Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stipcich, M.; Manosa, L.; Planes, A.
2004-01-01
We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structuralmore » transitions.« less
High-temperature langatate elastic constants and experimental validation up to 900 degrees C.
Davulis, Peter M; da Cunha, Mauricio Pereira
2010-01-01
This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.
Dielectric studies on PEG-LTMS based polymer composites
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-02-01
PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.
Fernández, A S; Larsen, M; Wolstrup, J; Grønvold, J; Nansen, P; Bjørn, H
1999-08-01
The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar and then incubated for 14 days under three different constant and fluctuating temperature regimes. The radial growth was similar on the two substrates at each temperature regime. All fungal isolates showed a higher growth rate at a constant 20 degrees C. At 10 degrees and 15 degrees C, all D. flagrans isolates showed very similar patterns of radial growth at both constant and fluctuating temperatures. At 20 degrees C, they grew significantly faster at constant than at fluctuating temperatures. A. oligospora grew significantly faster than all D. flagrans isolates except when incubated at a fluctuating 20 degrees C. Spores of each fungal isolate were added to faecal cultures containing eggs of Cooperia oncophora at a concentration of 6250 spores/g faeces. The cultures were incubated for 14 days at the same temperature regimes described above. Control faeces (without fungal material) were also cultured. More larvae were recovered from the fungus-treated cultures incubated at a constant 10 degrees or 15 degrees C than from those incubated at the respective fluctuating temperatures, except for one D. flagrans isolate. Incubation at 20 degrees C showed the opposite effect. The general reduction observed in the number of nematode larvae due to fungal trapping was 18-25% and 48-80% for a constant and fluctuating 10 degrees C, 70-96% and 93-95% for a constant and fluctuating 15 degrees C, and 63-98% and 0-25% for a constant and fluctuating 20 degrees C, respectively.
Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2016-04-01
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts
NASA Astrophysics Data System (ADS)
Schroers, Jan; Johnson, William L.
2000-07-01
The crystallization of Zr41Ti14Cu12Ni10Be23 (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by an accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature.
Temperature dependencies of Henry’s law constants for different plant sesquiterpenes
Copolovici, Lucian; Niinemets, Ülo
2018-01-01
Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wang, Hua; Fang, Yan; Wang, Lipeng; Zhu, Wenjuan; Ji, Haipeng; Wang, Haiying; Xu, Shiqing; Sima, Yanghu
2014-09-01
Ambient temperature plays a large role in insect growth, development and even their distribution. The elucidation of the associated molecular mechanism that underlies the effect of constant high temperature will enables us to further understand the stress responses. We constructed four digital gene expression libraries from the fat body of female and male Bombyx mori. Differential gene expression was analyzed after constant high temperature treatment. The results showed that there were significant changes to the gene expression in the fat body after heat treatment, especially in binding, catalytic, cellular and metabolic processes. Constant high temperature may induce more traditional cryoprotectants, such as glycerol, glycogen, sorbitol and lipids, to protect cells from damage, and induce heat oxidative stress in conjunction with the heat shock proteins. The data also indicated a difference between males and females. The heat shock protein-related genes were up-regulated in both sexes but the expression of Hsp25.4 and DnaJ5 were down-regulated in the male fat body of B. mori. This is the first report of such a result. Constant high temperature also affected the expression of other functional genes and differences were observed between male and female fat bodies in the expression of RPS2, RPL37A and MREL. These findings provide abundant data on the effect of high temperature on insects at the molecular level. The data will also be beneficial to the study of differences between the sexes, manifested in variations in gene expression under high temperature.
Detonation in TATB Hemispheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druce, B; Souers, P C; Chow, C
2004-03-17
Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. Themore » problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.« less
Westby, K. M.
2015-01-01
Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyam, Amit; Lara-Curzio, Edgar
This paper reports on the langatate (LGT) elastic constants measured from room temperature (25 C) to 1100 C using resonant ultrasound spectroscopy (RUS). The constants were extracted by fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the piezoelectric constants in the 25 C to 120 C temperature range. This work also publishes a set of temperature coefficients for the elastic constants up to 1100 C. For the measurements, six parallelepiped LGT samples were aligned, cut, ground, and polished at themore » University of Maine. The samples were aligned to two different crystal orientations, to increase the reliability of the constant fitting. The extraction of LGT elastic constants up to 1100 C presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for high temperature and harsh environment applications.« less
NASA Astrophysics Data System (ADS)
Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt
2017-01-01
Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
History dependent crystallization of Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} melts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroers, Jan; Johnson, William L.
The crystallization of Zr{sub 41}Ti{sub 14}Cu{sub 12}Ni{sub 10}Be{sub 23} (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by anmore » accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature. (c) 2000 American Institute of Physics.« less
Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu
2017-08-15
Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
Dielectric and Excess Properties of Glycols with Formamide Binary Mixtures at Different Temperatures
NASA Astrophysics Data System (ADS)
Navarkhele, V. V.
2018-07-01
Dielectric constant measurements of glycol-formamide binary solutions with various concentrations have been carried out at different temperatures. The dielectric measurement has been achieved at 100 MHz frequency using a sensor which is based on frequency domain reflectomery technique. The excess dielectric constant, Kirkwood correlation factor and Bruggeman factor has also been reported for the binary mixtures. The results show that the dielectric constant of the mixtures increases with increase in the volume fraction of formamide and decreases with increase in temperature. The study also confirms the presence of intermolecular interaction, hydrogen bonding and orientation of the dipoles in the binary mixtures.
Thermal fluctuation within nests and predicted sex ratio of Morelet's Crocodile.
Escobedo-Galván, Armando H; López-Luna, Marco A; Cupul-Magaña, Fabio G
2016-05-01
Understanding the interplay between thermal variations and sex ratio in reptiles with temperature-dependent sex determination is the first step for developing long-term conservation strategies. In case of crocodilians, the information is fragmentary and insufficient for establishing a general framework to consider how thermal fluctuation influence sex determination under natural conditions. The main goal of this study was to analyze thermal variation in nests of Crocodylus moreletii and to discuss the potential implications for predicting offspring sex ratio. The study was carried out at the Centro de Estudios Tecnológicos del Mar N° 2 and at the Sistemas Productivos Cocodrilo, Campeche, Mexico. Data was collected in the nesting season of Morelet's Crocodiles during three consecutive seasons (2007-2009). Thermal fluctuations for multiple areas of the nest chamber were registered by data loggers. We calculate the constant temperature equivalent based on thermal profiles among nests to assess whether there are differences between the nest temperature and its equivalent to constant temperature. We observed that mean nest temperature was only different among nests, while daily thermal fluctuations vary depending on the depth position within the nest chamber, years and nests. The constant temperature equivalent was different among and within nests, but not among survey years. We observed differences between constant temperature equivalent and mean nest temperature both at the top and in the middle of the nest cavities, but were not significantly different at the bottom of nest cavities. Our results enable examine and discuss the relevance of daily thermal fluctuations to predict sex ratio of the Morelet's Crocodile. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of modular control system for grain dryers
NASA Astrophysics Data System (ADS)
He, Gaoqing; Liu, Yanhua; Zu, Yuan
In order to effectively control the temperature of grain drying bin, grain ,air outlet as well as the grain moisture, it designed the control system of 5HCY-35 which is based on MCU to adapt to all grains drying conditions, high drying efficiency, long life usage and less manually. The system includes: the control module of the constant temperature and the temperature difference control in drying bin, the constant temperature control of heating furnace, on-line testing of moisture, variety of grain-circulation speed control and human-computer interaction interface. Spatial curve simulation, which takes moisture as control objectives, controls the constant temperature and the temperature difference in drying bin according to preset parameter by the user or a list to reduce the grains explosive to ensure the seed germination percentage. The system can realize the intelligent control of high efficiency and various drying, the good scalability and the high quality.
Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y
2018-06-21
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
Tang, Liguo; Cao, Wenwu
2016-01-01
During the operation of high power electromechanical devices, a temperature rise is unavoidable due to mechanical and electrical losses, causing the degradation of device performance. In order to evaluate such degradations using computer simulations, full matrix material properties at elevated temperatures are needed as inputs. It is extremely difficult to measure such data for ferroelectric materials due to their strong anisotropic nature and property variation among samples of different geometries. Because the degree of depolarization is boundary condition dependent, data obtained by the IEEE (Institute of Electrical and Electronics Engineers) impedance resonance technique, which requires several samples with drastically different geometries, usually lack self-consistency. The resonant ultrasound spectroscopy (RUS) technique allows the full set material constants to be measured using only one sample, which can eliminate errors caused by sample to sample variation. A detailed RUS procedure is demonstrated here using a lead zirconate titanate (PZT-4) piezoceramic sample. In the example, the complete set of material constants was measured from room temperature to 120 °C. Measured free dielectric constants and were compared with calculated ones based on the measured full set data, and piezoelectric constants d15 and d33 were also calculated using different formulas. Excellent agreement was found in the entire range of temperatures, which confirmed the self-consistency of the data set obtained by the RUS. PMID:27168336
Ullah, Mohammad Shaef; Lim, Un Taek
2015-06-01
Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Defect-induced change of temperature-dependent elastic constants in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Setyawan, W.; Zhang, S. H.
2017-07-01
The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.
Electronic clinical predictive thermometer using logarithm for temperature prediction
NASA Technical Reports Server (NTRS)
Cambridge, Vivien J. (Inventor); Koger, Thomas L. (Inventor); Nail, William L. (Inventor); Diaz, Patrick (Inventor)
1998-01-01
A thermometer that rapidly predicts body temperature based on the temperature signals received from a temperature sensing probe when it comes into contact with the body. The logarithms of the differences between the temperature signals in a selected time frame are determined. A line is fit through the logarithms and the slope of the line is used as a system time constant in predicting the final temperature of the body. The time constant in conjunction with predetermined additional constants are used to compute the predicted temperature. Data quality in the time frame is monitored and if unacceptable, a different time frame of temperature signals is selected for use in prediction. The processor switches to a monitor mode if data quality over a limited number of time frames is unacceptable. Determining the start time on which the measurement time frame for prediction is based is performed by summing the second derivatives of temperature signals over time frames. When the sum of second derivatives in a particular time frame exceeds a threshold, the start time is established.
NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Livingood, John N B
1955-01-01
Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.
Henry's law constant for phosphine in seawater: determination and assessment of influencing factors
NASA Astrophysics Data System (ADS)
Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian
2013-07-01
The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.
Lewis, Vernard R; Leighton, Shawn; Tabuchi, Robin; Baldwin, James A; Haverty, Michael I
2013-02-01
Acoustic emission (AE) activity patterns were measured from seven loquat [Eriobotrya japonica (Thunb.) Lindl.] logs, five containing live western drywood termite [Incisitermes minor (Hagen)] infestations, and two without an active drywood termite infestation. AE activity, as well as temperature, were monitored every 3 min under unrestricted ambient conditions in a small wooden building, under unrestricted ambient conditions but in constant darkness, or in a temperature-controlled cabined under constant darkness. Logs with active drywood termite infestations displayed similar diurnal cycles of AE activity that closely followed temperature with a peak of AE activity late in the afternoon (1700-1800 hours). When light was excluded from the building, a circadian pattern continued and apparently was driven by temperature. When the seven logs were kept at a relatively constant temperature (approximately 23 +/- 0.9 degrees C) and constant darkness, the pattern of activity was closely correlated with temperature, even with minimal changes in temperature. Temperature is the primary driver of activity of these drywood termites, but the effects are different when temperature is increasing or decreasing. At constant temperature, AE activity was highly correlated with the number of termites in the logs. The possible implications of these findings on our understanding of drywood termite biology and how this information may affect inspections and posttreatment evaluations are discussed.
Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement
Petricevic, Slobodan J.; Mihailovic, Pedja M.
2016-01-01
Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043
NASA Astrophysics Data System (ADS)
Panda, B.; Roy, A.; Dhar, A.; Ray, S. K.
2007-03-01
Polycrystalline Ba1-xSrxTiO3 (BST) thin films with three different compositions have been deposited by radio-frequency magnetron sputtering technique on platinum coated silicon substrates. Samples with buffer and barrier layers for different film thicknesses and processing temperatures have been studied. Crystallite size of BST films has been found to increase with increasing substrate temperature. Thickness dependent dielectric constant has been studied and discussed in the light of an interfacial dead layer and the finite screening length of the electrode. Ferroelectric properties of the films have also been studied for various deposition conditions. The electrical resistivity of the films measured at different temperatures shows a positive temperature coefficient of resistance under a constant bias voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Kathleen M.
1990-12-01
The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26°C and downshifted 30-26-30°C) and females (constant 30°C and upshifted 26-30-26°C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26°C group and 93% males from the downshifted group. 100% females resulted from both the constant 30°C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26°C were significantly larger than hatchlings from eggs incubated at a constant 30°C or downshifted. Hatchlings were raised in individual aquaria at 25°C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30°C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, K.M.
1990-12-01
The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggsmore » incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.« less
Assessment of tautomer distribution using the condensed reaction graph approach
NASA Astrophysics Data System (ADS)
Gimadiev, T. R.; Madzhidov, T. I.; Nugmanov, R. I.; Baskin, I. I.; Antipin, I. S.; Varnek, A.
2018-03-01
We report the first direct QSPR modeling of equilibrium constants of tautomeric transformations (logK T ) in different solvents and at different temperatures, which do not require intermediate assessment of acidity (basicity) constants for all tautomeric forms. The key step of the modeling consisted in the merging of two tautomers in one sole molecular graph ("condensed reaction graph") which enables to compute molecular descriptors characterizing entire equilibrium. The support vector regression method was used to build the models. The training set consisted of 785 transformations belonging to 11 types of tautomeric reactions with equilibrium constants measured in different solvents and at different temperatures. The models obtained perform well both in cross-validation (Q2 = 0.81 RMSE = 0.7 logK T units) and on two external test sets. Benchmarking studies demonstrate that our models outperform results obtained with DFT B3LYP/6-311 ++ G(d,p) and ChemAxon Tautomerizer applicable only in water at room temperature.
Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi
2013-01-01
Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus ( Hibiscus rosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P . solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai’s linear model permitted testing the equivalence of lower developmental thresholds for life stages of P . solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P . solenopsis . The estimated bioclimatic thresholds and the observed survival rates of P . solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P . solenopsis on its host plants. PMID:24086597
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Measurements of fluctuating gas temperatures using compensated fine wire thermocouples
NASA Astrophysics Data System (ADS)
Nina, M. N. R.; Pita, G. P.
1985-09-01
Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
Convection in the Rayleigh-Bénard flow with all fluid properties variable
NASA Astrophysics Data System (ADS)
Sassos, Athanasios; Pantokratoras, Asterios
2011-10-01
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.
Quantum Discord Preservation for Two Quantum-Correlated Qubits in Two Independent Reserviors
NASA Astrophysics Data System (ADS)
Xu, Lan
2018-03-01
We investigate the dynamics of quantum discord using an exactly solvable model where two qubits coupled to independent thermal environments. The quantum discord is employed as a non-classical correlation quantifier. By studying the quantum discord of a class of initial states, we find discord remains preserve for a finite time. The effects of the temperature, initial-state parameter, system-reservoir coupling constant and temperature difference parameter of the two independent reserviors are also investigated. We discover that the quantum nature loses faster in high temperature, however, one can extend the time of quantum nature by choosing smaller system-reservoir coupling constant, larger certain initial-state parameter and larger temperature difference parameter.
Optimizing storage temperature of liquid bovine semen diluted in INRA96.
Murphy, Edel M; O' Meara, Ciara; Eivers, Bernard; Lonergan, Patrick; Fair, Sean
2018-06-01
Temperature regulation of liquid bovine semen can be difficult in field situations. Two experiments were carried out to assess the effect of storage temperature on in vitro sperm characteristics and 60-d nonreturn rate (NRR) following artificial insemination (AI) of liquid bovine semen. In experiment 1, the effect of storage of liquid bovine semen in INRA96 diluent (IMV Technologies, L'Aigle, France) at 1 of 5 storage temperatures (5, 15, or 28°C, and fluctuating between 5 and 15°C or 5 and 28°C) on total and progressive motility and kinematic parameters was assessed objectively via computer-assisted sperm analyzer on d 0, 1, 2, 3, and 4 after collection. Fluctuating temperatures were designed to mimic day- to nighttime variation. In experiment 2, we assessed the field fertility of liquid semen stored at a constant 5 or 15°C or in an unregulated manner and compared with that of frozen-thawed semen (total of n = 106,738 inseminations). In experiment 1, we detected a linear decrease in motility with increased duration of storage. Semen stored at a constant 15°C or fluctuating between 5 and 15°C had greater total motility than semen held at 5 or 28°C or fluctuating between 5 and 28°C; however, semen stored at 15°C and fluctuating between 5 and 15°C did not differ from each other. Semen held at a constant 5 or 15°C or fluctuating between 5 and 15°C, although not differing from each other, had higher progressive motility scores than that held at 28°C or fluctuating between 5 and 28°C. Semen stored at a constant 28°C exhibited poor motility and velocity values but had high progressive motion values compared with that all other storage temperatures; however, the other storage temperatures did not differ from each other in relation to motility kinematics. In experiment 2, semen stored at a constant 5°C resulted in a lower 60-d NRR (62.5%) than storage at constant 15°C or unregulated temperature or frozen-thawed semen (73.6, 74.6, and 74.4%, respectively. In conclusion, sperm stored in IRNA96 are quite tolerant in terms of storage temperature, retaining acceptable motility between 5 and 15°C. Storing semen at a constant 15°C resulted in greater in vitro sperm motility and higher NRR rates than storage at 5°C and did not differ in NRR from frozen-thawed semen or semen stored at an unregulated temperature; however, lower storage temperatures were shown to be more detrimental to sperm in vivo than unregulated storage conditions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh
2007-05-01
Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.
Koga, Shiori; Böcker, Ulrike; Moldestad, Anette; Tosi, Paola; Shewry, Peter R; Mosleth, Ellen F; Uhlen, Anne Kjersti
2016-01-15
The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures. © 2015 Society of Chemical Industry.
Gas identification by dynamic measurements of SnO2 sensors
NASA Astrophysics Data System (ADS)
Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos
2011-09-01
It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?
ERIC Educational Resources Information Center
Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana
2008-01-01
In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Accurate Measurements of the Dielectric Constant of Seawater at L Band
NASA Technical Reports Server (NTRS)
Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David
2016-01-01
This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pribram-Jones, A.; Burke, K.
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Henry`s law constant for selected volatile organic compounds in high-boiling oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poddar, T.K.; Sirkar, K.K.
Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.
Gupta, S; Basant, N; Mohan, D; Singh, K P
2016-07-01
Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.
Temperature shift effect on the Chlorobaculum tepidum chlorosomes.
Tang, Joseph Kuo-Hsiang; Xu, Ying; Muhlmann, Guillermo M; Zare, Farrokh; Khin, Yadana; Tam, Sun W
2013-05-01
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48-52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV-visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-17(3) versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-17(3) (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.
On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport
NASA Astrophysics Data System (ADS)
Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.
1987-01-01
Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.
Impact of cool versus warm temperatures on gestation in the aspic viper (Vipera aspis).
Michel, Catherine Louise; Pastore, Jean-Henri; Bonnet, Xavier
2013-07-01
Previous experimental data suggested that digestion and growth rates are not impaired under cool constant temperature (23°C) in a viviparous snake (Vipera aspis). These results challenged the widespread notion that both elevated temperatures (e.g. 30°C) and temperature fluctuations are required for digestion and growth in temperate climate reptiles. Here, we investigated the impact of constant cool temperatures on another physiological performance that is crucial to population persistence: gestation. At the time when reproductive females were midway through vitellogenesis, we placed ten reproductive and two non-reproductive female aspic vipers at each of two contrasted constant temperature conditions: cool (23°C) versus warm (28°C). Sixty percent of the females placed at 28°C gave birth to healthy offspring, suggesting that constant warm body temperatures were compatible with normal offspring production. Conversely, none of the cool females gave birth to healthy offspring. A blister disease affected exclusively cool pregnant females. Apparently, the combination of cool temperatures plus gestation was too challenging for such females. Our results suggest that reproduction is more thermally sensitive than digestion or growth, indeed gestation faltered under moderately cool thermal constraints. This sensitivity could be a crucial factor determining the capacity of this species to colonize different habitats. Copyright © 2013 Elsevier Inc. All rights reserved.
Microwave dielectric measurements of erythrocyte suspensions.
Bao, J Z; Davis, C C; Swicord, M L
1994-01-01
Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively. PMID:8075351
Yang, Xiao-hua; Guo, Qiao-sheng; Zhu, Zai-biao; Chen, Jun; Miao, Yuan-yuan; Yang, Ying; Sun, Yuan
2015-10-01
Effects of different drying methods including sun drying, steamed, boiled, constant temperature drying (at 40, 50, 60 °C) on appearance, hardness, rehydration ratio, dry rate, moisture, total ash, extractive and polysaccharides contents were studied to provide the basis of standard processing method for Tulipa edulis bulbus. The results showed that the treatments of sun drying and 40 °C drying showed higher rehydration ratios, but lower dry rate, higher hardness, worse color, longer time and obvious distortion and shrinkage in comparison with other drying methods. The treatments of 60 °C constant temperature drying resulted in shorter drying time, lower water and higher polysaccharides content. Drying time is shorter and appearance quality is better in the treatment of steaming and boiling compared with other treatments, but the content of extractive and polysaccharides decreased significantly. The treatments of 50 °C constant temperature drying led to similar appearance quality of bulb to commercial bulb, and it resulted in lowest hardness and highest dry rate as well as higher rehydration ratio, extractive and polysaccharides content, moderate moisture and total ash contents among these treatments. Based on the results obtained, 50 °C constant temperature drying is the better way for the processing of T. edulis bulbus.
Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
Fuentes-Azcatl, Raúl; Alejandre, José
2014-02-06
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
Lecheta, Melise Cristine; Thyssen, Patricia Jacqueline; Moura, Mauricio Osvaldo
2015-12-01
The blowfly Sarconesia chlorogaster (Diptera: Calliphoridae) is of limited forensic use in South America, due to the poorly known relationship between development time and temperature. The purpose of this study was to determine development time of S. chlorogaster at different constant temperatures, thereby enabling the forensic use of this fly. Development time of this species was examined by observing larval development at six temperatures (10, 15, 20, 25, 30, 35 °C). The thermal constant (K), the minimum development threshold (t 0), and development rate were calculated using linear regressions of the development time interval at five temperatures (10-30 °C). Development interval from egg to adult varied from 14.2 to 95.2 days, depending on temperature. The t0 calculated for total immature development is 6.33 °C and the overall thermal constant is 355.51 degree-days (DD). Temperature affected the viability of pupae, at 35 °C 100 % mortality was observed. Understanding development rate across these temperatures now makes development of S. chlorogaster a forensically useful tool for estimating postmortem interval.
The effects of incubation temperature and experimental design on heart rates of lizard embryos.
Hulbert, Austin C; Mitchell, Timothy S; Hall, Joshua M; Guiffre, Cassia M; Douglas, Danielle C; Warner, Daniel A
2017-08-01
Many studies of phenotypic plasticity alter environmental conditions during embryonic development, yet only measure phenotypes at the neonatal stage (after embryonic development). However, measuring aspects of embryo physiology enhances our understanding of how environmental factors immediately affect embryos, which aids our understanding of developmental plasticity. While current research on reptile developmental plasticity has demonstrated that fluctuating incubation temperatures affect development differently than constant temperatures, most research on embryo physiology is still performed with constant temperature experiments. In this study, we noninvasively measured embryonic heart rates of the brown anole (Anolis sagrei), across ecologically relevant fluctuating temperatures. We incubated eggs under temperatures measured from potential nests in the field and examined how heart rates change through a diel cycle and throughout embryonic development. We also evaluated how experimental design (e.g., repeated vs. single measures designs, constant vs. fluctuating temperatures) and different protocols (e.g., removing eggs from incubators) might influence heart rate. We found that heart rates were correlated with daily temperature and increased through development. Our findings suggest that experimenters have reasonable flexibility in choosing an experimental design to address their questions; however, some aspects of design and protocol can potentially influence estimations of heart rates. Overall, we present the first ecologically relevant measures of anole embryonic heart rates and provide recommendations for experimental designs for future experiments. © 2017 Wiley Periodicals, Inc.
Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.
Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid
2012-09-01
An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.
Li, Wenzhuo; Zhang, Song; Zhao, Yingying; Huang, Shuaiyu; Zhao, Jiangshan
2017-01-01
Ammoniated lignin, prepared through the Mannich reaction of lignin, has more advantages as a slow-release carrier of urea molecules than ammoxidized lignin and lignin. The advantages of the ammoniated lignin include its amine groups added and its high molecular mass kept as similar as that of lignin. Three organic molecules including guaiacyl, 2-hydroxybenzylamine and 5-carbamoylpentanoic acid are monomers respectively in lignin, ammoniated lignin and ammoxidized lignin. We studied the difference between the interactions of lignin, ammoniated lignin and ammoxidized lignin with respect to urea, based on radial distribution functions (RDFs) results from molecular dynamics (MD) simulations. Glass transition temperature (T g ) and solubility parameter (δ) of ammoniated and ammoxidized lignin have been calculated by MD simulations in the constant-temperature and constant-pressure ensemble (NPT). Molecular docking results showed the interaction sites of the urea onto the ammoniated and ammoxidized lignin and three different interaction modes were identified. Root mean square deviation (RMSD) values could indicate the mobilities of the urea molecule affected by the three different interaction modes. A series of MD simulations in the constant-temperature and constant-volume ensemble (NVT) helped us to calculate the diffusivity of urea which was affected by the content of urea in ammoniated and ammoxidized lignin. Copyright © 2016 Elsevier Inc. All rights reserved.
Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K
2015-04-01
Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Brooke, L.T.
1975-01-01
Eggs of lake whitefish (Coregonus clupeaformis) were incubated in a constant-flow incubator at constant temperatures of 0.5, 2.0, 4.0, 5.9, 7.8, and 10.0 C. The time from fertilization to median hatch was inversely related to temperature, and ranged from 41.7 days at 10.0 C to 182 days at 0.5 C. The percentage hatch was highest (70.9-73.3%) at 4.0, 5.9, and 7.8 C, and was greatly reduced (6.0-28.4%) at 0.5, 2.0, and 10.0 C. The mortality of embryos was greatest during the early stages of development. Abnormally developed fry were most frequent (85.9% of the hatch) at 10.0 C, and least frequent (2.8%) at 4.0 C. Mean lengths of fry at hatching were shorter at 7.8 and 10.0 C (12.4 and 8.8 mm, respectively) than at lower temperatures (13.1 to 13.5 mm). The optimum temperature range for incubation of lake whitefish eggs was 3.2 to 8.1 C. Equations were derived for predicting development time to 20 successive stages, and to hatching, at constant incubation temperatures and at fluctuating daily mean water temperatures.
Separation of variables solution for non-linear radiative cooling
NASA Technical Reports Server (NTRS)
Siegel, Robert
1987-01-01
A separation of variables solution has been obtained for transient radiative cooling of an absorbing-scattering plane layer. The solution applies after an initial transient period required for adjustment of the temperature and scattering source function distributions. The layer emittance, equal to the instantaneous heat loss divided by the fourth power of the instantaneous mean temperature, becomes constant. This emittance is a function of only the optical thickness of the layer and the scattering albedo; its behavior as a function of these quantities is considerably different than for a layer at constant temperature.
Vapour pressure of ammonium chloride aerosol: Effect of temperature and humidity
NASA Astrophysics Data System (ADS)
Pio, Casimiro A.; Harrison, Roy M.
The effect of relative humidity (RH) on the constant for dissociation of ammonium chloride into gaseous HCl and NH 3 has been estimated for different temperatures, using thermodynamic data. At RH over 75-85% the ammonium chloride aerosol exists in the liquid phase, with the dissociation constant two orders of magnitude lower at 98% RH than for solid aerosol at the same temperature. It is predicted that ammonium chloride aqueous aerosol forms predominantly in fogwater and cloud droplets, and in regions where local emissions of NH 3 are important.
Connection formulas for thermal density functional theory
Pribram-Jones, A.; Burke, K.
2016-05-23
We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.
Gómez, N N; Venette, R C; Gould, J R; Winograd, D F
2009-02-01
Predictions of survivorship are critical to quantify the probability of establishment by an alien invasive species, but survival curves rarely distinguish between the effects of temperature on development versus senescence. We report chronological and physiological age-based survival curves for a potentially invasive noctuid, recently described as Copitarsia corruda Pogue & Simmons, collected from Peru and reared on asparagus at six constant temperatures between 9.7 and 34.5 degrees C. Copitarsia spp. are not known to occur in the United States but are routinely intercepted at ports of entry. Chronological age survival curves differ significantly among temperatures. Survivorship at early age after hatch is greatest at lower temperatures and declines as temperature increases. Mean longevity was 220 (+/-13 SEM) days at 9.7 degrees C. Physiological age survival curves constructed with developmental base temperature (7.2 degrees C) did not correspond to those constructed with a senescence base temperature (5.9 degrees C). A single degree day survival curve with an appropriate temperature threshold based on senescence adequately describes survivorship under non-stress temperature conditions (5.9-24.9 degrees C).
High-Temperature Electromechanical Characterization of AlN Single Crystals.
Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning
2015-10-01
Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.
NASA Astrophysics Data System (ADS)
Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.
2017-12-01
In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than previously reported. This complex formation/chaperone mechanism is similar to that found for methanol, but different in that it occurs at room temperature. No precursor concentration dependence was found for the acetonylperoxy radical reactions. The equilibrium constant for the complex formation will also be presented.
Pion properties at finite isospin chemical potential with isospin symmetry breaking
NASA Astrophysics Data System (ADS)
Wu, Zuqing; Ping, Jialun; Zong, Hongshi
2017-12-01
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)
Unruh thermal hadronization and the cosmological constant
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Bleicher, Marcus; Mann, Robert B.
2018-05-01
We use black holes with a negative cosmological constant to investigate aspects of the freeze-out temperature for hadron production in high energy heavy-ion collisions. The two black hole solutions present in the anti-de Sitter geometry have different mass and are compared to the data showing that the small black hole solution is in good agreement. This is a new feature in the literature since the small black hole in general relativity has different thermodynamic behavior from that of the large black hole solution. We find that the inclusion of the cosmological constant (which can be interpreted as the plasma pressure) leads to a lowering of the temperature of the freeze-out curve as a function of the baryochemical potential, improving the description previously suggested by Castorina, Kharzeev, and Satz.
Friedberg-Lee model at finite temperature and density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao Hong; CCAST; Yao Minjie
2008-06-15
The Friedberg-Lee model is studied at finite temperature and density. By using the finite temperature field theory, the effective potential of the Friedberg-Lee model and the bag constant B(T) and B(T,{mu}) have been calculated at different temperatures and densities. It is shown that there is a critical temperature T{sub C}{approx_equal}106.6 MeV when {mu}=0 MeV and a critical chemical potential {mu}{approx_equal}223.1 MeV for fixing the temperature at T=50 MeV. We also calculate the soliton solutions of the Friedberg-Lee model at finite temperature and density. It turns out that when T{<=}T{sub C} (or {mu}{<=}{mu}{sub C}), there is a bag constant B(T) [ormore » B(T,{mu})] and the soliton solutions are stable. However, when T>T{sub C} (or {mu}>{mu}{sub C}) the bag constant B(T)=0 MeV [or B(T,{mu})=0 MeV] and there is no soliton solution anymore, therefore, the confinement of quarks disappears quickly.« less
Long, Jiang; Youli, Qiu; Yu, Li
2017-11-01
Twelve substituent descriptors, 17 quantum chemical descriptors and 1/T were selected to establish a quantitative structure-property relationship (QSPR) model of Henry's law constants for 7 polybrominated diphenyl ethers (PBDEs) at five different temperatures. Then, the lgH of 202 congeners at different temperatures were predicted. The variation rule and regulating mechanism of lgH was studied from the perspectives of both quantum chemical descriptors and substituent characteristics. The R 2 for modeling and testing sets of the final QSPR model are 0.977 and 0.979, respectively, thus indicating good fitness and predictive ability for Henry' law constants of PBDEs at different temperatures. The favorable hydrogen binding sites are the 5,5',6,6'-positions for high substituent congeners and the O atom of the ether bond for low substituent congeners, which affects the interaction between PBDEs and water molecules. lgH is negatively and linearly correlated with 1/T, and the variation trends of lgH with temperature are primarily regulated by individual substituent characteristics, wherein: the more substituents involved, the smaller the lgH. The significant sequence for the main effect of substituent positions is para>meta>ortho, where the ortho-positions are mainly involved in second-order interaction effect (64.01%). Having two substituents in the same ring also provides a significant effect, with 81.36% of second-order interaction effects, particularly where there is an adjacent distribution (55.02%). Copyright © 2017 Elsevier Inc. All rights reserved.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho
2001-01-01
Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho
2001-01-01
Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.
Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Sen, A.; Maiti, U. N.; Thapa, R.; Chattopadhyay, K. K.
2011-09-01
Successful incorporation of vanadium dopant within the giant dielectric material CaCu 3Ti 4O12 (CCTO) through a conventional solid-state sintering process is achieved and its influence on the dielectric as well as electrical properties as a function of temperature and frequency is reported here. Proper crystalline phase formation together with dopant induced lattice constant shrinkage was confirmed through X-ray diffraction. The temperature dependence of the dielectric constant at different constant frequencies was investigated. We infer that the correlated barrier hopping (CBH) model is dominant in the conduction mechanism of the ceramic as per the temperature-dependent ac conductivity measurements. The electronic parameters such as density of the states at the Fermi level, N( E f) and hopping distance, R ω of the ceramic were also calculated using this model.
Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds
NASA Astrophysics Data System (ADS)
Xu, Lifang; Bu, Wei
2017-09-01
The Vickers hardness of various AlX (X = N, P, As) compound polymorphs were calculated with the bond resistance model. Thermodynamic properties, such as vibrational entropy, constant volume specific heat and Debye temperatures, were calculated using phonon dispersion relations and phonon density of states (DOS). The calculated values are in good agreement with the previous experimental and theoretical data. For the same structure of AlX (X = N, P, As) compounds, their hardness and Debye temperatures both decrease with the X atomic number. The wurtzite (wz) and zincblende (zb) structures of the same compounds AlX share an almost identical hardness, but have different Debye temperatures. The difference between wz and zb structures increases as the atomic number of X increases. The thermodynamic properties reveal that the constant volume specific heat approaches the Dulong-Petit rule at high temperatures.
NASA Astrophysics Data System (ADS)
Zhou, Konglin; Sun, Song
2017-07-01
Calanus sinicus, the dominant copepod in the Yellow Sea, develops a large oil sac in late spring to prepare for over-summering in the Yellow Sea Cold Water Mass (YSCWM). The lipid accumulation mechanism for the initiation of over-summering is unknown. Here, we cultured C3 copepodites at four constant temperatures (10, 13, 16, and 19°C) and at three temperature regimes that mimicked the temperature variations experienced during diurnal vertical migration (10-13°C, 10-16°C, and 10-19°C) for 18 days to explore the effects of temperature differences on copepod development and lipid accumulation. C. sinicus stored more lipid at low than at high temperatures. A diurnal temperature difference (10-16°C and 10-19°C) promoted greater lipid accumulation (1.9-2.1 times) than a constant temperature of either 16°C or 19°C, by reducing the energy cost at colder temperatures and lengthening copepodite development. Thereafter, the lipid reserve supported gonad development after final molting. Only one male developed in these experiments. This highly female-skewed sex ratio may have been the result of the monotonous microalgae diet fed to the copepodites. This study provides the first evidence that diurnal temperature differences may promote lipid accumulation in C. sinicus, and provides a foundation for future investigations into the mechanisms involved in over-summering in the YSCWM.
Circadian rhythm of body temperature in an ectotherm (Iguana iguana).
Tosini, G; Menaker, M
1995-09-01
Ectothermic animals regulate their body temperatures primarily by behavioral adjustment in relation to the thermal characteristics of the environment. Several studies have shown that some vertebrate ectotherms may show a daily pattern of body temperature selection when given a choice of environmental temperature. The pattern of body temperature selection free-runs when the animals are kept in constant darkness, demonstrating the existence of circadian regulation. To test whether there might also be a low amplitude circadian rhythm of body temperature itself, we examined the pattern of body temperature and locomotor activity of the lizard Iguana iguana held in a constant environmental temperature. Both variables were recorded for 3 days in a light:dark cycle and then for 10 days in constant dim light (0.1 lux). Under these conditions the body temperature of the lizard oscillates with a circadian period as does the locomotor behavior. These results demonstrate for the first time that ectothermic animals may display physiologically generated circadian rhythms of body temperature similar to those recorded in endotherms. In some animals the circadian rhythms of body temperature and locomotor activity showed different free-running periods, demonstrating that the body temperature rhythm was not caused by locomotor activity and suggesting internal desyncronization of the two rhythms.
Effect of Several Factors on the Cooling of a Radial Engine in Flight
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin
1936-01-01
Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
Thermochemical Data for Propellant Ingredients and their Products of Explosion
1949-12-01
oases except perhaps at temperatures below 2000°K. The logarithms of all the equilibrium constants except Ko have been tabulated since these logarithms...have almost constant first differences. Linear interpolation may lead to an error of a unit or two in the third decimal place for Ko but the...dissociation products OH, H and KO will be formed and at still higher temperatures the other dissociation products 0*, 0, N and C will begin to appear
Zamith, Luiz R; Cruz, Denise D; Richers, Bárbara T T
2013-01-01
Melocactus violaceus is an endangered species due to habitat destruction and the overcollection of this species for ornamental use. The aim of this study was to test the effect of different temperatures on the germination of M. violaceus. Three treatments were conducted: a constant temperature of 25ºC, a 20-35ºC alternating temperature, both inside germination chamber, and an alternating temperature under room temperature (mean temperature ranged from 25-37ºC). The final seed germination rates at the alternating temperature treatments were not significantly different (65% in the seed germinator and 62.5% at room condition). However, both treatments with alternating temperatures had significantly higher germination rates compared to the treatment kept at the constant temperature (8%). Our study showed that alternating temperatures between 20 and 37ºC provides satisfactory conditions to induce a high percentage of seed germination of M. violaceus, without the passage of seeds through the digestive tract of its natural disperser, the lizard Tropidurus torquatus. This condition contributes to efficiently producing seedlings that can be reintroduced into conservation areas or used as ornamentals that may help reduce the overcollection of the remaining native populations.
Hierarchical Freezing in a Lattice Model
NASA Astrophysics Data System (ADS)
Byington, Travis W.; Socolar, Joshua E. S.
2012-01-01
A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.
Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿
Coleman, Matthew C.; Fish, Russell; Block, David E.
2007-01-01
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615
NASA Astrophysics Data System (ADS)
Song, Li
The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature. Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter. The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis. A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.
Heating rates in furnace atomic absorption using the L'vov platform
Koirtyohann, S.R.; Giddings, R.C.; Taylor, Howard E.
1984-01-01
Heating rate profiles for the furnace tube wall, the furnace atmosphere, and a L'vov platform were established for a range of conditions in a cyclically heated graphite atomizer. The tube wall profile was made by direct observation with a recording optical pyrometer. The sodium line reversal method was used to establish the heating rate of the furnace atmosphere, and appearance temperatures for a series metals of differing volatility was used to establish platform profiles. The tube wall heating rate was nearly linear at 2240??C s- until the desired temperature was reached after which the temperature remained constant. The furnace atmosphere reached a given temperature 0.2-0.4 s later than the tube wall through most of the atomize cycle. The platform lagged the tube wall 0.5-0.8 s. Under typical operating conditions the furnace atmosphere was 100-200??C cooler than the tube wall and at nearly constant temperature when the analyte vaporized from the platform. The L'vov platform causes the cyclically heated commercial furnace to approximate the behavior of a constant temperature furnace during atomization. ?? 1984.
FDR Soil Moisture Sensor for Environmental Testing and Evaluation
NASA Astrophysics Data System (ADS)
Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin
To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.
Brand, Stephan; Klotz, Johannes; Hassel, Thomas; Petri, Maximilian; Ettinger, Max; Krettek, Christian; Goesling, Thomas; Bach, Friedrich-Wilhelm
2013-10-01
The purpose of this study was to evaluate the different temperature levels whilst drilling cemented and cementless hip prostheses implanted in bovine femora, and to evaluate the insulating function of the cement layer. Standard hip prostheses were implanted in bovine donor diaphyses, with or without a cement layer. Drilling was then performed using high-performance-cutting drills with a reinforced core, a drilling diameter of 5.5 mm and cooling channels through the tip of the drill for constantly applied internal cooling solution. An open type cooling model was used in this setup. Temperature was continuously measured by seven thermocouples placed around the borehole. Thermographic scans were also performed during drilling. At the cemented implant surface, the temperature never surpassed 24.7 °C when constantly applied internal cooling was used. Without the insulating cement layer (i.e. during drilling of the cementless bone-prosthesis construct), the temperature increased to 47 °C. Constantly applied internal cooling can avoid structural bone and soft tissue damage during drilling procedures. With a cement layer, the temperatures only increased to non-damaging levels. The results could be useful in the treatment of periprosthetic fractures with intraprosthetic implant fixation.
Effects of oxygen deficiency on the transport and dielectric properties of NdSrNbO
NASA Astrophysics Data System (ADS)
Hzez, W.; Benali, A.; Rahmouni, H.; Dhahri, E.; Khirouni, K.; Costa, B. F. O.
2018-06-01
In the present study, Nd0.7Sr0.3NbO3-y (y = 0.1, 0.15, 0.2) compounds were prepared via a solid-solid reaction route. The prepared samples were characterized by electrochemical impedance spectroscopy in order to establish the effects of temperature, frequency, and oxygen vacancies on both the transport and dielectric properties of NdSrNbO. We found that both the electrical and dielectric properties were highly sensitive to the concentration of oxygen vacancies. The conduction mechanism data were explained well according to the Mott model and adiabatic small polaronic hopping model. Electrochemical impedance spectroscopy analysis showed that one relaxation process was present in the Nd0.7Sr0.3NbO2.9 system whereas two relaxation processes were observed in the Nd0.7Sr0.3NbO2.85 and Nd0.7Sr0.3NbO2.8 systems, where the latter behavior indicated the presence of many active regions (due to the contributions of different microstructures). The temperature and frequency dependences of the dielectric constant confirmed the contributions of different polarization mechanisms. In particular, the high dielectric constant values at low frequencies and high temperatures were mainly related to the presence of different Schottky barriers, whereas the low dielectric constant values at high frequencies were essentially related to the intrinsic effect. The constant dielectric values obtained for the samples are greater than those in the NdSrFeO system, which makes them interesting materials for use in applications that require high dielectric constants.
Introducing Temperature Scales.
ERIC Educational Resources Information Center
McIldowie, Eric
1998-01-01
Ignoring the interpretive problems of temperature measurement deprives students of a beneficial, positive educational experience. Suggests experimenting with different thermometers including a copper resistance thermometer, a thermistor, a thermocouple, and a constant-volume air thermometer. Provides guidance for the classroom discussion of…
Creep strain and creep-life prediction for alloy 718 using the omega method
NASA Astrophysics Data System (ADS)
Yeom, Jong-Taek; Kim, Jong-Yup; Na, Young-Sang; Park, Nho-Kwang
2003-12-01
The creep behavior of Alloy 718 was investigated in relation to the MPCs omega (Ω) method. To evaluate the creep model and determine material parameters, constant load creep tests were performed at different initial stresses in a temperature range between 550°C and 700°C. The imaginary initial strain rate ɛ limits^. _0 and omega (Ω), considered to be important variables in the model, were expressed as a function of initial stress and temperature. For these variables, power-law and hyperbolic sine-law equations were used as constitutive equations for the creep of Alloy 718. To consider the effect of γ″ coarsening leading to a radical drop of tensile strength and creep strength at temperatures above 650°C, different material constants at the temperatures above 650°C were applied. The reliability of the models was investigated in relation to the creep curve and creep life.
NASA Astrophysics Data System (ADS)
Xi, T. Y.; Ding, J. H.; Lv, X. W.; Lei, Y. S.
2018-06-01
In order to create a comfortable building thermal environment, it is important to study the outdoor ground materials performance. In this article, we carried out a constant field experiment in Guangzhou, China, studying on the variations of the surface temperature of three common outdoor building materials: concrete, pavement and grass. We put the equipment on six experiment points respectively to measure the ground surface temperature constantly. The result shows that because of the specific heat capacity, both concrete and pavement have an obvious time delay during their temperature decrease when the grass ground has almost no time delay. And when in the same conditions (exposed to sunlight all day), the material with a low specific heat capacity has a more sensitive variation in temperature. The lower the specific capacity is, the steeper the variation trend of the surface temperature will be. So compared with concrete, the pavement brick ground with a low specific heat capacity has a higher surface temperature in daytime and a lower temperature in the late night time. When in different conditions (different time exposed to sunlight), the temperature value is proportional to the time exposed to the sunlight between the same materials. The concrete exposed to sunlight all day has the highest temperature when the shaded one has the lowest. This experiment reveals that both specific heat capacity and the exposed time to sunlight has a strong influence on the surface temperature of outdoor materials. In subtropical region, the materials with a higher specific heat capacity and a less time exposed to sunlight may be more beneficial to the building thermal environment.
Supercooling Water in Cylindrical Capsules
NASA Astrophysics Data System (ADS)
Guzman, J. J. Milón; Braga, S. L.
2005-11-01
An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.
The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures ofmore » the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.« less
Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.
Du, Bin; Zhang, Zhen; Grubner, Sharon; Yurkovich, James T; Palsson, Bernhard O; Zielinski, Daniel C
2018-06-05
Reaction-equilibrium constants determine the metabolite concentrations necessary to drive flux through metabolic pathways. Group-contribution methods offer a way to estimate reaction-equilibrium constants at wide coverage across the metabolic network. Here, we present an updated group-contribution method with 1) additional curated thermodynamic data used in fitting and 2) capabilities to calculate equilibrium constants as a function of temperature. We first collected and curated aqueous thermodynamic data, including reaction-equilibrium constants, enthalpies of reaction, Gibbs free energies of formation, enthalpies of formation, entropy changes of formation of compounds, and proton- and metal-ion-binding constants. Next, we formulated the calculation of equilibrium constants as a function of temperature and calculated the standard entropy change of formation (Δ f S ∘ ) using a model based on molecular properties. The median absolute error in estimating Δ f S ∘ was 0.013 kJ/K/mol. We also estimated magnesium binding constants for 618 compounds using a linear regression model validated against measured data. We demonstrate the improved performance of the current method (8.17 kJ/mol in median absolute residual) over the current state-of-the-art method (11.47 kJ/mol) in estimating the 185 new reactions added in this work. The efforts here fill in gaps for thermodynamic calculations under various conditions, specifically different temperatures and metal-ion concentrations. These, to our knowledge, new capabilities empower the study of thermodynamic driving forces underlying the metabolic function of organisms living under diverse conditions. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J
2011-01-01
Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and developing food processes and products. However, despite its extreme usefulness, the Tg, a key element of the FPS approach, remains a challenging parameter to routinely measure in amorphous food materials, especially complex materials. This research demonstrates that RHc values, obtained at constant temperature using an automatic water vapor sorption instrument, can be used to detect the glassy to rubbery transition and are similar to the Tg values obtained at constant %RH, especially considering the very different approaches of these 2 methods--a transition from surface adsorption to bulk absorption (water vapor sorption) versus a step change in the heat capacity (DSC thermal method).
Audenaert, J; Vangansbeke, D; Verhoeven, R; De Clercq, P; Tirry, L; Gobin, B
2014-01-01
Predatory mites like Phytoseiulus persimilis Athias-Henriot, Neoseiulus californicus McGregor and N. fallacis (Garman) (Acari: Phytoseiidae) are essential in sustainable control strategies of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in warm greenhouse cultures to complement imited available pesticides and to tackle emerging resistance. However, in response to high energy prices, greenhouse plant breeders have recently changed their greenhouse steering strategies, allowing more variation in temperature and humidity. The impact of these variations on biological control agents is poorly understood. Therefore, we constructed functional response models to demonstrate the impact of realistic climate variations on predation efficiency. First, two temperature regimes were compared at constant humidity (70%) and photoperiod (16L:8D): DIF0 (constant temperature) and DIF15 (variable temperature with day-night difference of 15°C). At mean temperatures of 25°C, DIF15 had a negative influence on the predation efficiency of P. persimilis and N. californicus, as compared to DIF0. At low mean temperatures of 15°C, however, DIF15 showed a higher predation efficiency for P. persimilis and N. californicus. For N. fallacis no difference was observed at both 15°C and 25°C. Secondly, two humidity regimes were compared, at a mean temperature of 25°C (DIFO) and constant photoperiod (16L:8D): RHCTE (constant 70% humidity) and RHALT (alternating 40% L:70%D humidity). For P. persimilis and N. fallacis RHCTE resulted in a higher predation efficiency than RHALT, for N. californicus this effect was opposite. This shows that N. californicus is more adapted to dry climates as compared to the other predatory mites. We conclude that variable greenhouse climates clearly affect predation efficiency of P. persimilis, N. californicus and N. fallacis. To obtain optimal control efficiency, the choice of predatory mites (including dose and application frequency) should be adapted to the actual greenhouse climate.
Temperature Dependence Of Elastic Constants Of Polymers
NASA Technical Reports Server (NTRS)
Simha, Robert; Papazoglou, Elisabeth
1989-01-01
Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.
To BG or not to BG: Background Subtraction for EIT Coronal Loops
NASA Astrophysics Data System (ADS)
Beene, J. E.; Schmelz, J. T.
2003-05-01
One of the few observational tests for various coronal heating models is to determine the temperature profile along coronal loops. Since loops are such an abundant coronal feature, this method originally seemed quite promising - that the coronal heating problem might actually be solved by determining the temperature as a function of arc length and comparing these observations with predictions made by different models. But there are many instruments currently available to study loops, as well as various techniques used to determine their temperature characteristics. Consequently, there are many different, mostly conflicting temperature results. We chose data for ten coronal loops observed with the Extreme ultraviolet Imaging Telescope (EIT), and chose specific pixels along each loop, as well as corresponding nearby background pixels where the loop emission was not present. Temperature analysis from the 171-to-195 and 195-to-284 angstrom image ratios was then performed on three forms of the data: the original data alone, the original data with a uniform background subtraction, and the original data with a pixel-by-pixel background subtraction. The original results show loops of constant temperature, as other authors have found before us, but the 171-to-195 and 195-to-284 results are significantly different. Background subtraction does not change the constant-temperature result or the value of the temperature itself. This does not mean that loops are isothermal, however, because the background pixels, which are not part of any contiguous structure, also produce a constant-temperature result with the same value as the loop pixels. These results indicate that EIT temperature analysis should not be trusted, and the isothermal loops that result from EIT (and TRACE) analysis may be an artifact of the analysis process. Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.
NASA Technical Reports Server (NTRS)
Ravishankara, A. R.; Wine, P. H.
1980-01-01
The technique of laser flash photolysis-resonance fluorescence is employed to study the kinetics of the reaction Cl(2P) + CH4 yields CH3 + HCl over the temperature range 221-375 K. At temperatures less than or equal to 241 K the apparent bimolecular rate constant is found to be dependent upon the identity of the chemically inert gases in the reaction mixture. For Cl2/CH4/He reaction mixtures (total pressure = 50 torr) different bimolecular rate constants are measured at low and high methane concentrations. For Cl2/CH4/CCl/He and Cl2/CH4/Ar reaction mixtures, the bimolecular rate constant is independent of methane concentration, being approximately equal to the rate constant measured at low methane concentrations for Cl2/CH4/He mixtures. These rate constants are in good agreement with previous results obtained using the discharge flow-resonance fluorescence and competitive chlorination techniques. At 298 K the measured bimolecular rate constant is independent of the identity of the chemically inert gases in the reaction mixture and in good agreement with all previous investigations. The low-temperature results obtained in this investigation and all previous investigations can be rationalized in terms of a model which assumes that the Cl(2P 1/2) state reacts with CH4 much faster than the Cl(2P 3/2) state. Extrapolation of this model to higher temperatures, however, is not straightforward.
Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation
NASA Astrophysics Data System (ADS)
Pappas, Thomas; Kanti, Panagiota
2017-12-01
We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, B.L.; Briggs, S.F.; Johansen, J.H.
Big sagebrush (Artemisia tridentata Nutt.) seeds were stored in three different environments; cool, constant temperature (refrigerator 10 degs. C); room temperature (14 to 24 degs. C); and a nonheated warehouse (-28 to +44 degs. C). In all three cases, humidity was held constant and equal. Significant drop in seed viability occurred first in the seed stored in the nonheated warehouse, followed by seed stored at room temperatures, and then seed stored at cool temperatures. It appeared from this study and studies by others that humidity control is more important to maintaining seed viability than temperature control. The old adage simplymore » states `store seeds in a cool and dry place` - but first make sure the seeds have been properly dried. Drying sagebrush seed during the cool, wet weather of the harvesting period creates special challenges to the producer.« less
Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).
Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires
2008-01-01
The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.
Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng
2013-09-21
Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.
Thermal behavior of Charmonium in the vector channel from QCD sum rules
NASA Astrophysics Data System (ADS)
Dominguez, C. A.; Loewe, M.; Rojas, J. C.; Zhang, Y.
2010-11-01
The thermal evolution of the hadronic parameters of charmonium in the vector channel, i.e. the J/Ψ resonance mass, coupling (leptonic decay constant), total width, and continuum threshold are analyzed in the framework of thermal Hilbert moment QCD sum rules. The continuum threshold s0 has the same behavior as in all other hadronic channels, i.e. it decreases with increasing temperature until the PQCD threshold s0 = 4mQ2 is reached at T≃1.22Tc (mQ is the charm quark mass). The other hadronic parameters behave in a very different way from those of light-light and heavy-light quark systems. The J/Ψ mass is essentially constant in a wide range of temperatures, while the total width grows with temperature up to T≃1.04Tc beyond which it decreases sharply with increasing T. The resonance coupling is also initially constant beginning to increase monotonically around T≃Tc. This behavior of the total width and of the leptonic decay constant is a strong indication that the J/Ψ resonance might survive beyond the critical temperature for deconfinement, in agreement with some recent lattice QCD results.
Circadian rhythms of temperature and activity in obese and lean Zucker rats
NASA Technical Reports Server (NTRS)
Murakami, D. M.; Horwitz, B. A.; Fuller, C. A.
1995-01-01
The circadian timing system is important in the regulation of feeding and metabolism, both of which are aberrant in the obese Zucker rat. This study tested the hypothesis that these abnormalities involve a deficit in circadian regulation by examining the circadian rhythms of body temperature and activity in lean and obese Zucker rats exposed to normal light-dark cycles, constant light, and constant dark. Significant deficits in both daily mean and circadian amplitude of temperature and activity were found in obese Zucker female rats relative to lean controls in all lighting conditions. However, the circadian period of obese Zucker rats did not exhibit differences relative to lean controls in either of the constant lighting conditions. These results indicate that although the circadian regulation of temperature and activity in obese Zucker female rats is in fact depressed, obese rats do exhibit normal entrainment and pacemaker functions in the circadian timing system. The results suggest a deficit in the process that generates the amplitude of the circadian rhythm.
Thermoelectric Generation Using Counter-Flows of Ideal Fluids
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.
2017-08-01
Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.
Meeuwig, M.H.; Dunham, J.B.; Hayes, J.P.; Vinyard, G.L.
2004-01-01
The effects of constant (12, 18, and 24 A?C) and cyclical (daily variation of 15a??21 and 12a??24 A?C) thermal regimes on the growth and feeding of Lahontan cutthroat trout (Oncorhynchus clarki henshawi) of variable sizes were examined. Higher constant temperatures (i.e., 24 A?C) and more variable daily temperatures (i.e., 12a??24 A?C daily cycle) negatively affected growth rates. As fish mass increased (from 0.24 to 15.52 g) the effects of different thermal regimes on mass growth became more pronounced. Following 14 days exposure to the thermal regimes, feeding rates of individual fish were assessed during acute exposure (40 min) to test temperatures of 12, 18, and 24 A?C. Feeding rate was depressed during acute exposure to 24 A?C, but was not significantly affected by the preceding thermal regime. Our results indicate that even brief daily exposure to higher temperatures (e.g., 24 A?C) can have considerable sublethal effects on cutthroat trout, and that fish size should be considered when examining the effects of temperature.
NASA Astrophysics Data System (ADS)
Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.
2014-01-01
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise
2016-03-01
Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.
Napiórkowska, Teresa; Kobak, Jarosław; Napiórkowski, Paweł; Templin, Julita
2018-02-01
Embryogenesis and post-embryogenesis of spiders depend on several environmental factors including light and temperature. This study was aimed at evaluating the impact of different thermal and lighting conditions on embryonic and early post-embryonic development of Eratigena atrica. Embryos, larvae, nymphs I and II were incubated at constant temperatures of 12, 22, 25 and 32°C under three different light regimes: light, dark, light/dark. Extreme temperatures (12 and 32°C) significantly increased mortality of embryos (to 100%) and nymphs II, whereas larvae and nymphs I suffered reduced survival only at the lowest temperature. Moreover, the lowest temperature reduced the development rate of all stages. The impact of light conditions was less pronounced and more variable: constant light reduced the survival of nymphs I at lower temperatures, but increased that of larvae. Moreover, light increased the time of embryonic development and duration of nymphal stages, particularly at lower temperatures (12-22°C). Thus, the most optimal locations for spiders seem to be dark (though except larval stage) and warm (25°C) sites, where their development is fastest and mortality lowest. Copyright © 2017 Elsevier Ltd. All rights reserved.
On estimating total daily evapotranspiration from remote surface temperature measurements
NASA Technical Reports Server (NTRS)
Carlson, Toby N.; Buffum, Martha J.
1989-01-01
A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.
A Fresh Look at the Semiconductor Bandgap Using Constant Current Data
ERIC Educational Resources Information Center
Ocaya, R. O.; Luhanga, P. V. C.
2011-01-01
It is shown that the well-known linear variation of p-n diode terminal voltage with temperature at different fixed forward currents allows easy and accurate determination of the semiconductor ideality factor and bandgap from only two data points. This is possible if the temperature difference required to maintain the same diode voltage drop can be…
Rathbun, R.E.; Tai, D.Y.
1988-01-01
The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of
Vangansbeke, Dominiek; De Schrijver, Lien; Spranghers, Thomas; Audenaert, Joachim; Verhoeven, Ruth; Nguyen, Duc Tung; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2013-11-01
Increasing energy costs force glasshouse growers to switch to energy saving strategies. In the temperature integration approach, considerable daily temperature variations are allowed, which not only have an important influence on plant growth but also on the development rate of arthropods in the crop. Therefore, we examined the influence of two constant temperature regimes (15 °C/15 °C and 20 °C/20 °C) and one alternating temperature regime (20 °C/5 °C, with an average of 15 °C) on life table parameters of Phytoseiulus persimilis and Neoseiulus californicus and their target pest, the two-spotted spider mite Tetranychus urticae at a 16:8 (L:D) h photoperiod and 65 ± 5 % RH. For females of both predatory mites the alternating temperature regime resulted in a 25-30 % shorter developmental time as compared to the corresponding mean constant temperature regime of 15 °C/15 °C. The immature development of female spider mites was prolonged for 7 days at 15 °C/15 °C as compared to 20 °C/5 °C. With a daytime temperature of 20 °C, no differences in lifetime fecundity were observed between a nighttime temperature of 20 and 5 °C for P. persimilis and T. urticae. The two latter species did show a higher lifetime fecundity at 20 °C/5 °C than at 15 °C/15 °C, and their daily fecundity at the alternating regime was about 30 % higher than at the corresponding mean constant temperature. P. persimilis and T. urticae showed no differences in sex ratio between the three temperature regimes, whereas the proportion of N. californicus females at 15 °C/15 °C (54.2 %) was significantly lower than that at 20 °C/5 °C (69.4 %) and 20 °C/20 °C (67.2 %). Intrinsic rates of increase were higher at the alternating temperature than at the corresponding mean constant temperature for both pest and predators. Our results indicate that thermal responses of the studied phytoseiid predators to alternating temperature regimes used in energy saving strategies in glasshouse crops may have consequences for their efficacy in biological control programs.
NASA Astrophysics Data System (ADS)
Stolzberg, Richard J.
1999-05-01
Students are challenged to investigate the hypothesis that an equilibrium constant, Kc, measured as a product and quotient of molar concentrations, is constant at constant temperature. Spectrophotometric measurements of absorbance of a solution of Fe3+(aq) and SCN-(aq) treated with different amounts of KNO3 are made to determine Kc for the formation of FeSCN2+(aq). Students observe a regular decrease in the value of Kc as the concentration of added KNO3 is increased.
Mort, Brendan C; Autschbach, Jochen
2006-08-09
Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.
New constant-temperature operating mode for graphite calorimeter at LNE-LNHB.
Daures, J; Ostrowsky, A
2005-09-07
The realization of the unit of absorbed dose at LNE-LNHB is based on calorimetry with the present GR8 graphite calorimeter. For this reason the calorimetric technique must be maintained, developed and improved in the laboratory. The usual quasi-adiabatic operating mode at LNHB is based on the thermal feedback between the core (sensitive element) and the jacket (adjacent body). When a core-jacket temperature difference is detected, a commercially available analogue PID (Proportional, Integral, Derivative) controller sends to the jacket an amount of electrical power to reduce this difference. Nevertheless, the core and jacket temperatures increase with irradiations and electrical calibrations whereas the surrounding is maintained at a fixed temperature to shield against the room temperature variations. At radiotherapy dose rates, fewer than ten measurements, or electrical calibrations, per day can be performed. This paper describes the new constant-temperature operating mode which has been implemented recently to improve flexibility in use and, to some extent, accuracy. The core and the jacket temperatures are maintained at fixed temperatures. A steady state is achieved without irradiation. Then, under irradiation, the electrical power needed to maintain the assigned temperature in the core is reduced by the amount of heat generated by ionizing radiation. The difference between these electrical powers, without and with irradiation, gives the mean absorbed dose rate to the core. The quality of this electrical power substitution measurement is strongly dependent upon the quality of the core and jacket thermal control. The core temperature is maintained at the set value using a digital PID regulator developed at the laboratory with LabView software on PC for this purpose. This regulator is versatile and particularly well suited for calorimetry purposes. Measurements in a cobalt-60 beam have shown no significant difference (<0.09%) between the two operating modes, with an equivalent reproducibility (1sigma < 0.06%). These results corroborate the negligible difference of heat transfer between steady and irradiation periods when working in quasi-adiabatic mode with thermal feedback between the core and the jacket. The new constant-temperature mode allows numerous and fully automated measurements. The electrical calibration is an integral part of the measurement; no extra runs are needed. It also allows faster thermal equilibrium before starting runs. Moreover the quality of vacuum within the gaps between the bodies is less important.
Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators
Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick
2015-01-01
The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.
2016-06-01
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gas is taken to be constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the gasmore » is taken to be constant.« less
Ultrasonic Characterization of Superhard Material: Osmium Diboride
NASA Astrophysics Data System (ADS)
Yadawa, P. K.
2012-12-01
Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.
Design verification of large time constant thermal shields for optical reference cavities.
Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H
2016-02-01
In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.
von Götz, N; Richter, O
1999-03-01
The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.
Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems
NASA Astrophysics Data System (ADS)
Shadangi, Keshab Chandra; Rout, G. C.
2017-05-01
The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K
NASA Technical Reports Server (NTRS)
Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.
2014-01-01
Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.
On the Time Scale of Nocturnal Boundary Layer Cooling in Valleys and Basins and over Plains
NASA Astrophysics Data System (ADS)
de Wekker, Stephan F. J.; Whiteman, C. David
2006-06-01
Sequences of vertical temperature soundings over flat plains and in a variety of valleys and basins of different sizes and shapes were used to determine cooling-time-scale characteristics in the nocturnal stable boundary layer under clear, undisturbed weather conditions. An exponential function predicts the cumulative boundary layer cooling well. The fitting parameter or time constant in the exponential function characterizes the cooling of the valley atmosphere and is equal to the time required for the cumulative cooling to attain 63.2% of its total nighttime value. The exponential fit finds time constants varying between 3 and 8 h. Calculated time constants are smallest in basins, are largest over plains, and are intermediate in valleys. Time constants were also calculated from air temperature measurements made at various heights on the sidewalls of a small basin. The variation with height of the time constant exhibited a characteristic parabolic shape in which the smallest time constants occurred near the basin floor and on the upper sidewalls of the basin where cooling was governed by cold-air drainage and radiative heat loss, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.
2016-02-23
We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less
Modeling light and temperature effects on leaf emergence in wheat and barley
NASA Technical Reports Server (NTRS)
Volk, T.; Bugbee, B.
1991-01-01
Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.
NASA Astrophysics Data System (ADS)
Fang, Tuo; Fa, Wenzhe
2014-04-01
Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.
Temperature Dependence Of Single-Event Effects
NASA Technical Reports Server (NTRS)
Coss, James R.; Nichols, Donald K.; Smith, Lawrence S.; Huebner, Mark A.; Soli, George A.
1990-01-01
Report describes experimental study of effects of temperature on vulnerability of integrated-circuit memories and other electronic logic devices to single-event effects - spurious bit flips or latch-up in logic state caused by impacts of energetic ions. Involved analysis of data on 14 different device types. In most cases examined, vulnerability to these effects increased or remain constant with temperature.
Rate constant for the reaction of atomic chlorine with methane
NASA Technical Reports Server (NTRS)
Lin, C. L.; Leu, M. T.; Demore, W. B.
1978-01-01
The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.
NASA Astrophysics Data System (ADS)
Zad, Hamid Arian; Movahhedian, Hossein
2016-08-01
Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.
An insight into Newton's cooling law using fractional calculus
NASA Astrophysics Data System (ADS)
Mondol, Adreja; Gupta, Rivu; Das, Shantanu; Dutta, Tapati
2018-02-01
For small temperature differences between a heated body and its environment, Newton's law of cooling predicts that the instantaneous rate of change of temperature of any heated body with respect to time is proportional to the difference in temperature of the body with the ambient, time being measured in integer units. Our experiments on the cooling of different liquids (water, mustard oil, and mercury) did not fit the theoretical predictions of Newton's law of cooling in this form. The solution was done using both Caputo and Riemann-Liouville type fractional derivatives to check if natural phenomena showed any preference in mathematics. In both cases, we find that cooling of liquids has an identical value of the fractional derivative of time that increases with the viscosity of the liquid. On the other hand, the cooling studies on metal alloys could be fitted exactly by integer order time derivative equations. The proportionality constant between heat flux and temperature difference was examined with respect to variations in the depth of liquid and exposed surface area. A critical combination of these two parameters signals a change in the mode of heat transfer within liquids. The equivalence between the proportionality constants for the Caputo and Riemann-Liouville type derivatives is established.
Low Temperature Approach to Serpentinization Processes on Ocean Worlds
NASA Astrophysics Data System (ADS)
Neto-Lima, J.; Fernández-Sampedro, M.; Prieto-Ballesteros, O.
2018-05-01
MIR results from laboratory experiments at constant temperature of 90ºC. The monitoring of the mineral alterations is done in the presence of different amounts of a Fe-Ni catalyst (awaruite) and ammonia, using XRPD, IR, SEM-EDS, XPS,RAMAN and ICP-MS.
The effect of highly activated hopping process on the physical properties of Co-Zn-La ferrite
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; EL-Sayed, M. M.; EL-Desoky, M. M.
2010-01-01
Samples of Co 1-xZn xLa yFe 2-yO 4, 0.1≤ x≤0.9, y=0.25, were prepared using standard ceramic technique. X-ray investigations were carried out in order to assure the formation of the samples in single spinel phase. The dielectric constant ε´ was measured at different temperatures as the function of frequencies ranging from 100 kHz to 3 MHz for the investigated samples. The dielectric constant ε´ increases with temperature up to transition temperature T(ε´) and decreases with frequency. ε´ decreases also with increasing Zn content. Tε´ increases continuously with Zn content depending on frequency. The magnetic susceptibility for the prepared samples was measured using Faraday's method at different temperatures as the function of the magnetic field intensity. The magnetic parameters were calculated from the magnetic susceptibility data, in the temperature range 300-800 K at three different magnetic field intensities of 720, 1070 and 1380 Oe. The data show a decrease in the magnetic susceptibility till it reaches the Curie temperature TC. It is noted that the effective magnetic moment ( μeff.) gives the same trend as that of TC with Zn content.
Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature
NASA Astrophysics Data System (ADS)
Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.
2015-11-01
The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.
NASA Astrophysics Data System (ADS)
Yuan, Wen-Xiang; Hark, S. K.; Xu, H. Y.; Mei, W. N.
2012-01-01
Using the radio frequency magnetron sputtering, CaCu 3Ti 4O 12 (CCTO) thin films were deposited on platinized silicon substrates. The influence of annealing temperature on structures and morphologies of the thin films was investigated. The high annealing temperature increased the crystallinity of the films. Temperature dependence of the dielectric constant revealed an amazing different characteristic of the dielectric relaxation at ˜10 MHz, whose characteristic frequency abnormally increased with the decrease of the measuring temperature unlike the relaxations due to extrinsic origins. Meanwhile, the dielectric constant at high frequencies was close to the value derived from the first principle calculation. All these gave the evidences to ascribe this relaxation to the intrinsic mechanism.
NASA Astrophysics Data System (ADS)
Chen, Shuai; Li, Qingxuan; Ferguson, Ian; Lin, Tao; Wan, Lingyu; Feng, Zhe Chuan; Zhu, Liping; Ye, Zhizhen
2017-11-01
A set of Zn1-xCdxO thin films with different Cd concentrations was deposited on quartz substrates by Pulsed Laser Deposition (PLD). The properties of these films were investigated by variable angle and temperature dependent spectroscopic ellipsometry (SE). The experimental Zn1-xCdxO thin films showed a red shift in the absorption edge with increasing Cd contents at room temperature. For ZnCdO films with the similar Cd concentration, it has been found that the film thickness has important effects on the optical constants (n, k). The variations of optical constants (n, k) and the band gap, E0, with temperature (T) in 25 °C-600 °C for a typical Zn0.95Cd0.05O sample were obtained. The E0 vs T relationship is described by a T- quadratic equation.
Magee, Joseph W.; Deal, Renee J.; Blanco, John C.
1998-01-01
A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities (cV) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa. Performance tests were made with a sample of twice-distilled water. Heat capacities for water were measured from 300 K to 420 K at pressures to 20 MPa. The measured heat capacities differed from those calculated with an independently developed standard reference formulation with a root-mean-square fractional deviation of 0.48 %. PMID:28009375
Ultrasonic and spectral studies on charge transfer complexes of anisole and certain aromatic amines
NASA Astrophysics Data System (ADS)
Rajesh, R.; Raj Muhamed, R.; Justin Adaikala Baskar, A.; Kannappan, V.
2016-10-01
Stability constants of two complexes of anisole with aniline and N-methylaniline (NMA) are determined from the measured ultrasonic velocity in n-hexane medium at four different temperatures. Acoustic and excess thermo acoustic parameters [excess ultrasonic velocity (uE), excess molar volume (VE), excess internal pressure (πiE)] are reported for these systems at four different temperatures. The trend in acoustic and excess parameters with concentration in the two systems establishes the formation of hydrogen bonded complexes between anisole and the two amines. Thermodynamic properties are computed for the two complexes from the variation in K with temperature. The formation of these complexes is also established by UV spectral method and their spectral characteristics and stability constants are determined. K values of these complexes obtained by ultrasonic and UV spectroscopic techniques agree well. Aniline forms more stable complex than N-methylaniline with anisole in n-hexane medium.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
Yang, Jing; Sun, Yan-Yan; An, Hong; Ji, Xiang
2008-03-01
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for approximately 5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35 degrees C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1 degrees C, CTMin from 4.9 to 8.0 degrees C, and CTMax from 42.0 to 44.5 degrees C at the change-over of acclimation temperature from 20 to 35 degrees C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25 degrees C treatment (38.1 degrees C) and narrowest in the 35 degrees C treatment (36.5 degrees C), with the 20 degrees C treatment in between (37.2 degrees C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.
Padmavathi, Chintalapati; Katti, Gururaj; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G.
2013-01-01
The rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) is a predominant foliage feeder in all the rice ecosystems. The objective of this study was to examine the development of leaf folder at 7 constant temperatures (18, 20, 25, 30, 32, 34, 35° C) and to estimate temperature thresholds and thermal constants for the forecasting models based on heat accumulation units, which could be developed for use in forecasting. The developmental periods of different stages of rice leaf folder were reduced with increases in temperature from 18 to 34° C. The lower threshold temperatures of 11.0, 10.4, 12.8, and 11.1° C, and thermal constants of 69, 270, 106, and 455 degree days, were estimated by linear regression analysis for egg, larva, pupa, and total development, respectively. Based on the thermodynamic non-linear optimSSI model, intrinsic optimum temperatures for the development of egg, larva, and pupa were estimated at 28.9, 25.1 and 23.7° C, respectively. The upper and lower threshold temperatures were estimated as 36.4° C and 11.2° C for total development, indicating that the enzyme was half active and half inactive at these temperatures. These estimated thermal thresholds and degree days could be used to predict the leaf folder activity in the field for their effective management. PMID:24205891
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Roussigné, Y.; Bouloussa, H.; Chérif, S. M.; Stashkevich, A.; Nasui, M.; Gabor, M. S.; Mora-Hernández, A.; Nicholson, B.; Inyang, O.-O.; Hindmarch, A. T.; Bouchenoire, L.
2018-04-01
The interfacial Dzyaloshinskii-Moriya interaction (IDMI) is investigated in Co2FeAl (CFA) ultrathin films of various thicknesses (0.8 nm ≤tCFA≤2 nm ) grown by sputtering on Si substrates, using Pt, W, Ir, and MgO buffer or/and capping layers. Vibrating sample magnetometry reveals that the magnetization at saturation (Ms ) for the Pt- and Ir-buffered films is higher than the usual Ms of CFA due to the proximity-induced magnetization (PIM) in Ir and Pt estimated to be 19% and 27%, respectively. The presence of PIM in these materials is confirmed using x-ray resonant magnetic reflectivity. Moreover, while no PIM is induced in W, higher PIM is obtained with Pt when it is used as a buffer layer rather than a capping layer. Brillouin light scattering in the Damon-Eshbach geometry is used to investigate the thickness dependences of the IDMI constants from the spin-wave nonreciprocity and the perpendicular anisotropy field versus the annealing temperature. The IDMI sign is found to be negative for Pt /CFA and Ir /CFA , while it is positive for W /CFA . The thickness dependence of the effective IDMI constant for stacks involving Pt and W shows the existence of two regimes similar to that of the perpendicular anisotropy constant due to the degradation of the interfaces as the CFA thickness approaches a critical thickness. The surface IDMI and anisotropy constants of each stack are determined for the thickest samples where a linear thickness dependence of the effective IDMI constant and the effective magnetization are observed. The interface anisotropy and IDMI constants investigated for the Pt /CFA /MgO system show different trends with the annealing temperature. The decrease of the IDMI constant with increasing annealing temperature is probably due to the electronic structure changes at the interfaces, while the increase of the interface anisotropy constant is coherent with the interface quality and disorder enhancement.
NASA Astrophysics Data System (ADS)
Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva
2018-05-01
The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.
Iskra-Golec, I; Fafrowicz, M; Marek, T; Costa, G; Folkard, S; Foret, J; Kundi, M; Smith, L
2001-12-01
Experiments consisting of baseline, bright light and physical exercise studies were carried out to compare the effect of a 9-hour delay in sleep-wakefulness timing, and the effects of bright light and physical exercise interventions on 24-hour patterns of performance, mood and body temperature were examined. Each study comprised a 24-hour constant routine at the beginning followed by 3 night shifts and 24-hour constant routine at the end. Performance on tasks differing in cognitive load, mood and body temperature was measured during each constant routine and the interventions were applied during the night shifts. The 24-hour pattern of alertness and performance on the tasks with low cognitive load in post-treatment conditions followed the change in sleep-wakefulness timing while more cognitively loaded tasks tended to show a reverse trend when compared to pre-treatment conditions. There was a phase delay around 4 hours in circadian rhythms of body temperature in post-treatment conditions.
Oliviero, T; Verkerk, R; Van Boekel, M A J S; Dekker, M
2014-11-15
Broccoli belongs to the Brassicaceae plant family consisting of widely eaten vegetables containing high concentrations of glucosinolates. Enzymatic hydrolysis of glucosinolates by endogenous myrosinase (MYR) can form isothiocyanates with health-promoting activities. The effect of water content (WC) and temperature on MYR inactivation in broccoli was investigated. Broccoli was freeze dried obtaining batches with WC between 10% and 90% (aw from 0.10 to 0.96). These samples were incubated for various times at different temperatures (40-70°C) and MYR activity was measured. The initial MYR inactivation rates were estimated by the first-order reaction kinetic model. MYR inactivation rate constants were lower in the driest samples (10% WC) at all studied temperatures. Samples with 67% and 90% WC showed initial inactivation rate constants all in the same order of magnitude. Samples with 31% WC showed intermediate initial inactivation rate constants. These results are useful to optimise the conditions of drying processes to produce dried broccoli with optimal MYR retention for human health. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khordad, R.
2010-03-01
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.
Wang, Y; Yang, J B; Wang, J F; Li, L L; Wang, M; Yang, L J; Tao, L Y; Chu, J; Hou, Y D
2017-03-01
Creophilus maxillosus (L., 1758) is a common and widely distributed beetle species found on corpses, and its development duration is far longer than species belonging to the genus Calliphoridae and Sarcophagidae. Therefore, C. maxillosus can be used as a supplementary indicator to estimate minimum postmortem interval (PMImin), and could greatly extend the range of PMImin when the primary colonizers are no longer associated with the corpse or have emerged from pupae. Better descriptions of C. maxillosus development are needed to apply this species for forensic investigations. In this study, the development of C. maxillosus at seven constant temperatures ranging from 17.5-32.5 °C was studied. Through regression analyses, the simulation equations of larval body length variation with time after hatching were obtained. Isomegalen diagrams of the changes of larval body length over time at specific temperatures, and the isomorphen diagrams on the duration of different developmental milestones at specific temperatures were generated. In addition, thermal summation models of different developmental stages and the overall development process of C. maxillosus were generated through regression analysis, by estimating the development threshold temperatures (D0) and the thermal summation constants (K). These results provide important tools for forensic investigations to generate a long-range of PMImin estimation based on the development of C. maxillosus. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effects of several environmental factors on sweetpotato growth
NASA Technical Reports Server (NTRS)
Loretan, P. A.; Bonsi, C. K.; Mortley, D. G.; Wheeler, R. M.; Mackowiak, C. L.; Hill, W. A.; Morris, C. E.; Trotman, A. A.; David, P. P.
1994-01-01
Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 C and diurnal 28:222 C day:night) and different CO2 levels (ambient, 400, 1 000 and 10 000 microL/L-400, 1 000 and 10 000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were prodcued for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 C. For the same photoperiod, when a 28:22 C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod. 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 C diurnal temperature variation than with a constant 28 C temperature regime. Preliminary results with both 'Ga Jet' and 'TI-155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1 000, and 10 000 microL/L.
[Drying characteristics and apparent change of sludge granules during drying].
Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun
2011-08-01
Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.
Dielectric and Raman spectroscopy of TlSe thin films
NASA Astrophysics Data System (ADS)
Ozel, Aysen E.; Deger, Deniz; Celik, Sefa; Yakut, Sahin; Karabak, Binnur; Akyüz, Sevim; Ulutas, Kemal
2017-12-01
In this report, the results of Dielectric and Raman spectroscopy of TlSe thin films are presented. The films were deposited in different thicknesses ranging from 290 Å to 3200 Å by thermal evaporation method. The relative permittivity (dielectric constant εr‧) and dielectric loss (εr″) of TlSe thin films were calculated by measuring capacitance (C) and dielectric loss factor (tan δ) in the frequencies ranging between 10-2 Hz-107 Hz and in the temperature ranging between 173 K and 433 K. In the given intervals, both the dielectric constant and the dielectric loss of TlSe thin films decrease with increasing frequency, but increase with increasing temperature. This behavior can be explained as multicomponent polarization in the structure. The ac conductivity obeys the ωs law when s (s < 1). The dielectric constant of TlSe thin films is determined from Dielectric and Raman spectroscopy measurements. The results obtained by two different methods are in agreement with each other.
NASA Technical Reports Server (NTRS)
Dinnat, Emmanuel P.; Boutin, Jacqueline; Yin, Xiaobin; Le Vine, David M.
2014-01-01
Two spaceborne instruments share the scientific objective of mapping the global Sea Surface Salinity (SSS). ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometry to retrieve SSS. We find that SSS retrieved by SMOS is generally lower than SSS retrieved by Aquarius, except for very cold waters where SMOS SSS is higher overall. The spatial distribution of the differences in SSS is similar to the distribution of sea surface temperature. There are several differences in the retrieval algorithm that could explain the observed SSS differences. We assess the impact of the dielectric constant model and the ancillary sea surface salinity used by both missions for calibrating the radiometers and retrieving SSS. The differences in dielectric constant model produce differences in SSS of the order of 0.3 psu and exhibit a dependence on latitude and temperature. We use comparisons with the Argo in situ data to assess the performances of the model in various regions of the globe. Finally, the differences in the ancillary sea surface salinity products used to perform the vicarious calibration of both instruments are relatively small (0.1 psu), but not negligible considering the requirements for spaceborne remote sensing of SSS.
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
Vieira, Emerson M.; de Camargo, Nícholas F.; Colas, Paul F.; Ribeiro, Juliana F.; Cruz-Neto, Ariovaldo P.
2017-01-01
The temporal activity of animals is an outcome of both biotic and abiotic factors, which may vary along the geographic range of the species. Therefore, studies conducted with a species in different localities with distinct features could elucidate how animals deal with such factors. In this study, we used live traps equipped with timing devices to investigate the temporal activity patterns of the didelphid Gracilinanus agilis in two dry-woodland areas of the Brazilian savanna (Cerrado). These areas were located about 660 km apart, one in Central Brazil and the other in Southeastern Brazil. We compared such patterns considering both reproductive and non-reproductive periods, and how it varies as a function of temperature on a seasonal basis. In Central Brazil, we found a constant, and temperature-independent activity during the night in both reproductive and non-reproductive periods. On the other hand, in Southeastern Brazil, we detected a constant activity during the reproductive period, but in the non-reproductive period G. agilis presented a peak of activity between two and four hours after sunset. Moreover, in this latter we found a relation between temporal activity and temperature during the autumn and spring. These differences in temporal activity between areas, observed during the non-reproductive period, might be associated with the higher seasonal variability in temperature, and lower mean temperatures in the Southeastern site in comparison to the Central one. In Southeastern Brazil, the decrease in temperature during the non-reproductive season possibly forced G. agilis to be active only at certain hours of the night. However, likely due to the reproductive activities (intensive foraging and searching for mates) this marsupial showed constant, temperature-independent activity during the night in the reproductive period at both sites. PMID:28052077
NASA Astrophysics Data System (ADS)
Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.
2016-03-01
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG system to provide ˜95% MPPT efficiency when the input temperature is changing at 5°C/s.
Dynamics and Solubility of He and CO 2 in Brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Tuan Anh; Tenney, Craig M.
2016-09-01
Molecular dynamics simulation was implemented using LAMMPS simulation package (1) to study the diffusivity of He 3 and CO 2 in NaCl aqueous solution. To simulate at infinite dilute gas concentration, we placed one He 3 or CO 2 molecule in an initial simulation box of 24x24x33Å 3 containing 512 water molecules and a certain number of NaCl molecules depending on the concentration. Initial configuration was set up by placing water, NaCl, and gas molecules into different regions in the simulation box. Calculating diffusion coefficient for one He or CO 2 molecule consistently yields poor results. To overcome this, formore » each simulation at specific conditions (i.e., temperature, pressure, and NaCl concentration), we conducted 50 simulations initiated from 50 different configurations. These configurations are obtained by performing the simulation starting from the initial configuration mentioned above in the NVE ensemble (i.e., constant number of particles, volume, and energy). for 100,000 time steps and collecting one configuration every 2,000 times step. The output temperature of this simulation is about 500K. The collected configurations were then equilibrated for 2ns in the NPT ensemble (i.e., constant number of particles, pressure, and temperature) followed by 9ns simulations in the NVT ensemble (i.e., constant number of particles, volume, and temperature). The time step is 1fs for all simulations.« less
Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T. C.; Falenty, A.; Kuhs, W. F.
2016-02-07
The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-hostmore » interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.« less
Akbari, Ali; Ghoshal, Subhasis
2015-12-01
Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-10-16
We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.
Dielectric Studies of Samarium Modified (Pb)(Zr, Ti, Fe, Nb)O3 Ceramic System
NASA Astrophysics Data System (ADS)
Singh, Pratibha; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.
Here we report the investigations on Sm-substituted PZTFN (Pb1-xSmxZr0.588Ti0.392Fe0.01Nb0.01O3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C-400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ɛ), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ɛRT) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm-doping.
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.
2009-11-01
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
Impacts of environmental factors on the climbing behaviors of herbaceous stem-twiners.
Hu, Liang; Chen, Youfang; Liu, Meicun
2017-11-01
The curvature of the helical trajectory formed by herbaceous stem-twiners has been hypothesized to be constant on uniformly sized cylindrical supports and remains constant on different supports varying in diameter. However, experimental studies on the constant curvature hypothesis have been very limited. Here, we tested the hypothesis in a series of experiments on five herbaceous stem-twiners ( Ipomoea triloba , Ipomoea nil , Phaseolus vulgaris , Vigna unguiculata, and Mikania micrantha ). We investigated how internode characteristics (curvature [β], diameter [ d ], and length [ L ]) and success rate (SR) of twining shoots would be affected by support thickness ( D ), temperature ( T ), illumination, and support inclination. The results showed that: (1) the SR of tested species decreased, but d increased with increasing support thickness. The β of the twining shoots on erect cylindrical poles was not constant, but it decreased with increasing d or support thickness. (2) The SR of tested species was not obviously reduced under low-temperature conditions, but their β was significantly higher and d significantly lower when temperature was more than 5°C lower. (3) The SR , d, and L of two tested Ipomoea species significantly declined, but β increased under 50% shading stress. (4) The curvatures of upper semicycles of I. triloba shoots on 45° inclined supports were not significantly different from curvatures of those shoots climb on erect supports, whereas the curvatures of lower semicycles were 40%-72% higher than curvatures of upper semicycles. Synthesis : Our study illustrates that stem curvatures of a certain herbaceous stem-twiners are not constant, but rather vary in response to external support, temperature, and illumination conditions. We speculate that herbaceous stem-twiners positively adapt to wide-diameter supports by thickening their stems and by reducing their twining curvatures. This insight helps us better understand climbing processes and dynamics of stem-twiners in forest communities and ecosystems.
A first-principles study of elastic and diffusion properties of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ganeshan, Swetha
2011-12-01
In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)
Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto
2016-08-01
Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.
Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet
2009-01-15
Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
A New Method of Comparing Forcing Agents in Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.
We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.
Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V
1994-01-15
We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.
Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway
1997-01-01
The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...
Li, X C; Wang, C C; Zhao, J M; Liu, L H
2018-02-10
The optical constants of five highly transparent substrates (polycrystalline BaF 2 , CaF 2 , MgF 2 , ZnSe, and ZnS) were experimentally determined based on a combined technique using both the double optical pathlength transmission method and the ellipsometry method within temperature range 20°C-350°C in the ultraviolet-infrared region (0.2-20 μm). The results show that the refractive index spectra of polycrystalline BaF 2 , CaF 2 , and MgF 2 are similar, but differ from that of polycrystalline ZnSe and ZnS. The thermo-optic coefficient of these highly transparent substrates increases with increasing temperature. The absorption indices show a significant temperature-dependent behavior, which increases with increasing temperature from 20°C to 350°C over the transparent region. For the sake of application, the fitted formulas of the refractive index of the five highly transparent substrates as a function of wavelength and temperature are presented.
Shrimpton, J.M.; Zydlewski, Joseph D.; Heath, J.W.
2007-01-01
We examined the effect of temperature oscillation and increased suspended sediment concentration on growth and smolting in juvenile ocean-type chinook salmon (Oncorhynchus tshawytscha). Fish were ponded on February 26; each treatment group had three replicates of 250 fish. Mean temperatures for the entire experiment were 12.3????C for all tanks with a total of 1348 and 1341 degree days for the constant temperature and oscillating temperature tanks, respectively. Daily fluctuation in temperature averaged 7.5????C in the variable temperature groups and less than 1????C for the constant temperature group. Starting on April 5, bentonite clay was added each day to tanks as a pulse event to achieve a suspended sediment concentration of 200??mg l- 1; clay cleared from the tanks within approximately 8??h. Fish were sampled at approximately two??week intervals from ponding until mid-June. On the last sample date, June 12, a single gill arch was removed and fixed for histological examination of gill morphology. By early May, significant differences were seen in size between the groups; control > temperature = sediment > (temperature ?? sediment). This relationship was consistent throughout the experiment except for the last sample date when the temperature group had a mean weight significantly greater than the sediment group. Gill Na+,K+-ATPase activity was not affected by daily temperature oscillations, but groups subjected to increased suspended sediment had significantly lower enzyme activities compared to controls. Mean cell size for gill chloride cells did not differ between groups. Plasma cortisol increased significantly during the spring, but there were no significant differences between groups. ?? 2007 Elsevier B.V. All rights reserved.
Determination of Henry’s Law Constants Using Internal Standards with Benchmark Values
It is shown that Henry’s law constants can be experimentally determined by comparing headspace content of compounds with known constants to interpolate the constants of other compounds. Studies were conducted over a range of water temperatures to identify temperature dependence....
Molecular Weight Effects on the Viscoelastic Response of a Polyimide
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2000-01-01
The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.
1982-01-01
The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.
Temperature measurement in a gas turbine engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul
A method and system for determining a temperature of a working gas passing through a passage to a turbine section of a gas turbine engine. The method includes identifying an acoustic frequency at a first location in the engine upstream from the turbine section, and using the acoustic frequency for determining a first temperature value at the first location that is directly proportional to the acoustic frequency and a calculated constant value. A second temperature of the working gas is determined at a second location in the engine and, using the second temperature, a back calculation is performed to determinemore » a temperature value for the working gas at the first location. The first temperature value is compared to the back calculated temperature value to change the calculated constant value to a recalculated constant value. Subsequent first temperature values at the first location may be determined based on the recalculated constant value.« less
Jung, Sang-Kyu; McDonald, Karen A; Dandekar, Abhaya M
2015-01-01
Agrobacterium tumefaciens-mediated transient expression is known to be highly dependent on incubation temperature. Compared with early studies that were conducted at constant temperature, we examined the effect of variable leaf incubation temperature on transient expression. As a model system, synthetic endoglucanase (E1) and endoxylanase (Xyn10A) genes were transiently expressed in detached whole sunflower leaves via vacuum infiltration for biofuel applications. We found that the kinetics of transient expression strongly depended on timing of the temperature change as well as leaf incubation temperature. Surprisingly, we found that high incubation temperature (27-30 °C) which is suboptimal for T-DNA transfer, significantly enhanced transient expression if the high temperature was applied during the late phase (Day 3-6) of leaf incubation whereas incubation temperature in a range of 20-25 °C for an early phase (Day 0-2) resulted in higher production. On the basis of these results, we propose that transient expression is governed by both T-DNA transfer and protein synthesis in plant cells that have different temperature dependent kinetics. Because the phases were separated in time and had different optimal temperatures, we were then able to develop a novel two phase optimization strategy for leaf incubation temperature. Applying the time-varying temperature profile, we were able to increase the protein accumulation by fivefold compared with the control at a constant temperature of 20 °C. From our knowledge, this is the first report illustrating the effect of variable temperature profiling for improved transient expression. © 2015 American Institute of Chemical Engineers.
Cabeza, A; Piqueras, C M; Sobrón, F; García-Serna, J
2016-01-01
Lignocellulose fractionation is a key biorefinery process that need to be understood. In this work, a comprehensive study on hydrothermal-fractionation of holm oak in a semi-continuous system was conducted. The aim was to develop a physicochemical model in order to reproduce the role of temperature and water flow over the products composition. The experiments involved two sets: at constant flow (6mL/min) and two different ranges of temperature (140-180 and 240-280°C) and at a constant temperature range (180-260°C) and different flows: 11.0, 15.0 and 27.9mL/min. From the results, temperature has main influence and flow effect was observed only if soluble compounds were produced. The kinetic model was validated against experimental data, reproducing the total organic carbon profile (e.g. deviation of 33%) and the physicochemical phenomena observed in the process. In the model, it was also considered the variations of molecular weight of each biopolymer, successfully reproducing the biomass cleaving. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, W. C.; Stone, P. H.
1979-01-01
The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.
Giant dielectric constant in titania nanoparticles embedded in conducting polymer matrix.
Dey, Ashis; De, Sukanta; De, Amitabha; De, S K
2006-05-01
Complex impedance and dielectric permittivity of titania-polypyrrole nanocomposites have been investigated as a function of frequency and temperature at different compositions. A very large dielectric constant of about 13,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of titania nanoparticles. The broad peak at high frequency region is attributed to Maxwell-Wagner type polarization originating from the inhomogeneous property of nanocomposite. An abrupt change in grain boundary conductivity and dielectric relaxation associated with titania was observed at around 150 K. Anomalous behavior in conductivity and dielectric relaxation is qualitatively explained by band tail structure of titania nanoparticle.
NASA Astrophysics Data System (ADS)
Siouane, Saima; Jovanović, Slaviša; Poure, Philippe
2017-01-01
The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.
NASA Astrophysics Data System (ADS)
Panwar, Sunil; Kumar, Vijay; Singh, Ishwar
2017-10-01
An anomalous Hall constant RH has been observed in various rare earth manganites doped with alkaline earths namely Re1-xAxMnO3 (where Re = La, Pr, Nd etc., and A = Ca, Sr, Ba etc.) which exhibit colossal magnetoresistance (CMR), metal- insulator transition and many other poorly understood phenomena. We show that this phenomenon of anomalous Hall constant can be understood using two band (ℓ-b) Anderson lattice model Hamiltonian alongwith (ℓ-b) hybridization recently studied by us for manganites in the strong electron-lattice Jahn-Teller (JT) coupling regime an approach similar to the two - fluid models. We use a variational method in this work to study the temperature variation of Hall constant RH (T) in these compounds. We have already used this variational method to study the zero field electrical resistivity ρ (T) and magnetic susceptibility of doped CMR manganites. In the present study, we find that the Hall constant RH (T) reduces with increasing magnetic field parameters h&m and the metal-insulator transition temperature (Tρ) shifts towards higher temperature region. We have also observed the role of the model parameters e.g. local Coulomb repulsion U, Hund's rule coupling JH between eg spins and t2g spins, ferromagnetic nearest neighbor exchange coupling JF between t2g core spins and hybridization Vk between ℓ-polarons and d-electrons on Hall constant RH (T) of these materials at different magnetic fields. Here we find that RH (T) for a particular value of h and m shows a rapid initial increase, followed by a sharp peak at low temperature say 50 K in our case and a slow decrease at high temperatures, resembling with the key feature of many CMR compounds like La0.8Ba0.2 MnO3.The magnitude of RH (T) reduces and the anomaly (sharp peak) in RH becomes broader and shifts towards higher temperature region on increasing Vk or JH or doping x and even vanishes on further increasing these parameters. Our results of anomalous Hall constant (RH) have same qualitative behavior as the zero-field electrical resistivity. Moreover Hall Constant (RH) shows positive values indicating that the carriers in these manganites are holes.
Built-in-polarization field effect on lattice thermal conductivity of AlxGa1-xN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Pansari, Anju; Gedam, Vikas; Kumar Sahoo, Bijaya
2015-12-01
The built-in-polarization field at the interface of AlxGa1-xN/GaN heterostructure enhances elastic constant, phonon velocity, Debye temperature and their bowing constants of barrier material AlxGa1-xN. The combined phonon relaxation time of acoustics phonons has been computed for with and without built-in-polarization field at room temperature for different aluminum (Al) content (x). Our result shows that the built-in-polarization field suppresses the scattering mechanisms and enhances the combined relaxation time. The thermal conductivity of AlxGa1-xN has been estimated as a function of temperature for x=0, 0.1, 0.5 and 1 for with and without polarization field. Minimum thermal conductivity has been observed for x=0.1 and 0.5. Analysis shows that up to a certain temperature (different for different x) the polarization field acts as negative effect and reduces the thermal conductivity and after this temperature thermal conductivity is significantly contributed by polarization field. This signifies pyroelectric character of AlxGa1-xN. The pyroelectric transition temperature of AlxGa1-xN alloy has been predicted for different x. Our study reports that room temperature thermal conductivity of AlxGa1-xN/GaN heterostructure is enhanced by built-in-polarization field. The temperature dependence of thermal conductivity for x=0.1 and 0.5 are in line with prior experimental studies. The method we have developed can be used for the simulation of heat transport in nitride devices to minimize the self heating processes and in polarization engineering strategies to optimize the thermoelectric performance of AlxGa1-xN/GaN heterostructures.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall
NASA Astrophysics Data System (ADS)
Nadeem, S.; Shaheen, A.; Hussain, S.
2015-12-01
This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.
Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyam, Amit; Lara-Curzio, Edgar
This paper reports on the langatate (LGT) elastic constants and their temperature coefficients measured from room temperature (25degC) to 1100degC using resonant ultrasound spectroscopy (RUS). The constants were extracted by iteratively fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the elastic and piezoelectric constants in the 25degC to 120degC temperature range. The extraction of LGT elastic constants up to 1100degC presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for highmore » temperature and harsh environment applications.« less
Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions
NASA Astrophysics Data System (ADS)
Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul
2009-12-01
Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.
NASA Astrophysics Data System (ADS)
Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René
2014-09-01
Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the `modular' body mapping sportswear was designed and subsequently assessed on a `Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.
Wang, Faming; Del Ferraro, Simona; Molinaro, Vincenzo; Morrissey, Matthew; Rossi, René
2014-09-01
Regional sweating patterns and body surface temperature differences exist between genders. Traditional sportswear made from one material and/or one fabric structure has a limited ability to provide athletes sufficient local wear comfort. Body mapping sportswear consists of one piece of multiple knit structure fabric or of different fabric pieces that may provide athletes better wear comfort. In this study, the 'modular' body mapping sportswear was designed and subsequently assessed on a 'Newton' type sweating manikin that operated in both constant temperature mode and thermophysiological model control mode. The performance of the modular body mapping sportswear kit and commercial products were also compared. The results demonstrated that such a modular body mapping sportswear kit can meet multiple wear/thermal comfort requirements in various environmental conditions. All body mapping clothing (BMC) presented limited global thermophysiological benefits for the wearers. Nevertheless, BMC showed evident improvements in adjusting local body heat exchanges and local thermal sensations.
Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Chintaparty, Rajababu; Palagiri, Bhavani; Reddy Nagireddy, Ramamanohar; subbha Reddy Imma Reddy, Venkata
2015-09-01
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV-Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6-4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw; National Applied Research Laboratories, Taipei 10622, Taiwan, ROC; Wu, Chun-Hung
2011-07-10
Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. Inmore » this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.« less
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi
2018-03-01
The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.
NASA Astrophysics Data System (ADS)
Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.
2012-09-01
During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...
In temperature forming of friction stir lap welds in aluminium alloys
NASA Astrophysics Data System (ADS)
Bruni, Carlo; Cabibbo, Marcello; Greco, Luciano; Pieralisi, Massimiliano
2018-05-01
The objective of such investigation is the study in depth of the forming phase of welds realized on three sheet metal blanks in aluminium alloys by friction stir lap welding. Such forming phase was performed by upsetting at different constant forming temperatures varying from 200°C to 350°C with constant ram velocities of 0.01 and 0.1 mm/s. The temperature values were obtained by the use of heating strips applied on the upper tool and on the lower tool. It was observed an increase in the friction factor, acting at the upsetting tool-workpiece interface, with increasing temperature that is very useful in producing the required localized deformation with which to improve the weld. It was also confirmed that the forming phase allows to realize a required thickness in the weld area allowing to neglect the surficial perturbation produced by the friction stir welding tool shoulder. The obtained thickness could be subjected to springback when too low temperatures are considered.
Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan
1999-01-01
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046
On the sensitivity of mesoscale models to surface-layer parameterization constants
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pielke, R. A.
1989-09-01
The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
Diurnal temperature fluctuation effects on potatoes grown with 12 hr photoperiods
NASA Technical Reports Server (NTRS)
Bennett, S. M.; Tibbitts, T. W.; Cao, W.
1991-01-01
This study was designed to characterize the growth responses of potato (Solanum tuberosum L.) to diurnal temperature fluctuations. Potato plants of two cultivars, Norland and Denali, were grown for 90 days under 12 hr photoperiod in walk-in growth rooms at the University of Wisconsin Biotron. The alternating temperature was 22 C light/14 C dark and compared to a constant 18 C as control. At all temperature regimes vapor pressure deficit was maintained at 0.62 kPa (70% relative humidity [correction of humdidity] at 18 C). Plant height, plant dry weight, tuber dry weight, and harvest index were overall greater under the warm light/cool dark alternating temperatures than under the constant temperature. The differences between temperature treatments were greater for Denali than for Norland. Alternating temperatures increased Denali tuber weights by 25%, but no significant increase was found with Norland. Also the total plant weight was increased over 20% with Denali, but increased with Norland in only one of the two replications of the experiment. This study documents that alternating temperatures are a benefit to some cultivars but may not be of benefit to all cultivars.
N.N. G& #243; mez; R.C. Venette; J.R. Gould; D.F. Winograd
2009-01-01
Predictions of survivorship are critical to quantify the probability of establishment by an alien invasive species, but survival curves rarely distinguish between the effects of temperature on development versus senescence. We report chronological and physiological age-based survival curves for a potentially invasive noctuid, recently described as Copitarsia...
NASA Technical Reports Server (NTRS)
Choi, S. R.; Gyekenyesi, J. P.
2001-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2000-01-01
Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Garcia, Lucia; Lawes, Gavin; Nadgorny, Boris
2014-03-01
We have investigated the large dielectric enhancement at the percolation threshold by introducing metallic RuO2 grains into a matrix of CaCu3Ti4O12 (CCTO). The intrinsic response of the pure CCTO samples prepared by solid state and sol-gel processes results in a dielectric constant on the order of 104 and 103 respectively with low loss. Scanning electron microscopy and energy dispersive x-ray spectroscopy indicate that a difference in the thickness of the copper oxide enriched grain boundary is the main reason for the different dielectric properties between these two samples. Introducing RuO2 metallic fillers in these CCTO samples yields a sharp increase of the dielectric constant at percolation threshold fc, by a factor of 6 and 3 respectively. The temperature dependence of the dielectric constant shows that the dipolar relaxation plays an important role in enhancing dielectric constant in composite systems.
Agricultural scene understanding
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Bauer, M. E.; Silva, L.; Hoffer, R. M.; Baumgardner, M. F.
1977-01-01
The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization.
NASA Technical Reports Server (NTRS)
Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.
1984-01-01
The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.
Investigation of the frequency response of constant voltage anemometers in turbulent flows
NASA Astrophysics Data System (ADS)
Sadeghi Hassanlouei, Atabak
A commercially available anemometer system considered as a prototype, the constant voltage anemometer (CVA), is presented and its working principle is studied and analyzed. We detail the different procedures and corrections that have to be applied to voltage signals to deduce corresponding velocity signals, including the effect of the thermal inertia of the sensor. Results are compared to another anemometer system widely used in research and industry, the constant temperature anemometer (CTA), for validation requirements. Measurements are performed in the turbulent region of a subsonic axisymmetric jet and include mean velocities, root-mean-square (rms) values of velocity fluctuations and power spectral densities. In the same range of operation, we show that the two instruments give similar results. The CVA anemometer slightly underestimates the rms velocity values given by the CTA anemometer which is attributed to a non-linear effect. We show that the cut-off frequency of the CVA system is higher than the more commonly used CTA system, and that the electronic noise level is lower. The constant voltage anemometer is thus an excellent alternative to the constant temperature anemometer for low turbulent flows with rich frequency content, such as supersonic and hypersonic flows.
NASA Astrophysics Data System (ADS)
Ali, Md. Lokman; Rahaman, Md. Zahidur
2018-04-01
By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.
Large dielectric constant in zirconia polypyrrole hybrid nanocomposites.
Dey, Ashis; De, S K
2007-06-01
Zirconia nanoparticles have been synthesized by a novel two-reverse emulsion technique and combined with polypyrrole (PPY) to form ZrO2-PPY nanocomposites. Complex impedance and dielectric permittivity of ZrO2-PPY nanocomposite have been investigated as a function of frequency and temperature for different compositions. The composite samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. The composites reveal ordered semiconducting behaviour. Polypyrrole is the major component in electrical transport process of the samples. A very large dielectric constant of about 12,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of zirconia nanoparticles. The broad peak at high frequency is due to Maxwell-Wagner type polarization.
Binding of resveratrol with sodium caseinate in aqueous solutions.
Acharya, Durga P; Sanguansri, Luz; Augustin, Mary Ann
2013-11-15
The interaction between resveratrol (Res) and sodium caseinate (Na-Cas) has been studied by measuring fluorescence quenching of the protein by resveratrol. Quenching constants were determined using Stern-Volmer equation, which suggests that both dynamic and static quenching occur between Na-Cas and Res. Binding constants for the complexation between Na-Cas and Res were determined at different temperatures. The large binding constants (3.7-5.1×10(5)M(-1)) suggest that Res has strong affinity for Na-Cas. This affinity decreases as the temperature is raised from 25 to 37°C. The binding involves both hydrogen bonding and hydrophobic interaction, as suggested by negative enthalpy change and positive entropy change for the binding reaction. The present study indicates that Na-Cas, a common food protein, may be used as a carrier of Res, a bioactive polyphenol which is insoluble in both water and oils. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modulators of actin-myosin dissociation: basis for muscle type functional differences during fatigue
Karatzaferi, Christina; Adamek, Nancy
2017-01-01
The muscle types present with variable fatigue tolerance, in part due to the myosin isoform expressed. However, the critical steps that define “fatigability” in vivo of fast vs. slow myosin isoforms, at the molecular level, are not yet fully understood. We examined the modulation of the ATP-induced myosin subfragment 1 (S1) dissociation from pyrene-actin by inorganic phosphate (Pi), pH, and temperature using a specially modified stopped-flow system that allowed fast kinetics measurements at physiological temperature. We contrasted the properties of rabbit psoas (fast) and bovine masseter (slow) myosins (obtained from samples collected from New Zealand rabbits and from a licensed abattoir, respectively, according to institutional and national ethics permits). To identify ATP cycling biochemical intermediates, we assessed ATP binding to a preequilibrated mixture of actomyosin and variable [ADP], pH (pH 7 vs. pH 6.2), and Pi (zero, 15, or 30 added mM Pi) in a range of temperatures (5 to 45°C). Temperature and pH variations had little, if any, effect on the ADP dissociation constant (KADP) for fast S1, but for slow S1, KADP was weakened with increasing temperature or low pH. In the absence of ADP, the dissociation constant for phosphate (KPi) was weakened with increasing temperature for fast S1. In the presence of ADP, myosin type differences were revealed at the apparent phosphate affinity, depending on pH and temperature. Overall, the newly revealed kinetic differences between myosin types could help explain the in vivo observed muscle type functional differences at rest and during fatigue. PMID:28931538
Schellen, L; van Marken Lichtenbelt, W D; Loomans, M G L C; Toftum, J; de Wit, M H
2010-08-01
Results from naturally ventilated buildings show that allowing the indoor temperature to drift does not necessarily result in thermal discomfort and may allow for a reduction in energy use. However, for stationary conditions, several studies indicate that the thermal neutral temperature and optimum thermal condition differ between young adults and elderly. There is a lack of studies that describe the effect of aging on thermal comfort and productivity during a moderate temperature drift. In this study, the effect of a moderate temperature drift on physiological responses, thermal comfort, and productivity of eight young adults (age 22-25 year) and eight older subjects (age 67-73 year) was investigated. They were exposed to two different conditions: S1-a control condition; constant temperature of 21.5 degrees C; duration: 8 h; and S2-a transient condition; temperature range: 17-25 degrees C, duration: 8 h, temperature drift: first 4 h: +2 K/h, last 4 h: -2 K/h. The results indicate that thermal sensation of the elderly was, in general, 0.5 scale units lower in comparison with their younger counterparts. Furthermore, the elderly showed more distal vasoconstriction during both conditions. Nevertheless, TS of the elderly was related to air temperature only, while TS of the younger adults also was related to skin temperature. During the constant temperature session, the elderly preferred a higher temperature in comparison with the young adults. Because the stock of fossil fuels is limited, energy savings play an important role. Thermal comfort is one of the most important performance indicators to successfully apply measures to reduce the energy need in buildings. Allowing drifts in indoor temperature is one of the options to reduce the energy demand. This study contributes to the knowledge concerning the effects of a moderate temperature drift and the age of the inhabitants on their thermal comfort.
Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes.
Do, D D; Do, H D; Wongkoblap, A; Nicholson, D
2008-12-28
The Henry constant and the isosteric heat of adsorption at zero loading in a carbon nanotube bundle are studied with Monte Carlo integration for the adsorption of gases over a range of temperatures. The spacing between nanotubes in a bundle is determined from the minimization of potential energy of interaction between these tubes. We study different tube configurations with bundles of 2, 3, 4 and 7 tubes. Depending on the configuration it is found that the spacing is of between 0.31 to 0.333 nm, and this falls within the range reported in the literature. The Henry constant has been carefully defined so that it will not become negative at high temperatures. This is done with the aid of accessible volume, rather than the usual absolute void volume. We show that linearity of the van't Hoff plot for the Henry constant is not strictly followed. Furthermore the slope of this plot is not equal to the isosteric heat of adsorption at zero loading, which is found to be a strong function of temperature. From the results we find that the Henry constant and the heat of adsorption depend on the tube configuration. In general the adsorption in the cusp interstices is strongest followed by that inside the tube and finally on the outer surface. However for very small tubes adsorption occurs inside the tube first. For molecules with orientation, the behaviour is even more interesting and the shape of the isosteric heat versus temperature depends on the degree of orientation, tube configuration and the domain of adsorption (interstices, inside the tube and on the outer surface).
Temperature dependence of ion transport: the compensated Arrhenius equation.
Petrowsky, Matt; Frech, Roger
2009-04-30
The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.
Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J
2017-10-12
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.
Clark, R.W.; Henderson-Arzapalo, A.; Sullivan, C.V.
2005-01-01
Adult striped bass (Morone saxatilis) were exposed to various combinations of constant or anually-cycling daylength and water temperature. Constant conditions (15 h days, 18??C) were those normally experienced at spawning and cycling conditions simulated natural changes at Chesapeake Bay latitude. Females exposed to constant long (15 h) days and cycling water temperature (TEMPERATURE group) had blood plasma levels of sex steroids (testosterone [T] and estradiol-17?? [E2]) and vitellogenin (Vg), and profiles of oocyte growth, that were nearly identical to those of females held under a natural photothermal cycle (CONTROL group). Several fish from these two groups were induced to spawn fertile eggs. Females constantly exposed to warm water (18??C), with or without a natural photoperiod cycle (PHOTOPERIOD and STATIC groups, respectively), had diminished circulating levels of gonadal steroid hormones and Vg, impaired deposition of yolk granules in their ooplasm, and decreased oocyte growth, and they underwent premature ovarian atresia. Males exposed to cycling water temperature (CONTROL and TEMPERATURE groups) spermiated synchronously during the natural breeding season, at which time they also had had high plasma androgen (T and 11-ketotestosterone [11-KT]) levels. The timing of spermiation was highly asynchronous among males in groups of fish held constantly at 18??C (STATIC and PHOTOPERIOD groups) and this asynchrony was associated with diminished plasma androgen levels. Termination of spermiation by males exposed to cycling water temperature coincided with a sharp decline in levels of plasma androgens about a month after water temperature rose above 18??C. In contrast, most males held constantly at 18??C sustained intermediate levels of plasma androgens and spermiated until the end of the study in late July. The annual cycle of water temperature clearly plays a prominent role in the initiation, maintenance, and termination of the striped bass reproductive cycle. In females, a decrease in water temperature below values experienced at spawning appears to be required for vitellogenesis and oocyte growth to proceed normally. Constant exposure of males to spawning temperature disrupts synchronous spermiation but also delays testicular regression, which may be useful for spawning fish after the natural reproductive season.
Crea, Francesco; Cucinotta, Daniela; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio; Vianelli, Giuseppina
2012-11-20
The total solubility of three penicillin derivatives was determined, in pure water and NaCl aqueous solutions at different salt concentrations (from ∼0.15 to 1.0 mol L(-1) for ampicillin and amoxicillin, and from ∼0.05 to 2.0 mol L(-1) for (+)6-aminopenicillanic acid), using the shake-flask method for generating the saturated solutions, followed by potentiometric analysis. The knowledge of the pH of solubilization and of the protonation constants determined in the same experimental conditions, allowed us to calculate, by means of the mass balance equations, the solubility of the neutral species at different ionic strength values, to model its dependence on the salt concentration and to determine the corresponding values at infinite dilution. The salting parameter and the activity coefficients of the neutral species were calculated by the Setschenow equation. The protonation constants of ampicillin and amoxicillin, determined at different temperatures (from T=288.15 to 318.15K), from potentiometric and spectrophotometric measurements, were used to calculate, by means of the Van't Hoff equation, the temperature coefficients at different ionic strength values and the corresponding protonation entropies. The protonation enthalpies of the (+)6-aminopenicillanic acid were determined by isoperibol calorimetric titrations at T=298.15K and up to I=2.0 mol L(-1). The dependence of the protonation constants on ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the specific interaction parameters of the ionic species were determined. The hydrolysis of the β-lactam ring was studied by spectrophotometric and H NMR investigations as a function of pH, ionic strength and time. Potentiometric measurements carried out on the hydrolyzed (+)6-aminopenicillanic acid allowed us to highlight that the opened and the closed β-lactam forms of the (+)6-aminopenicillanic acid have quite different acid-base properties. An analysis of literature solubility, protonation constants, enthalpies and activity coefficients is reported too. Copyright © 2012 Elsevier B.V. All rights reserved.
On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties
NASA Astrophysics Data System (ADS)
Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.
2010-06-01
Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.
Correa, A M; Bezanilla, F; Latorre, R
1992-01-01
The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states. PMID:1318096
Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network
Gallo, K.P.
2005-01-01
Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.
Magnetization of the Ising model on the Sierpinski pastry-shell
NASA Astrophysics Data System (ADS)
Chame, Anna; Branco, N. S.
1992-02-01
Using a real-space renormalization group approach, we calculate the approximate magnetization in the Ising model on the Sierpinski Pastry-shell. We consider, as an approximation, only two regions of the fractal: the internal surfaces, or walls (sites on the border of eliminated areas), with coupling constants JS, and the bulk (all other sites), with coupling constants Jv. We obtain the mean magnetization of the two regions as a function of temperature, for different values of α= JS/ JV and different geometric parameters b and l. Curves present a step-like behavior for some values of b and l, as well as different universality classes for the bulk transition.
Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys
2012-01-01
constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on structural components made of high...different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH ) to accurately simulate fragment impact on...ADDRESS(ES) Naval Surface Warfare Center,4104Evans Way Suite 102,Indian Head,MD,20640 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
Numerical Modeling of Dependence of Separative Power of the Gas Centrifuge on the Length of Rotor
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borisevich, V. D.; Borman, V. D.; Tronin, I. V.; Tronin, V. N.
Numerical modelling and optimization of the gas flow and isotope separation in the Iguasu gas centrifuge (GC) for uranium enrichment have been performed for different lengths of the rotor. The calculations show that the specific separative power of the GC reduces with the length of the rotor. We show that the reduction of the specific separative power is connected with the growth of the pressure in the optimal regime and corresponding growth of temperature to prevent the working gas sublimation. The specific separative power remains constant with the growth of the rotor length provided that the temperature of the rotor is taken to be constant.
Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1983-01-01
The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.
Transient thermal stresses in a reinforced hollow disk or cylinder containing a radial crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1984-01-01
The transient thermal stress problem in a hollow cylinder or a disk containing a radial crack is considered. It is assumed that the cylinder is reinforced on its inner boundary by a membrane which has thermoelastic constants different than those of the base material. The transient temperature, thermal stresses and the crack tip stress intensity factors are calculated in a cylinder which is subjected to a sudden change of temperature on the inside surface. The results are obtained for various dimensionless parameters and material constants. The special cases of the crack terminating at the cylinder-membrane interface and of the broken membrane are separately considered and some examples are given.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
Design of laser diode driver with constant current and temperature control system
NASA Astrophysics Data System (ADS)
Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang
2017-10-01
A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
Temperature and size-dependent Hamaker constants for metal nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, K.; Pinchuk, P.
2016-08-01
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
Temperature and size-dependent Hamaker constants for metal nanoparticles.
Jiang, K; Pinchuk, P
2016-08-26
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng
2017-08-25
The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi 2 Sr 2 CaCu 2 O 8+δ and heavy fermion superconductors CeCoIn 5 , where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen
2010-01-01
The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.
Aging phenomena in poly(methyl methacrylate) thin films: Memory and rejuvenation effects
NASA Astrophysics Data System (ADS)
Fukao, K.; Sakamoto, A.
2005-04-01
The aging dynamics in thin films of poly(methyl methacrylate) (PMMA) have been investigated through dielectric measurements for different types of aging processes. The dielectric constant was found to decrease with increasing aging time at an aging temperature in many cases. An increase in the dielectric constant was also observed in the long-time region (⩾11h) near the glass transition temperature for thin films with thickness less than 26nm . In the constant-rate mode including a temporary stop at a temperature Ta , the memory of the aging at Ta was found to be kept and then to be recalled during the subsequent heating process. In the negative-temperature cycling process, a strong rejuvenation effect has been observed after a temperature shift from the initial temperature T1 to the second temperature T2 (=T1+ΔT) when ΔT≈-20K . Furthermore, a full memory effect has also been observed for the temperature shift from T2 to T1 . This suggests that the aging at T1 is totally independent of that at T2 for ΔT≈-20K . As ∣ΔT∣ decreases, the independence of the aging between the two temperatures was found to be weakened—i.e., the effective time, which is a measure of the contribution of the aging at T1 to that at T2 , is a decreasing function of ∣ΔT∣ in the negative region of ΔT . As the film thickness decreases from 514nmto26nm , the ∣ΔT∣ dependence of the effective time was found to become much stronger. The contribution of the aging at T2 to that at T1 disappears more rapidly with increasing ∣ΔT∣ in thin-film geometry than in the bulk state.
Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.
Faßheber, Nancy; Friedrichs, Gernot; Marshall, Paul; Glarborg, Peter
2015-07-16
A detailed mechanism for the thermal decomposition and oxidation of the flame intermediate glyoxal (OCHCHO) has been assembled from available theoretical and experimental literature data. The modeling capabilities of this extensive mechanism have been tested by simulating experimental HCO profiles measured at intermediate and high temperatures in previous glyoxal photolysis and pyrolysis studies. Additionally, new experiments on glyoxal pyrolysis and oxidation have been performed with glyoxal and glyoxal/oxygen mixtures in Ar behind shock waves at temperatures of 1285-1760 K at two different total density ranges. HCO concentration-time profiles have been detected by frequency modulation spectroscopy at a wavelength of λ = 614.752 nm. The temperature range of available direct rate constant data of the high-temperature key reaction HCO + O2 → CO + HO2 has been extended up to 1705 K and confirms a temperature dependence consistent with a dominating direct abstraction channel. Taking into account available literature data obtained at lower temperatures, the following rate constant expression is recommended over the temperature range 295 K < T < 1705 K: k1/(cm(3) mol(-1) s(-1)) = 6.92 × 10(6) × T(1.90) × exp(+5.73 kJ/mol/RT). At intermediate temperatures, the reaction OCHCHO + HO2 becomes more important. A detailed reanalysis of previous experimental data as well as more recent theoretical predictions favor the formation of a recombination product in contrast to the formerly assumed dominating and fast OH-forming channel. Modeling results of the present study support the formation of HOCH(OO)CHO and provide a 2 orders of magnitude lower rate constant estimate for the OH channel. Hence, low-temperature generation of chain carriers has to be attributed to secondary reactions of HOCH(OO)CHO.
Body temperature stability achieved by the large body mass of sea turtles.
Sato, Katsufumi
2014-10-15
To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. © 2014. Published by The Company of Biologists Ltd.
Mizuno, Ju; Mohri, Satoshi; Yokoyama, Takeshi; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo
2017-02-01
Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.
Finite-Temperature Behavior of PdH x Elastic Constants Computed by Direct Molecular Dynamics
Zhou, X. W.; Heo, T. W.; Wood, B. C.; ...
2017-05-30
In this paper, robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH 0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH 0.6 only match well with ultrasonic data at 10 K; whereas, atmore » 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH 0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Finally, literature mechanical testing experiments seem to support this hypothesis.« less
NASA Technical Reports Server (NTRS)
Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.
1985-01-01
Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.
How two types of fluctuating temperature affect the growth of Fusarium solani
Keith F. Jensen; Phillip E. Reynolds
1969-01-01
Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...
Wang, Fuping; Chen, Lang; Geng, Deshen; Wu, Junying; Lu, Jianying; Wang, Chen
2018-04-26
Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ε-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ε-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO 2 cleavage to form NO 2 , followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H 2 O and N 2 , but it has little effect on the rate constants of CO 2 and H 2 .
On the Henry constant and isosteric heat at zero loading in gas phase adsorption.
Do, D D; Nicholson, D; Do, H D
2008-08-01
The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.
Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.
Sinclair, J C
2000-01-01
Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Collaborative Review Group. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual adjustment of incubator air temperature.
Tseng, H-Y; Lee, G-B; Lee, C-Y; Shih, Y-H; Lin, X-Z
2009-06-01
This study reports an investigation of hyperthermia cancer therapy utilising an alternating magnetic field to induce a localised temperature increase on tumours by using injectable magnetic nanoparticles. In-vitro and in-vivo experiments represent the feasibility of hyperthermia cancer therapy. A feedback temperature control system was first developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumours such that a safer and more precise cancer therapy becomes feasible. By using the feedback temperature control system, magnetic nanoparticles can be heated up to the specific constant temperatures, 37, 40, 42, 45, 46 and 47 degrees C, respectively, with a variation less than 0.2 degrees C. With this approach, the in-vitro survival rate of tumour cells at different temperatures can be systematically explored. It was experimentally found that the survival rate of cancer cells can be greatly reduced while CT-26 cancer cells were heated above 45 degrees C. Besides, localised temperatures increase as high as 59.5 degrees C can be successfully generated in rat livers by using the proposed method. Finally, complete regression of tumour was achieved. The developed method used injectable magnetic nanoparticles and may provide a promising approach for hyperthermia cancer therapy.
Makarov, Alexey A; Schafer, Wes A; Helmy, Roy
2015-02-17
The market of protein therapeutics is exploding, and characterization methods for proteins are being further developed to understand and explore conformational structures with regards to function and activity. There are several spectroscopic techniques that allow for analyzing protein secondary structure in solution. However, a majority of these techniques need to use purified protein, concentrated enough in the solution to produce a relevant spectrum. In this study, we describe a novel approach which uses ultrahigh pressure liquid chromatography (UHPLC) coupled with mass-spectrometry (MS) to explore compressibility of the secondary structure of proteins under increasing pressure detected by hydrogen-deuterium exchange (HDX). Several model proteins were used for these studies. The studies were conducted with UHPLC in isocratic mode at constant flow rate and temperature. The pressure was modified by a backpressure regulator up to about 1200 bar. It was found that the increase of retention factors upon pressure increase, at constant flow rate and temperature, was based on reduction of the proteins' molecular molar volume. The change in the proteins' molecular molar volume was caused by changes in protein folding, as was revealed by differential deuterium exchange. The degree of protein folding under certain UHPLC conditions can be controlled by pressure, at constant temperature and flow rate. By modifying pressure during UHPLC separation, it was possible to achieve changes in protein folding, which were manifested as changes in the number of labile protons exchanged to deuterons, or vice versa. Moreover, it was demonstrated with bovine insulin that a small difference in the number of protons exchanged to deuterons (based on protein folding under pressure) could be observed between batches obtained from different sources. The use of HDX during UHPLC separation allowed one to examine protein folding by pressure at constant flow rate and temperature in a mixture of sample solution with minimal amounts of sample used for analysis.
Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol
NASA Astrophysics Data System (ADS)
Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh
2017-07-01
Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.
Enolization of acetone in superheated water detected via radical formation.
Ghandi, Khashayar; Addison-Jones, Brenda; Brodovitch, Jean-Claude; McCollum, Brett M; McKenzie, Iain; Percival, Paul W
2003-08-13
Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.
NASA Astrophysics Data System (ADS)
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 °C at different total concentrations of rhodamine B (5.89 × 10 -6 to 2.36 × 10 -4 M) and rhodamine 6G (2.34 × 10 -5 to 5.89 × 10 -4 M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TΔ S°-Δ H° plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 degrees C at different total concentrations of rhodamine B (5.89 x 10(-6) to 2.36 x 10(-4)M) and rhodamine 6G (2.34 x 10(-5) to 5.89 x 10(-4)M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TDeltaS degrees -DeltaH degrees plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
The p- T phase diagram of KNbO 3 by a dielectric constant measurement
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.
2001-11-01
A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.
Tensile properties of AZ11A-0 magnesium-alloy sheet under rapid-heating and constant temperature
NASA Technical Reports Server (NTRS)
Kurg, Ivo M
1956-01-01
Specimens of AZ31A-0 magnesium alloy sheet were heated to rupture at nominal rates of 0.2 F to 100 F per second under constant tensile load conditions. The data are presented and compared with the results of conventional tensile stress-strain tests at elevated temperatures after 1.2-hour exposure. A temperature-rate parameter was used to construct master curves from which stresses and temperatures for yield and rupture can be predicted under rapid-heating conditions. A comparison of the elevated-temperature tensile properties of AZ31A-0 and HK31XA-H24 magnesium-alloy sheet under both constant-temperature and rapid-heating conditions is included.
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
NASA Astrophysics Data System (ADS)
Kötz, R.; Ruch, P. W.; Cericola, D.
Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 °C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 °C).
A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate.
Ning, Hongbo; Liu, Dapeng; Wu, Junjun; Ma, Liuhao; Ren, Wei; Farooq, Aamir
2018-06-12
The hydrogen abstraction reactions of phenyl formate (PF) by different radicals (H/O(3P)/OH/HO2) were theoretically investigated. We calculated the reaction energetics for PF + H/O/OH using the composite method ROCBS-QB3//M06-2X/cc-pVTZ and that for PF + HO2 at the M06-2X/cc-pVTZ level of theory. The high-pressure limit rate constants were calculated using the transition state theory in conjunction with the 1-D hindered rotor approximation and tunneling correction. Three-parameter Arrhenius expressions of rate constants were provided over the temperature range of 500-2000 K. To validate the theoretical calculations, the overall rate constants of PF + OH → Products were measured in shock tube experiments at 968-1128 K and 1.16-1.25 atm using OH laser absorption. The predicted overall rate constants agree well with the shock tube data (within 15%) over the entire experimental conditions. Rate constant analysis indicates that the H-abstraction at the formic acid site dominates the PF consumption, whereas the contribution of H-abstractions at the aromatic ring increases with temperature. Additionally, comparisons of site-specific H-abstractions from PF with methyl formate, ethyl formate, benzene, and toluene were performed to understand the effects of the aromatic ring and side-chain substituent on H-abstraction rate constants.
Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Quality evaluation of onion bulbs during low temperature drying
NASA Astrophysics Data System (ADS)
Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.
2016-06-01
A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.
Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, B.; Akgerman, A.
1999-12-01
The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less
NASA Astrophysics Data System (ADS)
Chattopadhyay, P.; Karim, B.; Guha Roy, S.
2013-12-01
The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.
NASA Astrophysics Data System (ADS)
Ahmad, Mohamad M.; Yamada, Koji
2014-04-01
In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.
NASA Technical Reports Server (NTRS)
DeMore, W.; Wilson, E., Jr.
1998-01-01
Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.
Gianni, Carola; Atoui, Moustapha; Mohanty, Sanghamitra; Trivedi, Chintan; Bai, Rong; Al-Ahmad, Amin; Burkhardt, J David; Gallinghouse, G Joseph; Hranitzky, Patrick M; Horton, Rodney P; Sanchez, Javier E; Di Biase, Luigi; Lakkireddy, Dhanunjaya R; Natale, Andrea
2016-11-01
Luminal esophageal temperature monitoring is performed with a variety of temperature probes, but little is known about the relationship between the structure of a given probe and its thermodynamic characteristics. The purpose of this study was to evaluate the difference in thermodynamics between a 9Fr standard esophageal probe and an 18Fr esophageal stethoscope. In the experimental setting, each probe was submerged in a constant temperature water bath maintained at 42°C; in the patient setting, we monitored the temperature with both probes at the same time. The time constant of the stethoscope was higher than that of the probe (33.5 vs 8.3 s). Compared to the probe, the mean temperature measured by the stethoscope at 10 seconds was significantly lower (22.5°C ± 0.4°C vs 33.5°C ± 0.3°C, P<.0001), whereas the time to reach the peak temperature was significantly longer (132.6 ± 5.9 s vs 38.8 ± 1.0 s, P<.0001). Even in the ablation cases we observed that when the esophageal probe reached a peak temperature of 39.6°C ± 0.3°C, the esophageal stethoscope still displayed a temperature of 37.3°C ± 0.2°C (a mean of 2.39°C ± 0.3°C lower, P<.0001), showing a <0.5°C increase in temperature half of the times. The 18Fr esophageal stethoscope has a significantly slower time response compared to the 9Fr esophageal probe. In the clinical setting, this might result in a considerable underestimation of the luminal esophageal temperature with potentially fatal consequences. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vidya, S.; Solomon, Sam; Thomas, J. K.
2013-01-01
Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.
NASA Astrophysics Data System (ADS)
Hammud, Hassan H.; El Shazly, Shawky; Sonji, Ghassan; Sonji, Nada; Bouhadir, Kamal H.
2015-05-01
The ligands 3-(adenine-9-yl)propionic acid (AA) and 3-(thymine-1-yl)propionic acid (TA) were prepared by N9-alkylation of adenine and N1-alkylation of thymine with ethylacrylate in presence of a base catalyst, followed by acid hydrolysis of the formed ethyl esters to give the corresponding propionic acid derivatives. The products were characterized by spectral methods (FTIR, 1H NMR and 13C NMR), which confirm their structures. The dissociation constants of ligands, were potentiometrically determined in 0.3 M KCl at 20-50 °C temperature range. The work was extended to study complexation behavior of AA and TA with various biologically important divalent metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Mn2+ and Pb2+) in 50% v/v water-ethanol medium at four different temperatures, keeping ionic strength constant (0.3 M KCl). The order of the stability constants of the formed complexes decreases in the sequence Cu2+ > Pb2+ > Zn2+ > Ni2+ > Co2+ > Mn2+ > Cd2+ for both ligands. The effect of temperature was also studied and the corresponding thermodynamic functions (ΔG, ΔH, ΔS) were derived and discussed. The formation of metal complexes has been found to be spontaneous, and the stability constants were dependant markedly on the basicity of the ligands.
Granhus, Aksel; Fløistad, Inger Sundheim; Søgaard, Gunnhild
2009-04-01
In trees adapted to cold climates, conditions during autumn and winter may influence the subsequent timing of bud burst and hence tree survival during early spring frosts. We tested the effects of two temperatures during dormancy induction and mild spells (MS) during chilling on the timing of bud burst in three Picea abies (L.) Karst. provenances (58-66 degrees N). One-year-old seedlings were induced to become dormant at temperatures of 12 or 21 degrees C applied during 9 weeks of short days (12-h photoperiod). The seedlings were then moved to cold storage and given either continuous chilling at 0.7 degrees C (control), or chilling interrupted by one 14-day MS at either 8 or 12 degrees C. Interruptions with MS were staggered throughout the 175-day chilling period, resulting in 10 MS differing in date of onset. Subsets of seedlings were moved to forcing conditions (12-h photoperiod, 12 degrees C) throughout the chilling period, to assess dormancy status at different timings of the MS treatment. Finally, after 175 days of chilling, timing of bud burst was assessed in a 24-h photoperiod at 12 degrees C (control and MS-treated seedlings). The MS treatment did not significantly affect days to bud burst when given early (after 7-35 chilling days). When MS was given after 49 chilling days or later, the seedlings burst bud earlier than the controls, and the difference increased with increasing length of the chilling period given before the MS. The 12 degrees C MS treatment was more effective than the 8 degrees C MS treatment, and the difference remained constant after the seedlings had received 66 or more chilling days before the MS treatment was applied. In all provenances, a constant temperature of 21 degrees C during dormancy induction resulted in more dormant seedlings (delayed bud burst) than a constant temperature of 12 degrees C, but this did not delay the response to the MS treatment.
Haim, Abraham; Zubidat, Abed Elsalam; van Aarde, Rudi J
2008-12-01
We compared body temperature (T(b)) and metabolic rates, measured as oxygen consumption (VO(2)), daily rhythms of two sibling species of the genus Mastomys. We also studied their responses to long day (16L: 8D, LD) and short day (8L: 16D, SD) photoperiod manipulations at a constant ambient temperature of 26+1 degrees C. We noted significant differences in T(b) and VO(2) daily rhythm patterns, under SD and LD-acclimation between the sibling species. These differences explain adaptation to the climatic conditions that prevail in the different ecosystems where these species live. To the best of our knowledge, this is the first time that physiological differences between the two siblings are measured by using chronobiological methods.
NASA Astrophysics Data System (ADS)
Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael
2018-01-01
[001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.
Characteristics of wettedness and equi-skin temperature line in the evaporative regulation region
NASA Astrophysics Data System (ADS)
Mochida, T.
1983-07-01
As a result of the analysis of physiological experimental data, the characteristics of the wettedness were clarified, i.e., the value of the wettedness is not constant but differs in accordance with the environmental humidity even when the skin temperature is the same, and it was shown that the evaporative heat loss from the skin surface is inversely proportional to the wetttedness. Based on the properties of the wetedness observed, a new thermal sensation chart in the evaporative regulation region was proposed as an index for evaluating the warmth or the coldness in the environment. The feature of the present chart is that the locus of the equal skin temperature appears as a curved line on the psychrometric chart and that the wettedness on the equi-skin temperature line is not constant but takes varying values. The curved equal skin temperature line means that the influence of the environmental humidity on thermal sensation becomes smaller as the humidity of the environmental humidity on thermal sensation becomes smaller as the humidity of the environment is lowered.
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Brokaw, R. S.
1982-01-01
Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
A database for the static dielectric constant of water and steam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, D.P.; Mulev, Y.; Goodwin, A.R.H.
All reliable sources of data for the static dielectric constant or relative permittivity of water and steam, many of them unpublished or inaccessible, have been collected, evaluated, corrected when required, and converted to the ITS-90 temperature scale. The data extend over a temperature range from 238 to 873 K and over a pressure range from 0.1 MPa up to 1189 MPa. The evaluative part of this work includes a review of the different types of measurement techniques, and the corrections for frequency dependence due to the impedance of circuit components, and to electrode polarization. It also includes a detailed assessmentmore » of the uncertainty of each particular data source, as compared to other sources in the same range of pressure and temperature. Both the raw and the corrected data have been tabulated, and are also available on diskette. A comprehensive list of references to the literature is included.« less
Effect of solvent on crystallization behavior of xylitol
NASA Astrophysics Data System (ADS)
Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu
2006-04-01
Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.
Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.
2018-05-01
Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yong; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn
2014-11-21
Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH{sub 4} reaction and the H{sub 2}+CH{sub 3} reaction are calculated. Simulations of the H+CH{sub 4} reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable highmore » accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH{sub 4} rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H{sub 2}+CH{sub 3} reaction are found to be in good consistency with experimental observations.« less
Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.
1976-01-01
Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.
Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds
NASA Astrophysics Data System (ADS)
Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.
2018-06-01
First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.
The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data
NASA Technical Reports Server (NTRS)
Brown, E. N.; Czeisler, C. A.
1992-01-01
Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; ...
2017-10-24
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less
NASA Astrophysics Data System (ADS)
Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; Runde, W.; Roback, R.; Williams-Jones, A. E.
2018-02-01
The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO22+, UO2Cl+, and UO2Cl2°. UO2Cl3- is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species show fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO2Cl42- and UO2Cl53- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T > 150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO2Cl2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO22+ + Cl- = UO2Cl+ are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO22+ + 2Cl- = UO2Cl2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.
ERIC Educational Resources Information Center
Ericson, T. J.
1988-01-01
Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)
Response of Fusarium solani to Fluctuating Temperatures
Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds
1971-01-01
The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...
NASA Technical Reports Server (NTRS)
Brown, G. V. (Inventor)
1978-01-01
A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.
Development of a wavy Stark velocity filter for studying interstellar chemistry
NASA Astrophysics Data System (ADS)
Okada, Kunihiro; Takada, Yusuke; Kimura, Naoki; Wada, Michiharu; Schuessler, Hans A.
2017-08-01
Cold polar molecules are key to both the understanding of fundamental physics and the characterization of the chemical evolution of interstellar clouds. To facilitate such studies over a wide range of temperatures, we developed a new type of Stark velocity filter for changing the translational and rotational temperatures of velocity-selected polar molecules without changing the output beam position. The translational temperature of guided polar molecules can be significantly varied by exchanging the wavy deflection section with one having a different radius of the curvature and a different deflection angle. Combining in addition a temperature variable gas cell with the wavy Stark velocity filter enables to observe the translational and rotational temperature dependence of the reaction-rate constants of cold ion-polar molecule reactions over the interesting temperature range of 10-100 K.
Magnetic properties of ferritin and akaganeite nanoparticles in aqueous suspension
NASA Astrophysics Data System (ADS)
Koralewski, Marceli; Pochylski, Mikołaj; Gierszewski, Jacek
2013-09-01
We have studied the magnetically induced optical birefringence Δ n of horse spleen ferritin (HSF) and aqueous suspensions of several different-sized iron oxyhydroxide nanoparticles coated with different polysaccharides mimicking ferritin. The structure and dimensions of the akaganeite mineral core were characterized by XRD and TEM, respectively. The stability of the suspensions in the measurement temperature range from 278 to 358 K was confirmed by UV-Vis absorption spectroscopy. The values of optical polarizability anisotropy Δ α, magnetic susceptibility anisotropy Δ χ, and permanent magnetic dipole moment μ m of the akaganeite nanoparticles have been estimated on the basis of the temperature dependence of the Cotton-Mouton (C-M) constant. The magnetic birefringence of Fe-sucrose has been described tentatively by different types of Langevin function allowing another estimation of Δ χ and μ m. The obtained permanent magnetic dipole moment μ m of the studied akaganeite nanoparticles proves small and comparable to that of HSF. The value of μ m is found to increase with decreasing nanoparticle diameter. Observed in a range spanning more than five orders of magnitude, the linear relation between the C-M constant and the iron concentration provides a basis for possible analytical application of the C-M effect in biomedicine. The established relation between the C-M constant and the nanoparticle diameter confirms that the dominant contribution to the measured magnetic birefringence comes from the magnetic susceptibility anisotropy Δ χ. A comparison of the C-M constants of the studied akaganeite nanoparticles with the data obtained for HSF provides evidence that the ferritin core behaves as a non-Euclidian solid.
NASA Astrophysics Data System (ADS)
Ariake, Yusuke; Wu, Shuang; Kanada, Isao; Mewes, Tim; Tanaka, Yoshitomo; Mankey, Gary; Mewes, Claudia; Suzuki, Takao
2018-05-01
The soft magnetic properties and effective damping parameters of Fe73Co25Al2 alloy thin films are discussed. The effective damping parameter αeff measured by ferromagnetic resonance for the 10 nm-thick sample is nearly constant (≈0.004 ± 0.0008) for a growth temperature Ts from ambient to 200 °C, and then tends to decrease for higher temperatures and αeff is 0.002 ± 0.0004 at Ts = 300 °C. For the 80 nm-thick sample, the αeff seems to increase with Ts from αeff = 0.001 ± 0.0002 at Ts = ambient to αeff = 0.002 ± 0.0004. The αeff is found nearly constant (αeff = 0.004 ± 0.0008) over a temperature range from 10 to 300 K for the 10 nm films with the different Ts (ambient, 100 and 200 °C). Together with an increasing non-linearity of the frequency dependence of the linewidth at low Ts, extrinsic contributions such as two-magnon scattering dominate the observed temperature dependence of effective damping and linewidth.
Electrical detection of ortho–para conversion in fullerene-encapsulated water
Meier, Benno; Mamone, Salvatore; Concistrè, Maria; Alonso-Valdesueiro, Javier; Krachmalnicoff, Andrea; Whitby, Richard J.; Levitt, Malcolm H.
2015-01-01
Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho–para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51±0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon. PMID:26299447
Three dielectric constants and orientation order parameters in nematic mesophases
NASA Astrophysics Data System (ADS)
Yoon, Hyung Guen; Jeong, Seung Yeon; Kumar, Satyendra; Park, Min Sang; Park, Jung Ok; Srinivasarao, M.; Shin, Sung Tae
2011-03-01
Temperature dependence of the three components ɛ1 , ɛ2 , and ɛ3 of dielectric constant and orientation order parameters in the nematic phase of mesogens with rod, banana, and zero-order dendritic shape were measured using the in-plane and vertical switching geometries, and micro-Raman technique. Results on the well-known uniaxial (Nu) nematogens, E7 and 5CB, revealed two components ɛ1 = ~ɛ| | and ɛ2 = ~ɛ3 = ~ɛ⊥ , as expected. The three dielectric constants were different for two azo substituted (A131 and A103) and an oxadiazole based (ODBP-Ph-C12) bent core mesogens, and a Ge core tetrapode. In some cases, two of the components became the same indicating a loss of biaxiality at temperatures coinciding with the previously reported Nu to biaxial nematic transition. This interpretation is substantiated by micro-Raman measurements of the uniaxial and biaxial nematic order parameters. Supported by the US Department of Energy, Basic Energy Sciences grant ER46572 and by Samsung Electronics Corporation.
The effects of ground hydrology on climate sensitivity to solar constant variations
NASA Technical Reports Server (NTRS)
Chou, S. H.; Curran, R. J.; Ohring, G.
1979-01-01
The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient.
NASA Astrophysics Data System (ADS)
H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan
2016-07-01
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz-5 MHz and the temperature range of 290-443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.
NASA Astrophysics Data System (ADS)
Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna
2014-09-01
This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.
Weber, J A; Tenhunen, J D; Lange, O L
1985-09-01
The effect of temperature on photosynthesis at constant water-vapor pressure in the air was investigated using two sclerophyll species, Arbutus unedo and Quercus suber, and one mesophytic species, Spinacia oleracea. Photosynthesis and transpiration were measured over a range of temperatures, 20-39° C. The external concentration of CO2 was varied from 340 μbar to near CO2 compensation. The initial slope (carboxylation efficiency, CE) of the photosynthetic response to intercellular CO2 concentration, the CO2 compensation point (Γ), and the extrapolated rate of CO2 released into CO2-free air (R i) were calculated. At an external CO2 concentration of 320-340 μbar CO2, photosynthesis decreased with temperature in all species. The effect of temperature on Γ was similar in all species. While CE in S. oleracea changed little with temperature, CE decreased by 50% in Q. suber as temperature increased from 25 to 34° C. Arbutus unedo also exhibited a decrease in CE at higher temperatures but not as marked as Q. suber. The absolut value of R i increased with temperature in S. oleracea, while changing little or decreasing in the sclerophylls. Variations in Γ and R i of the sclerophyll species are not consistent with greater increase of respiration with temperature in the light in these species compared with S. oleracea.
Nonintrinsic origin of the colossal dielectric constants in Ca Cu3 Ti4 O12
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Fichtl, R.; Ebbinghaus, S. G.; Loidl, A.
2004-11-01
The dielectric properties of CaCu3Ti4O12 , a material showing colossal values of the dielectric constant, were investigated over a broad temperature and frequency range extending up to 1.3GHz . A detailed equivalent-circuit analysis of the results and two crucial experiments, employing different types of contacts and varying the sample thickness were performed. The results provide clear evidence that the apparently high values of the dielectric constant in CaCu3Ti4O12 are nonintrinsic and due to electrode polarization effects. The intrinsic properties of CaCu3Ti4O12 are characterized by charge transport via hopping of localized charge carriers and a relatively high dielectric constant of the order of 100.
Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph
1994-01-01
We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.
Monitoring System and Temperature Controlling on PID Based Poultry Hatching Incubator
NASA Astrophysics Data System (ADS)
Shafiudin, S.; Kholis, N.
2018-04-01
Poultry hatching cultivation is essential to be observed in terms of temperature stability by using artificial penetration incubator which applies On/Off control. The On/Off control produces relatively long response time to reach steady-state conditions. Moreover, how the system works makes the component worn out because the lamp is on-off periodically. Besides, the cultivation in the market is less suitable to be used in an environment which has fluctuating temperature because it may influence plant’s temperature stability. The study aims to design automatic poultry hatching cultivation that can repair the temperature’s response of plant incubator to keep stable and in line with the intended set-point temperature value by using PID controller. The method used in PID controlling is designed to identify plant using ARX (Auto Regressive eXogenous) MATLAB which is dynamic/non-linear to obtain mathematical model and PID constants value that is appropriate to system. The hardware design for PID-based egg incubator uses Arduino Uno R3, as the main controller that includes PID source, and PWM, to keep plant temperature stability, which is integrated with incandescent light actuators and sensors where DHTI 1 sensor as the reader as temperature condition and plant humidity. The result of the study showed that PID constants value of each plant is different. For parallel 15 Watt plant, Kp = 3.9956, Ki = 0.361, Kd = 0, while for parallel 25 Watt plant, the value of Kp = 5.714, Ki = 0.351, Kd = 0. The PID constants value were capable to produce stable system response which is based on set-point with steady state error’s value is around 5%, that is 2.7%. With hatching percentage of 70-80%, the hatching process is successful in air-conditioned environment (changeable).
A comparison of calibration techniques for hot-wires operated in subsonic compressible slip flows
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Stainback, P. C.; Nagabushana, K. A.
1992-01-01
This paper focuses on the correlation of constant temperature anemometer voltages to velocity, density, and total temperature in the transonic slip flow regime. Three different calibration schemes were evaluated. The ultimate use of these hot-wire calibrations is to obtain fluctuations in the flow variables. Without the appropriate mean flow sensitivities of the heated wire, the measurements of these fluctuations cannot be accurately determined.
NASA Astrophysics Data System (ADS)
Kreider, Kenneth G.; DeWitt, David P.; Fowler, Joel B.; Proctor, James E.; Kimes, William A.; Ripple, Dean C.; Tsai, Benjamin K.
2004-04-01
Recent studies on dynamic temperature profiling and lithographic performance modeling of the post-exposure bake (PEB) process have demonstrated that the rate of heating and cooling may have an important influence on resist lithographic response. Measuring the transient surface temperature during the heating or cooling process with such accuracy can only be assured if the sensors embedded in or attached to the test wafer do not affect the temperature distribution in the bare wafer. In this paper we report on an experimental and analytical study to compare the transient response of embedded platinum resistance thermometer (PRT) sensors with surface-deposited, thin-film thermocouples (TFTC). The TFTCs on silicon wafers have been developed at NIST to measure wafer temperatures in other semiconductor thermal processes. Experiments are performed on a test bed built from a commercial, fab-qualified module with hot and chill plates using wafers that have been instrumented with calibrated type-E (NiCr/CuNi) TFTCs and commercial PRTs. Time constants were determined from an energy-balance analysis fitting the temperature-time derivative to the wafer temperature during the heating and cooling processes. The time constants for instrumented wafers ranged from 4.6 s to 5.1 s on heating for both the TFTC and PRT sensors, with an average difference less than 0.1 s between the TFTCs and PRTs and slightly greater differences on cooling.
Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.
Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P
2015-01-01
Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol. Copyright © 2014 Elsevier B.V. All rights reserved.
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey
2015-12-28
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
Petrowsky, Matt; Fleshman, Allison; Frech, Roger
2012-05-17
The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.
Davies, Craig; Coetzee, Maureen; Lyons, Candice L
2016-06-14
Constant and fluctuating temperatures influence important life-history parameters of malaria vectors which has implications for community organization and the malaria disease burden. The effects of environmental temperature on the hatch rate, survivorship and development rate of Anopheles arabiensis and An. quadriannulatus under conditions of inter- and intra-specific competition are studied. The eggs and larvae of laboratory established colonies were reared under controlled conditions at one constant (25 °C) and two fluctuating (20-30 °C and 18-35 °C) temperature treatments at a ratio of 1:0 or 1:1 (An. arabiensis: An. quadriannulatus). Monitoring of hatch rate, development rate and survival was done at three intervals, 6 to 8 h apart depending on developmental stage. Parametric ANOVAs were used where assumptions of equal variances and normality were met, and a Welch ANOVA where equal variance was violated (α = 0.05). Temperature significantly influenced the measured life-history traits and importantly, this was evident when these species co-occurred. A constant temperature resulted in a higher hatch rate in single species, larval treatments (P < 0.05). The treatment 18-35 °C generally reduced survivorship except for An. arabiensis in mixed, larval species treatments where it was similar to values reported for 25 °C. Survivorship of both species at 20-30 °C was not significantly impacted and the adult production was high across species treatments. The development rates at 25 °C and 20-30 °C were significantly different between species when reared alone and in mixed species from larvae and from eggs. The effect of temperature was more pronounced at 18-35 °C with An. arabiensis developing faster under both competitive scenarios and An. quadriannulatus slower, notably when in the presence of its competitor (P < 0.05). The influence of temperature treatment on the development rate and survival from egg/larvae to adult differed across species treatments. Fluctuating temperatures incorporating the extremes influence the key life-history parameters measured here with An. arabiensis outcompeting An. quadriannulatus under these conditions. The quantification of the response variables measured here improve our knowledge of the link between temperature and species interactions and provide valuable information for modelling of vector population dynamics.
A multilevel approach to examining cephalopod growth using Octopus pallidus as a model.
Semmens, Jayson; Doubleday, Zoë; Hoyle, Kate; Pecl, Gretta
2011-08-15
Many aspects of octopus growth dynamics are poorly understood, particularly in relation to sub-adult or adult growth, muscle fibre dynamics and repro-somatic investment. The growth of 5 month old Octopus pallidus cultured in the laboratory was investigated under three temperature regimes over a 12 week period: seasonally increasing temperatures (14-18°C); seasonally decreasing temperatures (18-14°C); and a constant temperature mid-way between seasonal peaks (16°C). Differences in somatic growth at the whole-animal level, muscle tissue structure and rate of gonad development were investigated. Continuous exponential growth was observed, both at a group and at an individual level, and there was no detectable effect of temperature on whole-animal growth rate. Juvenile growth rate (from 1 to 156 days) was also monitored prior to the controlled experiment; exponential growth was observed, but at a significantly faster rate than in the older experimental animals, suggesting that O. pallidus exhibit a double-exponential two-phase growth pattern. There was considerable variability in size-at-age even between individuals growing under identical thermal regimes. Animals exposed to seasonally decreasing temperatures exhibited a higher rate of gonad development compared with animals exposed to increasing temperatures; however, this did not coincide with a detectable decline in somatic growth rate or mantle condition. The ongoing production of new mitochondria-poor and mitochondria-rich muscle fibres (hyperplasia) was observed, indicated by a decreased or stable mean muscle fibre diameter concurrent with an increase in whole-body size. Animals from both seasonal temperature regimes demonstrated higher rates of new mitochondria-rich fibre generation relative to those from the constant temperature regime, but this difference was not reflected in a difference in growth rate at the whole-body level. This is the first study to record ongoing hyperplasia in the muscle tissue of an octopus species, and provides further insight into the complex growth dynamics of octopus.
Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites
NASA Technical Reports Server (NTRS)
Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.
2014-01-01
Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.
NASA Astrophysics Data System (ADS)
Belmeguenai, M.; Gabor, M. S.; Zighem, F.; Roussigné, Y.; Faurie, D.; Tiusan, C.
2016-09-01
Co2FeAl (CFA) thin films, of various thicknesses (3 nm≤t ≤50 nm ), have been grown by sputtering on (001) MgO single-crystal substrates and annealed at different temperatures (RT≤Ta≤600 ∘C , where RT is the room temperature). The influence of the CFA thickness (t ), as well as ex situ annealing temperature (Ta), on the magnetic and structural properties has been investigated by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed an epitaxial growth of the films with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B 2 phase to the A 2 phase when decreasing t or Ta. The deduced lattice parameters showed an in-plane tetragonal distortion and in-plane and out-plane strains that increase with Ta and 1 /t . For all Ta values, the variation of the effective magnetization, deduced from the fit of MS-FMR measurements, shows two different regimes separated by a critical thickness, which is Ta dependent. It decreases (increases) linearly with the inverse thickness (1 /t ) in the first (second) regime due to the contribution of the magnetoelastic anisotropy to surface (to volume) anisotropy. The observed behavior has been analyzed through a model allowing for the separation of the magnetocrystalline, magnetoelastic, and Néel-type interface anisotropy constants to the surface and the volume anisotropies. Similar behavior has been observed for the effective fourfold anisotropy field which governs the in-plane anisotropy present in all the samples. Finally, the MS-FMR data also allow one to conclude that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with Ta.
NASA Astrophysics Data System (ADS)
Teraji, T.; Arakaki, T.; Suzuka, T.
2012-12-01
Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.
Dammeier, J; Colberg, M; Friedrichs, G
2007-08-21
The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K < T < 1305 K behind reflected shock waves and, for the purpose of a consistency check, in a slow flow reactor at room temperature. HCO radicals were generated by 193 nm excimer laser photolysis of diluted gas mixtures containing glyoxal, (CHO)(2), and NO or NO(2) in argon and were monitored using frequency modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).
Global variation of carbon use efficiency in terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Tang, Xiaolu; Carvalhais, Nuno; Moura, Catarina; Reichstein, Markus
2017-04-01
Carbon use efficiency (CUE), defined as the ratio between net primary production (NPP) and gross primary production (GPP), is an emergent property of vegetation that describes its effectiveness in storing carbon (C) and is of significance for understanding C biosphere-atmosphere exchange dynamics. A constant CUE value of 0.5 has been widely used in terrestrial C-cycle models, such as the Carnegie-Ames-Stanford-Approach model, or the Marine Biological Laboratory/Soil Plant-Atmosphere Canopy Model, for regional or global modeling purposes. However, increasing evidence argues that CUE is not constant, but varies with ecosystem types, site fertility, climate, site management and forest age. Hence, the assumption of a constant CUE of 0.5 can produce great uncertainty in estimating global carbon dynamics between terrestrial ecosystems and the atmosphere. Here, in order to analyze the global variations in CUE and understand how CUE varies with environmental variables, a global database was constructed based on published data for crops, forests, grasslands, wetlands and tundra ecosystems. In addition to CUE data, were also collected: GPP and NPP; site variables (e.g. climate zone, site management and plant function type); climate variables (e.g. temperature and precipitation); additional carbon fluxes (e.g. soil respiration, autotrophic respiration and heterotrophic respiration); and carbon pools (e.g. stem, leaf and root biomass). Different climate metrics were derived to diagnose seasonal temperature (mean annual temperature, MAT, and maximum temperature, Tmax) and water availability proxies (mean annual precipitation, MAP, and Palmer Drought Severity Index), in order to improve the local representation of environmental variables. Additionally were also included vegetation phenology dynamics as observed by different vegetation indices from the MODIS satellite. The mean CUE of all terrestrial ecosystems was 0.45, 10% lower than the previous assumed constant CUE of 0.50. CUE varied significantly between sites - from 0.13 to 0.93 - and between ecosystem types, ranging between 0.41 and 0.60, decreasing from wetlands, to tundra, to croplands, to grasslands until the lower CUE found on average for forested ecosystems. Our analysis shows that ecosystem type was the most important predictor of CUE in terrestrial ecosystems, immediately followed by Tmax; MAT and management practices. For crop, forest and wetland ecosystems CUE varied with climate zones and a strong linear negative correlation was found between CUE and MAT and MAP for grassland ecosystems. Overall, the interaction between different environmental variables showed significant effects on CUE for all ecosystem types. Our results challenge the consideration of a constant value of 0.5 for modeling global purposes, and argue for a deeper understanding of environmental controls on CUE for different ecosystem types.
Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, G. R., E-mail: girjesh@iucaa.in
We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm linesmore » in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.« less
NASA Technical Reports Server (NTRS)
Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.
1993-01-01
The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.
ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES ...
ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES FOR IRON PRIOR TO FILLING MOBILE LADLES. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment.
Mermillod-Blondin, F; Lefour, C; Lalouette, L; Renault, D; Malard, F; Simon, L; Douady, C J
2013-05-01
The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of three isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by an annual temperature amplitude of less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies, although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.
NASA Astrophysics Data System (ADS)
Yang, Yuanhong; Xia, Haiyun; Jin, Wei
2007-10-01
A reflection spot temperature sensor was proposed based on the polarization mode interference in polarization maintaining optical fibre (PMF) and the phenomenon that the propagation constant difference of the two orthogonal polarization modes in stressing structures PMF is sensitive to temperature and the sensing equation was obtained. In this temperature sensor, a broadband source was used to suppress the drift due to polarization coupling in lead-in/lead-out PMF. A characteristic and performance investigation proved this sensor to be practical, flexible and precise. Experimental results fitted the theory model very well and the noise-limited minimum detectable temperature variation is less than 0.01 °C. The electric arc processing was investigated and the differential propagation constant modifying the PMF probe is performed. For the demand of field hot-spot monitoring of huge power transformers, a remote multi-channel temperature sensor prototype has been made and tested. Specially coated Panda PMF that can stand high temperatures up to 250 °C was fabricated and used as probe fibres. The sensor probes were sealed within thin quartz tubes that have high voltage insulation and can work in a hot oil and vapour environment. Test results show that the accuracy of the system is better than ±0.5 °C within 0 °C to 200 °C.
Thermal/Mechanical Response and Damage Growth in Polymeric Composites at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Gates, Thomas S.
2002-01-01
In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 both before and after aging at cryogenic temperatures. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimen ply lay-ups, [0](sub 12), [90](sub 12), [+/-45](sub 3S), [+/-25](sub 3s) and [45,90(sub 3),-45,0(sub 3),-45,90(sub 3),45]. Specimens were preconditioned with one set of coupons being isothermally aged for 555 hours at -184 C in an unloaded state. Another set of corresponding coupons were mounted in constant displacement fixtures such that a constant uniaxial strain was applied to the specimens for 555 hours at -184 C. The measured lamina level properties indicated that cryogenic temperatures have an appreciable influence on behavior, and residual stress calculations based on lamination theory showed that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material due to aging at cryogenic temperatures.
Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina
2015-10-12
Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0
Leguérinel, I; Couvert, O; Mafart, P
2007-02-28
Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.
Chantre, Guillermo R; Batlla, Diego; Sabbatini, Mario R; Orioli, Gustavo
2009-06-01
Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Seeds were dry-stored at constant temperatures of 5, 15 or 24 degrees C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 degrees C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single T(b) value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
Lin, Hao; Shavezipur, Mohammad; Yousef, Ahmed; Maleky, Farnaz
2016-03-01
Accurate prediction of growth of undesirable organisms (e.g., Pseudomonas fluorescens) in perishable foods (e.g., milk), held under sub-ideal storage conditions, can help ensure the quality and safety of these foods at the point of consumption. In this investigation, we inoculated sterile milk with P. fluorescens (~10(3) cfu/mL) and monitored inoculum growth behavior at constant and fluctuating storage temperatures. Three storage temperatures, 4 °C, 15 °C and 29 °C, were selected to simulate proper refrigeration conditions (4 °C) and temperature abuse, respectively. To simulate temperature fluctuation, milk held at 4 °C was subjected to temperature shifts to 15 °C or 29 °C for 4 to 6h. A modified logistic model was used to obtain the best-fit curve for the microbial growth under constant storage temperature. The specific growth rates at 4 °C, 15 °C, and 29 °C, obtained from experimental data, were 0.056 ± 0.00, 0.17 ± 0.05, and 0.46 ± 0.02 h(-1), respectively, and the lag time values were 29.5 ± 4.2, 12.7 ± 4.4, and 2.8 ± 0.3h, respectively. A model predicting bacterial growth under different temperature fluctuations was obtained using the growth parameters extracted from constant temperature experiments. Growth behavior predicted by the fluctuating temperature model and that obtained experimentally were in good agreement. Lag time exhibited a larger variation compared with specific growth rate, suggesting that it depends not only on growth temperature but also on the sample population and temperature gradient. Additionally, experimental data showed that changing the temperature during the lag phase induced an additional lag time before growth; however, no significant lag time was observed under the temperature fluctuation during the exponential phase. The results of this study provide information for precise shelf-life determination and reduction of food waste, particularly for milk and milk-containing food products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
High temperature coercive field behavior of Fe-Zr powder
NASA Astrophysics Data System (ADS)
Mishra, Debabrata; Perumal, A.; Srinivasan, A.
2009-04-01
We report the investigation of high temperature coercive field behavior of Fe80Zr20 nanocrystalline alloy powder having two-phase microstructure prepared by mechanical alloying process. Thermomagnetization measurement shows the presence of two different magnetic phase transitions corresponding to the amorphous matrix and nonequilibrium Fe(Zr) solid solution. Temperature dependent coercivity exhibits a sharp increase in its value close to the Curie temperature of the amorphous matrix. This feature is attributed to the loss of intergranular ferromagnetic exchange coupling between the nanocrystallites due to the paramagnetic nature of the amorphous matrix. The temperature dependent coercive field behavior is ascribed to the variations in both the effective anisotropy and the exchange stiffness constant with temperature.
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
Electrochemical characterization and control of triple-layer muscles
NASA Astrophysics Data System (ADS)
Otero, Toribio F.; Cortes, Maria T.
2000-06-01
The electrochemical characterization of triple-layers formed by a EPA (Electroactive Polymer)/double-sided tape/EPA, like artificial muscles is described. Those muscles were characterized working under constant potential or under constant current. Due to the electrochemical nature of the electrochemomechanical property, muscles working under constant current produce constant movements, consuming increasing energies at decreasing temperatures, decreasing concentrations of electrolytes or trailing increasing masses. Muscles working at constant potential response with a faster movement if the temperature or the concentration of the electrolyte increase, or if the trailed weight decreases. Specific charges and specific energies were determined for every experimental condition.
NASA Astrophysics Data System (ADS)
Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica
2013-04-01
weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.
Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel
2015-01-01
The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045
NASA Technical Reports Server (NTRS)
Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho
2003-01-01
Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.
Winckler, K; Fidhiany, L
1996-04-01
In a previous study we observed that a constant sublethal UVA (320-400 nm) irradiation had a significant effect on the general metabolism in the Convict-cichlid fish (Cichlasoma nigrofasciatum) [Winckler, K. and Fidhiany, L. (1996) J. Photochem. Photobiol. B. Biol. (In press)]. In the present study we show that sublethal UVA irradiation in combination with elevated environmental temperature has a deleterious effect on the same population. The threshold temperature for a sudden increase in mortality of fish receiving an additional sublethal UVA irradiation was 32 degrees C. Prior to the increased mortality, the fish started to avoid the UV light source when the water temperature increased to 31.5 degrees C. Mortality decreased when the temperature declined below 31.5 degrees C. As soon as the temperature changed to normal (adapted) condition (27-29 degrees C) mortality returned to normal levels. In contrast, no changes of fish behavior or mortality were observed at elevated temperature in the nonirradiated reference population. The percentages of fish surviving the high temperature stress were 21.9% for the UVA population and 96.8% for the reference population. The specific oxygen consumption (SOC, average +/- SD) of the survivors from the UVA population during temperature stress was 0.21 +/- 0.05 mg O2 h-1 g body weight (BW)-1, while it was 0.54 +/- 0.11 mg O2 h-1 g BW-1 in the reference population. After the environmental temperature returned below the apparent upper temperature tolerance limit, the oxygen consumption of the UVA population gradually normalized. The SOC measured at different temperature levels--after after the fish passed the temperature stress--showed no significant differences between the UVA population and its reference at 23, 25, 27 and 29 degrees C. However, the SOC at 31 degrees C was significantly (P < 0.05) lower than reference, while at 33 degrees C it was higher (P < 0.10).
Possible Economies in Air-Conditioning by Accepting Temperature Swings.
ERIC Educational Resources Information Center
Loudon, A. G.; Petherbridge, P.
Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…
The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics
ERIC Educational Resources Information Center
Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel
2010-01-01
When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.
Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P
2018-01-16
The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be designed to minimize exposure to these potentially harmful products.
NASA Technical Reports Server (NTRS)
Chen, Liangyu
2014-01-01
A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.
Monte Carlo method for photon heating using temperature-dependent optical properties.
Slade, Adam Broadbent; Aguilar, Guillermo
2015-02-01
The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, M.; Shibata, A.
1997-06-01
We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less
NASA Astrophysics Data System (ADS)
Kanti, P.; Pappas, T.
2017-07-01
The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys
Claudio, Tania; Stein, Niklas; Peterman, Nils; ...
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less
Solar panel acceptance testing using a pulsed solar simulator
NASA Technical Reports Server (NTRS)
Hershey, T. L.
1977-01-01
Utilizing specific parameters as area of an individual cell, number in series and parallel, and established coefficient of current and voltage temperature dependence, a solar array irradiated with one solar constant at AMO and at ambient temperature can be characterized by a current-voltage curve for different intensities, temperatures, and even different configurations. Calibration techniques include: uniformity in area, depth and time, absolute and transfer irradiance standards, dynamic and functional check out procedures. Typical data are given for individual cell (2x2 cm) to complete flat solar array (5x5 feet) with 2660 cells and on cylindrical test items with up to 10,000 cells. The time and energy saving of such testing techniques are emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn
2015-10-15
Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less
Control of continuous irradiation injury on potatoes with daily temperature cycling
NASA Technical Reports Server (NTRS)
Tibbitts, T. W.; Bennett, S. M.; Cao, W.
1990-01-01
Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Abstract Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock , were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species’ distribution in peninsular Thailand and other parts of the world. PMID:25368070
Influence of gaseous hydrogen on the mechanical properties of high temperature alloys
NASA Technical Reports Server (NTRS)
1976-01-01
Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.
Influence of emissivity on behavior of metallic dust particles in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.
Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less
Hydrolysis mechanisms for the organopalladium complex [Pd(CNN)P(OMe)3]BF4 in sulfuric acid.
García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Peñacoba, Indalecio; Leal, José M
2009-08-13
The acid-catalyzed hydrolysis of the organopalladium complex [Pd(CNN)P(OMe)3]BF4 species was monitored spectrophotometrically at different sulfuric acid concentrations (3.9 and 11.0 M) in 10% v:v ethanol-water over the 25-45 degrees C temperature range and in 30% and 50% (v/v) ethanol-water at 25 degrees C. Two acidity regions (I and II) could be differentiated. In each of the two regions the kinetic data pairs yielded two different rate constants, k(1obs) and k(2obs), the former being faster. These constants were fitted by an Excess Acidity analysis to different hydrolyses mechanisms: A-1, A-2, and A-SE2. In region I ([H2SO4] < 7.0 M), the k(1obs) values remained constant k(1obs)(av) = 1.6 x 10(-3) s(-1) and the set of k(2obs) values nicely matched an A-SE2 mechanism, yielding a rate-determining constant k(0,ASE2) = 2.4 x 10(-7) M(-1) s(-1). In region II ([H2SO4] > 7.0 M), a switchover was observed from an A-1 mechanism (k(0,A1) = 1.3 x 10(-4) s(-1)) to an A-2 mechanism (k(0,A2) = 3.6 x 10(-3) M(-1) s(-1)). The temperature effect on the rate constants in 10% (v/v) ethanol-water yielded positive DeltaH and negative DeltaS values, except for the A-1 mechanism, where DeltaS adopted positive values throughout. The solvent permittivity effect, epsilonr, revealed that k(1obs)(av) and k(0,A2) dropped with a fall in epsilonr, whereas the k(0,ASE2) value remained unaffected. The set of results deduced is in line with the schemes put forward.
Pamminger, Tobias; Steier, Thomas; Tragust, Simon
2016-06-01
Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.
NASA Astrophysics Data System (ADS)
Pamminger, Tobias; Steier, Thomas; Tragust, Simon
2016-06-01
Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts' temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.
The Kinetics of Heterogeneous Electron Transfer Reactions in Polar Solvents
1994-04-20
focussed on systems for which rate constants and activation parameters are available as a function of the solvent, and as a function of temperature . The... temperature . The role of reactant structure in determining the kinetic parameters is also considered. Double layer effects both at unmodified and...that the Gibbs activation energy to form a monovalent cation from a neutral molecule via electrooxidation is different from that to form a monovalent
Nanobiological studies on drug design using molecular mechanic method.
Ghaheh, Hooria Seyedhosseini; Mousavi, Maryam; Araghi, Mahmood; Rasoolzadeh, Reza; Hosseini, Zahra
2015-01-01
Influenza H1N1 is very important worldwide and point mutations that occur in the virus gene are a threat for the World Health Organization (WHO) and druggists, since they could make this virus resistant to the existing antibiotics. Influenza epidemics cause severe respiratory illness in 30 to 50 million people and kill 250,000 to 500,000 people worldwide every year. Nowadays, drug design is not done through trial and error because of its cost and waste of time; therefore bioinformatics studies is essential for designing drugs. This paper, infolds a study on binding site of Neuraminidase (NA) enzyme, (that is very important in drug design) in 310K temperature and different dielectrics, for the best drug design. Information of NA enzyme was extracted from Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) websites. The new sequences of N1 were downloaded from the NCBI influenza virus sequence database. Drug binding sites were assimilated and homologized modeling using Argus lab 4.0, HyperChem 6.0 and Chem. D3 softwares. Their stability was assessed in different dielectrics and temperatures. Measurements of potential energy (Kcal/mol) of binding sites of NA in different dielectrics and 310K temperature revealed that at time step size = 0 pSec drug binding sites have maximum energy level and at time step size = 100 pSec have maximum stability and minimum energy. Drug binding sites are more dependent on dielectric constants rather than on temperature and the optimum dielectric constant is 39/78.
[Biological characteristics of the egg phase of citrus root weevils].
Guedes, Jerson V C; Parra, José R P
2007-01-01
The goal of this work was to study some characteristics of the egg phase of three species of citrus root weevils. The insects were collected from citrus plants in Itapetininga, SP, and brought to the Laboratório de Biologia de Insetos of ESALQ/USP, in Piracicaba, SP, where the species Naupactus cervinus (Boheman), Naupactus versatilis (Hustache) and Parapantomorus fluctuosus (Boheman) were kept. Duration and viability of the egg phase were evaluated, and the lower temperature threshold and thermal constant (K) were calculated for these species. The species of citrus root weevils showed different duration of egg phases. The egg phase ranged from 40.4 to 13.8 N. cervinus, from 38.7 to 20.0 days for N. versatilis, and from 35.0 to 13.8 days for P. fluctuosus, depending upon temperature. The temperature thresholds of this stage were 8.1, 8.3, and 9.9 masculineC at thermal constant was 385.7, 397.7 and 294.1 degree-days, for N. cervinus, N. versatilis and P. fluctuosus respectively. The duration of the egg phases of N. cervinus and N. versatilis were similar at the same temperatures and P. fluctuosus had a faster development than Naupactus spp. in all temperatures tested.
NASA Astrophysics Data System (ADS)
Wadhwa, Ajay
2013-05-01
We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.
Ultrasonic Investigations on Polonides of Ba, Ca, and Pb
NASA Astrophysics Data System (ADS)
Singh, Devraj; Bhalla, Vyoma; Bala, Jyoti; Wadhwa, Shikha
2017-10-01
The temperature-dependent mechanical and ultrasonic properties of barium, calcium, and lead polonides (BaPo, CaPo, and PbPo) were investigated in the temperature range 100-300 K. The second- and third-order elastic constants (SOECs and TOECs) were computed using Coulomb and Born-Mayer potential and these in turn have been used to estimate other secondary elastic properties such as strength, anisotropy, microhardness, etc. The theoretical approach followed the prediction that BaPo, CaPo, and PbPo are brittle in nature. PbPo is found to be the hardest amongst the chosen compounds. Further the SOECs and TOECs are applied to determine ultrasonic velocities, Debye temperature, and acoustic coupling constants along <100>, <110>, and <111> orientations at room temperature. Additionally thermal conductivity has been computed using Morelli and Slack's approach along different crystallographic directions at room temperature. Finally ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms has been computed for BaPo, CaPo, and PbPo. The behaviour of these compounds is similar to that of semi-metals with thermal relaxation time of the order 10-11 s. The present computation study is reasonably in agreement with the available theoretical data for the similar type of materials.
Servo-control for maintaining abdominal skin temperature at 36C in low birth weight infants.
Sinclair, J C
2002-01-01
Randomized trials have shown that the neonatal mortality rate of low birth-weight babies can be reduced by keeping them warm. For low birth-weight babies nursed in incubators, warm conditions may be achieved either by heating the air to a desired temperature, or by servo-controlling the baby's body temperature at a desired set-point. In low birth weight infants, to determine the effect on death and other important clinical outcomes of targeting body temperature rather than air temperature as the end-point of control of incubator heating. Standard search strategy of the Cochrane Neonatal Review Group. Searches were made of the Cochrane Controlled Trials Register (CCTR) (Cochrane Library, Issue 4, 2001) and MEDLINE, 1966 to November 2001. Randomized or quasi-randomized trials which test the effects of having the heat output of the incubator servo-controlled from body temperature compared with setting a constant incubator air temperature. Trial methodologic quality was systematically assessed. Outcome measures included death, timing of death, cause of death, and other clinical outcomes. Categorical outcomes were analyzed using relative risk and risk difference. Meta-analysis assumed a fixed effect model. Two eligible trials were found. In total, they included 283 babies and 112 deaths. Compared to setting a constant incubator air temperature of 31.8C, servo-control of abdominal skin temperature at 36C reduces the neonatal death rate among low birth weight infants: relative risk 0.72 (95% CI 0.54, 0.97); risk difference -12.7% (95% CI -1.6, -23.9). This effect is even greater among VLBW infants. During at least the first week after birth, low birth weight babies should be provided with a carefully regulated thermal environment that is near the thermoneutral point. For LBW babies in incubators, this can be achieved by adjusting incubator temperature to maintain an anterior abdominal skin temperature of at least 36C, using either servo-control or frequent manual adjustment of incubator air temperature.
NASA Astrophysics Data System (ADS)
Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.
2018-02-01
Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.
Drake, Madeline J; Miller, Nathan A; Todgham, Anne E
2017-09-01
Much of our understanding of the thermal physiology of intertidal organisms comes from experiments with animals acclimated under constant conditions and exposed to a single heat stress. In nature, however, the thermal environment is more complex. Aerial exposure and the unpredictable nature of thermal stress during low tides may be critical factors in defining the thermal physiology of intertidal organisms. In the fingered limpet, Lottia digitalis , we investigated whether upper temperature tolerance and thermal sensitivity were influenced by the pattern of fluctuation with which thermal stress was applied. Specifically, we examined whether there was a differential response (measured as cardiac performance) to repeated heat stress of a constant and predictable magnitude compared with heat stress applied in a stochastic and unpredictable nature. We also investigated differences in cellular metabolism and damage following immersion for insights into biochemical mechanisms of tolerance. Upper temperature tolerance increased with aerial exposure, but no significant differences were found between predictable treatments of varying magnitudes (13°C versus 24°C versus 32°C). Significant differences in thermal tolerance were found between unpredictable trials with different heating patterns. There were no significant differences among treatments in basal citrate synthase activity, glycogen content, oxidative stress or antioxidants. Our results suggest that aerial exposure and recent thermal history, paired with relief from high low-tide temperatures, are important factors modulating the capacity of limpets to deal with thermal stress. © 2017. Published by The Company of Biologists Ltd.
Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss
NASA Astrophysics Data System (ADS)
Kampangkeaw, Satreerat
2002-03-01
Using off-axis pulsed laser deposition, we have grown strontium titanate (STO) films on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. We measured the film dielectric constant and loss tangent as a function of temperature in the 10kHz to 1 MHz frequency range. We found that the loss is less than 0.01 We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent. The obtained figured of merit at 35K and 1MHz is about 1000 comparable to bulk values. The dielectric constant of these films can be changed by a factor of 4-8 in the presence of a DC electric field up to 5V/μm. The films show significant variations of dielectric properties grown on different substrates at different locations respect to the axis of the plume. The STO films on LAO having high dielectric constant and dielectric tuning were grown in region near the center of the plume. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis.
NASA Astrophysics Data System (ADS)
Leys, Jan; Losada-Pérez, Patricia; Cordoyiannis, George; Cerdeiriña, Claudio A.; Glorieux, Christ; Thoen, Jan
2010-03-01
Detailed results are reported for the dielectric constant ɛ as a function of temperature, concentration, and frequency near the upper critical point of the binary liquid mixture nitrobenzene-tetradecane. The data have been analyzed in the context of the recently developed concept of complete scaling. It is shown that the amplitude of the low frequency critical Maxwell-Wagner relaxation (with a relaxation frequency around 10 kHz) along the critical isopleth is consistent with the predictions of a droplet model for the critical fluctuations. The temperature dependence of ɛ in the homogeneous phase can be well described with a combination of a (1-α) power law term (with α the heat capacity critical exponent) and a linear term in reduced temperature with the Ising value for α. For the proper description of the temperature dependence of the difference Δɛ between the two coexisting phases below the critical temperature, it turned out that good fits with the Ising value for the order parameter exponent β required the addition of a corrections-to-scaling contribution or a linear term in reduced temperature. Good fits to the dielectric diameter ɛd require a (1-α) power law term, a 2β power law term (in the past considered as spurious), and a linear term in reduced temperature, consistent with complete scaling.
Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.
Uddin, M; Coombe, D
2014-03-20
Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.
2017-11-01
This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.
Buis, Arjan
2016-01-01
Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-06-01
Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.
Effect of Cold Temperature on the Dielectric Constant of Soil
2012-04-01
explosive device (IED) threats is ground-penetrating radar ( GPR ). Proper development of GPR technology for this application requires a unique...success or failure of GPR as a detection technique. One soil property of interest to radar engineers is the dielectric constant. Previous...results to temperatures, moisture levels, and frequencies relevant to GPR systems. 2. Dielectric Constant and the Ring-resonator Concept The two
Structural, ac conductivity and dielectric properties of 3-formyl chromone
NASA Astrophysics Data System (ADS)
Ali, H. A. M.
2017-07-01
The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.
NASA Astrophysics Data System (ADS)
Fan, Zhixiang; Sun, Weiguo; Zhang, Yi; Fu, Jia; Hu, Shide; Fan, Qunchao
2018-03-01
An interpolation method named difference algebraic converging method for opacity (DACMo) is proposed to study the opacities and transmissions of metal plasmas. The studies on iron plasmas at temperatures near the solar convection zone show that (1) the DACMo values reproduce most spectral structures and magnitudes of experimental opacities and transmissions. (2) The DACMo can be used to predict unknown opacities at other temperature Te' and density ρ' using the opacity constants obtained at ( Te , ρ). (3) The DACMo may predict reasonable opacities which may not be available experimentally but the least-squares (LS) method does not. (4) The computational speed of the DACMo is at least 10 times faster than that of the original difference converging method for opacity.
Nucleation kinetics from metastable zone widths for sonocrystallization of l-phenylalanine.
Hazi Mastan, T; Lenka, Maheswata; Sarkar, Debasis
2017-05-01
This study investigates the effect of ultrasound on metastable zone width (MSZW) during crystallization of l-phenylalanine from aqueous solution. The solubility of l-phenylalanine in water was measured gravimetrically in the temperature range of 293.15-333.15K. The MSZW was measured by conventional polythermal method for four different cooling rates at five different saturation temperatures in absence and presence of ultrasound. The MSZW increased with increase in cooling rates and decreased with increase in saturation temperature. The application of ultrasound considerably reduced the MSZW for all the experiments. The obtained MSZW data are analysed using four different approaches to calculate various nucleation parameters. In presence of ultrasound, the apparent nucleation order decreased and nucleation rate constant increased significantly. Copyright © 2016 Elsevier B.V. All rights reserved.
Dielectric and structural properties of aqueous nonpolar solute mixtures.
Shvab, I; Sadus, Richard J
2012-09-28
The dielectric properties and molecular structure of water mixtures with different nonpolar solutes (methane and noble gases) are studied using molecular dynamics. The water-water, water-solute, and solute-solute interactions are calculated using the combination of a polarizable potential [J. Li, Z. Zhou, and R. J. Sadus, J. Chem. Phys. 127, 154509 (2007)] for water plus the Lennard-Jones potential. The effect of solute size and concentration on the solubility of the system, hydrogen bonding, dielectric constant, and dipole moment are investigated over a temperature range of 278-750 K and solute percentage mole fractions up to 30%. Solute particles affect the structure of water, resulting in the compression of oxygen-oxygen and oxygen-hydrogen radial distribution functions. The influence of the solute extends both to relatively low concentrations and high temperatures. The coordination numbers of aqueous solutions of the nonpolar solutes appear to be proportional to the size of the solute particles. Our study shows the destructive influence of the nonpolar solute on both the tetrahedral water structure and hydrogen bond formation at solute concentrations greater than 30%. The presence of nonpolar particles typically decreases both the dielectric constant and dipole moment. The decrease of dielectric constant and water dipole moment is directly proportional to the solute concentration and temperature.
NASA Astrophysics Data System (ADS)
Harmanec, Petr; Prša, Andrej
2011-08-01
The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius, and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by (1) replacing the solar radius R⊙ and luminosity L⊙ by the nominal values that are by definition exact and expressed in SI units: and ; (2) computing stellar masses in terms of M⊙ by noting that the measurement error of the product GM⊙ is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values and ; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.
Dielectric behavior and AC conductivity of Cr doped α-Mn2O3
NASA Astrophysics Data System (ADS)
Chandra, Mohit; Yadav, Satish; Singh, K.
2018-05-01
The complex dielectric behavior of polycrystalline α-Mn2-xCrxO3 (x = 0.10) has been investigated isothermally at wide frequency range (4Hz-1 MHz) at different temperatures (300-390K). The dielectric spectroscopy results have been discussed in different formulism like dielectric constant, impedance and ac conductivity. The frequency dependent dielectric loss (tanδ) exhibit a clear relaxation behavior in the studied temperature range. The relaxation frequency increases with increasing temperature. These results are fitted using Arrhenius equation which suggest thermally activated process and the activation energy is 0.173±0.0024 eV. The normalized tanδ curves at different temperatures merge as a single master curve which indicate that the relaxation process follow the similar relaxation dynamics in the studied temperature range. Further, the dielectric relaxation follows non-Debye behavior. The impedance results inference that the grain boundary contribution dominate at lower frequency whereas grain contribution appeared at higher frequencies and exhibit strong temperature dependence. The ac conductivity data shows that the ac conductivity increases with increasing temperature which corroborate the semiconducting nature of the studied sample.
NASA Astrophysics Data System (ADS)
Kong, Ning; Liu, Xiao; Li, Junyuan; Mu, Wendan; Lian, Jianwu; Xue, Yanjie; Li, Qi
2017-09-01
Temperature and salinity are two of the most potent abiotic factors influencing marine mollusks. In this study, we investigated the individual and combined effects of temperature and salinity on the survival and growth of juvenile Pacific abalone, Haliotis discus hannai Ino, and also examined the DNA methylation alteration that may underpin the phenotypic variation of abalone exposed to different rearing conditions. The single-factor data showed that the suitable ranges of temperature and salinity were 16-28°C at a constant salinity of 32, and 24-40 at a constant temperature of 20°C, respectively. The two-factor data indicated that both survival and growth were significantly affected by temperature, salinity and their interaction. The optimal temperature-salinity combination for juveniles was 23-25°C and 30-36. To explore environment-induced DNA methylation alteration, the methylation-sensitive amplified polymorphism (MSAP) technique was used to analyze the genomic methylation profiles of abalone reared in optimal and adverse conditions. Neither temperature nor salinity induced evident changes in the global methylation level, but 67 and 63 differentially methylated loci were identified in temperature and salinity treatments, respectively. The between-group eigen analysis also showed that both temperature and salinity could induce epigenetic differentiation in H. discus hannai Ino. The results of our study provide optimal rearing conditions for juvenile H. discus hannai Ino, and represent the first step toward revealing the epigenetic regulatory mechanism of abalone in response to thermal and salt stresses.
Phase transformations of 4,4'-biphenyldicarboxylic acid on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-06-01
The growth and structure of 4,4'-biphenyldicarboxylic-acid (BDA) on Cu(001) at temperatures between 300 and 400 K was studied by low energy electron microscopy and μ-LEED. First, the adsorbed BDA molecules form a disordered dilute phase. Once this phase reaches a sufficiently high density, a crystalline phase nucleates, in which the molecules form a hydrogen-bonded two-dimensional (2D) supramolecular c(8×8) network. By a careful analysis of the bright-field image intensity, we can measure the density in the dilute phase, which is up to 30% of that in the crystalline phase. From the respective equilibrium densities at different temperatures, we determine the 2D phase diagram and extract a cohesive energy of 0.35 eV. We also analyze the island decay behavior and estimate the BDA molecule diffusion constants. Steps are found to be highly transparent for diffusing BDA molecules. In the temperature range of 362-400 K, we find chemical diffusion constants between 850-1700nm2s-1.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Theoretical studies of alkyl radicals in the NaY and HY zeolites.
Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander
2005-08-18
Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.
NASA Astrophysics Data System (ADS)
Budaev, Bair V.; Bogy, David B.
2018-06-01
We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.
Evolved stars as complex chemical laboratories - the quest for gaseous chemistry
NASA Astrophysics Data System (ADS)
Katrien Els Decin, Leen
2015-08-01
At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30
Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan
NASA Astrophysics Data System (ADS)
Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon
2018-01-01
Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.
Zou, Zhiwen; Xi, Jianfei; Liu, Ge; Song, Shuxian; Xin, Tianrong; Xia, Bin
2018-04-01
The effect of five constant temperatures (16, 20, 24, 28 and 32 °C) on the development, survival and reproduction of Tetranychus cinnabarinus (Boisduval) [= Tetranychus urticae Koch (red form)] fed on cassava leaves was examined in the laboratory at 85% relative humidity. Development time of various immature stages decreased with increasing temperature, with total egg-to-adult development time varying from 27.7 to 6.7 days. The lower thermal threshold for development was 10.8 °C and the thermal constant from egg to adult was 142.4 degree-days. Pre- and post-oviposition period and female longevity all decreased as temperature increased. The longest oviposition period was observed at 20 °C with 20.4 days. Under different temperatures, mated females laid, on average, 1.0, 2.9, 4.7, 4.7 and 4.9 eggs per day, respectively. The maximum fecundity (81.5 eggs per female) was at 28 °C and the intrinsic rate of increase (r m ) was highest (0.25) at 32 °C. The results of this study indicate that T. cinnabarinus population could increase rapidly when cassava leaves serve as a food source. At the appropriate temperature T. cinnabarinus could seriously threaten growth of cassava.
Thermal/Mechanical Durability of Polymer-Matrix Composites in Cryogenic Environments
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Whitley, Karen S.; Grenoble, Ray W.; Bandorawalla, Tozer
2003-01-01
In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric-matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 as a function of temperature and aging. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimens ply lay-ups. Specimens were preconditioned with one set of coupons being isothermally aged for 576 hours at -184 C, in an unloaded state. Another set of corresponding coupons were mounted in constant strain fixtures such that a constant uniaxial strain was applied to the specimens for 576 hours at -184 C. A third set was mechanically cycled in tension at -184 C. The measured properties indicated that temperature, aging, and loading mode can all have significant influence on performance. Moreover, this influence is a strong function of laminate stacking sequence. Thermal-stress calculations based on lamination theory predicted that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material because of aging at cryogenic temperatures. ________________
Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures
NASA Technical Reports Server (NTRS)
Chapman, P.
1982-01-01
Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.
The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guberman, Steven L., E-mail: slg@sci.org
Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less
NASA Astrophysics Data System (ADS)
Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi
2016-06-01
In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
Temperature crossover of decoherence rates in chaotic and regular bath dynamics.
Sanz, A S; Elran, Y; Brumer, P
2012-03-01
The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.
Insects in fluctuating thermal environments.
Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David
2015-01-07
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.
NASA Technical Reports Server (NTRS)
Arnold, J. E.; Scoggins, J. R.; Fuelberg, H. E.
1976-01-01
During the period of May 11 and 12, 1974, NASA conducted its second Atmospheric Variability Experiment (AVE II) over the eastern United States. In this time interval, two Nimbus 5 orbits crossed the AVE II area, providing a series of ITPR soundings as well as THIR data. Horizontal temperature mapping of the AVE II cloud field is examined using two grid print map scales. Implied cloud top heights are compared with maximum radar-echo top reports. In addition, shelter temperatures in areas of clear sky are compared with the surface temperatures as determined from 11.5 micrometer radiometer data of the THIR experiment. The ITPR sounding accuracy is evaluated using interpolated radiosonde temperatures at times nearly coincident with the ITPR soundings. It was found that mean differences between the two data sets were as small as 1.3 C near 500 mb and as large as 2.9 C near the tropopause. The differences between ITPR and radiosonde temperatures at constant pressure levels were sufficient to induce significant differences in the horizontal temperature gradient. Cross sections of geostrophic wind along the orbital tracks were developed using a thermal wind buildup based on the ITPR temperature data and the radiosonde temperature data. Differences between the radiosonde and ITPR geostrophic winds could be explained on the basis of differences in the ITPR and radiosonde temperature gradients.
Pollutant emissions from flat-flame burners at high pressures
NASA Technical Reports Server (NTRS)
Maahs, H. G.; Miller, I. M.
1980-01-01
Maximum flame temperatures and pollutant emission measurements for NOx, CO, and UHC (unburned hydrocarbons) are reported for premixed methane air flat flames at constant total mass flow rate over the pressure range from 1.9 to 30 atm and for equivalence ratios from 0.84 to 1.12. For any given pressure, maxima typically occur in both the temperature and NOx emissions curves slightly to the lean side of stoichiometric conditions. The UHC emissions show minima at roughly the same equivalence ratios. The CO emissions, however, increase continually with increasing equivalence ratio. Flame temperature and NOx emissions decrease with increasing pressure, while the opposite is true for the CO and UHC emissions. The NOx data correlate reasonably well as a function of flame temperature only. Four flameholders, differing only slightly, were used. In general, the temperature and emissions data from these four flameholders are similar, but some differences also exist. These differences appear to be related to minor variations in the condition of the flameholder surfaces.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Blind system identification of two-thermocouple sensor based on cross-relation method.
Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian
2018-03-01
In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.
Blind system identification of two-thermocouple sensor based on cross-relation method
NASA Astrophysics Data System (ADS)
Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian
2018-03-01
In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.
Influence of free surface curvature on the Pearson instability in Marangoni convection
NASA Astrophysics Data System (ADS)
Hu, W. R.
The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper
Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N
2005-03-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.
Darban, D.A.; Gowen, S.R.; Pembroke, B.; Mahar, A.N.
2005-01-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26–29 °C and in glasshouse at 20–32 °C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 °C/d, accumulating each day above a base temperature of 10 °C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures. PMID:15682497
Rivas, Gustavo B S; de Souza, Nataly Araujo; Peixoto, Alexandre A; Bruno, Rafaela V
2014-06-19
Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications.
2014-01-01
Background Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. Methods We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). Results L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Conclusions Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as mating and host-seeking at appropriate times in different seasons. Our results depict previously unappreciated aspects of the L. longipalpis daily rhythms of activity that might have important epidemiological implications. PMID:24947114
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali S. Siahpush; John Crepeau; Piyush Sabharwall
2013-07-01
Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.
Purification and Thermal Dependence of Glutathione Reductase from Two Forage Legume Species 1
Kidambi, Saranga P.; Mahan, James R.; Matches, Arthur G.
1990-01-01
Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from `Cimarron' alfalfa and `PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45°C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25°C), and (c) the thermal kinetic windows (6-19°C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283
Theoretical studies of the extraterrestrial chemistry of biogenic elements and compounds
NASA Technical Reports Server (NTRS)
Defrees, D. J.
1991-01-01
Organic compounds, molecules related to those in living systems, are found in many different extraterrestrial environments. The study of organic astrochemistry is important to exobiology both because it demonstrates the ubiquity of processes which led to life on Earth and because the dust clouds where molecules are found are analogs of the solar nebula from which the Earth formed. In the long chain of events leading from the Big Bang, and a universe composed of atomic hydrogen and helium, to the emergence of life on Earth, molecular interstellar clouds are an early link, the most primitive objects which display any significant organic chemistry. One such cloud was the direct precursor to the solar system and to all objects which it contains. Theoretical methods are ideally suited to studying interstellar cloud chemistry. They have been applied to determine spectroscopic constants of candidate interstellar molecules, mechanisms of ion-molecule reactions, and composition of dust grains. Accurate predictions of rotational constants and dipole moments of long-chain carbon molecules HC13N, HC15N, and C5O have been made to aid in determining the size limit of gas-phase interstellar molecules. Models of gas-phase interstellar chemistry use reaction rate constants measured at room temperature and extrapolated to interstellar temperatures. The temperature dependence of NH3(+)+H2 yields NH4(+)+H is anomalous, however, with a minimum rate at about 100K, casting doubt on the extrapolation procedures. The temperature dependence has now been explained.
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2016-12-01
The unicellular organisms and phages are the first appeared fundamental living organisms on the Earth. The total metabolic energy (Els, J) of these organisms can be expressed by their lifespan metabolic potential (Als, J/kg) and body mass (M, kg): Els =Als M. In this study we found a different expression - by Boltzmann's constant (k, J/K), nucleon mass (mp+, kg) of protons (and neutrons), body mass (M, kg) of organism or mass (Ms) of biomolecules (proteins, nucleotides, polysaccharides and lipids) building organism, and the absolute temperature (T, K). The found equations are: Els= (M/mp+)kT for phages and Els=(Ms/mp+)kT for the unicellular organisms. From these equations the lifespan metabolic potential can be expressed as: Als=Els/M= (k/mp+)T for phages and Als=Els/M= (k/3.3mp+)T for unicellular organisms. The temperature-normated lifespan metabolic potential (Als/T, J/K.kg) is equals to the ratio between Boltzmann's constant and nucleon mass: Als/T=k/mp+ for phages and Als/T=k/3.3mp+ for unicellular organisms. The numerical value of the k/mp+ ratio is equals to 8.254×103 J/K.kg, and the numerical value of k/3.3mp+ ratio is equal to 2.497×103 J/K.kg. These values of temperature-normated lifespan metabolic potential could be considered fundamental for the unicellular organisms.
Dielectric behavior of semiconductors at microwave frequencies
NASA Technical Reports Server (NTRS)
Dahiya, Jai N.
1992-01-01
A cylindrical microwave resonant cavity in TE(011) (Transverse Electric) mode is used to study the dielectric relaxation in germanium and silicon. The samples of these semiconductors are used to perturb the electric field in the cavity, and Slater's perturbation equations are used to calculate the real and imaginary parts of the dielectric constant. The dielectric loss of germanium and silicon is studied at different temperatures, and Debye's equations are used to calculate the relaxation time at these temperatures.
Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.
2002-01-01
Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.
USDA-ARS?s Scientific Manuscript database
Developmental rates and age-specific life tables were determined for Aulacorthum solani (Kaltenbach) (known as foxglove aphid or glasshouse potato aphid) at 6 constant temperatures feeding on pansy (Viola × wittrockiana) (Gams.). Previously, there were no complete life table studies of this species...
Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger
2016-09-22
The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.
Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Granberg, F.; Nordlund, K.
2017-10-01
In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.
Chantre, Guillermo R.; Batlla, Diego; Sabbatini, Mario R.; Orioli, Gustavo
2009-01-01
Background and Aims Models based on thermal-time approaches have been a useful tool for characterizing and predicting seed germination and dormancy release in relation to time and temperature. The aims of the present work were to evaluate the relative accuracy of different thermal-time approaches for the description of germination in Lithospermum arvense and to develop an after-ripening thermal-time model for predicting seed dormancy release. Methods Seeds were dry-stored at constant temperatures of 5, 15 or 24 °C for up to 210 d. After different storage periods, batches of 50 seeds were incubated at eight constant temperature regimes of 5, 8, 10, 13, 15, 17, 20 or 25 °C. Experimentally obtained cumulative-germination curves were analysed using a non-linear regression procedure to obtain optimal population thermal parameters for L. arvense. Changes in these parameters were described as a function of after-ripening thermal-time and storage temperature. Key Results The most accurate approach for simulating the thermal-germination response of L. arvense was achieved by assuming a normal distribution of both base and maximum germination temperatures. The results contradict the widely accepted assumption of a single Tb value for the entire seed population. The after-ripening process was characterized by a progressive increase in the mean maximum germination temperature and a reduction in the thermal-time requirements for germination at sub-optimal temperatures. Conclusions The after-ripening thermal-time model developed here gave an acceptable description of the observed field emergence patterns, thus indicating its usefulness as a predictive tool to enhance weed management tactics. PMID:19332426
Experimental study of iron-chloride complexing in hydrothermal fluids
Fein, J.B.; Hemley, J.J.; d'Angelo, W. M.; Komninou, A.; Sverjensky, D.A.
1992-01-01
Mineral assemblage solubilities were measured in cold-seal pressure vessels as a function of pressure, temperature, and potassium chloride concentration in order to determine the nature and thermodynamic properties of iron-chloride complexes under hydrothermal conditions. The assemblage pyritepyrrhotite-magnetite was used to buffer f{hook}S2 and f{hook}O2, and K+ H+ ratios were buffered at reasonable geologic values using the assemblage potassium feldspar-muscovite (or andalusite)-quartz. The pressure-temperature ranges were 0.5-2.0 kbar and 300-600??C, and initial fluid compositions ranged from 0.01-2.0 molal KCl. With all other factors constant, the concentration of iron in solution increases with increasing temperature, with decreasing pressure, and with increasing total potassium chloride concentration. Changes in iron concentrations as a function of KCl concentration, in conjunction with charge balance, mass action, and mass balance constraints on the system, place constraints on the stoichiometry of the important iron-chloride complexes under each of the experimental conditions. Using least-squared linear regression fits to determine these slopes, the calculations yield values for the average ligand numbers that are in the range 1.2-1.9, with uncertainties ranging from ??0.1-0.6 at the several PT conditions considered. The slopes of the regressed fits to the data suggest that both FeCl+ and FeCl20 are important in the experimental fluids, with FeCl20 becoming dominant at the higher temperatures. Theoretical calculations, however, indicate that FeCl+ does not contribute significantly to the solubility. Because of the large uncertainties associated with some of the calculated average ligand numbers, we base our data analysis on the theoretical calculations. A statistical analysis is applied to the solubility data in order to determine the values and uncertainties of the dissociation constant for FeCl20 that best fit the data at each of the experimental pressures and temperatures. The calculated stability of FeCl20 increases with increasing temperature and total chloride concentration, and with decreasing pressure. The values of the dissociation constant of FeCl20that are calculated in this study are in moderately good agreement with FeCl20dissociation constants from other studies of iron-chloride complexing in supercritical fluids. Differences are likely due to different assumptions made concerning activity coefficients of aqueous species. Log kd values for full dissociation of FeCl20 at 0.5 kbar-300??C-and at 1 kbar-400, 500, and 600??C, respectively-are -3.75 ?? 0.40, -6.25 ?? 0.10, -9.19 ?? 0.44, and -13.29 ?? 0.09. ?? 1992.
Stockfors, J
2000-09-01
Few studies have examined variation in respiration rates within trees, and even fewer studies have focused on variation caused by within-stem temperature differences. In this study, stem temperatures at 40 positions in the stem of one 30-year-old Norway spruce (Picea abies (L.) Karst.) were measured during 40 days between July 1994 and June 1995. The temperature data were used to simulate variations in respiration rate within the stem. The simulations assumed that the temperature-respiration relationship was constant (Q10 = 2) for all days and all stem positions. Total respiration for the whole stem was calculated by interpolating the temperature between the thermocouples and integrating the respiration rates in three dimensions. Total respiration rate of the stem was then compared to respiration rate scaled up from horizontal planes at the thermocouple heights (40, 140, 240 and 340 cm) on a surface area and on a sapwood volume basis. Simulations were made for three distributions of living cells in the stems: one with a constant 5% fraction of living cells, disregarding depth into the stem; one with a living cell fraction decreasing linearly with depth into the stem; and one with an exponentially decreasing fraction of living cells. Mean temperature variation within the stem was 3.7 degrees C, and was more than 10 degrees C for 8% of the time. The maximum measured temperature difference was 21.5 degrees C. The corresponding mean variation in respiration was 35% and was more than 50% for 24% of the time. Scaling up respiration rates from different heights between 40 and 240 cm to the whole stem produced an error of 2 to 58% for the whole year. For a single sunny day, the error was between 2 and 72%. Thus, within-stem variations in temperature may significantly affect the accuracy of scaling respiration data obtained from small samples to whole trees. A careful choice of chamber position and basis for scaling is necessary to minimize errors from variation in temperature.
Andrews, Robin M; Díaz-Paniagua, Carmen; Marco, Adolfo; Portheault, Alexandre
2008-01-01
Embryonic development of the common chameleon, Chamaeleo chamaeleon, was monitored from oviposition to hatching at a field site in southwestern Spain and in the laboratory under five experimental temperature regimes. Embryos were diapausing gastrulae at the time of oviposition; developmental arrest in the field continued as cold torpor during winter. Postarrest development in the field commenced in April, and hatching occurred in August, for a total incubation period of 10.5 mo. In the laboratory, one group of eggs was incubated at a constant warm (26 degrees C) temperature. The remaining treatments simulated field conditions and consisted of initial periods of warm temperature of 0, 27, 46, and 71 d, a subsequent 4-mo period of cold winter (16 degrees C) temperature, and a final period of warm (26 degrees C) temperature. Embryos in the constant warm temperature treatment were in diapause an average of 3 mo, with clutch means ranging from 2 to 4 mo. Hatching among clutches occurred over 2 mo. In contrast, for field and experimental eggs that experienced cold winter conditions, hatching within treatments occurred over 2-14 d; "winter" conditions synchronized development. The length of time between the end of cold conditions and hatching did not differ among treatments; development thus resumed as soon as temperature was suitable regardless of the initial period of warm temperature. Diapause in nature thus insures that embryos remain gastrulae after oviposition despite nest temperatures that may be warm enough to support development.
NASA Astrophysics Data System (ADS)
Alldredge, L. M. B.; Chang, Wontae; Qadri, Syed B.; Kirchoefer, Steven W.; Pond, Jeffrey M.
2007-05-01
Sputter-deposited Ba0.5Sr0.5TiO3 films on (001) MgO were characterized for their dielectric properties with different lattice structures. With varying Ar :O2 ratios during deposition, the films showed either in-plane (ca) tetragonal distortions, significantly affecting the dielectric constant and tunability. The dielectric constant exhibited clear hysteresis with dc bias at room temperature, indicating that the films were ferroelectric. The relationship between the dielectric properties and the distortions was the reverse of that observed in films deposited by pulsed laser deposition. The anisotropic in-plane dielectric behavior can be understood by relating polarization to film distortions and to the presence of permanent dipoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com
2011-07-01
The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less
Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y
2017-11-22
Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.
The effects of rigid motions on elastic network model force constants
Lezon, Timothy R.
2012-01-01
Elastic network models provide an efficient way to quickly calculate protein global dynamics from experimentally determined structures. The model’s single parameter, its force constant, determines the physical extent of equilibrium fluctuations. The values of force constants can be calculated by fitting to experimental data, but the results depend on the type of experimental data used. Here we investigate the differences between calculated values of force constants _t to data from NMR and X-ray structures. We find that X-ray B factors carry the signature of rigid-body motions, to the extent that B factors can be almost entirely accounted for by rigid motions alone. When fitting to more refined anisotropic temperature factors, the contributions of rigid motions are significantly reduced, indicating that the large contribution of rigid motions to B factors is a result of over-fitting. No correlation is found between force constants fit to NMR data and those fit to X-ray data, possibly due to the inability of NMR data to accurately capture protein dynamics. PMID:22228562
Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions
Mountain, Raymond D.; Harvey, Allan H.
2015-01-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009
Mountain, Raymond D; Harvey, Allan H
2015-10-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.
NASA Astrophysics Data System (ADS)
Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar
2018-05-01
We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.
2014-01-01
procedures were held constant). After the period of quiet rest, the finger pulse oximeter (MedSource International, Mound, MN) was applied to the left...temperature were then recorded with pulse oximeter (Medline Industries, Inc., Mundelein, IL). Following standard guide- lines (Pickering et al., 2005
Measurement of the Convective Heat-Transfer Coefficient
ERIC Educational Resources Information Center
Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio
2014-01-01
We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…
NASA Astrophysics Data System (ADS)
Koçak, H.; Dahong, Z.; Yildirim, A.
2011-05-01
In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.
The temperature dependence of the anisotropy constants for nickel
NASA Astrophysics Data System (ADS)
Szpunar, B.
1984-04-01
A universal function is suggested for the description of the temperature dependence of the anisotropy constants for Ni. The function has been obtained from the extended Stevens operators for J→ {1}/{2}. The prediction is in good agreement with experimental data.
Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures
NASA Technical Reports Server (NTRS)
Svehla, Roger A.
1962-01-01
Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Guoxin; Rao, Linfeng
2009-10-20
The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log {beta}H's) generally decrease as the temperature is increased. Results frommore » this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of log{beta}H at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.« less
NASA Astrophysics Data System (ADS)
Kovalev, Yu. M.; Kuropatenko, V. F.
2018-05-01
An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.
Design of the thermal insulating test system for doors and windows of buildings
NASA Astrophysics Data System (ADS)
Yu, Yan; Qi, Jinqing; Xu, Yunwei; Wu, Hao; Ou, Jinping
2011-04-01
Thermal insulating properties of doors and widows are important parameter to measure the quality of windows and doors. This paper develops the thermal insulating test system of doors and windows for large temperature difference in winter in north of China according to national standards. This system is integrated with temperature measurement subsystem, temperature control subsystem, the heating power measurement subsystem, and heat transfer coefficient calculated subsystem. The temperature measurement subsystem includes temperature sensor which is implemented by sixty-four thermocouple sensors to measure the key positions of cold room and hot room, and the temperature acquisition unit which adopts Agilent 34901A data acquisition card to achieve self-compensation and accurate temperature capture. The temperature control subsystem including temperature controller and compressor system is used to control the temperature between 0 degree to 20 degree for hot room and -20 degree to 0 degree for cold room. The hot room controller uses fuzzy control algorithm to achieve accurate control of temperature and the cold room controller firstly uses compressor to achieve coarse control and then uses more accurate temperature controller unit to obtain constant temperature(-20 degree). The heating power measurement is mainly to get the heat power of hot room heating devices. After above constant temperature environment is constructed, software of the test system is developed. Using software, temperature data and heat power data can be accurately got and then the heat transfer coefficient, representing the thermal insulating properties of doors and widows, is calculated using the standard formula. Experimental results show that the test system is simple, reliable and precise. It meets the testing requirements of national standard and has a good application prospect.
NASA Astrophysics Data System (ADS)
Zhan, Di; Xu, Qing; Huang, Duan-Ping; Liu, Han-Xing; Chen, Wen; Zhang, Feng
2018-03-01
Ba0.95Ca0.05Zr0.2Ti0.8O3 ceramics were prepared at different sintering temperatures by citrate precursor and solid-state reaction methods, respectively. The crystal structure and microstructure of the specimens were characterized. In view of energy storage capacitor utilizations, the dielectric properties of the specimens were investigated at room temperature as a function of frequency and applied electric field. Moreover, the nature of mobile charge carriers in the specimens was diagnosed by complex impedance spectroscopy at elevated temperatures. While the dielectric constants of the specimens prepared by different methods are quite different (4.4 × 103-2.2 × 104 at 10 kHz) at zero electric field, the energy storage densities at an identical strong electric field are similar (e.g. 0.32-0.41 J/cm3 at 120 kV/cm). The dielectric constants under bias electric field were fitted to a multipolarization mechanism model to resolve the contributions of intrinsic and extrinsic polarization mechanisms. It turned out that the extrinsic contributions fade out within low electric field range (<20 kV/cm) and thereby the intrinsic lattice polarization governs the overall dielectric responses at higher fields. Based on the fitting result, the energy storage properties of the specimens were interpreted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudio, Tania; Stein, Niklas; Petermann, Nils
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon–germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low-temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000°C. A peak figure of merit zT=0.88 at 900°C is observed and is comparatively insensitive to the aforementioned parameter variations.
Dielectric and modulus studies of polycrystalline BaZrO3 ceramic
NASA Astrophysics Data System (ADS)
Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.
2018-05-01
In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Experimental Studies on Grooved Double Pipe Heat Exchanger with Different Groove Space
NASA Astrophysics Data System (ADS)
Sunu, P. W.; Arsawan, I. M.; Anakottapary, D. S.; Santosa, I. D. M. C.; Yasa, I. K. A.
2018-01-01
Experimental studies were performed on grooved double pipe heat exchanger (DPHE) with different groove space. The objective of this work is to determine optimal heat transfer parameter especially logarithmic mean temperature difference (LMTD). The document in this paper also provides the total heat observed by the cold fluid. The rectangular grooves were incised on outer surface of tube side with circumferential pattern and two different grooves space, namely 1 mm and 2 mm. The distance between grooves and the grooves high were kept constant, 8 mm and 0.3 mm respectively. The tube diameter is 20 mm and its made of aluminium. The shell is made of acrylic which has 28 mm in diameter. Water is used as the working fluid. Using counter flow scheme, the cold fluid flows in the annulus room of DPHE. The volume flowrate of hot fluid remains constant at 15 lpm. The volume flowrate of cold fluid were varied from 11 lpm to 15 lpm. Based on logarithmic mean temperature difference analysis, the LMTD of 1 mm grooves space was higher compared to that of 2 mm grooves space. The smaller grooves space has more advantage since the recirculating region are increased which essentially cause larger heat transfer enhancement.
Improving the High Temperature Creep and Rupture Resistance of Oxide- Dispersion-Strengthened Alloys
1982-04-30
more ready availability and its es - tablished high temperature data base. When work was formally initiated, an order was placed for a billet of...between the specimen heads and grips. -. The test apparatus used to perform the tensile tests was an Instron- Satec furnace combination, Temperature...12,000 lb. capacity) modified to produce constant stress rather than constant load. The furnaces were of the Satec tube-type, with a maximum temperature
Predicting DNA hybridization kinetics from sequence
NASA Astrophysics Data System (ADS)
Zhang, Jinny X.; Fang, John Z.; Duan, Wei; Wu, Lucia R.; Zhang, Angela W.; Dalchau, Neil; Yordanov, Boyan; Petersen, Rasmus; Phillips, Andrew; Zhang, David Yu
2018-01-01
Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.
NASA Astrophysics Data System (ADS)
Liu, Zhanqing; Yang, Zupei
2017-10-01
New M1/2La1/2Cu3Ti4O12 (M = Li, Na, K) ceramics based on partial substitution of Li+, Na+, and K+ for La3+ in La2/3Cu3Ti4O12 (LCTO) have been prepared by a sol-gel method, and the effects of Li+, Na+, and K+ on the microstructure and electrical properties investigated in detail, revealing different results depending on the substituent. The cell parameter increased with increasing radius of the substituent ion (Li+, Na+, K+). Li1/2La1/2Cu3Ti4O12 (LLCTO) ceramic showed better frequency and temperature stability, but the dielectric constant decreased and the third abnormal dielectric peak disappeared from the dielectric temperature spectrum. Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramic exhibited higher dielectric constant and better frequency and temperature stability, and displayed the second dielectric relaxation in electric modulus plots. The performance of K1/2La1/2Cu3Ti4O12 (KLCTO) ceramic was deteriorated. These different microstructures and electrical properties may be due to the effect of different defect structures generated in the ceramic as well as grain size. This work represents the first analysis and comparison of these remarkable differences in the electrical behavior of ceramics obtained by partial substitution of Li+, Na+, and K+ for La3+ in LCTO.
The circadian rhythm of core temperature: origin and some implications for exercise performance.
Waterhouse, Jim; Drust, Barry; Weinert, Dietmar; Edwards, Benjamin; Gregson, Warren; Atkinson, Greg; Kao, Shaoyuan; Aizawa, Seika; Reilly, Thomas
2005-01-01
This review first examines reliable and convenient ways of measuring core temperature for studying the circadian rhythm, concluding that measurements of rectal and gut temperature fulfil these requirements, but that insulated axilla temperature does not. The origin of the circadian rhythm of core temperature is mainly due to circadian changes in the rate of loss of heat through the extremities, mediated by vasodilatation of the cutaneous vasculature. Difficulties arise when the rhythm of core temperature is used as a marker of the body clock, since it is also affected by the sleep-wake cycle. This masking effect can be overcome directly by constant routines and indirectly by "purification" methods, several of which are described. Evidence supports the value of purification methods to act as a substitute when constant routines cannot be performed. Since many of the mechanisms that rise to the circadian rhythm of core temperature are the same as those that occur during thermoregulation in exercise, there is an interaction between the two. This interaction is manifest in the initial response to spontaneous activity and to mild exercise, body temperature rising more quickly and thermoregulatory reflexes being recruited less quickly around the trough and rising phase of the resting temperature rhythm, in comparison with the peak and falling phase. There are also implications for athletes, who need to exercise maximally and with minimal risk of muscle injury or heat exhaustion in a variety of ambient temperatures and at different times of the day. Understanding the circadian rhythm of core temperature may reduce potential hazards due to the time of day when exercise is performed.
Danjuma, Solomon; Thaochan, Narit; Permkam, Surakrai; Satasook, Chutamas
2014-01-01
Members of the Bactrocera dorsalis Hendel (Diptera: Tephritidae) complex constitute well-recognized destructive pests of fruits in peninsular Thailand. The development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae Drew & Hancock, and the Asian papaya fruit fly, Bactrocera papayae Drew & Hancock, were compared at six constant temperatures of 15, 20, 25, 27, 30, and 35°C, 70 ± 5% relative humidity, and a photoperiod of 12:12 (L:D). The objectives were to determine the effect of temperature on the developmental stages for optimizing rearing and to understand the geographical pattern of occurrence of these fruit fly species. A strong and positive linear relationship was observed between temperature and developmental rate of immature stages of B. carambolae. Similarly, a strong and positive linear relationship was observed between temperature and developmental rate of B. papayae. A temperature summation model was used to estimate the lower threshold temperature and the thermal constant. Bactrocera papayae was significantly faster in development and higher in survival and appeared to be better adapted to low temperatures than B. carambolae, as it exhibited the lowest threshold temperatures at all immature stages. The observed differences in response to various temperatures revealed to some extent the impact of temperature on these species' distribution in peninsular Thailand and other parts of the world. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.
Yassien, Khaled M; Agour, Mostafa
2017-02-01
A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.
Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu
2007-08-21
This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.
Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2015-01-01
An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-03-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H₂, ammonia and benzene) using randomized gas exposures.
Schultealbert, Caroline; Baur, Tobias; Schütze, Andreas; Sauerwald, Tilman
2018-01-01
Dedicated methods for quantification and identification of reducing gases based on model-based temperature-cycled operation (TCO) using a single commercial MOS gas sensor are presented. During high temperature phases the sensor surface is highly oxidized, yielding a significant sensitivity increase after switching to lower temperatures (differential surface reduction, DSR). For low concentrations, the slope of the logarithmic conductance during this low-temperature phase is evaluated and can directly be used for quantification. For higher concentrations, the time constant for reaching a stable conductance during the same low-temperature phase is evaluated. Both signals represent the reaction rate of the reducing gas on the strongly oxidized surface at this low temperature and provide a linear calibration curve, which is exceptional for MOS sensors. By determining these reaction rates on different low-temperature plateaus and applying pattern recognition, the resulting footprint can be used for identification of different gases. All methods are tested over a wide concentration range from 10 ppb to 100 ppm (4 orders of magnitude) for four different reducing gases (CO, H2, ammonia and benzene) using randomized gas exposures. PMID:29494545
Electronic polarizability of light crude oil from optical and dielectric studies
NASA Astrophysics Data System (ADS)
George, A. K.; Singh, R. N.
2017-07-01
In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.
Rate constant for the fraction of atomic chlorine with formaldehyde from 200 to 500K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.
1978-01-01
A flash photolysis - resonance fluorescence technique was used to measure rate constant. The results were independent of substantial variations in H2CO, total pressure (Ar), and flash intensity (i.e., initial Cl). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being K = (7.48 + or - 0.50) x 10 to the minus 11 power cu cm molecule-1 s-1 where the error is one standard deviation. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.
Method and apparatus for providing a precise amount of gas at a precise humidity
Hallman, Jr., Russell L.; Truett, James C.
2001-02-06
A fluid transfer system includes a permeable fluid carrier, a constant temperature source of a first fluid, and a constant pressure source of a second fluid. The fluid carrier has a length, an inlet end, and an outlet end. The constant pressure source connects to the inlet end and communicates the second fluid into the fluid carrier, and the constant temperature source surrounds a least of portion of the length. A mixture of the first fluid and the second fluid exits via the outlet end A method of making a mixture of two fluids is also disclosed.
NASA Astrophysics Data System (ADS)
Nascimento, Micael; Ferreira, Marta S.; Pinto, João. L.
2017-08-01
In this work, an optical fiber sensing network has been developed to assess the impact of different environmental conditions on lithium batteries performance through the real time thermal monitoring. The battery is submitted to constant current charge and different discharge C-rates, under normal and abusive operating conditions. The results show that for the discharge C-rate of 5.77C, the LiB under cold and dry climates had 32.5% and 27.2% lower temperature variations, when compared with temperate climates, respectively. The higher temperature shift detected in the temperate climate was related to the battery better performance regarding discharge capacity and power capabilities.
NASA Astrophysics Data System (ADS)
Teraji, T.; Arakaki, T.
2011-12-01
Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.
Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P
2013-07-09
An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.
NASA Astrophysics Data System (ADS)
Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.
2017-07-01
We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.
Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations.
Zhou, Ting-Ting; Huang, Feng-Lei
2011-01-20
Effects of molecular vacancies on the decomposition mechanisms and reaction dynamics of condensed-phase β-HMX at various temperatures were studied using ReaxFF molecular dynamics simulations. Results show that three primary initial decomposition mechanisms, namely, N-NO(2) bond dissociation, HONO elimination, and concerted ring fission, exist at both high and lower temperatures. The contribution of the three mechanisms to the initial decomposition of HMX is influenced by molecular vacancies, and the effects vary with temperature. At high temperature (2500 K), molecular vacancies remarkably promote N-N bond cleavage and concerted ring breaking but hinder HONO formation. N-N bond dissociation and HONO elimination are two primary competing reaction mechanisms, and the former is dominant in the initial decomposition. Concerted ring breaking of condensed-phase HMX is not favored at high temperature. At lower temperature (1500 K), the most preferential initial decomposition pathway is N-N bond dissociation followed by the formation of NO(3) (O migration), although all three mechanisms are promoted by molecular vacancies. The promotion effect on concerted ring breaking is considerable at lower temperature. Products resulting from concerted ring breaking appear in the defective system but not in the perfect crystal. The mechanism of HONO elimination is less important at lower temperature. We also estimated the reaction rate constant and activation barriers of initial decomposition with different vacancy concentrations. Molecular vacancies accelerate the decomposition of condensed-phase HMX by increasing the reaction rate constant and reducing activation barriers.
A universal reduced glass transition temperature for liquids
NASA Technical Reports Server (NTRS)
Fedors, R. F.
1979-01-01
Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.
Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment.
Poikolainen, Jarmo; Tolvanen, Anne; Karhu, Jouni; Kubin, Eero
2016-08-01
Trends in the timing of spring and autumn phenophases of Betula pubescens were investigated in the southern, middle, and northern boreal zones in Finland. The field observations were carried out at 21 sites in the Finnish National Phenological Network in 1997-2013. The effective temperature sum of the thermal growth period, i.e. the sum of the positive differences between diurnal mean temperatures and 5 °C (ETS1), increased annually on average by 6-7 degree day units. Timing of bud burst remained constant in the southern and middle boreal zones but advanced annually by 0.5 day in the northern boreal zone. The effective temperature sum at bud burst (ETS2) showed no trend in the southern and middle boreal zones, whereas ETS2 increased on average from 20-30 to 50 degree day units in the northern boreal zone, almost to the same level as in the other zones. Increase in ETS2 indicates that the trees did not start their growth in very early spring despite warmer spring temperatures. The timing of leaf colouring and leaf fall remained almost constant in the southern boreal zones, whereas these advanced annually by 0.3 and 0.6 day in the middle boreal zone and by 0.6 and 0.4 day in the northern boreal zone, respectively. The duration of the growth period remained constant in all boreal zones. The results indicate high buffering capacity of B. pubescens against temperature changes. The study also shows the importance of the duration of phenological studies: some trends in spring phenophases had levelled out, while new trends in autumn phases had emerged after earlier studies in the same network for a shorter observation period.
NASA Technical Reports Server (NTRS)
Gupta, P. K.; Tessarzik, J. M.; Cziglenyi, L.
1974-01-01
Dynamic properties of a commerical polybutadiene compound were determined at a constant temperature of 32 C by a forced-vibration resonant mass type of apparatus. The constant thermal state of the elastomer was ensured by keeping the ambient temperature constant and by limiting the power dissipation in the specimen. Experiments were performed with both compression and shear specimens at several preloads (nominal strain varying from 0 to 5 percent), and the results are reported in terms of a complex stiffness as a function of frequency. Very weak frequency dependence is observed and a simple power law type of correlation is shown to represent the data well. Variations in the complex stiffness as a function of preload are also found to be small for both compression and shear specimens.
Circadian temperature rhythms of older people
NASA Technical Reports Server (NTRS)
Monk, T. H.; Buysse, D. J.; Reynolds, C. F. 3rd; Kupfer, D. J.; Houck, P. R.
1995-01-01
This collection of studies had the aim of exploring whether older (77+ years) men and women have circadian body temperature rhythms different from those of younger adults. A total of 20 older men and 28 older women were compared with either 22 young men or 14 middle-aged men in four protocols; all but the first protocol using a subset of the sample. The four protocols were: 1) 24 h, and 2) 72 h data collections on a normal laboratory routine (sleeping at night); 3) between 36 h and 153 h of field data collection at home; and 4) 36 h of a constant conditions routine (wakeful bedrest under temporal isolation) in the laboratory. There was some evidence for an age-related phase advance in temperature rhythm, especially for the older men on a normal routine, though this was not present in the constant conditions protocol, where 5 of the older subjects showed major delays in the timing of the body temperature trough (10:00 or later). There was no statistically significant evidence from any of the protocols that older subjects generally had lower temperature rhythm amplitudes than younger adults. Only when older men were compared with younger men in 24-h rhythm amplitude by simple t-test did any comparison involving amplitude achieve statistical significance (p < 0.05).
Effect of crystal structure on strontium titanate thin films and their dielectric properties
NASA Astrophysics Data System (ADS)
Kampangkeaw, Satreerat
Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible causes that make dielectric behavior in STO thin films different from the bulk. We characterized such film structures as lattice parameters, out-of-plane grain size, in-plane grain size, thickness, roughness, strains, and defects using ellipsometry, atomic force microscopy, and a high-resolution X-ray diffractometry. In plane grain size and percentage of defects were found to play a major role on the dielectric performance of the films.
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
[Experimental study of recovery force of surface-modified TiNi memory alloy rod].
Wang, Aiyuan; Peng, Jiang; Zhang, Xian; Xu, Wenjin; Wang, Xing; Sun, Minxue; Lu, Shibi
2006-08-01
The recovery force of Ti-Nb coated and uncoated TiNi shape memory alloy rods was investigated. The rods were 6.0 mm, 6.5 mm and 7.0 mm in diameter respectively. The mean transition temperature was 33.0 degrees C. The rods were stored at -18 degrees C and pre-bent with a three-point bending fixture, the span was 20. 0 centimeters and the deflections were 5.0 mm, 10.0 mm, 15.0 mm and 20.0 mm, respectively. The rods were then heated in a constant temperature saline solution chamber. The experimental temperature was 37.0 C and 50.0 C respectively. The recovery force was measured in a constant displacement mode on biomaterial test machine. The results showed that the recovery force of the memory alloy rod increased with increasing recovery temperature, rod diameter and deformation of both Ti-Nb coated and uncoated surface. The recovery force of Ti-Nb coated rods of 6.0 and 6.5 millimeter in diameter was lower than the uncoated rods in the same diameter. However, the recovery force of 7.0-mm-diameter rods showed no significant difference between coated and uncoated surface.
Dielectric Study of the Phase Transitions in [P(CH3)4]2CuY4 (Y = Cl, Br)
NASA Astrophysics Data System (ADS)
Gesi, Kazuo
2002-05-01
Phase transitions in [P(CH3)4]2CuY4 (Y = Cl, Br) have been studied by dielectric measurements. In [P(CH3)4]2CuCl4, a slight break and a discontinuous jump on the dielectric constant vs. temperature curve are seen at the normal-incommensurate and the incommensurate-commensurate phase transitions, respectively. A small peak of dielectric constant along the b-direction exists just above the incommensurate-to-commensurate transition temperature. The anisotropic dielectric anomalies of [P(CH3)4]2CuBr4 at phase transitions were measured along the three crystallographic axes. The pressure-temperature phase diagram of [P(CH3)4]2CuCl4 was determined. The initial pressure coefficients of the normal-to-incommensurate and the incommensurate-to-commensurate transition temperatures are 0.19 K/MPa and 0.27 K/MPa, respectively. The incommensurate phase in [P(CH3)4]2CuCl4 disappears at a triple point which exists at 335 MPa and 443 K. The stability and the pressure effects of the incommensurate phases are much different among the four [Z(CH3)4]2CuY4 crystals (Z = N, P; Y = Cl, Br).
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEWIS,L.H.; HARLAND,C.L.
2002-08-18
Insight into the anisotropy behavior of Nd{sub 2}Fe{sub 14}B may be obtained by measurements of the spin reorientation temperature T{sub S} where the overall magnetocrystalline anisotropy changes to allow the magnetic moment to relax from an easy axis to an easy cone configuration. DC magnetization measurements made at various applied fields on sintered and nanocrystalline forms of Nd{sub 2}Fe{sub 14}B indicate a T{sub S} that remains constant for the sintered sample but is strongly field-dependent for the nanocrystalline forms of the material. Specifically, T{sub S} decreases with decreasing applied fields of strengths 5 T, 1 T and 0.01 T. Amore » simple model that minimizes the total energy of the system leads to the conclusion that the spin reorientation temperature is insensitive to applied field. Therefore it is concluded that the apparent decrease in the system's spin reorientation temperatures with decrease in measuring field can be attributed to the nanoscale structure of the system and a difference in the anisotropy constants compared to their bulk values.« less
NASA Astrophysics Data System (ADS)
Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman
2018-06-01
The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.
Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-08-01
The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.
Bizjak, Jan; Slatnar, Ana; Stampar, Franci; Veberic, Robert
2012-12-01
In this study, changes in quality and various biochemical parameters of 'Idared' apples during prolonged shelf life period after ultra-low oxygen (ULO) storage were investigated. Additionally, the impact of the postharvest application of 1-methylcyclopropene (1-MCP) on different parameters was evaluated. After the harvest, apples were stored in the ULO storage for 6 months and then exposed to room temperature. Fruit firmness, peel color, and changes in sugars, organic acids and phenolics were monitored during the 3 weeks of shelf life. Malic acid, sugars and firmness decreased at room temperature. However, the color of the apples remained unchanged. The level of citric and ascorbic acid remained constant. Levels of phenolics in the peel increased significantly, whereas remained constant in the pulp of apples. 1-MCP treatment resulted in higher amounts of fructose and glucose, malic acid and greater firmness of apples. However, 1-MCP did not influence the phenolic content, ascorbic acid or color. The results obtained indicate that the content of different health-promoting compounds of apples does not change dramatically at room temperature. At the same time these results suggest that 1-MCP could be useful for maintaining certain quality and biochemical parameters and might extend the shelf life of apples.
Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian
2015-05-01
Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.
2013-09-01
Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.
Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori
2017-10-05
Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
NASA Astrophysics Data System (ADS)
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
NASA Astrophysics Data System (ADS)
Yu, S.; Pearson, J. C.; Amano, T.; Matsushima, F.
2017-01-01
We extended the measurements of the rotational transitions of D2H+ up to 3 THz by using the JPL frequency multiplier chains and a TuFIR system at Toyama. D2H+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. We observed five new THz lines. All the available rotational transition frequencies together with the combination differences derived from the three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions.
Investigation of the hydrochlorination of SiCl4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.
1983-01-01
A basic, experimental study on the hydrochlorination of silicon tetrachloride and metallurgical grade silicon with hydrogen gas to form trichlorosilane was carried out to greatly expand the range of reaction conditions. The equilibrium constant, K sub p, for the hydrochlorination reaction was measured as a function of temperature, pressure and concentration. The variation of the equilibrium constant as a function of temperature provided the measurement on the heat of reaction, delta H, by the Second Law Method. The value of delta H was measured to give 10.6 Kcal/mole. The equilibrium constant was also studied as a function of concentration. In agreement with the theory, the equilibrium constant remained constant with respect to the varying H2/SiCl4 feed ratios. On the other hand, the effect of pressure on the equilibrium constant was found to be more complex.
NASA Astrophysics Data System (ADS)
Zhao, W.; Sun, Z.; Tang, Z.; Liaw, P. K.; Li, J.; Liu, R. P.; Li, Gong
2014-05-01
2D finite element analysis was conducted on the temperature field to create an amorphous ingot by vacuum water quenching. An optimized analysis document was then written by ANSYS parametric design language, and the optimal design modules of ANSYS were used to study the inside diameter and wall thickness of the quartz tube, as well as the water temperature. The microstructure and the phase structure of the amorphous ingot were evaluated by scanning electron microscopy and X-ray diffraction, respectively. Results show that during the cooling process, the thinner wall thickness, smaller diameter of the ingot, or lower temperature of the water environment can result in higher cooling rate at a given temperature. Besides, the gap between the different cooling rates induced by wall thickness or diameter of the ingot narrows down as the temperature decreases, and the gap between the different cooling rates induced by temperature of the water environment remains constant. The process parameters in creating an amorphous ingot, which is optimized by the finite element analysis on the temperature field, are reliable.
NASA Astrophysics Data System (ADS)
Huang, Victoria; Sakata, Jon T.; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David
2008-12-01
Kratochvil et al. (Naturwissenschaften 95:209 215, 2008) reported recently that in the leopard gecko ( Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.
Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study
NASA Astrophysics Data System (ADS)
Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj
2013-09-01
We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.
Method and apparatus for measuring surface contour on parts with elevated temperatures
Horvath, Mark S.; Nance, Roy A.; Cohen, George H.; Fodor, George
1991-01-01
The invention is directed to a method and apparatus for measuring the surface contour of a test piece, such as the bow of a radioactive fuel rod, which is completely immersed in water. The invention utilizes ultrasonic technology and is capable of measuring surface contours of test pieces which are at a higher temperature than the surrounding water. The presence of a test piece at a higher temperature adversely affects the distance measurements by causing thermal variations in the water near the surface of the test piece. The contour measurements depend upon a constant temperature of the water in the path of the ultrasonic wave to provide a constant acoustical velocity (the measurement is made by the time of flight measurement for an ultrasonic wave). Therefore, any variations of water temperature near the surface will introduce errors degrading the measurement. The present invention overcomes these problems by assuring that the supply of water through which the ultrasonic waves travel is at a predetermined and constant temperature.
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
Alton, Lesley A; Condon, Catriona; White, Craig R; Angilletta, Michael J
2017-01-01
The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Kinetic Behavior of Escherichia coli on Various Cheeses under Constant and Dynamic Temperature.
Kim, K; Lee, H; Gwak, E; Yoon, Y
2014-07-01
In this study, we developed kinetic models to predict the growth of pathogenic Escherichia coli on cheeses during storage at constant and changing temperatures. A five-strain mixture of pathogenic E. coli was inoculated onto natural cheeses (Brie and Camembert) and processed cheeses (sliced Mozzarella and sliced Cheddar) at 3 to 4 log CFU/g. The inoculated cheeses were stored at 4, 10, 15, 25, and 30°C for 1 to 320 h, with a different storage time being used for each temperature. Total bacteria and E. coli cells were enumerated on tryptic soy agar and MacConkey sorbitol agar, respectively. E. coli growth data were fitted to the Baranyi model to calculate the maximum specific growth rate (μ max; log CFU/g/h), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The kinetic parameters were then analyzed as a function of storage temperature, using the square root model, polynomial equation, and linear equation. A dynamic model was also developed for varying temperature. The model performance was evaluated against observed data, and the root mean square error (RMSE) was calculated. At 4°C, E. coli cell growth was not observed on any cheese. However, E. coli growth was observed at 10°C to 30°C with a μ max of 0.01 to 1.03 log CFU/g/h, depending on the cheese. The μ max values increased as temperature increased, while LPD values decreased, and μ max and LPD values were different among the four types of cheese. The developed models showed adequate performance (RMSE = 0.176-0.337), indicating that these models should be useful for describing the growth kinetics of E. coli on various cheeses.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles. 1250.42 Section 1250.42 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Chetna, E-mail: ctyagi05@gmail.com; Sharma, Ambika, E-mail: ambikasharma2004@yahoo.com
2016-01-07
In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic andmore » electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag{sub 2}O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz–5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (E{sub a}) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.« less
Pyrite oxidation under simulated acid rain weathering conditions.
Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou
2017-09-01
We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.
NASA Astrophysics Data System (ADS)
Afonina, Natalie Petrovna
To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The high temperature results were significantly lower when compared to room temperature values. Higher creep rates were correlated with lower yield strengths.
Solubility and Thermodynamics: An Introductory Experiment
NASA Astrophysics Data System (ADS)
Silberman, Robert G.
1996-05-01
This article describes a laboratory experiment suitable for high school or freshman chemistry students in which the solubility of potassium nitrate is determined at several different temperatures. The data collected is used to calculate the equilibrium constant, delta G, delta H, and delta S for dissolution reaction. The simplifying assumptions are noted in the article.
Estimating p-n Diode Bulk Parameters, Bandgap Energy and Absolute Zero by a Simple Experiment
ERIC Educational Resources Information Center
Ocaya, R. O.; Dejene, F. B.
2007-01-01
This paper presents a straightforward but interesting experimental method for p-n diode characterization. The method differs substantially from many approaches in diode characterization by offering much tighter control over the temperature and current variables. The method allows the determination of important diode constants such as temperature…
Defects in ZnO nanorods prepared by a hydrothermal method.
Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K
2006-10-26
ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.
Fine-grained state counting for black holes in loop quantum gravity.
Ghosh, A; Mitra, P
2009-04-10
A state of a black hole in loop quantum gravity is given by a distribution of spins on punctures on the horizon. The distribution is of the Boltzmann type, with the area playing the role of the energy. In investigations where the total area was kept approximately constant, there was a kind of thermal equilibrium between the spins which have the same analogue temperature and the entropy was proportional to the area. If the area is precisely fixed, however, multiple constraints appear, different spins have different analogue temperatures and the entropy is not strictly linear in the area, but is bounded by a linear rise.
Gökoğlu, Elmas; Kıpçak, Fulya; Seferoğlu, Zeynel
2014-11-01
This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6-diaminoacridine derivatives obtained from proflavine, which are 3,6-diphenoxycarbonyl aminoacridine and 3,6-diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet-visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA-derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern-Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6-diethoxycarbonyl aminoacridine, 3,6-diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non-radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.
Halbach, Udo; Burkhardt, Heinz Jürgen
1972-09-01
Laboratory populations of the rotifer Brachionus calyciflorus were cultured at different temperatures (25, 20, 15°C) but otherwise at constant conditions. The population densities showed relatively constant oscillations (Figs. 1 to 3A-C). Amplitudes and frequencies of the oscillations were positively correlated with temperature (Table 1). A test was made, whether the logistic growth function with simple time lag is able to describe the population curves. There are strong similarities between the simulations (Figs. 1-3E) and the real population dynamics if minor adjustments of the empirically determined parameters are made. There-fore it is suggested that time lags are responsible for the observed oscillations. However, the actual time lags probably do not act in the simple manner of the model, because birth and death rates react with different time lags, and both parameters are dependent on individual age and population density. A more complex model, which incorporates these modifications, should lead to a more realistic description of the observed oscillations.
Encapsulation of black carrot juice using spray and freeze drying.
Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam
2015-12-01
Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.
NASA Technical Reports Server (NTRS)
Wang, W.-C.; Stone, P. H.
1980-01-01
The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.
EFFECTS OF LASER RADIATION ON MATTER: Maximum depth of keyhole melting of metals by a laser beam
NASA Astrophysics Data System (ADS)
Pinsker, V. A.; Cherepanov, G. P.
1990-11-01
A calculation is reported of the maximum depth and diameter of a narrow crater formed in a stationary metal target exposed to high-power cw CO2 laser radiation. The energy needed for erosion of a unit volume is assumed to be constant and the energy losses experienced by the beam in the vapor-gas channel are ignored. The heat losses in the metal are allowed for by an analytic solution of the three-dimensional boundary-value heat-conduction problem of the temperature field in the vicinity of a thin but long crater with a constant temperature on its surface. An approximate solution of this problem by a method proposed earlier by one of the present authors was tested on a computer. The dimensions of the thin crater were found to be very different from those obtained earlier subject to a less rigorous allowance for the heat losses.
NASA Astrophysics Data System (ADS)
Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume
2017-10-01
Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.
High temperature XRD of Cu2GeSe3
NASA Astrophysics Data System (ADS)
Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra
2015-06-01
The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.
NASA Technical Reports Server (NTRS)
Gibbs, Thomas W
1956-01-01
Specimens of HK31XA-H24 magnesium-alloy sheet from an experimental batch were heated to failure at nominal temperature rates from 0.2 F to 100 F per second under constant-load conditions. Rapid-heating yield and rupture stresses are presented and compared with the yield and ultimate stresses from elevated-temperature tensile stress-strain tests for 1/2-hour exposure. Linear temperature-rate parameters were used to correlate rapid-heating results by constructing master curves which can be used for predicting yield stresses and temperatures and for estimating rupture stresses and temperatures.
Performance of thermally-chargeable supercapacitors in different solvents.
Lim, Hyuck; Zhao, Cang; Qiao, Yu
2014-07-07
The influence of solvent on the temperature sensitivity of the electrode potential of thermally-chargeable supercapacitors (TCSs) is investigated. For large electrodes, the output voltage is positively correlated with the dielectric constant of solvent. When nanoporous carbon electrodes are used, different characteristics of system performance are observed, suggesting that possible size effects must be taken into consideration when the solvent molecules and solvated ions are confined in a nanoenvironment.
Effect of electron-beam deposition process variables on the film characteristics of the CrOx films
NASA Astrophysics Data System (ADS)
Chiu, Po-kai; Liao, Yi-Ting; Tsai, Hung-Yin; Chiang, Donyau
2018-02-01
The film characteristics and optical properties of the chromium oxide films on the glass substrates prepared by electron-beam deposition with different process variables were investigated. The process variables included are the various oxygen flow rates, the different applied substrate temperatures, and the preparation process in Ar or O2 surrounding environment with and without ion-assisted deposition. The optical constants of the deposited films are determined from the reflectance and transmittance measurements obtained using a spectrophotometer with wavelengths ranging from 350 nm to 2000 nm. The microstructures of the films were examined by the XRD, SEM, and XPS. The electrical conductivity was measured by a four-point probe instrument. The resulting microstructures of all the prepared films are amorphous and the features of the films are dense, uniform and no pillar structure is observed. The refractive index of deposited films decrease with oxygen flow rate increase within studied wavelengths and the extinction coefficients have the same trend in wavelengths of UV/Vis ranges. Increasing substrate temperature to 200 oC results in increase of both refractive index and extinction coefficient, but substrate temperatures below 150 oC show negligible effect on optical constants. The optical and electrical properties in the prepared CrOx films are illustrated by the analyzed XPS results, which decompose the enveloped curve of chromium electron energy status into the constituents of metal Cr, oxides CrO2 and Cr2O3. The relative occupied area contributed from metal Cr and area contributed from the other oxides can express the concentration ratio of free electron to covalent bonds in deposited films and the ratio is applied to explain the film characteristics, including the optical constants and sheet resistance.