations of the thermal bath, the confined particle undergoes Kramers transition, and oscillates between the two traps with a probability of trap occupancy that is asymmetrically distributed about the midpoint. The simulation results obtained at different temperatures indicate that the oscillation behavior of the particle can be treated as the result of a tug-of-war game played between the resultant deterministic force and the random force. We also employ a bistable model to explain the observed phenomena.
Vial OrganicTM-Organic Chemistry Labs for High School and Junior College
NASA Astrophysics Data System (ADS)
Russo, Thomas J.; Meszaros, Mark
1999-01-01
Vial Organic is the most economical, safe, and time-effective method of performing organic chemistry experiments. Activities are carried out in low-cost, sealed vials. Vial Organic is extremely safe because only micro quantities of reactants are used, reactants are contained in tightly sealed vials, and only water baths are used for temperature control. Vial Organic laboratory activities are easily performed within one 50-minute class period. When heat is required, a simple hot-water bath is prepared from a beaker of water and an inexpensive immersion heater. The low cost, ease of use, and relatively short time requirement will allow organic chemistry to be experienced by more students with less confusion and intimidation.
Junginger, Andrej; Garcia-Muller, Pablo L; Borondo, F; Benito, R M; Hernandez, Rigoberto
2016-01-14
The reaction rate rises and falls with increasing density or friction when a molecule is activated by collisions with the solvent particles. This so-called Kramers turnover has recently been observed in the isomerization reaction of LiCN in an argon bath. In this paper, we demonstrate by direct comparison with those results that a reduced-dimensional (generalized) Langevin description gives rise to similar reaction dynamics as the corresponding (computationally expensive) full molecular dynamics calculations. We show that the density distributions within the Langevin description are in direct agreement with the full molecular dynamics results and that the turnover in the reaction rates is reproduced qualitatively and quantitatively at different temperatures.
Enhancement of thermal response of normal and malignant tissues by Corynebacterium parvum. [Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urano, M.; Yamashita, T.; Suit, H.D.
1984-06-01
Further studies were carried out on the combined effects of Corynebacterium parvum and hyperthermia on animal tissues and cultured Chinese hamster ovary cells. Experimental animals were C3Hf/Sed mice derived from a defined flora mouse colony. Tumors were eighth-generation isotransplants of a spontaneous fibrosarcoma, FSa-II. Hyperthermia was given by immersing the mouse foot or culture flasks in the constant temperature water bath. Present experiments include thermal enhancement of C. parvum at different temperatures, effect of the agent on the kinetics of thermal resistance, and the mechanism of the thermal enhancement. The thermal enhancement by C. parvum was independent of temperature inmore » a range between 42.5 and 46.5 degrees, and it increased with decreasing temperature. The analysis of the Arrhenius plot suggested a comparable activation energy for combined treatments and for heat alone between 42.5 and 46.5 degrees. The thermal resistance developed very rapidly in both normal and tumor tissues. Systemic administration of C. parvum failed to modify the kinetics of thermal resistance. Several experiments were attempted in order to disclose the mechanism. A single injection of C. parvum-induced macrophages failed to enhance thermal response of the mouse foot, while 3 daily injections of the macrophages enhanced the response, indicating that the enhancement by C. parvum is at least partly attributed to the C. parvum-induced macrophages. Whole-body irradiation of 6 Gy and/or administration of anti-mouse T-cell serum and histamine failed to inhibit the C. parvum enhancement of thermal response. No thermal enhancement was observed for Chinese hamster ovary cells treated at 43.0 degrees in vitro with C. parvum or thiomersalate, a preservative supplemented in C. parvum, although cytotoxic effect was shown at a high concentration of thiomersalate.« less
CONTINUOUS FILAMENT CERAMIC FIBER
high-silica glass compositions. NbB2 gave the most promising results of the materials examined. Time and temperature relationships as well as variations...in bath composition were investigated in an effort to improve premelt characteristics. The addition of V2O5 was particularly effective. It had been
Quantum harmonic oscillator in a thermal bath
NASA Technical Reports Server (NTRS)
Zhang, Yuhong
1993-01-01
The influence functional path-integral treatment of quantum Brownian motion is briefly reviewed. A newly derived exact master equation of a quantum harmonic oscillator coupled to a general environment at arbitrary temperature is discussed. It is applied to the problem of loss of quantum coherence.
NASA Astrophysics Data System (ADS)
Selvaraju, V.; Thangaraj, V.
2018-05-01
The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.
Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei
2014-05-07
The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and themore » coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.« less
Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.
Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L
2014-07-01
Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.
A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.
Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A
2003-07-01
A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.
Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities
Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.
2006-01-01
Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities investigated because of their much lower tap-water concentrations. Future studies will address the effects that changes in these common water-use activities may have on exposure. PMID:16581538
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.
CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.
2010-02-01
Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.
NASA Astrophysics Data System (ADS)
Cannoni, Mirco
2015-03-01
We show that the standard theory of thermal production and chemical decoupling of WIMPs is incomplete. The hypothesis that WIMPs are produced and decouple from a thermal bath implies that the rate equation the bath particles interacting with the WIMPs is an algebraic equation that constraints the actual WIMPs abundance to have a precise analytical form down to the temperature . The point , which coincides with the stationary point of the equation for the quantity , is where the maximum departure of the WIMPs abundance from the thermal value is reached. For each mass and total annihilation cross section , the temperature and the actual WIMPs abundance are exactly known. This value provides the true initial condition for the usual differential equation that have to be integrated in the interval . The matching of the two abundances at is continuous and differentiable. The dependence of the present relic abundance on the abundance at an intermediate temperature is an exact result. The exact theory suggests a new analytical approximation that furnishes the relic abundance accurate at the level of 1-2 % in the case of -wave and -wave scattering cross sections. We conclude the paper studying the evolution of the WIMPs chemical potential and the entropy production using methods of non-equilibrium thermodynamics.
Díaz, P; Linares, M B; Egea, M; Auqui, S M; Garrido, M D
2014-12-01
The aim was to study the effect of the incubation method and TBA reagent (concentration/solvent) on yellow pigment interference in meat products. Distillates from red sausage, sucrose, malondialdehyde and a mixture of sucrose-malondialdehyde were reacted with four different TBA solutions at five different temperature/time relations. Two TBA solutions were prepared at 20mM using 90% glacial acetic acid or 3.86% perchloric acid. In addition, an 80mM TBA solution was prepared using distilled water adjusted to pH4 and another using 0.8% TBA in distilled water. The temperature/time relations were: (1) 35min in a boiling water bath; (2) 70°C/30min; (3) 40°C/90min; (4) room temperature (r.t.) (24°C) in dark conditions for 20h; and (5) 60min in a boiling water bath. The results showed that aqueous or diluted acid solutions of TBA reagent and the application of 100°C for less than 1h provided the best conditions to minimize the presence of yellow pigments and maximize pink pigment formation in meat products. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Temperature Affects Fatty Acids In Methylococcus Capsulatus
NASA Technical Reports Server (NTRS)
Jahnke, Linda L.
1993-01-01
According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.
Boudjada, Nazim; Segal, Dvira
2014-11-26
We study in a unified manner the dissipative dynamics and the transfer of heat in the two-bath spin-boson model. We use the Bloch-Redfield (BR) formalism, valid in the very weak system-bath coupling limit, the noninteracting-blip approximation (NIBA), applicable in the nonadiabatic limit, and iterative, numerically exact path integral tools. These methodologies were originally developed for the description of the dissipative dynamics of a quantum system, and here they are applied to explore the problem of quantum energy transport in a nonequilibrium setting. Specifically, we study the weak-to-intermediate system-bath coupling regime at high temperatures kBT/ħ > ε, with ε as the characteristic frequency of the two-state system. The BR formalism and NIBA can lead to close results for the dynamics of the reduced density matrix (RDM) in a certain range of parameters. However, relatively small deviations in the RDM dynamics propagate into significant qualitative discrepancies in the transport behavior. Similarly, beyond the strict nonadiabatic limit NIBA's prediction for the heat current is qualitatively incorrect: It fails to capture the turnover behavior of the current with tunneling energy and temperature. Thus, techniques that proved meaningful for describing the RDM dynamics, to some extent even beyond their rigorous range of validity, should be used with great caution in heat transfer calculations, because qualitative-serious failures develop once parameters are mildly stretched beyond the techniques' working assumptions.
Sliding bubbles on a hot horizontal wire in a subcooled bath
NASA Astrophysics Data System (ADS)
Duchesne, Alexis; Dubois, Charles; Caps, Hervé
2015-11-01
When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.
Simulation of Flow Fluid in the BOF Steelmaking Process
NASA Astrophysics Data System (ADS)
Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei
2013-12-01
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.
METHOD OF HOT ROLLING URANIUM METAL
Kaufmann, A.R.
1959-03-10
A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.
Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface
NASA Astrophysics Data System (ADS)
Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.
2017-10-01
In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.
Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates
NASA Astrophysics Data System (ADS)
Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.
2006-12-01
Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).
Temperature Dependence Of Elastic Constants Of Polymers
NASA Technical Reports Server (NTRS)
Simha, Robert; Papazoglou, Elisabeth
1989-01-01
Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.
2014-03-27
in a thin conductive layer, the wafer surface can be made into the cathode while using a stainless steel plate as an anode. Bath temperature, voltage...beakers with polytetrafluoroethylene (PTFE) tools while under a fume hood, as HF is known to attack glass and polystyrene [62]. Additionally
Dust-bathing behavior of laying hens in enriched colony housing systems and an aviary system
Louton, H.; Bergmann, S.; Reese, S.; Erhard, M. H.; Rauch, E.
2016-01-01
The dust-bathing behavior of Lohmann Selected Leghorn hens was compared in 4 enriched colony housing systems and in an aviary system. The enriched colony housing systems differed especially in the alignment and division of the functional areas dust bath, nest, and perches. Forty-eight-hour video recordings were performed at 3 time-points during the laying period, and focal animal sampling and behavior sampling methods were used to analyze the dust-bathing behavior. Focal animal data included the relative fractions of dust-bathing hens overall, of hens bathing in the dust-bath area, and of those bathing on the wire floor throughout the day. Behavior data included the number of dust-bathing bouts within a predefined time range, the duration of 1 bout, the number of and reasons for interruptions, and the number of and reasons for the termination of dust-bathing bouts. Results showed that the average duration of dust bathing varied between the 4 enriched colony housing systems compared with the aviary system. The duration of dust-bathing bouts was shorter than reported under natural conditions. A positive correlation between dust-bathing activity and size of the dust-bath area was observed. Frequently, dust baths were interrupted and terminated by disturbing influences such as pecking by other hens. This was especially observed in the enriched colony housing systems. In none of the observed systems, neither in the enriched colony housing nor in the aviary system, were all of the observed dust baths terminated “normally.” Dust bathing behavior on the wire mesh rather than in the provided dust-bath area generally was observed at different frequencies in all enriched colony housing systems during all observation periods, but never in the aviary system. The size and design of the dust-bath area influenced the prevalence of dust-bathing behavior in that small and subdivided dust-bath areas reduced the number of dust-bathing bouts but increased the incidence of sham dust bathing on the wire mesh. PMID:27044875
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
A Third Generation Water Bath Based Blackbody Source
Fowler, Joel B.
1995-01-01
A third generation water bath based black-body source has been designed and constructed in the Radiometric Physics Division at the National Institute of Standards and Technology, Gaithersburg, MD. The goal of this work was to design a large aperture blackbody source with improved temporal stability and reproducibility compared with earlier designs, as well as improved ease of use. These blackbody sources operate in the 278 K to 353 K range with water temperature combined standard uncertainties of 3.5 mK to 7.8 mK. The calculated emissivity of these sources is 0.9997 with a relative standard uncertainty of 0.0003. With a 50 mm limiting aperture at the cavity; entrance, the emissivity increases to 0.99997. PMID:29151763
Thermodynamic cycle in a cavity optomechanical system
NASA Astrophysics Data System (ADS)
Ian, Hou
2014-07-01
A cavity optomechanical system is initiated by the radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as by cooling its effective temperature. Here, we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modelling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.
PIPER Continuous Adiabatic Demagnetization Refrigerator
NASA Technical Reports Server (NTRS)
Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.
2017-01-01
We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.
Garcia-Muller, Pablo L; Hernandez, Rigoberto; Benito, R M; Borondo, F
2014-08-21
The isomerization between CN-Li and Li-CN in an argon bath provides a paradigmatic example of a reaction in a solvent with tunable coupling. In previous work, we found that the rates exhibited a turnover with the density of the argon bath in the limit that the CN bond was held fixed [P. L. Garcia-Muller, R. Hernandez, R. M. Benito, and F. Borondo, J. Chem. Phys. 137, 204301 (2012)]. Here, we report the effect of the CN bond vibration on the dynamics and the persistence of the turnover. As hypothesized earlier, the CN bond is indeed weakly coupled with the reaction path despite the presence of the argon cage.
Induced Pacemaker Activity on Toad Skin
Bueno, Enrique J.; Corchs, Lelio
1968-01-01
The electrical transients produced on the isolated abdominal skin obtained from Bufo arenarum Hensel, under the influence of inward current pulses of constant intensity have been studied. When both faces of the skin are bathed with Ringer's solution, short pulses of inward current give rise to transient variations of the potential difference between both faces of the skin with "all-or-nothing" characteristics (action potentials, AP). When the outer face is bathed with a modified Ringer solution with low sodium content (2.4 mM), the transients are longer and they are only evident when the pulse is several hundred milliseconds long. With even longer pulses (several seconds) a repetitive activity can be elicited, with the electrical characteristics of a "pacemaker" activity. In all these "excitability" phenomena Na+ may be replaced by Li+ in the outer solution. The logarithm of the duration of AP's is inversely related to the logarithm of the increase in concentration of Na+ or Li+ in the solution bathing the external face of the skin. The duration of AP's is increased when the Ca++ concentration in the outer solution is raised. This effect is more evident with low sodium concentration on the outside. The evolution of the slope conductance during repetitive activity has been determined. The site and mechanisms of the "excitable" behavior of the skin and the induced repetitive activity are discussed. Under the experimental conditions employed the behavior of the skin is compared with that of normally excitable plasma membranes. PMID:5692095
Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells
NASA Astrophysics Data System (ADS)
Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi
2010-06-01
Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.
Expanding the Genotypic Spectrum of Bathing Suit Ichthyosis
Marukian, Nareh V.; Hu, Rong-Hua; Craiglow, Brittany G.; Milstone, Leonard M.; Zhou, Jing; Theos, Amy; Kaymakcalan, Hande; Akkaya, Deniz A.; Uitto, Jouni J.; Vahidnezhad, Hassan; Youssefian, Leila; Bayliss, Susan J.; Paller, Amy S.; Boyden, Lynn M.
2017-01-01
Importance Bathing suit ichthyosis (BSI) is a rare congenital disorder of keratinization characterized by restriction of scale to sites of relatively higher temperature such as the trunk, with cooler areas remaining unaffected. Fewer than 40 cases have been reported in the literature. Bathing suit ichthyosis is caused by recessive, temperature-sensitive mutations in the transglutaminase-1 gene (TGM1). Clear genotype-phenotype correlations have been difficult to establish because several of the same TGM1 mutations have been reported in BSI and other forms of congenital ichthyosis. We identify novel and recurrent mutations in 16 participants with BSI. Objective To expand the genotypic spectrum of BSI, identifying novel TGM1 mutations in patients with BSI, and to use BSI genotypes to draw inferences about the temperature sensitivity of TGM1 mutations. Design, Setting, and Participants A total of 16 participants with BSI from 13 kindreds were identified from 6 academic medical centers. A detailed clinical history was obtained from each participant, including phenotypic presentation at birth and disease course. Each participant underwent targeted sequencing of TGM1. Main Outcomes and Measures Phenotypic and genotypic characteristics in these patients from birth onward. Results Of the 16 participants, 7 were male, and 9 were female (mean age, 12.6 years; range, 1-39 years). We found 1 novel TGM1 indel mutation (Ile469_Cys471delinsMetLeu) and 8 TGM1 missense mutations that to our knowledge have not been previously reported in BSI: 5 have been previously described in non–temperature-sensitive forms of congenital ichthyosis (Arg143Cys, Gly218Ser, Gly278Arg, Arg286Gln, and Ser358Arg), and 3 (Tyr374Cys, Phe495Leu, and Ser772Arg) are novel mutations. Three probands were homozygous for Arg264Trp, Arg286Gln, or Arg315Leu, indicating that these mutations are temperature sensitive. Seven of 10 probands with a compound heterozygous TGM1 genotype had a mutation at either arginine 307 or 315, providing evidence that mutations at these sites are temperature sensitive and highlighting the importance of these residues in the pathogenesis of BSI. Conclusions and Relevance Our findings expand the genotypic spectrum of BSI and the understanding of temperature sensitivity of TGM1 mutations. Increased awareness of temperature-sensitive TGM1 genotypes should aid in genetic counseling and provide insights into the pathophysiology of TGM1 ichthyoses, transglutaminase-1 enzymatic activity, and potential therapeutic approaches. PMID:28403434
2011-01-01
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications. There must be quite a few things a hot bath won't cure, but I don't know many of them - Sylvia Plath, “The Bell Jar” (1963). PMID:22205950
Forrest, Matthew J; Schlaepfer, Martin A
2011-01-01
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).
Exact analytical thermodynamic expressions for a Brownian heat engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
Exact analytical thermodynamic expressions for a Brownian heat engine.
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
PW-class laser-driven super acceleration systems in underdense plasmas
NASA Astrophysics Data System (ADS)
Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke
2017-10-01
Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.
THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions
NASA Astrophysics Data System (ADS)
Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A.; Holleitner, Alexander W.
2016-10-01
For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.
THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions
Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A.; Holleitner, Alexander W.
2016-01-01
For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches. PMID:27762291
THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions.
Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A; Holleitner, Alexander W
2016-10-20
For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches.
Experimental results for the rapid determination of the freezing point of fuels
NASA Technical Reports Server (NTRS)
Mathiprakasam, B.
1984-01-01
Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.
High-temperature langatate elastic constants and experimental validation up to 900 degrees C.
Davulis, Peter M; da Cunha, Mauricio Pereira
2010-01-01
This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.
NASA Astrophysics Data System (ADS)
Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.
2014-01-01
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Mathematical and physical modeling of thermal stratification phenomena in steel ladles
NASA Astrophysics Data System (ADS)
Putan, V.; Vilceanu, L.; Socalici, A.; Putan, A.
2018-01-01
By means of CFD numerical modeling, a systematic analysis of the similarity between steel ladles and hot-water model regarding natural convection phenomena was studied. The key similarity criteria we found to be dependent on the dimensionless numbers Fr and βΔT. These similarity criteria suggested that hot-water models with scale in the range between 1/5 and 1/3 and using hot water with temperature of 45 °C or higher are appropriate for simulating natural convection in steel ladles. With this physical model, thermal stratification phenomena due to natural convection in steel ladles were investigated. By controlling the cooling intensity of water model to correspond to the heat loss rate of steel ladles, which is governed by Fr and βΔT, the temperature profiles measured in the water bath of the model were to deduce the extent of thermal stratification in liquid steel bath in the ladles. Comparisons between mathematically simulated temperature profiles in the prototype steel ladles and those physically simulated by scaling-up the measured temperatures profiles in the water model showed good agreement. This proved that it is feasible to use a 1/5 scale water model with 45 °C hot water to simulate natural convection in steel ladles. Therefore, besides mathematical CFD models, the physical hot-water model provided an additional means of studying fluid flow and heat transfer in steel ladles.
Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; ...
2014-12-03
When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi 1–xSb x nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI 3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl 3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl 3 bath, the electroformed nanowire arraysmore » were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi 0.75 Sb 0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi 0.70Sb 0.30.« less
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
Properties of nearly perfect crystals at very low temperatures
NASA Technical Reports Server (NTRS)
Weber, J.; Hamilton, J. J.
1994-01-01
Data shows that the frequency stability of 5 MHz AT-cut quartz crystal oscillators is improved by lowering the temperature to 4.3 K. The resultant level of stability is apparently not, at this point, sufficient for a clock accurate to 1 part in 10(exp 17). However, many improvements are possible in the scheme presented here. These would involve better temperature regulation, better crystal mounting and vibration isolation, and lower temperatures. Below the lambda-transition at 2.17 K the residual bubbling of the bath would be eliminated. Thus, the prospect of a successful clock built on this scheme is not ruled out.
NASA Astrophysics Data System (ADS)
Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.
2016-04-01
Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.
Elephant Seals and Temperature Data: Calibrations and Limitations.
NASA Astrophysics Data System (ADS)
Simmons, S. E.; Tremblay, Y.; Costa, D. P.
2006-12-01
In recent years with technological advances, instruments deployed on diving marine animals have been used to sample the environment in addition to their behavior. Of all oceanographic variables one of the most valuable and easiest to record is temperature. Here we report on a series of lab calibration and field validation experiments that consider the accuracy of temperature measurements from animal borne ocean samplers. Additionally we consider whether sampling frequency or animal behavior affects the quality of the temperature data collected by marine animals. Rapid response, external temperature sensors on eight Wildlife Computers MK9 time-depth recorders (TDRs) were calibrated using water baths at the Naval Postgraduate School (Monterey, CA). These water baths are calibrated using a platinum thermistor to 0.001° C. Instruments from different production batches were calibrated before and after deployments on adult female northern elephant seals, to examine tag performance over time and under `normal' usage. Tag performance in the field was validated by comparisons with temperature data from a Seabird CTD. In April/May of 2004, casts to 200m were performed over the Monterey Canyon using a CTD array carrying MK9s. These casts were performed before and after the release of a juvenile elephant seal from the boat. The seal was also carrying an MK9 TDR, allowing the assessment of any animal effect on temperature profiles. Sampling frequency during these field validations was set at one second intervals and the data from TDRs on both the CTD and the seals was sub-sampled at four, eight, 30 and 300 (5 min) seconds. The sub-sampled data was used to determine thermocline depth, a thermocline depth zone and temperature gradients and assess whether sampling frequency or animal behavior affects the quality of temperature data. Preliminary analyses indicate that temperature sensors deployed on elephant seals can provide water column temperature data of high quality and precision.
A new temperature profiling probe for investigating groundwater-surface water interaction
Naranjo, Ramon C.; Robert Turcotte,
2015-01-01
Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.
In situ assay of nitrate reductase activity using portable water bath
Adam Rajsz; Bronisław Wojtuń; Andrzej Bytnerowicz
2017-01-01
In environmental research (i.e., plant ecophysiology, environmental microbiology, and environmental chemistry), some assays require incubation of samples at controlled temperature and darkness. Until now, due to a lack of equipment providing such possibility in situ, researchers had to move collected samples to the laboratory for incubation. Obviously, a delayed...
USDA-ARS?s Scientific Manuscript database
Bath immersion remains a practical route for immunizing against disease in channel catfish; however research efforts in this area have revealed variable results when activating mucosal Ab responses with different antigens. This is likely due to a number of factors including the individual species, ...
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms
NASA Astrophysics Data System (ADS)
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-10-01
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms.
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-10-12
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L 2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.
Detecting the Curvature of de Sitter Universe with Two Entangled Atoms
Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej
2016-01-01
Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes. PMID:27731419
Rotation of melting ice disks due to melt fluid flow.
Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B
2016-03-01
We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.
Three stage vacuum system for ultralow temperature installation
NASA Astrophysics Data System (ADS)
Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.
2012-11-01
We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.
NASA Astrophysics Data System (ADS)
Mihara, Ryosuke; Gao, Xu; Kim, Sun-joong; Ueda, Shigeru; Shibata, Hiroyuki; Seok, Min Oh; Kitamura, Shin-ya
2018-02-01
Using a direct observation experimental method, the oxide formation behavior on the surface of Fe-Cr-5 mass pct C-Si alloy baths during decarburization by a top-blown Ar-O2 mixture was studied. The effects of the initial Si and Cr content of the alloy, temperature, and oxygen feed ratio on oxide formation were investigated. The results showed that, for alloys without Si, oxide particles, unstable oxide films, and stable oxide films formed sequentially. The presence of Si in the alloy changed the formation behavior of stable oxide film, and increased the crucial C content when stable oxide film started to form. Increasing the temperature, decreasing the initial Cr content, and increasing the ratio of the diluting gas decreased the critical C content at which a stable oxide film started to form. In addition, the P CO and a_{{{Cr}2 {O}3 }} values at which oxides started to form were estimated using Hilty's equation and the equilibrium relation to understand the formation conditions and the role of each parameter in oxide formation.
Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei
2017-12-01
In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.
Process for producing a high emittance coating and resulting article
NASA Technical Reports Server (NTRS)
Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)
1993-01-01
Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.
Ullah, Mohammad Shaef; Lim, Un Taek
2015-06-01
Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Thermostatic tissue platform for intravital microscopy: 'the hanging drop' model.
Pavlovic, Dragan; Frieling, Helge; Lauer, Kai-Stephan; Bac, Vo Hoai; Richter, Joern; Wendt, Michael; Lehmann, Christian; Usichenko, Taras; Meissner, Konrad; Gruendling, Matthias
2006-11-01
Intravital microscopy imposes the particular problem of the combined control of the body temperature of the animal and the local temperature of the observed organ or tissues. We constructed and tested, in the rat ileum microcirculation preparation, a new organ-support platform. The platform consisted of an organ bath filled with physiological solution, and contained a suction tube, a superfusion tube, an intestine-support hand that was attached to a micromanipulator and a thermometer probe. To cover the intestine we used a cover glass plate with a plastic ring glued on its upper surface. After a routine procedure (anaesthesia, monitoring and surgery), the intestine segment (2-3 cm long) was gently exteriorized and placed on the 'hand' of the organ support. A small part of the intestine formed a small 'island' in the bath that was filled with physiological salt solution. The cover glass was secured in place. The physiological salt solution from the superfusion tube, which was pointed to the lower surface of the cover glass, formed a 'hanging drop'. The objective of the microscope was then immersed into distilled water that was formed by the cover glass plastic ring. The 'hanging drop' technique prevented any tissue quenching, ensured undisturbed microcirculation, provided for stable temperature and humidity, and permitted a clear visual field.
[Unusual and fatal type of burn injury: hot air sauna burn].
García-Tutor, E; Koljonen, V
2007-01-01
Sauna bathing is a popular recreational activity in Finland and is generally considered safe even for pregnant women and patients suffering from heart problems; but mixing alcohol with sauna bathing can be hazardous. In the normal Finnish recreational sauna the temperature is usually between 80 and 90 degrees C. A wide variety of burn injuries, in all age groups, are related to sauna bathing; scalds and contact burns account for over 85% while hot air, steam and flame burns for only 15%. Dehydration in patients under the influence of alcohol heightens the risk of hypotension which impairs skin blood circulation. This increased warming of the skin is an effect that is more marked on the outer and upper parts of the body exposed to hot air. Such patients require intensive care on admission: fluid replacement according to the Parkland formula, forced diuresis and immediate correction of acidosis and myoglobinuria. These patients have significant rhabdomyolysis on admission. The best predictor of survival is the creatine kinase level on the second post-injury day. CT scans are necessary to diagnose the underlying conditions of unconsciousness. The necrotic area extends to subcutaneous fat tissue and even to the underlying muscles. The level of excision is typically fascial and, in some areas, layers of the muscle must be removed. Owing to the popularity of sauna bathing throughout the world, it is important to know the extent of damage in this type of injury, in order not to underestimate the severity of such lesions.
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
A fast solution switching system with temperature control for single cell measurements
Koh, Duk-Su; Chen, Liangyi; Ufret-Vincenty, Carmen A.; Jung, Seung-Ryoung
2011-01-01
This article describes a perfusion system for biophysical single cell experiments at the physiological temperature. Our system regulates temperature of test solutions using a small heat exchanger that includes several capillaries. Water circulating inside the heat exchanger warms or cools test solutions flowing inside the capillaries. Temperature-controlled solutions are delivered directly to a single cell(s) through a multibarreled manifold that switches solutions bathing a cell in less than 1 s. This solution exchange is optimal for patch clamp, single-cell microamperometry, and microfluorometry experiments. Using this system, we demonstrate that exocytosis from pancreatic β cells and activation of TRPV1 channels are temperature sensitive. We also discuss how to measure local temperature near a single cell under investigation. PMID:21536068
Detecting temperature fluctuations at equilibrium.
Dixit, Purushottam D
2015-05-21
The Gibbs and the Boltzmann definition of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite-sized 'small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in the equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant in biophysics and nanotechnology.
Barik, Arati J; Gogate, Parag R
2016-01-01
The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2°C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US+UV+O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loranca-Ramos, F. E.; Diliegros-Godines, C. J.; Silva González, R.; Pal, Mou
2018-01-01
Copper antimony sulfide (CAS) has been proposed as low toxicity and earth abundant absorber materials for thin film photovoltaics due to their suitable optical band gap, high absorption coefficient and p-type electrical conductivity. The present work reports the formation of copper antimony sulfide by chemical bath deposition using sodium citrate as a complexing agent. We show that by tuning the annealing condition, one can obtain either chalcostibite or tetrahedrite phase. However, the main challenge was co-deposition of copper and antimony as ternary sulfides from a single chemical bath due to the distinct chemical behavior of these metals. The as-deposited films were subjected to several trials of thermal treatment using different temperatures and time to find the optimized annealing condition. The films were characterized by different techniques including Raman spectroscopy, X-ray diffraction (XRD), profilometer, scanning electron microscopy (SEM), UV-vis spectrophotometer, and Hall Effect measurements. The results show that the formation of chalcostibite and tetrahedrite phases is highly sensitive to annealing conditions. The electrical properties obtained for the chalcostibite films varied as the annealing temperature increases from 280 to 350 °C: hole concentration (n) = 1017-1018 cm-3, resistivity (ρ) = 1.74-2.14 Ωcm and carrier mobility (μ) = 4.7-9.26 cm2/Vseg. While for the tetrahedrite films, the electrical properties were n = 5 × 1019 cm-3, μ = 18.24 cm2/Vseg, and ρ = 5.8 × 10-3 Ωcm. A possible mechanism for the formation of ternary copper antimony sulfide has also been proposed.
PRETREATING THORIUM FOR ELECTROPLATING
Beach, J.G.; Schaer, G.R.
1959-07-28
A method is presented for pretreating a thorium surface prior to electroplating the surface. The pretreatment steps of the invention comprise cleaning by vapor blasting the surface, anodically pickling in a 5 to 15% by volume aqueous hydrochloric acid bath with a current of 125 to 250 amp/sq ft for 3 to 5 min at room temperature, chemically pickling the surface in a 5 to 15% by volume of aqueous sulfuric acid for 3 to 5 min at room temperature, and rinsing the surface with water.
Reversible Quantum Brownian Heat Engines for Electrons
NASA Astrophysics Data System (ADS)
Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.
2002-08-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.
Reversible quantum heat engines for electrons
NASA Astrophysics Data System (ADS)
Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.
2002-03-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.
A low-noise double-dipole antenna SIS mixer at 1 THz
NASA Astrophysics Data System (ADS)
Shitov, S. V.; Jackson, B. D.; Baryshev, A. M.; Markov, A. V.; Iosad, N. N.; Gao, J.-R.; Klapwijk, T. M.
2002-08-01
A quasi-optical mixer employing a Nb/Al/AlO x/Nb twin-SIS junction with a NbTiN/SiO 2/Al microstrip coupling circuit is tested at 800-1000 GHz. The receiver noise temperature TRX=250 K (DSB) is measured at 935 GHz for the bath temperature 2 K at IF=1.5 GHz; TRX remains below 350 K within the frequency range 850-1000 GHz. The integrated lens-antenna demonstrated good beam symmetry with sidelobes below -16 dB.
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Time resolved spectroscopic investigation of SiD2 + D2: kinetic study
NASA Astrophysics Data System (ADS)
Al-Rubaiey, Najem A.; Walsh, Robin
2017-03-01
Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann-Hinshelwood model and Rice, Ramsperger, Kassel and Marcus (RRKM) theory) were also carried out and obtained data fitted the Arrhenius equations.
Grantham, LeRoy F.
1979-01-01
An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.
NASA Astrophysics Data System (ADS)
Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave
We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.
Electro-deposition of superconductor oxide films
Bhattacharya, Raghu N.
2001-01-01
Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.
Pilch, Wanda; Szygula, Zbigniew; Tyka, Anna K.; Palka, Tomasz; Tyka, Aleksander; Cison, Tomasz; Pilch, Pawel; Teleglow, Aneta
2014-01-01
The aim of the study was to investigate pro-oxidant-antioxidant balance in two series of examinations with two types of stressors (exogenous heat and the combined exogenous and endogenous heat) in trained and untrained men. The exogenous stressor was provided by Finnish sauna session, whereas the combined stressor was represented by the exercise in elevated ambient temperature. The men from the two groups performed the physical exercise on a cycle ergometer with the load of 53±2% maximal oxygen uptake at the temperature of 33±1°C and relative humidity of 70% until their rectal temperature rose by 1.2°C. After a month from completion of the exercise test the subjects participated in a sauna bathing session with the temperature of 96±2°C, and relative humidity of 16±5%. 15-minutes heating and 2-minute cool-down in a shower with the temperature of 20°C was repeated until rectal temperature rose by 1.2°C compared to the initial value. During both series of tests rectal temperature was measured at 5-minute intervals. Before both series of tests and after them body mass was measured and blood samples were taken for biochemical tests. Serum total protein, serum concentration of lipid peroxidation products and serum antioxidants were determined. The athletes were characterized by higher level of antioxidant status and lower concentration of lipid peroxidation products. Physical exercise at elevated ambient temperature caused lower changes in oxidative stress indices compared to sauna bathing. Sauna induced a shift in pro-oxidant-antioxidant balance towards oxidation, which was observed less intensively in the athletes compared to the untrained men. This leads to the conclusion that physical exercise increases tolerance to elevated ambient temperature and oxidative stress. PMID:24465535
Musuuza, Jackson S; Roberts, Tonya J; Carayon, Pascale; Safdar, Nasia
2017-01-14
Daily bathing with chlorhexidine gluconate (CHG) of intensive care unit (ICU) patients has been shown to reduce healthcare-associated infections and colonization by multidrug resistant organisms. The objective of this project was to describe the process of daily CHG bathing and identify the barriers and facilitators that can influence its successful adoption and sustainability in an ICU of a Veterans Administration Hospital. We conducted 26 semi-structured interviews with a convenience sample of 4 nurse managers (NMs), 13 registered nurses (RNs) and 9 health care technicians (HCTs) working in the ICU. We used qualitative content analysis to code and analyze the data. Dedoose software was used to facilitate data management and coding. Trustworthiness and scientific integrity of the data were ensured by having two authors corroborate the coding process, conducting member checks and keeping an audit trail of all the decisions made. Duration of the interviews was 15 to 39 min (average = 26 min). Five steps of bathing were identified: 1) decision to give a bath; 2) ability to give a bath; 3) decision about which soap to use; 4) delegation of a bath; and 5) getting assistance to do a bath. The bathing process resulted in one of the following three outcomes: 1) complete bath; 2) interrupted bath; and 3) bath not done. The outcome was influenced by a combination of barriers and facilitators at each step. Most barriers were related to perceived workload, patient factors, and scheduling. Facilitators were mainly organizational factors such as the policy of daily CHG bathing, the consistent supply of CHG soap, and support such as reminders to conduct CHG baths by nurse managers. Patient bathing in ICUs is a complex process that can be hindered and interrupted by numerous factors. The decision to use CHG soap for bathing was only one of 5 steps of bathing and was largely influenced by scheduling/workload and patient factors such as clinical stability, hypersensitivity to CHG, patient refusal, presence of IV lines and general hygiene. Interventions that address the organizational, provider, and patient barriers to bathing could improve adherence to a daily CHG bathing protocol.
Chiang, Charles; Eichenfield, Lawrence F
2009-01-01
Standard recommendations for skin care for patients with atopic dermatitis stress the importance of skin hydration and the application of moisturizers. However, objective data to guide recommendations regarding the optimal practice methods of bathing and emollient application are scarce. This study quantified cutaneous hydration status after various combination bathing and moisturizing regimens. Four bathing/moisturizer regimens were evaluated in 10 subjects, five pediatric subjects with atopic dermatitis and five subjects with healthy skin. The regimens consisted of bathing alone without emollient application, bathing and immediate emollient application, bathing and delayed application, and emollient application alone. Each regimen was evaluated in all subjects, utilizing a crossover design. Skin hydration was assessed with standard capacitance measurements. In atopic dermatitis subjects, emollient alone yielded a significantly (p < 0.05) greater mean hydration over 90 minutes (206.2% baseline hydration) than bathing with immediate emollient (141.6%), bathing and delayed emollient (141%), and bathing alone (91.4%). The combination bathing and emollient application regimens demonstrated hydration values at 90 minutes not significantly greater than baseline. Atopic dermatitis subjects had a decreased mean hydration benefit compared with normal skin subjects. Bathing without moisturizer may compromise skin hydration. Bathing followed by moisturizer application provides modest hydration benefits, though less than that of simply applying moisturizer alone.
Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y
2018-06-21
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
Caya, Teresa; Musuuza, Jackson; Yanke, Eric; Schmitz, Michelle; Anderson, Brooke; Carayon, Pascale; Safdar, Nasia
2015-01-01
We undertook a systems engineering approach to evaluate housewide implementation of daily chlorhexidine bathing. We performed direct observations of the bathing process and conducted provider and patient surveys. The main outcome was compliance with bathing using a checklist. Fifty-seven percent of baths had full compliance with the chlorhexidine bathing protocol. Additional time was the main barrier. Institutions undertaking daily chlorhexidine bathing should perform a rigorous assessment of implementation to optimize the benefits of this intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munakata, M.; Huang, C.; Menkes, H.
Activated protein kinase C and intracellular Ca/sup + +/ may act synergistically to produce physiological responses. It is possible to activate protein kinase C directly with phorbol esters and to increase intracellular Ca/sup + +/ by depolarizing cell membranes. Guinea pig tracheal rings were incubated at constant temperature in Krebs-Henseleit solution and isometric tension was recorded. Protein kinase C was activated with phorbol 12,13 - diacetate (PDA) and cell membranes were depolarized by lowering temperature, increasing external K/sup +/ concentration, or incubating with ouabain. At 37/sup 0/C, 1 /sup +/M PDA caused a fall in tension (0.67 +/- 0.06 g).more » This decrease in tension was equal to 43% of the near maximal contraction produced by 4 ..mu..M carbachol. At 22/sup 0/C 1 ..mu.. PDA caused an increase in tension (1.00 +/- 0.10 g). This increase in tension was equal to 61% of the contraction produced by 4 ..mu..M carbachol. When K/sup +/ was increased from the physiological concentration of 5.4 mM to 20 mM, 1 ..mu..M PDA caused an increase in tension of 1.11 +/- 0.15 g (56% of the 4 ..mu..M carbachol response). When 10 ..mu..M ouabain was added to the tissue bath, 1 ..mu..M PDA caused an increase in tension of 1.56 +/- 0.61 g (81% of the 4 ..mu..M carbachol response). Contractions produced by PDA at low temperature or high K were blocked by 1 ..mu..M verapamil or by 0.01 ..mu..M nifedipine. The authors conclude that the activation of protein kinase C causes contraction when cell membranes are depolarized and Ca/sup + +/ is allowed to enter the cells through voltage dependent channels.« less
Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors
NASA Astrophysics Data System (ADS)
Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.
2017-06-01
Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.
Terada, Y; Tamada, D; Kose, K
2011-10-01
A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Treatment of halogen-containing waste and other waste materials
Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.
1997-01-01
A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.
Treatment of halogen-containing waste and other waste materials
Forsberg, C.W.; Beahm, E.C.; Parker, G.W.
1997-03-18
A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.
NASA Astrophysics Data System (ADS)
Yalouz, S.; Falvo, C.; Pouthier, V.
2017-06-01
Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.
Sterk, Ankie; de Man, Heleen; Schijven, Jack F; de Nijs, Ton; de Roda Husman, Ana Maria
2016-11-15
Climate change is expected to influence infection risks while bathing downstream of sewage emissions from combined sewage overflows (CSOs) or waste water treatment plants (WWTPs) due to changes in pathogen influx, rising temperatures and changing flow rates of the receiving waters. In this study, climate change impacts on the surface water concentrations of Campylobacter, Cryptosporidium and norovirus originating from sewage were modelled. Quantitative microbial risk assessment (QMRA) was used to assess changes in risks of infection. In general, infection risks downstream of WWTPs are higher than downstream CSOs. Even though model outputs show an increase in CSO influxes, in combination with changes in pathogen survival, dilution within the sewage system and bathing behaviour, the effects on the infection risks are limited. However, a decrease in dilution capacity of surface waters could have significant impact on the infection risks of relatively stable pathogens like Cryptosporidium and norovirus. Overall, average risks are found to be higher downstream WWTPs compared to CSOs. Especially with regard to decreased flow rates, adaptation measures on treatment at WWTPs may be more beneficial for human health than decreasing CSO events. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.