NASA Technical Reports Server (NTRS)
Donoughe, Patrick L; Livingood, John N B
1955-01-01
Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.
Dynamic and Thermal Turbulent Time Scale Modelling for Homogeneous Shear Flows
NASA Technical Reports Server (NTRS)
Schwab, John R.; Lakshminarayana, Budugur
1994-01-01
A new turbulence model, based upon dynamic and thermal turbulent time scale transport equations, is developed and applied to homogeneous shear flows with constant velocity and temperature gradients. The new model comprises transport equations for k, the turbulent kinetic energy; tau, the dynamic time scale; k(sub theta), the fluctuating temperature variance; and tau(sub theta), the thermal time scale. It offers conceptually parallel modeling of the dynamic and thermal turbulence at the two equation level, and eliminates the customary prescription of an empirical turbulent Prandtl number, Pr(sub t), thus permitting a more generalized prediction capability for turbulent heat transfer in complex flows and geometries. The new model also incorporates constitutive relations, based upon invariant theory, that allow the effects of nonequilibrium to modify the primary coefficients for the turbulent shear stress and heat flux. Predictions of the new model, along with those from two other similar models, are compared with experimental data for decaying homogeneous dynamic and thermal turbulence, homogeneous turbulence with constant temperature gradient, and homogeneous turbulence with constant temperature gradient and constant velocity gradient. The new model offers improvement in agreement with the data for most cases considered in this work, although it was no better than the other models for several cases where all the models performed poorly.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Influence of free surface curvature on the Pearson instability in Marangoni convection
NASA Astrophysics Data System (ADS)
Hu, W. R.
The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Agricultural scene understanding
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Bauer, M. E.; Silva, L.; Hoffer, R. M.; Baumgardner, M. F.
1977-01-01
The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization.
NASA Astrophysics Data System (ADS)
Semenov, Semen; Schimpf, Martin
2004-01-01
The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.
The Effect of Temperature on Moisture Transport in Concrete.
Wang, Yao; Xi, Yunping
2017-08-09
Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.
The Effect of Temperature on Moisture Transport in Concrete
Wang, Yao; Xi, Yunping
2017-01-01
Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460
Influence of smooth temperature variation on hotspot ignition
NASA Astrophysics Data System (ADS)
Reinbacher, Fynn; Regele, Jonathan David
2018-01-01
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H2-air reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. However, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.
Temperature and circulation in the stratospheres of the outer planets
NASA Technical Reports Server (NTRS)
Conrath, Barney J.; Gierasch, Peter J.; Leroy, Stephen S.
1989-01-01
A zonally symmetric, linear radiative-dynamical model is compared with observations of the upper tropospheres and stratospheres of the outer planets. Seasonal variation is included in the model. Friction is parameterized by linear drag (Rayleigh friction). Gas opacities are accounted for but aerosols are omitted. Horizontal temperature gradients are small on all the planets. Seasonal effects are strongest on Saturn and Neptune but are weak even in these cases, because the latitudinal gradient of radiative heating is weak. Seasonal effects on Uranus are extremely weak because the radiative time constant is longer that the orbital period. One free parameter in the model is the frictional time constant. Comparison with observed temperature perturbations over zonal currents in the troposphere shows that the frictional time constant is on the same order as the radiative time constant for all these objects. Vertical motions predicted by the model are extremely weak. They are much smaller than one scale height per orbital period, except in the immediate neighborhood of tropospheric and zonal currents.
The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering
NASA Astrophysics Data System (ADS)
Sjöström, J.; Kargl, F.; Fernandez-Alonso, F.; Swenson, J.
2007-10-01
The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be Ds = 3.8 × 10-10 m2 s-1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated.
Compensated geothermal gradient: new map of old data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.W.
1986-05-01
Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less
Influence of smooth temperature variation on hotspot ignition
Reinbacher, Fynn; Regele, Jonathan David
2017-10-06
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less
Influence of smooth temperature variation on hotspot ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinbacher, Fynn; Regele, Jonathan David
Autoignition in thermally stratified reactive mixtures originates in localised hotspots. The ignition behaviour is often characterised using linear temperature gradients and more recently constant temperature plateaus combined with temperature gradients. Acoustic timescale characterisation of plateau regions has been successfully used to characterise the type of mechanical disturbance that will be created from a plateau core ignition. This work combines linear temperature gradients with superelliptic cores in order to more accurately account for a local temperature maximum of finite size and the smooth temperature variation contained inside realistic hotspot centres. A one-step Arrhenius reaction is used to model a H 2–airmore » reactive mixture. Using the superelliptic approach a range of behaviours for temperature distributions are investigated by varying the temperature profile between the gradient only and plateau and gradient bounding cases. Each superelliptic case is compared to a respective plateau and gradient case where simple acoustic timescale characterisation may be performed. It is shown that hot spots equivalent with excitation-to-acoustic timescale ratios sufficiently greater than unity exhibit behaviour very similar to a simple plateau-gradient model. Furthermore, for larger hot spots with timescale ratios sufficiently less than unity the reaction behaviour is highly dependent on the smooth temperature profile contained within the core region.« less
Gritti, Fabrice
2016-11-18
An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.
The effects of Venus' thermal structure on buoyant magma ascent
NASA Technical Reports Server (NTRS)
Sakimoto, S. E. H.; Zuber, M. T.
1992-01-01
The recent Magellan images have revealed a broad spatial distribution of surface volcanism on Venus. Previous work in modeling the ascent of magma on both Venus and Earth has indicated that the planetary thermal structure significantly influences the magmatic cooling rates and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of the thermal structure have the greatest influence on the cooling of ascending magma, we have constructed magma cooling curves for both plutonic and crack buoyant ascent mechanisms, and evaluated the curves for variations in the planetary mantle temperature, thermal gradient curvature with depth, surface temperature gradient, and surface temperature. The planetary thermal structure is modeled as T/T(sub 0) = 1-tau(1-Z/Z(sub 0)(exp n), where T is the temperature, T(sub 0) is the source depth temperature, tau = 1-(T(sub s)/T(sub 0)) where T(sub s) is the planetary surface temperature, Z is the depth, Z(sub 0) is the source depth, and n is a constant that controls thermal gradient curvature with depth. The equation is used both for mathematical convenience and flexibility, as well as its fit to the thermal gradients predicted by the cooling half-space models. We assume a constant velocity buoyant ascent, body-averaged magma temperatures and properties, an initially crystal-free magma, and the same liquidus and solidus for both Venus and Earth.
A passive microwave snow depth algorithm with a proxy for snow metamorphism
Josberger, E.G.; Mognard, N.M.
2002-01-01
Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002 John Wiley & Sons, Ltd.
Subsurface temperatures and geothermal gradients on the north slope of Alaska
Collett, T.S.; Bird, K.J.; Magoon, L.B.
1993-01-01
On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.
Use of nonwettable membranes for water transfer
NASA Technical Reports Server (NTRS)
Hausch, H. G.
1970-01-01
Transfer of water through nonwettable vinyl fluoride membranes has two unique features - /1/ very low water transfer rates can be held constant by holding temperature and solute concentrations constant, /2/ the pressure gradient against which water is transported is limited only by solution breakthrough or membrane strength.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations
NASA Technical Reports Server (NTRS)
Tsuyuki, Richard; Knauss, Wolfgang G.
1992-01-01
The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.
1991-12-01
gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130
Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W
2012-12-01
Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic challenge of an upright posture.
NASA Astrophysics Data System (ADS)
Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.
2016-03-01
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG system to provide ˜95% MPPT efficiency when the input temperature is changing at 5°C/s.
NASA Technical Reports Server (NTRS)
Orlando, A. F.; Moffat, R. J.; Kays, W. M.
1974-01-01
The relationship between the turbulent transport of heat and momentum in an adverse pressure gradient boundary layer was studied. An experimental study was conducted of turbulent boundary layers subject to strong adverse pressure gradients with suction. Near-equilibrium flows were attained, evidenced by outer-region similarity in terms of defect temperature and defect velocity profiles. The relationship between Stanton number and enthalpy thickness was shown to be the same as for a flat plate flow both for constant wall temperature boundary conditions and for steps in wall temperature. The superposition principle used with the step-wall-temperature experimental result was shown to accurately predict the Stanton number variation for two cases of arbitrarily varying wall temperature. The Reynolds stress tensor components were measured for strong adverse pressure gradient conditions and different suction rates. Two peaks of turbulence intensity were found: one in the inner and one in the outer regions. The outer peak is shown to be displaced outward by an adverse pressure gradient and suppressed by suction.
Liu, Xiaohu; Chen, Chang; Qu, Tianliang; Yang, Kaiyong; Luo, Hui
2016-01-01
The presence of a magnetic field gradient in a sample cell containing spin-polarized 129Xe atoms will cause an increased relaxation rate. We measured the transverse spin relaxation time of 129Xe verse the applied magnetic field gradient and the cell temperature. We then compared the different transverse spin relaxation behavior of dual isotopes of xenon (129Xe and 131Xe) due to magnetic field gradient in the same cell. The experiment results show the residual magnetic field gradient can be measured and compensated by applying a negative magnetic gradient in the sample cell. The transverse spin relaxation time of 129Xe could be increased 2–7 times longer when applying an appropriate magnetic field gradient. The experiment results can also be used to determine the diffusion constant of 129Xe in H2 and N2 to be 0.4 ± 0.26 cm2/sec and 0.12 ± 0.02 cm2/sec. The results are close with theoretical calculation. PMID:27049237
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
Method for determining thermal conductivity and thermal capacity per unit volume of earth in situ
Poppendiek, Heinz F.
1982-01-01
A method for determining the thermal conductivity of the earth in situ is based upon a cylindrical probe (10) having a thermopile (16) for measuring the temperature gradient between sets of thermocouple junctions (18 and 20) of the probe after it has been positioned in a borehole and has reached thermal equilibrium with its surroundings, and having means (14) for heating one set of thermocouple junctions (20) of the probe at a constant rate while the temperature gradient of the probe is recorded as a rise in temperature over several hours (more than about 3 hours). A fluid annulus thermally couples the probe to the surrounding earth. The recorded temperature curves are related to the earth's thermal conductivity, k.sub..infin., and to the thermal capacity per unit volume, (.gamma.c.sub.p).sub..infin., by comparison with calculated curves using estimates of k.sub..infin. and (.gamma.c.sub.p).sub..infin. in an equation which relates these parameters to a rise in the earth's temperature for a known and constant heating rate.
Correction of Thermal Gradient Errors in Stem Thermocouple Hygrometers
Michel, Burlyn E.
1979-01-01
Stem thermocouple hygrometers were subjected to transient and stable thermal gradients while in contact with reference solutions of NaCl. Both dew point and psychrometric voltages were directly related to zero offset voltages, the latter reflecting the size of the thermal gradient. Although slopes were affected by absolute temperature, they were not affected by water potential. One hygrometer required a correction of 1.75 bars water potential per microvolt of zero offset, a value that was constant from 20 to 30 C. PMID:16660685
Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2000-01-01
The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.
NASA Technical Reports Server (NTRS)
Morduchow, Morris
1955-01-01
A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.
A color gradient in the soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.
1990-01-01
It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant.
Horne, Curtis R; Hirst, Andrew G; Atkinson, David
2017-03-29
Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers. © 2017 The Author(s).
A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere
NASA Technical Reports Server (NTRS)
Sun, De-Zheng; Lindzen, Richard S.
1994-01-01
The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of the position of the tropical boundary. Finally, the temperature and wind distributions of an extratropical troposphere with a finite PV gradient are calculated. It is found that the larger the isentropic PV gradient, the warmer the troposphere and the weaker the jet.
Mixed convection of magnetohydrodynamic nanofluids inside microtubes at constant wall temperature
NASA Astrophysics Data System (ADS)
Moshizi, S. A.; Zamani, M.; Hosseini, S. J.; Malvandi, A.
2017-05-01
Laminar fully developed mixed convection of magnetohydrodynamic nanofluids inside microtubes at a constant wall temperature (CWT) under the effects of a variable directional magnetic field is investigated numerically. Nanoparticles are assumed to have slip velocities relative to the base fluid owing to thermophoretic diffusion (temperature gradient driven force) and Brownian diffusion (concentration gradient driven force). The no-slip boundary condition is avoided at the fluid-solid mixture to assess the non-equilibrium region at the fluid-solid interface. A scale analysis is performed to estimate the relative significance of the pertaining parameters that should be included in the governing equations. After the effects of pertinent parameters on the pressure loss and heat transfer enhancement were considered, the figure of merit (FoM) is employed to evaluate and optimize the thermal performance of heat exchange equipment. The results indicate the optimum thermal performance is obtained when the thermophoresis overwhelms the Brownian diffusion, which is for larger nanoparticles. This enhancement boosts when the buoyancy force increases. In addition, increasing the magnetic field strength and slippage at the fluid-solid interface enhances the thermal performance.
On Thermodiffusion and Gauge Transformations for Thermodynamic Fluxes and Driving Forces
NASA Astrophysics Data System (ADS)
Goldobin, D. S.
2017-12-01
We discuss the molecular diffusion transport in infinitely dilute liquid solutions under nonisothermal conditions. This discussion is motivated by an occurring misinterpretation of thermodynamic transport equations written in terms of chemical potential in the presence of temperature gradient. The transport equations contain the contributions owned by a gauge transformation related to the fact that chemical potential is determined up to the summand of form ( AT + B) with arbitrary constants A and B, where constant A is owned by the entropy invariance with respect to shifts by a constant value and B is owned by the potential energy invariance with respect to shifts by a constant value. The coefficients of the cross-effect terms in thermodynamic fluxes are contributed by this gauge transformation and, generally, are not the actual cross-effect physical transport coefficients. Our treatment is based on consideration of the entropy balance and suggests a promising hint for attempts of evaluation of the thermal diffusion constant from the first principles. We also discuss the impossibility of the "barodiffusion" for dilute solutions, understood in a sense of diffusion flux driven by the pressure gradient itself. When one speaks of "barodiffusion" terms in literature, these terms typically represent the drift in external potential force field (e.g., electric or gravitational fields), where in the final equations the specific force on molecules is substituted with an expression with the hydrostatic pressure gradient this external force field produces. Obviously, the interpretation of the latter as barodiffusion is fragile and may hinder the accounting for the diffusion fluxes produced by the pressure gradient itself.
NASA Astrophysics Data System (ADS)
Lam, Mie K.; de Greef, Martijn; Bouwman, Job G.; Moonen, Chrit T. W.; Viergever, Max A.; Bartels, Lambertus W.
2015-10-01
The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method’s performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method’s ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.
NASA Astrophysics Data System (ADS)
Musari, A. A.; Orukombo, S. A.
2018-03-01
Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Curran, R. J.; Ohring, G.
1981-01-01
The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Latitudinal species diversity gradient of marine zooplankton for the last three million years
Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.
2012-01-01
High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.
NASA Astrophysics Data System (ADS)
Turner, J. S.; Veronis, G.
2004-03-01
This study has been motivated by two oceanographic observations: an increased rate of melting of sea ice in the Arctic Ocean, and the advance of an anomalously warm tongue of Atlantic water across the Arctic below the halocline over the last few decades. A series of laboratory experiments has been carried out in order to explore the physical principles underlying these phenomena, and the possibility that the extra heating at depth is responsible for the enhanced melting rate. A tank was filled with salt solution having various constant vertical density gradients. A block of ice one third of the length of the tank was floated on the surface at one end, and the rest of the surface and the walls of the tank were insulated. When no extra heat was supplied the melting rate (loss of weight of the ice in 1 h) systematically decreased as the stratification was changed from homogeneous fluid to increasingly large density gradients, while keeping the salinity of the solution in contact with the ice constant. An analogue of the intruding Atlantic water was produced by heating the lower portion of the vertical end wall at the end of the tank opposite to the ice end, keeping its temperature constant, and using the same range of salinity gradients as in the unheated experiments. Again the melting rate decreased as the density gradient was increased, but for low gradients it was larger than that in the unheated experiments. Above a certain intermediate gradient there was no significant difference in melting rate between the unheated and heated runs. The melting data were supplemented by photographs and vertical temperature and salinity profiles. The upward transfer of heat from the body of the fluid to melt the ice was clearly double-diffusive: overturning layers, separated by 'diffusive' interfaces, were visible on shadowgraphs, and the thickness of the layers decreased as the density gradient increased. The mean thickness of the layers through the depth of the tank also systematically decreased as the density gradient increased. With weak gradients an extra heat flux to the ice came from the intruding heated layer, but at large gradients this tongue of warm water at depth did not add to the flux near the surface. Though they were obtained in a simple, arbitrary and fixed geometry, we believe that the results of these experiments can be used as the basis for a better physical understanding of the melting rates of ice in the Arctic under various conditions.
Phillips, P K; Heath, J E
2004-08-01
Surface temperatures (Ts) of eight 13-lined ground squirrels and seven yellow-bellied marmots were measured during arousal from hibernation using infrared thermography (IRT) and recorded on videotape. Animals aroused normally in 5 degrees C cold rooms. Body temperatures were recorded during arousal using both cheek pouch and interscapular temperature probes. Warming rate in arousal was exponential. Mean mass specific warming rates show the squirrels warm faster (69.76 degrees C/h/kg) than the marmots (4.49 degrees C/h/kg). Surface temperatures (Ts) for 11 regions were measured every few minutes during arousal. The smaller ground squirrel shows the ability to perfuse distal regions without compromising rise in deep body temperature (Tb). All squirrel Ts's remained low as Tb rose to 18 degrees C, at which point, eyes opened, squirrels became more active and all Ts's rose parallel to Tb. Marmot Ts remained low as Tb rose initially. Each marmot showed a plateau phase where Tb remained constant (mean Tb 20.3+/-1.0 degrees C, duration 9.4+/-4.1 min) during which time all Ts's rose, and then remained relatively constant as Tb again began to rise. An anterior to posterior Ts gradient was evident in the ground squirrel, both body and feet. This gradient was only evident in the feet of the marmots.
IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.
Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J
2018-01-22
In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.
A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications
Miralles, Vincent; Huerre, Axel; Malloggi, Florent; Jullien, Marie-Caroline
2013-01-01
This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from −3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique. PMID:26835667
First-principles calculations for elastic properties of OsB 2 under pressure
NASA Astrophysics Data System (ADS)
Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu
2009-11-01
The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.
A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscuoli, Serena; Foukal, Peter
2017-01-20
The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic fluxmore » in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.« less
Low temperature ion source for calutrons
Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.
1981-01-01
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Low temperature ion source for calutrons
Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.
1979-10-10
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate
NASA Astrophysics Data System (ADS)
Khanna, Anupam; Kaur, Narinder
2016-04-01
Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.
NASA Technical Reports Server (NTRS)
Maslen, Stephen H.
1959-01-01
An examination of the effects of compressibility, variable properties, and body forces on fully developed laminar flow has indicated several limitations on such streams. In the absence of a pressure gradient, but presence of a body force (e.g., gravity), an exact fully developed gas flow results. For a liquid this follows also for the case of a constant streamwise pressure gradient. These motions are exact in the sense of a Couette flow. In the liquid case two solutions (not a new result) can occur for the same boundary conditions. An approximate analytic solution was found which agrees closely with machine calculations.In the case of approximately exact flows, it turns out that for large temperature variations across the channel the effects of convection (due to, say, a wall temperature gradient) and frictional heating must be negligible. In such a case the energy and momentum equations are separated, and the solutions are readily obtained. If the temperature variations are small, then both convection effects and frictional heating can consistently be considered. This case becomes the constant-property incompressible case (or quasi-incompressible case for free-convection flows) considered by many authors. Finally there is a brief discussion of cases wherein streamwise variations of all quantities are allowed but only a such form that independent variables are separable. For the case where the streamwise velocity varies inversely as the square root distance along the channel a solution is given.
NASA Astrophysics Data System (ADS)
Alberti, Matthias; Fürsich, Franz T.; Abdelhady, Ahmed A.; Andersen, Nils
2017-04-01
The Jurassic climate has traditionally been described as equable, warmer than today, with weak latitudinal temperature gradients, and no polar glaciations. This view changed over the last decades with studies pointing to distinct climate fluctuations and the occasional presence of polar ice caps. Most of these temperature reconstructions are based on stable isotope analyses of fossil shells from Europe. Additional data from other parts of the world is slowly completing the picture. Gebel Maghara in the northern Sinai Peninsula of Egypt exposes a thick Jurassic succession. After a phase of terrestrial sedimentation in the Early Jurassic, marine conditions dominated since the end of the Aalenian. The stable isotope (δ18O, δ13C) composition of brachiopod and oyster shells was used to reconstruct seawater temperatures from the Bajocian to the Kimmeridgian at a palaeolatitude of ca. 3°N. Throughout this time interval, temperatures were comparatively constant aorund an average of 25.7°C. Slightly warmer conditions existed in the Early Bathonian ( 27.0°C), while the Kimmeridgian shows the lowest temperatures ( 24.3°C). The seasonality has been reconstructed with the help of high-resolution sampling of two oyster shells and was found to be very low (<2°C) as can be expected for a tropical palaeolatitude. A comparison of the results from Egypt with literature data enabled the reconstruction of latitudinal temperature gradients. During the Middle Jurassic, this gradient was much steeper than previously expected and comparable to today. During the Kimmeridgian, temperatures in Europe were generally warmer leading to weaker latitudinal gradients. Based on currently used estimates for the δ18O value of seawater during the Jurassic, reconstructed water temperatures for localities above the thermocline in Egypt and Europe were mostly lower than Recent sea-surface temperatures. These results improve our understanding of the Jurassic climate and its influence on marine faunal diversity patterns.
The effects of ground hydrology on climate sensitivity to solar constant variations
NASA Technical Reports Server (NTRS)
Chou, S. H.; Curran, R. J.; Ohring, G.
1979-01-01
The effects of two different evaporation parameterizations on the climate sensitivity to solar constant variations are investigated by using a zonally averaged climate model. The model is based on a two-level quasi-geostrophic zonally averaged annual mean model. One of the evaporation parameterizations tested is a nonlinear formulation with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface. The other is the linear formulation with the Bowen ratio essentially determined by the prescribed linear coefficient.
Solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
Mckannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1990-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
NASA Astrophysics Data System (ADS)
Siouane, Saima; Jovanović, Slaviša; Poure, Philippe
2017-01-01
The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.
Normal stress effects on Knudsen flow
NASA Astrophysics Data System (ADS)
Eu, Byung Chan
2018-01-01
Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.
Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient
NASA Astrophysics Data System (ADS)
Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus
2014-11-01
Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.
2015-02-01
Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less
Santala, M. K.; Raoux, S.; Campbell, G. H.
2015-12-24
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ~100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measuredmore » with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. As a result, the high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H.; Raoux, S.
2015-12-21
The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured withmore » time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.« less
Self-similar solutions for multi-species plasma mixing by gradient driven transport
NASA Astrophysics Data System (ADS)
Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.
2018-05-01
Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.
Poloidal asymmetries in edge transport barriersa)
NASA Astrophysics Data System (ADS)
Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.
2015-05-01
Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
NASA Astrophysics Data System (ADS)
Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.
2017-03-01
Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.
An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently
NASA Technical Reports Server (NTRS)
Lemieux, Patrick; Murray, William; Cooke, Terry; Gerhardt, James
2012-01-01
A gas containment vessel that is not in thermal equilibrium with the bulk gas can affect its temperature measurement. The physical nature of many gas dynamics experiments often makes the accurate measurement of temperature a challenge. The environment itself typically requires that the thermocouple be sheathed, both to protect the wires and hot junction of the instrument from their environment, and to provide a smooth, rigid surface for pressure sealing of the enclosure. However, that enclosure may also be much colder than the gas to be sensed, or vice-versa. Either way, the effect of such gradients is to potentially skew the temperature measurements themselves, since heat may then be conducted by the instrument. Thermocouple designers traditionally address this problem by insulating the sheath from the thermocouple leads and hot junction as much as possible. The thermocouple leads are typically packed in a ceramic powder inside the sheath, protecting them somewhat from temperature gradients along the sheath, but there is no effective mechanism to shield the sheath from the enclosure body itself. Standard practice dictates that thermocouples be used in installations that do not present large thermal gradients along the probe. If this conduction dominates heat transfer near the tip of the probe, then temperature measurements may be expected to be skewed. While the same problem may be experienced in the measurement of temperature at various points within a solid in a gradient, it tends to be aggravated in the measurements of gas temperature, since heat transfer dependent on convection is often less efficient than conduction along the thermocouple. The proposed solution is an inefficient fin thermocouple probe. Conventional wisdom suggests that in many experiments where gas flows through an enclosure (e.g., flow in pipe, manifold, nozzle, etc.), the thermocouple be introduced flush to the surface, so as not to interfere with the flow. In practice, however, many such experiments take place where the flow is already turbulent, so that a protruding thermocouple probe has a negligible effect on the flow characteristics. The key question then becomes just how far into the flow should a thermocouple protrude in order to properly sense the gas temperature at that point. Modeling the thermocouple as an "inefficient fin" directly addresses this question. The appropriate assumptions in this case are: one-dimensional conduction along the fin; steady-state, constant, and homogeneous thermal conductivity; negligible radiation; and a uniform, constant heat transfer coefficient over the probe surface. It is noted that the nature of the ceramic-filled probe makes the key assumption of homogeneous thermal conductivity that much more conservative.
Simulation of the temperature distribution in crystals grown by Czochralski method
NASA Technical Reports Server (NTRS)
Dudokovic, M. P.; Ramachandran, P. A.
1985-01-01
Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, V.F.; Schenk, C.J.
1988-01-01
Lopatin time-temperature index (TTI) modeling of three locations in the Eagle basin, northwestern Colorado, where vitrinite reflectance (R/sub m/) profiles were obtained, shows that paleogeothermal gradients and the timing of oil generation in the Belden Formation (Pennsylvanian) varied due to differing thickness of the Pennsylvanian section across the basin. At the Gilman location, where the Pennsylvanian section is thickest (7,900 ft or 2,408 m), two paleogeothermal gradient models were generated that match the average 3.70% R/sub m/ and the corresponding TTI value between 40,000 and 50,000. The first model assumes a constant geothermal gradient of 2.4/sup 0/F/100 ft (43.8/sup 0/C/km),more » which places the oil window between 270 and 230 Ma. The second model assumes a changing paleogeothermal gradient of 2.80/sup 0/F/100 ft (51/sup 0/C/km), from 320 to 265 Ma and 2.20/sup 0/F/100 ft (40.2/sup 0/C/km) from 265 Ma to present, which places the oil window between 275 and 250 Ma. For the Glenwood location, where the Pennsylvanian section is 4,960 ft (1,512 m), a constant paleogeothermal gradient of 1.80/sup 0/F/100 ft (32.9/sup 0/C/km) works the best in correlating the 2.50% R/sub m/ with the corresponding TTI value of approximately 2,700. Using this gradient, the oil window falls between 175 and 75 Ma.« less
NASA Astrophysics Data System (ADS)
Delboni, L. F.; Iulek, J.; Burger, R.; da Silva, A. C. R.; Moreno, A.
2002-02-01
The expression, purification, crystallization, and characterization by X-ray diffraction of α-amylase are described here. Dynamic and static light scattering methods with a temperature controller was used to optimize the crystallization conditions of α-amylase from Bacillus stearothermophilus an important enzyme in many fields of industrial activity. After applying thermal gradients for growing crystals, X-ray cryo-crystallographic methods were employed for the data collection. Crystals grown by these thermal-gradients diffracted up to a maximum resolution of 3.8 Å, which allowed the determination of the unit cell constants as follows: a=61.7 Å, b=86.7 Å, c=92.2 Å and space group C222 (or C222 1).
Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction
NASA Astrophysics Data System (ADS)
Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.
2017-11-01
The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Directional solidification processing of alloys using an applied electric field
NASA Technical Reports Server (NTRS)
McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)
1992-01-01
A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.
Wang, Guobing; Zhou, Yan; Xu, Xia; Ruan, Honghua; Wang, Jiashe
2013-01-01
Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0-10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q(10)) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q(10) values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q(10) values. Q(10) values of the labile and recalcitrant organic C linearly increased with elevation. For the 5-15, 15-25, and 25-35°C intervals, surprisingly, the overall Q(10) values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprenger, Lisa, E-mail: Lisa.Sprenger@tu-dresden.de; Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison ofmore » the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.« less
Sources of Variation in Creep Testing
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2011-01-01
Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.
NASA Astrophysics Data System (ADS)
Fricke, Henry C.; Rogers, Raymond R.
2000-09-01
Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.
Self-organized stationary states of inductively driven tokamaks
NASA Astrophysics Data System (ADS)
Jardin, S. C.; Ferraro, N.; Krebs, I.; Chen, J.
2014-10-01
We report on a mechanism for preventing the current and temperature profiles from peaking in a stationary state tokamak. For certain parameters, regardless of the initial state, the plasma profiles will evolve into a self-organized state with the safety factor q slightly above 1 and constant in a central volume. This large shear free region is unstable to interchange modes for any pressure gradient, and the instability drives a strong (1,1) helical flow. This flow has the property that V × B is the gradient of a potential, so it does not affect the magnetic field evolution. However, the driven flow appears in the temperature evolution equation and dominates over the thermal conductivity in the center of the discharge. The net effect is to keep the central temperature (and resistivity) profiles flat so that the resistive steady state preserves the self organized state with q slightly above 1 and constant in the central volume. This mechanism was discovered with the M3D-C1 toroidal 3D MHD code, and could possibly explain the mechanism at play in non-sawtoothing discharges with q0 just above 1 such as hybrid modes in DIII-D and ASDEX-U and long-lived modes in NSTX and MAST. This work was supported by US DOE Contract No. DE-AC02-09CHI1446, MPPC, and SciDAC CEMM.
1982-01-01
second) Dia propeller diameter (expressed in inches) T°F air temperature in degrees Farenheit T°C air temperature in degrees Celsius T:dBA total dBA...eMpiriC31 function to the absolute noise level ordinate. The term 240 log ( MH is the most sensitive and important part of the equation. The constant (240...standard day, zero wind, dry, zero gradient runway, at a sea level airport. 2. All aircraft operate at maximum takeoff gross weight. 3. All aircraft climb
Monte Carlo grain growth modeling with local temperature gradients
NASA Astrophysics Data System (ADS)
Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.
2017-09-01
This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.
Large-scale effects on the regulation of tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Hartmann, Dennis L.; Michelsen, Marc L.
1993-01-01
The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J..; Allison, Stephen W.; Beshears, David L.
2003-01-01
Thermographic phosphors have been previously demonstrated to provide effective non-contact, emissivity-independent surface temperature measurements. Because of the translucent nature of thermal barrier coatings (TBCs), thermographic phosphor-based temperature measurements can be extended beyond the surface to provide depth-selective temperature measurements by incorporating the thermographic phosphor layer at the depth where the temperature measurement is desired. In this paper, thermographic phosphor (Y2O3:Eu) fluorescence decay time measurements are demonstrated to provide through-the-coating thickness temperature readings up to 1100 C with the phosphor layer residing beneath a 100 micron thick TBC (plasma-sprayed 8wt% yttria-stabilized zirconia). With an appropriately chosen excitation wavelength and detection configuration, it is shown that sufficient phosphor emission is generated to provide effective temperature measurements, despite the attenuation of both the excitation and emission intensities by the overlying TBC. This depth-penetrating temperature measurement capability should prove particularly useful for TBC diagnostics where a large thermal gradient is typically present across the TBC thickness. The fluorescence decay from the Y2O3:Eu layer exhibited both an initial short-term exponential rise and a longer-term exponential decay. The rise time constant was demonstrated to provide better temperature indication below 500 C while the decay time constant was a better indicator at higher temperatures.
Ortho-para-hydrogen equilibration on Jupiter
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.
1992-01-01
Voyager IRIS observations reveal that the Jovian para-hydrogen fraction is not in thermodynamic equilibrium near the NH3 cloud top, implying that a vertical gradient exists between the high-temperature equilibrium value of 0.25 at depth and the cloud top values. The height-dependent para-hydrogen profile is obtained using an anisotropic multiple-scattering radiative transfer model. A vertical correlation is found to exist between the location of the para-hydrogen gradient and the NH3 cloud, strongly suggesting that paramagnetic conversion on NH3 cloud particle surfaces is the dominant equilibration mechanism. Below the NH3 cloud layer, the para fraction is constant with depth and equal to the high-temperature equilibrium value of 0.25. The degree of cloud-top equilibration appears to depend on the optical depth of the NH3 cloud layer. Belt-zone variations in the para-hydrogen profile seem to be due to differences in the strength of the vertical mixing.
Numerical modeling of temperature and species distributions in hydrocarbon reservoirs
NASA Astrophysics Data System (ADS)
Bolton, Edward W.; Firoozabadi, Abbas
2014-01-01
We examine bulk fluid motion and diffusion of multicomponent hydrocarbon species in porous media in the context of nonequilibrium thermodynamics, with particular focus on the phenomenology induced by horizontal thermal gradients at the upper and lower horizontal boundaries. The problem is formulated with respect to the barycentric (mass-averaged) frame of reference. Thermally induced convection, with fully time-dependent temperature distributions, can lead to nearly constant hydrocarbon composition, with minor unmixing due to thermal gradients near the horizontal boundaries. Alternately, the composition can be vertically segregated due to gravitational effects. Independent and essentially steady solutions have been found to depend on how the compositions are initialized in space and may have implications for reservoir history. We also examine injection (to represent filling) and extraction (to represent leakage) of hydrocarbons at independent points and find a large distortion of the gas-oil contact for low permeability.
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.
1996-01-01
This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.
NASA Technical Reports Server (NTRS)
Arnold, J. E.; Scoggins, J. R.; Fuelberg, H. E.
1976-01-01
During the period of May 11 and 12, 1974, NASA conducted its second Atmospheric Variability Experiment (AVE II) over the eastern United States. In this time interval, two Nimbus 5 orbits crossed the AVE II area, providing a series of ITPR soundings as well as THIR data. Horizontal temperature mapping of the AVE II cloud field is examined using two grid print map scales. Implied cloud top heights are compared with maximum radar-echo top reports. In addition, shelter temperatures in areas of clear sky are compared with the surface temperatures as determined from 11.5 micrometer radiometer data of the THIR experiment. The ITPR sounding accuracy is evaluated using interpolated radiosonde temperatures at times nearly coincident with the ITPR soundings. It was found that mean differences between the two data sets were as small as 1.3 C near 500 mb and as large as 2.9 C near the tropopause. The differences between ITPR and radiosonde temperatures at constant pressure levels were sufficient to induce significant differences in the horizontal temperature gradient. Cross sections of geostrophic wind along the orbital tracks were developed using a thermal wind buildup based on the ITPR temperature data and the radiosonde temperature data. Differences between the radiosonde and ITPR geostrophic winds could be explained on the basis of differences in the ITPR and radiosonde temperature gradients.
Velocity Gradients in the Intracluster Gas of the Perseus Cluster
NASA Astrophysics Data System (ADS)
Dupke, Renato A.; Bregman, Joel N.
2001-02-01
We report the results of spatially resolved X-ray spectroscopy of eight different ASCA pointings distributed symmetrically around the center of the Perseus Cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~6-7 keV and metal abundance ~0.3 solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis at a position angle of ~135°, which is ~45° discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1 Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 and 3 indicate that the velocity gradient is significant at the 95% confidence level, and the F-test rules out constant velocities at the 99% level. Intrinsic short- and long-term variations of gain are unlikely (P<0.03) to explain the velocity discrepancies.
NASA Technical Reports Server (NTRS)
Parker, Hermon M
1953-01-01
An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)
NASA Astrophysics Data System (ADS)
Shaifer, J.
2016-02-01
The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.
Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Kim, Junbom; Nguyen, T. V.; White, R. E.
1992-01-01
A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.
Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared. PMID:22615961
Shemesh, Noam; Alvarez, Gonzalo A; Frydman, Lucio
2013-12-01
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N-1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N-1)x+y≡TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Litton, C. M.; Giardina, C. P.; Selmants, P.
2014-12-01
Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical forest C cycling.
Failure Analysis of Sapphire Refractive Secondary Concentrators
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Quinn, George D.
2009-01-01
Failure analysis was performed on two sapphire, refractive secondary concentrators (RSC) that failed during elevated temperature testing. Both concentrators failed from machining/handling damage on the lens face. The first concentrator, which failed during testing to 1300 C, exhibited a large r-plane twin extending from the lens through much of the cone. The second concentrator, which was an attempt to reduce temperature gradients and failed during testing to 649 C, exhibited a few small twins on the lens face. The twins were not located at the origin, but represent another mode of failure that needs to be considered in the design of sapphire components. In order to estimate the fracture stress from fractographic evidence, branching constants were measured on sapphire strength specimens. The fractographic analysis indicated radial tensile stresses of 44 to 65 MPa on the lens faces near the origins. Finite element analysis indicated similar stresses for the first RSC, but lower stresses for the second RSC. Better machining and handling might have prevented the fractures, however, temperature gradients and resultant thermal stresses need to be reduced to prevent twinning.
ASCA observation of NGC 4636: Dark matter and metallicity gradient
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Loewenstein, M.; Awaki, H.; Makishima, K.; Matsushita, K.; Matsumoto, H.
1994-01-01
We present our analysis of ASCA PV phase observation of the elliptical galaxy NGC 4636. Solid state imaging spectrometer (SIS) spectra in six concentric annuli centered on NGC 4636 are used to derive temperature, metallicity, and column density profiles for the hot interstellar medium. Outside of the central 3 min the temperature is roughly constant at approximately 0.85 keV, while the metallicity decreases from greater than 0.36 solar at the center to less than 0.12 solar at R approximately 9 min. The implications of this gradient for elliptical galaxy formation and the enrichment of intracluster gas are discussed. We derive a detailed mass profile consistent with the stellar velocity dispersion and with ROSAT position sensitive proportional counter (PSPC) and ASCA SIS X-ray temperature profiles. We find that NGC 4636 becomes dark matter dominated at roughly the de Vaucouleurs radius, and, at r approximately 100 kpc, the ratio of dark to luminous matter density is approximately 80 and solar mass/solar luminosity approximately equal to 150. Evidence for the presence of a cooling flow is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollaeger, Ryan T.; Wollaber, Allan B.; Urbatsch, Todd J.
2016-02-23
Here, the non-linear thermal radiative-transfer equations can be solved in various ways. One popular way is the Fleck and Cummings Implicit Monte Carlo (IMC) method. The IMC method was originally formulated with piecewise-constant material properties. For domains with a coarse spatial grid and large temperature gradients, an error known as numerical teleportation may cause artificially non-causal energy propagation and consequently an inaccurate material temperature. Source tilting is a technique to reduce teleportation error by constructing sub-spatial-cell (or sub-cell) emission profiles from which IMC particles are sampled. Several source tilting schemes exist, but some allow teleportation error to persist. We examinemore » the effect of source tilting in problems with a temperature-dependent opacity. Within each cell, the opacity is evaluated continuously from a temperature profile implied by the source tilt. For IMC, this is a new approach to modeling the opacity. We find that applying both source tilting along with a source tilt-dependent opacity can introduce another dominant error that overly inhibits thermal wavefronts. We show that we can mitigate both teleportation and under-propagation errors if we discretize the temperature equation with a linear discontinuous (LD) trial space. Our method is for opacities ~ 1/T 3, but we formulate and test a slight extension for opacities ~ 1/T 3.5, where T is temperature. We find our method avoids errors that can be incurred by IMC with continuous source tilt constructions and piecewise-constant material temperature updates.« less
Mohoric; Stepisnik
2000-11-01
This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.
Air temperature recordings in infant incubators.
Aynsley-Green, A; Roberton, N R; Rolfe, P
1975-01-01
Air temperatures were continuously recorded inside four incubators with proportional heating control and six incubators with on/off heating cycles, during routine use. The air temperatures in the former were constant throughout, with a gradient between the roof and above-mattress air temperature not exceeding 1 degree C. In contrast, the recordings from the latter models showed a regular cyclical oscillation, the duration of the cycle varying from 14 to 44 minutes. Each incubator had a characteristic profile. The roof air temperature could vary by as much as 7-1 degrees C and the above-mattress air temperature by as much as 2-6 degrees C during the cycle. The oscillation persisted in the air temperatures recorded inside an open-ended hemicylindrical heat shield when used inside these incubators, but was markedly reduced inside a closed-ended heat shield, Carbon dioxide concentration did not increase significantly inside the latter. Images FIG. 1 FIG. 2 PMID:1147654
Cooling beyond the boundary value in supercritical fluids under vibration
NASA Astrophysics Data System (ADS)
Sharma, D.; Erriguible, A.; Amiroudine, S.
2017-12-01
Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain. The formation of these zones is first explained using a one-dimensional (1D) analysis with acceleration in constant direction. Subsequently, the effect of various boundary conditions and the relative direction of the temperature gradient to acceleration are analyzed, highlighting the necessary conditions for the formation of sink zones. It is found that the effect of high compressibility and the action of self-weight (due to high acceleration) causes the temperature to change in the bulk besides the usual action of piston effect. This subsequently affects the overall temperature profile thereby leading to the formation of sink zones. Though the examined 1D cases differ from the current two-dimensional (2D) cases, owing to the direction of acceleration being normal as compared to parallel in case of former, the explanations pertaining to 1D cases are judiciously utilized to elucidate the formation of sink zones in 2D supercritical fluids subjected to thermal quench and vibrational acceleration. The appearance of sink zones is found to be dependent on several factors such as proximity to the critical point and acceleration. A surface three-dimensional plot illustrating the effect of these parameters on onset time of sink zones is presented to further substantiate these arguments.
Ennis, Erin J; Foley, Joe P
2016-07-15
A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approach
Inertial Currents in Isotropic Plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1993-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
Inertial currents in isotropic plasma
NASA Technical Reports Server (NTRS)
Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.
1994-01-01
The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen Rhead; Peterson, John William
Abstract This report documents the progress of simulating pore migration in ceramic (UO 2 and mixed oxide or MOX) fuel using BISON. The porosity field is treated as a function of space and time whose evolution is governed by a custom convection-diffusion-reaction equation (described here) which is coupled to the heat transfer equation via the temperature field. The porosity is initialized to a constant value at every point in the domain, and as the temperature (and its gradient) are increased by application of a heat source, the pores move up the thermal gradient and accumulate at the center of themore » fuel in a time-frame that is consistent with observations from experiments. There is an inverse dependence of the fuel’s thermal conductivity on porosity (increasing porosity decreases thermal conductivity, and vice-versa) which is also accounted for, allowing the porosity equation to couple back into the heat transfer equation. Results from an example simulation are shown to demonstrate the new capability.« less
Structure and magnetism in LaCoO 3
Belanger, David P.; Keiber, T.; Bridges, Frank; ...
2015-12-11
In this paper, the temperature dependence of the hexagonal lattice parameter c of single crystal LaCoO 3 (LCO) with H = 0 and 800 Oe, as well as LCO bulk powders with H = 0, was measured using high-resolution x-ray scattering near the transition temperature T o ≈ 35 K. The change of c(T ) is well characterized by a power law in T – T o for T > T o and by a temperature independent constant for T < T o when convoluted with a Gaussian function of width 8.5 K. Finally, this behavior is discussed in themore » context of the unusual magnetic behavior observed in LCO as well as recent generalized gradient approximation calculations.« less
The variability of atmospheric equivalent temperature for radar altimeter range correction
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Mock, Donald
1990-01-01
Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.
Composition gradient optimization and electrical characterization of (Pb, Ca)TiO3 thin films
NASA Astrophysics Data System (ADS)
Bao, Dinghua; Mizutani, Nobuyasu; Zhang, Liangying; Yao, Xi
2001-01-01
Compositionally graded (Pb, Ca)TiO3 thin films were prepared by a monoethanolamine-modified sol-gel technique on platinum-coated silicon substrates at the annealing temperature of 600 °C. The composition gradient of the films was greatly improved by a modified annealing method. The dielectric constants, for up-graded and down-graded films annealed at 600 °C for 60 min, were found to be 469 and 355, respectively. Both were larger than those reported for conventional (Pb, Ca)TiO3 thin films. The compositionally graded films had large polarization offsets in hysteresis loops when excited by an alternating electric field. The more smooth the composition gradient of the graded film, the larger the polarization offset. This was consistent with a theoretical model reported previously by Mantese and coworkers [Appl. Phys. Lett. 71, 2047 (1997)]. The magnitude of polarization offset displayed a power-law dependence on the electric field, and the direction of the offset depended on the direction of the composition gradient with respect to the substrate. Both up-graded and down-graded films had good leakage current characteristics.
Geometry effects on cooling in a standing wave cylindrical thermoacousic resonator
NASA Astrophysics Data System (ADS)
Mohd-Ghazali, Normah; Ghazali, Ahmad Dairobi; Ali, Irwan Shah; Rahman, Muhammad Aminullah A.
2012-06-01
Numerous reports have established the refrigeration applications of thermoacoustic cooling without compressors and refrigerants. Significant cooling effects can be obtained in a thermoacoustic resonator fitted with a heat exchanging stack and operated at resonance frequency. Past studies, however, have hardly referred to the fundamental relationship between resonant frequency and the resonator geometry. This paper reports the thermoacoustic cooling effects at resonance obtained by changing the diameter of the resonator while holding the length constant and vice versa. Experiments were completed at atmospheric pressure with air as the working fluid using a number of pvc tubes having parallel plate stack from Mylar. The temperature difference measured across the stack showed that a volume increase in the working fluid in general increases the temperature gradient for the quarter-and half-wavelength resonators. Doubling the diameter from 30 mm to 60 mm produced the highest temperature difference due to the greater number of stack plates resulting in a higher overall thermoacaoustic cooling. Increasing the resonator length only produced a small increase in temperature gradient since the resonant frequency at operation is only slightly changed. Investigation on the aspect ratio exhibits no influence on the temperature difference across the stack. This study have shown that the resonator length and diameter do affect the temperature difference across the thermoacoustic stack, and further research should be done to consider the contribution of the stack mass on the overall desired thermoacoustic cooling.
Determination of Acidity Constants by Gradient Flow-Injection Titration
ERIC Educational Resources Information Center
Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.
2006-01-01
A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…
Unsteady Thermocapillary Migration of Isolated Drops in Creeping Flow
NASA Technical Reports Server (NTRS)
Dill, Loren H.; Balasubramaniam, R.
1992-01-01
The problem of an isolated immiscible drop that slowly migrates due to unsteady thermocapillary stresses is considered. All physical properties except for interfacial tension are assumed constant for the two Newtonian fluids. Explicit expressions are found for the migration rate and stream functions in the Laplace domain. The resulting microgravity theory is useful, e.g., in predicting the distance a drop will migrate due to an impulsive interfacial temperature gradient as well as the time required to attain steady flow conditions from an initially resting state.
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.
2017-10-01
Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.
Seed dormancy and germination of Ficus lundellii and tropical forest restoration.
Garcia, Ximena; Hong, Tran D; Ellis, Richard H
2006-01-01
We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H(2)O(2) (0.1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F. lundellii seeds.
AB INITIO STUDY OF PHONON DISPERSION AND ELASTIC PROPERTIES OF L12 INTERMETALLICS Ti3Al AND Y3Al
NASA Astrophysics Data System (ADS)
Arikan, N.; Ersen, M.; Ocak, H. Y.; Iyigör, A.; Candan, A.; UǦUR, Ş.; UǦUR, G.; Khenata, R.; Varshney, D.
2013-12-01
In this paper, the structural, elastic and phonon properties of Ti3Al and Y3Al in L12(Cu3Al) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0-500 K are obtained using the quasi-harmonic model.
Purification and Thermal Dependence of Glutathione Reductase from Two Forage Legume Species 1
Kidambi, Saranga P.; Mahan, James R.; Matches, Arthur G.
1990-01-01
Alfalfa (Medicago sativa L.) and sainfoin (Onobrychis viciifolia Scop.) are forage legumes that differ in their responses to high and low temperature stresses. Thermal limitations on the function of glutathione reductase (EC 1.6.4.2) could adversely affect the ability of the plant to cope with adverse temperatures. Our objectives were to (a) purify glutathione reductase from `Cimarron' alfalfa and `PI 212241' sainfoin and (b) investigate the intraspecies variation in the thermal dependency of glutathione reductase from each of three cultivars of alfalfa and two cultivars and an introduction of sainfoin. Glutathione reductase was purified 1222-and 1948-fold to a specific activity of 281 and 273 units per milligram of protein, from one species each of alfalfa and sainfoin, respectively. The relative molecular mass of the protein was approximately 140 kilodaltons with subunits of 57 and 37 kilodaltons under denaturing conditions. The activation energies were approximately 50 kilojoules per mole for both species. Over a 5 to 45°C temperature gradient, large variation among species and genotypes within species was found for: (a) the minimum apparent Michaelis constant (0.6-2.1 micromoles of NADPH), (b) the temperature at which the minimum apparent Michaelis constant was observed (10-25°C), and (c) the thermal kinetic windows (6-19°C width). Future studies will focus on relating the thermal dependence of the Michaelis constant of the glutathione reductases and plant growth rates and forage quality of these species throughout the growing season. PMID:16667283
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P
2014-09-01
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Boehm-Vitense, Erika
1988-01-01
The ratio of the emission line fluxes for the C II and C IV lines in the lower transition regions (T = 30,000 to 100,000 K) between stellar chromospheres and transition layers is shown to depend mainly on the temperature gradient in the line emitting regions which can therefore be determined from this line ratio. From the observed constant (within the limits of observational error) ratio of the emission line fluxes of the C II (1335 A) and C IV (1550 A) lines it is concluded that the temperature gradients in the lower transition layers are similar for the large majority of stars independently of T sub eff, L, and degree of activity. This means that the temperature dependence of the damping length for the mechanical flux must be the same for all these stars. Since for different kinds of mechanical fluxes the dependence of the damping length on gas pressure and temperature is quite different, it is concluded that the same heating mechanism must be responsible for the heating of all the lower transition layers of these stars, regardless of their chromospheric activity. Only the amount of mechanical flux changes. The T Tauri stars are exceptions: their emission lines are probably mainly due to circumstellar material.
Thermodynamic properties of OsB under high temperature and high pressure
NASA Astrophysics Data System (ADS)
Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang
2011-09-01
The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.
Milford, Utah FORGE Temperature Contours at 200 m
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Moore
The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin,more » temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys.« less
The transmembrane gradient of the dielectric constant influences the DPH lifetime distribution.
Konopásek, I; Kvasnicka, P; Amler, E; Kotyk, A; Curatola, G
1995-11-06
The fluorescence lifetime distribution of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in egg-phosphatidylcholine liposomes was measured in normal and heavy water. The lower dielectric constant (by approximately 12%) of heavy water compared with normal water was employed to provide direct evidence that the drop of the dielectric constant along the membrane normal shifts the centers of the distribution of both DPH and TMA-DPH to higher values and sharpens the widths of the distribution. The profile of the dielectric constant along the membrane normal was not found to be a linear gradient (in contrast to [1]) but a more complex function. Presence of cholesterol in liposomes further shifted the center of the distributions to higher value and sharpened them. In addition, it resulted in a more gradient-like profile of the dielectric constant (i.e. linearization) along the normal of the membrane. The effect of the change of dielectric constant on the membrane proteins is discussed.
A terrestrial lidar assessment of climate change impacts on forest structure
NASA Astrophysics Data System (ADS)
van Aardt, J. A.; Kelbe, D.; Sacca, K.; Giardina, C. P.; Selmants, P. C.; Litton, C. M.; Asner, G. P.
2016-12-01
The projected impact of climate change on ecosystems has received much scientific attention, specifically related to geographical species shifts and carbon allocation. This study, however, was undertaken to assess the expected changes in tropical forest structure as a function of changing temperatures. Our study area is a constrained model ecological system and is located on the eastern flank of Mauna Kea Volcano, Hawaii, USA. Nine plots from this closed-canopy, tropical montane wet forest fall along an elevation-based 5.2°C mean annual temperature (MAT) gradient, where multiple other biotic and abiotic factors are held nearly constant. This MAT gradient has been used to assess subtle temperature effects on ecosystem functioning including carbon cycles, but less has been done on the effects of temperature on vegetation structure. We acquired vegetation structural data using a SICK-LMS151 terrestrial laser scanner (905 nm) for full 270x360° coverage. This Compact Biomass Lidar (CBL) was developed by Rochester Institute of Technology and the University of Massachusetts, Boston. Data for each plot along the temperature gradient were collected in a 20 m x 20 m configuration at a 5 m scan spacing. Initial challenges, related to the irregular radial scan pattern and registration of 25 scans per plot, were addressed in order to extract normalized vegetation density metrics and to mitigate occlusion effects, respectively. However, we believe that the CBL scans can be assessed independently, i.e., treating 25 scans/plot as a population sample. We derived height statistics, return density metrics, canopy rugosity, and higher-order metrics in order to describe the differences in vegetation structure, which ultimately will be tied to the elevation-induced temperature range. We hypothesized that, for this MAT gradient (i) vertical vegetation stratification; (ii) diameter distributions; and (iii) aboveground biomass will differ significantly, while more species-dependent canopy rugosity remain stable. Our results support these hypotheses, allowing for future studies of vegetation structural responses to static and dynamic climate drivers. The findings have implications for forest management, mitigation strategies to limit losses in carbon sequestration, and forest inventory in structurally complex forests.
Sun, Pingyue; Xu, Xiaoyin; Chen, Huili; Ji, Xiang
2002-09-01
The thermal tolerance, body temperature, and influence of temperature on locomotor performance of hatchling soft-shelled turtles (Trionyx sinensis) were studied under dry and wet conditions, and the selected body temperature of hatchlings was 28.0 and 30.3 degrees C, respectively. Under wet condition, the critical thermal maximum and minimum averaged 40.9 and 7.8 degrees C, respectively. In the environments without thermal gradients, the diel variation of body temperature was highly consistent with the variation of both air and water temperatures, and the body temperature was more directly affected by water temperature than by air temperature, which implied that the physiological thermoregulation of hatchling T. sinensis was very weak. In the environments with thermal gradients, hatchling turtles could maintain relatively high and constant body temperatures, primarily through behavioral thermoregulation. The locomotor performance of hatchling turtles was highly dependent on their body temperature. Within a certain range, the locomotor performance increased with increasing body temperature. In our study, the optimal body temperature for locomotor performance was 31.5 degrees C, under which, the maximum continuous running distance, running distance per minute, and number of stops per minute averaged 1.87 m, 4.92 m.min-1, and 6.2 times.min-1, respectively. The correspondent values at 33.0 degrees C averaged 1.30 m, 4.28 m.min-1, and 7.7 times.min-1, respectively, which indicated that the locomotor performance of hatchling turtles was impaired at 33.0 degrees C. Therefore, extremely high body temperatures might have an adverse effect on locomotor performance of hatchling turtles.
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.
1983-01-01
Pressure temperature cross spectra are necessary in predicting noise propagation in regions of velocity gradients downstream of combustors if the effect of convective entropy disturbances is included. Pressure temperature cross spectra and coherences were measured at spatially separated points in a combustion rig fueled with hydrogen. Temperature-temperature and pressure-pressure cross spectra and coherences between the spatially separated points as well as temperature and pressure autospectra were measured. These test results were compared with previous results obtained in the same combustion rig using Jet A fuel in order to investigate their dependence on the type of combustion process. The phase relationships are not consistent with a simple source model that assumes that pressure and temperature are in phase at a point in the combustor and at all other points downstream are related to one another by only a time delay due to convection of temperature disturbances. Thus these test results indicate that a more complex model of the source is required.
NASA Astrophysics Data System (ADS)
Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.
1996-12-01
A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.
Baroclinic instability with variable gravity: A perturbation analysis
NASA Technical Reports Server (NTRS)
Giere, A. C.; Fowliss, W. W.; Arias, S.
1980-01-01
Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2013-05-01
Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.
On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients
NASA Astrophysics Data System (ADS)
Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.
2016-02-01
The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.
La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin
2014-01-01
Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009
Gradient estimates on the weighted p-Laplace heat equation
NASA Astrophysics Data System (ADS)
Wang, Lin Feng
2018-01-01
In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.
Compatibility of materials with liquid metal targets for SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.
1996-06-01
Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, {Delta}T, and velocitymore » are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to {approx}550{degrees}C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to {approx}650{degrees}C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above {approx}600{degrees}C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150{degrees}C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material.« less
Stability and nuclear dynamics of the Bicoid morphogen gradient
Gregor, Thomas; Wieschaus, Eric F.; McGregor, Alistair P.; Bialek, William; Tank, David W.
2008-01-01
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remains largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (~1 hour after fertilization) with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s), provide a consistent picture of Bicoid transport on short (~min) time scales, but challenge traditional models of long range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient. PMID:17632061
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
NASA Astrophysics Data System (ADS)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo; Cakmak, Mukerrem; Titomanlio, Giuseppe
2016-03-01
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micro structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.
Decreased precision contributes to the hypoxic thermoregulatory response in lizards.
Cadena, Viviana; Tattersall, Glenn J
2009-01-01
The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.
Effect of fast mold surface temperature evolution on iPP part morphology gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liparoti, Sara; Sorrentino, Andrea; Guzman, Gustavo
The control of mold surface temperature is an important factor that affects the sample surface morphology as well as the structural gradients (orientation crystal size, and type) as well as cooling stresses. The frozen layer thickness formed during the filling stage also has a very significant effect on the flow resistance and thus on the resulting pressure drop and flow length in thin wall parts. The possibility to have a hot mold during filling and a quick cooling soon afterward is a significant process enhancement particularly for specialized applications such as micro injection molding and for the reproduction of micromore » structured surfaces. Up to now, several methods (electromagnetic, infrared, hot vapor fleshing etc,) were tried to achieve fast temperature evolution of the mold. Unfortunately, all these methods require a complex balance between thermal and mechanical problems, equipment cost, energy consumption, safety, molding cycle time and part quality achievable. In this work, a thin electrical resistance was designed and used to generate a fast and confined temperature variation on mold surface (by joule effect). Since the whole temperature evolution can take place in a few seconds, one can couple the advantages of a high surface temperature during filling with the advantages of a low mold temperature, fast cooling and low heating dissipation. Some experiments were performed with a commercial iPP resin. The effects of the surface temperature and of the heating time (under constant electric power) on surface finishing and on the final morphology (thickness and structure of the different layers) are explored and discussed.« less
Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers.
Bethke, Kevin; Andrei, Virgil; Rademann, Klaus
2016-01-01
As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.
Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers
Bethke, Kevin; Andrei, Virgil; Rademann, Klaus
2016-01-01
As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes. PMID:26982458
Identification of animal behavioral strategies by inverse reinforcement learning.
Yamaguchi, Shoichiro; Naoki, Honda; Ikeda, Muneki; Tsukada, Yuki; Nakano, Shunji; Mori, Ikue; Ishii, Shin
2018-05-01
Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM) and isothermal migration (IM). With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerashchenko, Sergiy; Livescu, Daniel
Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
Gerashchenko, Sergiy; Livescu, Daniel
2016-07-28
Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Lin, Hao; Shavezipur, Mohammad; Yousef, Ahmed; Maleky, Farnaz
2016-03-01
Accurate prediction of growth of undesirable organisms (e.g., Pseudomonas fluorescens) in perishable foods (e.g., milk), held under sub-ideal storage conditions, can help ensure the quality and safety of these foods at the point of consumption. In this investigation, we inoculated sterile milk with P. fluorescens (~10(3) cfu/mL) and monitored inoculum growth behavior at constant and fluctuating storage temperatures. Three storage temperatures, 4 °C, 15 °C and 29 °C, were selected to simulate proper refrigeration conditions (4 °C) and temperature abuse, respectively. To simulate temperature fluctuation, milk held at 4 °C was subjected to temperature shifts to 15 °C or 29 °C for 4 to 6h. A modified logistic model was used to obtain the best-fit curve for the microbial growth under constant storage temperature. The specific growth rates at 4 °C, 15 °C, and 29 °C, obtained from experimental data, were 0.056 ± 0.00, 0.17 ± 0.05, and 0.46 ± 0.02 h(-1), respectively, and the lag time values were 29.5 ± 4.2, 12.7 ± 4.4, and 2.8 ± 0.3h, respectively. A model predicting bacterial growth under different temperature fluctuations was obtained using the growth parameters extracted from constant temperature experiments. Growth behavior predicted by the fluctuating temperature model and that obtained experimentally were in good agreement. Lag time exhibited a larger variation compared with specific growth rate, suggesting that it depends not only on growth temperature but also on the sample population and temperature gradient. Additionally, experimental data showed that changing the temperature during the lag phase induced an additional lag time before growth; however, no significant lag time was observed under the temperature fluctuation during the exponential phase. The results of this study provide information for precise shelf-life determination and reduction of food waste, particularly for milk and milk-containing food products. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Flow convergence caused by a salinity minimum in a tidal channel
Warner, John C.; Schoellhamer, David H.; Burau, Jon R.; Schladow, S. Geoffrey
2006-01-01
Residence times of dissolved substances and sedimentation rates in tidal channels are affected by residual (tidally averaged) circulation patterns. One influence on these circulation patterns is the longitudinal density gradient. In most estuaries the longitudinal density gradient typically maintains a constant direction. However, a junction of tidal channels can create a local reversal (change in sign) of the density gradient. This can occur due to a difference in the phase of tidal currents in each channel. In San Francisco Bay, the phasing of the currents at the junction of Mare Island Strait and Carquinez Strait produces a local salinity minimum in Mare Island Strait. At the location of a local salinity minimum the longitudinal density gradient reverses direction. This paper presents four numerical models that were used to investigate the circulation caused by the salinity minimum: (1) A simple one-dimensional (1D) finite difference model demonstrates that a local salinity minimum is advected into Mare Island Strait from the junction with Carquinez Strait during flood tide. (2) A three-dimensional (3D) hydrodynamic finite element model is used to compute the tidally averaged circulation in a channel that contains a salinity minimum (a change in the sign of the longitudinal density gradient) and compares that to a channel that contains a longitudinal density gradient in a constant direction. The tidally averaged circulation produced by the salinity minimum is characterized by converging flow at the bed and diverging flow at the surface, whereas the circulation produced by the constant direction gradient is characterized by converging flow at the bed and downstream surface currents. These velocity fields are used to drive both a particle tracking and a sediment transport model. (3) A particle tracking model demonstrates a 30 percent increase in the residence time of neutrally buoyant particles transported through the salinity minimum, as compared to transport through a constant direction density gradient. (4) A sediment transport model demonstrates increased deposition at the near-bed null point of the salinity minimum, as compared to the constant direction gradient null point. These results are corroborated by historically noted large sedimentation rates and a local maximum of selenium accumulation in clams at the null point in Mare Island Strait.
[Effect of temperature on performance of microbial fuel cell using beer wastewater].
Wang, Xin; Feng, Yu-Jie; Qu, You-Peng; Li, Dong-Mei; Li, He; Ren, Nan-Qi
2008-11-01
The effects of temperature on performance and biological community structure were investigated in air-cathode microbial fuel cells (MFCs) using beer wastewater amended with 50 mmol/L phosphate buffer solution (PBS). The maximum power density decreased from 483 mW/m2 to 435 mW/m2 when the temperature varied from 30 degrees C to 20 degrees C, meanwhile just a little decreasing on coulombic efficiency and the COD removal rate were observed. Decreasing of temperature resulted in effects both on cathode potential and anode potential, but cathode potential behaved much more sensitive to temperature. The half-saturation constants (Ks) obtained from the fit of Monod-type equation were 228 mg/L (30 degrees C) and 293 mg/L (20 degrees C) respectively. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that operating temperature not only affected the predominant population of the anodic bacterial community, but also had a great impact on the diversity of the cathodic microbial population.
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-01-01
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008
Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.
Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao
2015-11-24
We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.
Preliminary map of temperature gradients in the conterminous United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffanti, M.; Nathenson, M.
1980-09-01
Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less
NASA Astrophysics Data System (ADS)
Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.
2017-12-01
Antarctic temperature variations during Heinrich events, as recorded by δ18Oice, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.
Malik, Hitendra K; Singh, Sukhmander
2011-03-01
Rayleigh instability is investigated in a Hall thruster under the effect of finite temperature and density gradient of the plasma species. The instability occurs only when the frequency of the oscillations ω falls within a frequency band described by k{y}u₀+1/k_{y}∂²u_{0}/∂x²+Ω/k_{y}n_{0}∂n₀/∂x≪ω
Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients
Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.
2011-01-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614
Quantification and compensation of eddy-current-induced magnetic-field gradients.
Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R
2011-09-01
Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.
The thermo magnetic instability in hot viscose plasmas
NASA Astrophysics Data System (ADS)
Haghani, A.; Khosravi, A.; Khesali, A.
2017-10-01
Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.
Thermal analysis of a growing crystal in an aqueous solution
NASA Astrophysics Data System (ADS)
Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya
1980-10-01
The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.
Thermosolutal convection during dendritic solidification
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.
1989-01-01
This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.
NASA Astrophysics Data System (ADS)
Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang
2018-05-01
A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.
NASA Astrophysics Data System (ADS)
Song, Dongxing; Jin, Hui; Jing, Dengwei; Wang, Xin
2018-03-01
Aggregation and migration of colloidal particles under the thermal gradient widely exists in nature and many industrial processes. In this study, dynamic properties of polydisperse colloidal particles in the presence of thermal gradient were studied by a modified Brownian dynamic model. Other than the traditional forces on colloidal particles, including Brownian force, hydrodynamic force, and electrostatic force from other particles, the electrostatic force from the asymmetric ionic diffusion layer under a thermal gradient has been considered and introduced into the Brownian dynamic model. The aggregation ratio of particles (R A), the balance time (t B) indicating the time threshold when {{R}A} becomes constant, the porosity ({{P}BA} ), fractal dimension (D f) and distributions of concentration (DISC) and aggregation (DISA) for the aggregated particles were discussed based on this model. The aggregated structures formed by polydisperse particles are less dense and the particles therein are loosely bonded. Also it showed a quite large compressibility as the increases of concentration and interparticle potential can significantly increase the fractal dimension. The thermal gradient can induce two competitive factors leading to a two-stage migration of particles. When t<{{t}B} , the unsynchronized aggregation is dominant and the particles slightly migrate along the thermal gradient. When t>{{t}B} , the thermophoresis becomes dominant thus the migrations of particles are against the thermal gradient. The effect of thermophoresis on the aggregate structures was found to be similar to the effect of increasing particle concentration. This study demonstrates how the thermal gradient affects the aggregation of monodisperse and polydisperse particles and can be a guide for the biomimetics and precise control of colloid system under the thermal gradient. Moreover, our model can be easily extended to other more complex colloidal systems considering shear, temperature fluctuation, surfactant, etc.
Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek
2014-01-01
Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397
NASA Technical Reports Server (NTRS)
Wang, Jai-Ching
1992-01-01
Semiconductor crystals such as Hg(1-x)Cd(x)Te grown by unidirectional solidification Bridgmann method have shown compositional segregations in both the axial and radial directions. Due to the wide separation between the liquidus and the solidus of its pseudobinary phase diagram, there is a diffusion layer of higher HgTe content built up in the melt near the melt-solid interface which gives a solute concentration gradient in the axial direction. Because of the higher thermal conductivity in the melt than that in the crystal there is a thermal leakage through the fused silica crucible wall near the melt-solid interface. This gives a thermal gradient in the radial direction. Hart (1971), Thorpe, Hutt and Soulsby (1969) have shown that under such condition a fluid will become convectively unstable as a result of different diffusivities of temperature and solute. It is quite important to understand the effects of this thermosolute convection on the compositional segregation in the unidirectionally solidified crystals. To reach this goal, we start with a simplified problem. We study the nature of fluid flows of a stratified solution in a cylindrical container with a radial temperature gradient. The cylindrical container wall is considered to be maintained at a higher temperature than that at the center of the solution and the solution in the lower gravitational direction has higher solute concentration which decrease linearly to a lower concentration and then remain constant to the top of the solution. The sample solution is taken to be salt water.
43 CFR 3252.14 - How must I complete a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...
43 CFR 3252.14 - How must I complete a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...
43 CFR 3252.14 - How must I complete a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...
43 CFR 3252.14 - How must I complete a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I complete a temperature gradient... LEASING Conducting Exploration Operations § 3252.14 How must I complete a temperature gradient well? Complete temperature gradient wells to allow for proper abandonment, and to prevent interzonal migration of...
Designing gradient coils with reduced hot spot temperatures.
While, Peter T; Forbes, Larry K; Crozier, Stuart
2010-03-01
Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Advanced turbine study. [airfoil coling in rocket turbines
NASA Technical Reports Server (NTRS)
1982-01-01
Experiments to determine the available increase in turbine horsepower achieved by increasing turbine inlet temperature over a range of 1800 to 2600 R, while applying current gas turbine airfoil cling technology are discussed. Four cases of rocket turbine operating conditions were investigated. Two of the cases used O2/H2 propellant, one with a fuel flowrate of 160 pps, the other 80 pps. Two cases used O2/CH4 propellant, each having different fuel flowrates, pressure ratios, and inlet pressures. Film cooling was found to be the required scheme for these rocket turbine applications because of the high heat flux environments. Conventional convective or impingement cooling, used in jet engines, is inadequate in a rocket turbine environment because of the resulting high temperature gradients in the airfoil wall, causing high strains and low cyclic life. The hydrogen-rich turbine environment experienced a loss, or no gain, in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The effects of film cooling with regard to reduced flow available for turbine work, dilution of mainstream gas temperature and cooling reentry losses, offset the relatively low specific work capability of hydrogen when increasing turbine inlet temperature over the 1800 to 2600 R range. However, the methane-rich environment experienced an increase in delivered horsepower as turbine inlet temperature was increased at constant airfoil life. The results of a materials survey and heat transfer and durability analysis are discussed.
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2011-09-28
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient measurements are required. Under these conditions, retention times can be predicted with a maximal relative error of 4.3% (average relative error: 2.2%). As an example, the systematic method development for an isothermal as well as a temperature gradient separation of selected sulfonamides by means of the adapted LES model is demonstrated using a pure water mobile phase. Both methods are compared and it is shown that the temperature-gradient separation provides some advantages over the isothermal separation in terms of limits of detection and analysis time. Copyright © 2011 Elsevier B.V. All rights reserved.
Alecu, I M; Truhlar, Donald G
2011-12-29
Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society
Temperature enhances the affinity of soil alkaline phosphatase to Cd.
Tan, Xiangping; Machmuller, Megan B; Wang, Ziquan; Li, Xudong; He, Wenxiang; Cotrufo, M Francesca; Shen, Weijun
2018-04-01
Both elevated temperature and heavy metal contamination can have profound effects on microbial function and soil biogeochemical cycling. However, the interactive effects of heavy metal toxicity and temperature on microbial activity have been poorly understood. The aim of this study was to quantify the effect of temperature and cadmium (Cd) toxicity on alkaline phosphatase (ALP) produced by microbes to acquire phosphorus. To determine whether these effects were dependent on soil properties, we utilized 11 soil types from cropland throughout China. We measured ALP activities and kinetics across a temperature (17, 27, 37, and 47 °C) and Cd concentration gradient (0, 0.6, 5, 25, 50, 100, 200, 300, and 500 mg kg -1 ). We found that the half saturation constant (K m ) and the velocity constant (k) of ALP increased nonlinearly with temperature across all soil types. However, the maximum reaction velocity (V max ) increased linearly with temperature. Regardless of soil type and temperature, Cd had a non-competitive inhibitory mechanism. Soil pH, TOC, and clay content were the major factors controlling the affinity of ALP for Cd (K i ). The ecology dose (ED 50 ) for V max and k, and K i were negatively related to temperature, indicating that the toxicity of Cd on ALP is temperature-dependent. Additionally, higher temperatures led to more inhibition of Cd on ALP activity in alkaline soils than that in acidic and neutral soils. Our results suggest that global warming might accelerate the deficiency of available phosphorus in Cd contaminated soils due to higher inhibition of Cd on ALP activity, particularly in alkaline soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hess, Aaron T; Robson, Matthew D
2017-03-01
To present a framework in which time-varying gradients are applied with RF spoiling to reduce unwanted signal, particularly at high flip angles. A time-varying gradient spoiler scheme compatible with RF spoiling is defined, in which spoiler gradients cycle through the vertices of a hexagon, which we call hexagonal spoiling. The method is compared with a traditional constant spoiling gradient both in the transition to and in the steady state. Extended phase graph (EPG) simulations, phantom acquisitions, and in vivo images were used to assess the method. Simulations, phantom and in vivo experiments showed that unwanted signal was markedly reduced by employing hexagonal spoiling, both in the transition to and in the steady state. For adipose tissue at 1.5 Tesla, the unwanted signal in the steady state with a 60 ° flip angle was reduced from 22% with constant spoiling to 2% with hexagonal spoiling. A time-varying gradient spoiler scheme that works with RF spoiling, called "hexagonal spoiling," has been presented and found to offer improved spoiling over the traditional constant spoiling gradient. Magn Reson Med 77:1231-1237, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Velocity profile of water vapor inside a cavity with two axial inlets and two outlets
NASA Astrophysics Data System (ADS)
Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo
2014-03-01
To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
On-Orbit Operation and Performance of MODIS Blackbody
NASA Technical Reports Server (NTRS)
Xiong, X.; Chang, T.; Barnes, W.
2009-01-01
MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.
Quantification of the effect of temperature gradients in soils on subsurface radon signal
NASA Astrophysics Data System (ADS)
Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam
2017-04-01
Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.
First-principles study of the structural, electronic and thermal properties of CaLiF3
NASA Astrophysics Data System (ADS)
Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.
2013-09-01
Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.
Salamanca, C Alejandra; Fiol, Núria; González, Carlos; Saez, Marc; Villaescusa, Isabel
2017-01-01
Espresso extraction is generally carried out at a fixed temperature within the range 85-95°C. In this work the extraction of the espressos was made in a new generation coffee machine that enables temperature profiling of the brewing water. The effect of using gradient of temperature to brew espressos on physicochemical and sensorial characteristics of the beverage has been investigated. Three different extraction temperature profiles were tested: updrawn gradient (88-93°C), downdrawn gradient (93-88°C) and fixed temperature (90°C). The coffee species investigated were Robusta, Arabica natural and Washed Arabica. Results proved that the use of gradient temperature for brewing espressos allows increasing or decreasing the extraction of some chemical compounds from coffee grounds. Moreover an appropriate gradient of temperature can highlight or hide some sensorial attributes. In conclusion, the possibility of programming gradient of temperature in the coffee machines recently introduced in the market opens new expectations in the field of espresso brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct simulation of isothermal-wall supersonic channel flow
NASA Technical Reports Server (NTRS)
Coleman, Gary N.
1993-01-01
The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.
Reptile Embryos Lack the Opportunity to Thermoregulate by Moving within the Egg.
Telemeco, Rory S; Gangloff, Eric J; Cordero, Gerardo A; Mitchell, Timothy S; Bodensteiner, Brooke L; Holden, Kaitlyn G; Mitchell, Sarah M; Polich, Rebecca L; Janzen, Fredric J
2016-07-01
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching.
Gravitational modulation of thermosolutal convection during directional solidification
NASA Astrophysics Data System (ADS)
Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1993-03-01
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.
A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983
NASA Technical Reports Server (NTRS)
Moffat, R. J.; Kays, W. M.
1984-01-01
For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.
Hot Electrons from Two-Plasmon Decay
NASA Astrophysics Data System (ADS)
Russell, D. A.; Dubois, D. F.
2000-10-01
We solve, self-consistently, the relativistic quasilinear diffusion equation and Zakharov's model equations of Langmuir wave (LW) and ion acoustic wave (IAW) turbulence, in two dimensions, for saturated states of the Two-Plasmon Decay instability. Parameters are those of the shorter gradient scale-length (50 microns) high temperature (4 keV) inhomogeneous plasmas anticipated at LLE’s Omega laser facility. We calculate the fraction of incident laser power absorbed in hot electron production as a function of laser intensity for a plane-wave laser field propagating parallel to the background density gradient. Two distinct regimes are identified: In the strong-turbulent regime, hot electron bursts occur intermittently in time, well correlated with collapse in the LW and IAW fields. A significant fraction of the incident laser power ( ~10%) is absorbed by hot electrons during a single burst. In the weak or convective regime, relatively constant rates of hot electron production are observed at much reduced intensities.
43 CFR 3252.13 - How long may I collect information from my temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...
43 CFR 3252.13 - How long may I collect information from my temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...
43 CFR 3252.13 - How long may I collect information from my temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...
43 CFR 3252.13 - How long may I collect information from my temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How long may I collect information from my temperature gradient well? 3252.13 Section 3252.13 Public Lands: Interior Regulations Relating to Public Lands... temperature gradient well? You may collect information from your temperature gradient well for as long as your...
Fisher, Jason C.; Twining, Brian V.
2011-01-01
During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.
TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS
Elliott, R. Paul
1963-01-01
Elliott, R. Paul (U.S. Department of Agriculture, Albany, Calif.). Temperature-gradient incubator for determining the temperature range of growth of microorganisms. J. Bacteriol. 85:889–894. 1963.—The temperature-gradient incubator consists of an aluminum bar with troughs for media, with controlled temperatures at each end, and with insulation to prevent heat transfer. The resulting linear temperature gradient provides a means for determining minimal or maximal growth temperatures of microorganisms in any desired range and at any desired gradient. The operation of the incubator is unaffected by line-voltage variations or by ambient temperature. Media do not dehydrate seriously even during prolonged periods of operation. The incubator can be used to determine water activity of media by an adjustment to permit partial freezing. Either thermocouples or thermistors may be used to measure temperatures. Images PMID:14044959
Minimizing hot spot temperature in asymmetric gradient coil design.
While, Peter T; Forbes, Larry K; Crozier, Stuart
2011-08-01
Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.
Magnetoelectrets prepared by using temperature gradient method
NASA Astrophysics Data System (ADS)
Ojha, Pragya; Qureshi, M. S.; Malik, M. M.
2015-05-01
A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.
Temperature dependence of luminescence behavior in Er3+-doped BaY2F8 single crystal
NASA Astrophysics Data System (ADS)
Wang, Shuai; Ruan, Yongfeng; Tsuboi, Taiju; Tong, Hongshuang; Wang, Youfa; Zhang, Shouchao
2013-12-01
BaY2F8 single crystals doped with Er3+ ions have been grown by the temperature gradient method. The absorption, excitation and emission spectra for Er3+-doped BaY2F8 crystals were measured at room temperature (297 K) and 12 K. The effect of temperature on the luminescence intensity and effective bandwidth was investigated in the range of 12-297 K. The temperature dependence of the fluorescence intensity ratio (FIR) for the 522 nm emission (2H11/2→4I15/2 transition) and the 552 nm emission (4S3/2→4I15/2 transition) was also studied in the range of 12-297 K. Based on the fitting FIR curve, the value of the constant term B (2.25) was obtained. The fitting FIR curve and FIR equation may have a potential application in the temperature measurement. In addition, the up-conversion spectrum at room temperature was recorded under excitation of 980 nm and the up-conversion mechanism was analyzed in detail.
NASA Technical Reports Server (NTRS)
Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel
2014-01-01
The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful model can be developed.
The Radar Effects of Perchlorate-Doped Ice in the Martian Polar Layered Deposits
NASA Astrophysics Data System (ADS)
Stillman, D.; Winebrenner, D. P.; Grimm, R. E.; Pathare, A.
2010-12-01
The presence of perchlorate in soil at near-polar latitudes on Mars suggests that dust in the ice of the North Polar Layered Deposits (NPLD) may introduce perchlorate impurities to that ice. Because eutectic temperatures of perchlorate salts range as low as 206 K (for magnesium perchlorate), perchlorate doping of NPLD ice may result in grain-scale liquid veins and softening of ice rheology at temperatures comparable to those computed for the base of the NPLD in the present climate. Any such softening would be important for understanding how processes including ice flow have shaped the NPLD. Observable consequences of such softening, or of the combination of perchlorate doping and temperatures that could cause softening, are thus similarly important. In particular, the dielectric properties of perchlorate-laden ice in a temperature gradient will change relatively rapidly at the point in the gradient near the eutectic temperature. Here we investigate the radar reflectivity of such a eutectic transition in ice with a model in which perchlorate concentration is constant and temperature varies linearly with depth in the ice. We have conducted measurements of the complex permittivity of Mg and Na perchlorate-doped ice over a range of temperatures (183 - 273 K) and concentrations. Below the eutectic temperature, the perchlorate-doped ice has electrical properties similar to that of choride-doped ice. However, above the eutectic temperature, some of the ice melts forming liquid at triple junctions. At concentrations above 3 mM, the liquid at triple junctions become connected forming brine channels, which greatly increase the dc conductivity and radar attenuation. At concentrations below 3 mM, the liquid at triple junctions are not connected and do not affect the dc conductivity. However, the liquid H2O molecules are able to rotate their permanent dipole at radar frequencies, thus causing an increase in radar attenuation. The MARSIS and SHARAD attenuation rates increase with temperature as the strength of the loss increases with a greater amount of liquid water even though the relaxation frequency (maximum loss) shifts to higher frequencies. We combine our electrical property measurements with a model for radar reflection from a continuously-varying dielectric profile. Because the change in permittivity occurs over a range of depths depending on the value of the temperature gradient, radar detectability of the eutectic transition depends on the radar frequency as well as gradient and concentration values. We compute expected radar echo strengths for MARSIS and SHARAD and depths relative to the bed at which transitions may be expected, to address whether information of direct rheological relevance may be available from those instruments.
NASA Astrophysics Data System (ADS)
Gärtner, S.; Gundlach, B.; Headen, T. F.; Ratte, J.; Oesert, J.; Gorb, S. N.; Youngs, T. G. A.; Bowron, D. T.; Blum, J.; Fraser, H. J.
2017-10-01
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
Clark, H F; Kaminski, F; Karzon, D T
1970-05-01
Establishment of a near-linear temperature gradient in an incubator has been accomplished by the application of heat to one terminus of a conducting body, normally a metal bar, and the removal of heat from the other terminus of the conducting body. Such incubators have been complex and unwieldy because of the need for mechanical refrigeration. We have described a simplified temperature gradient incubator which uses thermoelectric module cooling coupled with electric heating. Along the gradient, 20 stations in two parallel rows of 10, each accommodating a 30-ml plastic cell culture flask, were continually monitored by an electronic thermometer, and the temperatures were recorded. By manipulation of two simple potentiometer controls, any temperature gradient between 0 and 50 C could be obtained. Minor deviations which occurred between theoretically perfect and obtained temperature gradients were reproducible and readily measured. The gradient incubator was particularly applicable to (i) simultaneously studying a given biological activity over the entire temperature range supporting the growth of a given cell, virus, or microorganism, or (ii) precisely defining the upper or lower temperature limits of a biological system by 10-point determinations. Preliminary experiments have demonstrated the usefulness of the apparatus in characterizing the temperature limits for growth in vitro of cells of reptilian cell lines. The gradient incubator was also successfully utilized for the characterization of the effect of temperature on the efficiency of plating of amphibian viruses and possible temperature variants of those viruses.
Electron temperature critical gradient and transport stiffness in DIII-D
Smith, Sterling P.; Petty, Clinton C.; White, Anne E.; ...
2015-07-06
The electron energy flux has been probed as a function of electron temperature gradient on the DIII-D tokamak, in a continuing effort to validate turbulent transport models. In the scan of gradient, a critical electron temperature gradient has been found in the electron heat fluxes and stiffness at various radii in L-mode plasmas. The TGLF reduced turbulent transport model [G.M. Staebler et al, Phys. Plasmas 14, 055909 (2007)] and full gyrokinetic GYRO model [J. Candy and R.E. Waltz, J. Comput. Phys. 186, 545 (2003)] recover the general trend of increasing electron energy flux with increasing electron temperature gradient scale length,more » but they do not predict the absolute level of transport at all radii and gradients. Comparing the experimental observations of incremental (heat pulse) diffusivity and stiffness to the models’ reveals that TGLF reproduces the trends in increasing diffusivity and stiffness with increasing electron temperature gradient scale length with a critical gradient behavior. Furthermore, the critical gradient of TGLF is found to have a dependence on q 95, contrary to the independence of the experimental critical gradient from q 95.« less
Directional Bleb Formation in Spherical Cells under Temperature Gradient
Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi
2015-01-01
Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871
Dissipative dark soliton in a complex plasma.
Heidemann, R; Zhdanov, S; Sütterlin, R; Thomas, H M; Morfill, G E
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
Dissipative Dark Soliton in a Complex Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidemann, R.; Zhdanov, S.; Suetterlin, R.
2009-04-03
The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.
NASA Astrophysics Data System (ADS)
Vollrath, Bastian; Hübel, Hartwig
2018-01-01
The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and accumulated strains at plastic or elastic shakedown. The principles of the method are summarized. Its practical applicability is shown by the example of a pipe bend subjected to constant internal pressure along with cyclic in-plane bending or/and cyclic radial temperature gradient. The results are compared with incremental analyses performed step-by-step throughout the entire load history until the state of plastic shakedown is achieved.
A Study of Wake Development and Structure in Constant Pressure Gradients
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.; Liu, Xiaofeng
2000-01-01
Motivated by the application to high-lift aerodynamics for commercial transport aircraft, a systematic investigation into the response of symmetric/asymmetric planar turbulent wake development to constant adverse, zero, and favorable pressure gradients has been conducted. The experiments are performed at a Reynolds number of 2.4 million based on the chord of the wake generator. A unique feature of this wake study is that the pressure gradients imposed on the wake flow field are held constant. The experimental measurements involve both conventional LDV and hot wire flow field surveys of mean and turbulent quantities including the turbulent kinetic energy budget. In addition, similarity analysis and numerical simulation have also been conducted for this wake study. A focus of the research has been to isolate the effects of both pressure gradient and initial wake asymmetry on the wake development. Experimental results reveal that the pressure gradient has a tremendous influence on the wake development, despite the relatively modest pressure gradients imposed. For a given pressure gradient, the development of an initially asymmetric wake is different from the initially symmetric wake. An explicit similarity solution for the shape parameters of the symmetric wake is obtained and agrees with the experimental results. The turbulent kinetic energy budget measurements of the symmetric wake demonstrate that except for the convection term, the imposed pressure gradient does not change the fundamental flow physics of turbulent kinetic energy transport. Based on the turbulent kinetic energy budget measurements, an approach to correct the bias error associated with the notoriously difficult dissipation estimate is proposed and validated through the comparison of the experimental estimate with a direct numerical simulation result.
Zheng, Chao; Huang, Haiying; He, Tianbai
2014-02-01
In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D
2018-08-24
By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.
Wu, Jin-Gen; Liu, Man-Chi; Tsai, Ming-Fei; Yu, Wei-Shun; Chen, Jian-Zhang; Cheng, I-Chun; Lin, Pei-Chun
2012-04-01
We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C. © 2012 American Institute of Physics
Melissa L. Snover; Michael J. Adams; Donald T. Ashton; Jamie B. Bettaso; Hartwell H. Welsh
2015-01-01
Summary1. Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
NASA Astrophysics Data System (ADS)
Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2017-08-01
As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.
High temperature thermo-physical properties of SPS-ed W-Cu functional gradient materials
NASA Astrophysics Data System (ADS)
Galatanu, Magdalena; Enculescu, Monica; Galatanu, Andrei
2018-02-01
The divertor of a fusion reactor like DEMO requires materials able to withstand high heat fluxes and neutron irradiation for several years. For the water cooling concept of this essential part of the reactor, the most likely plasma facing material will be W, while the heatsink material considered is CuCrZr or an improved version of such a Cu-based alloy. To realize W-Cu alloy joints able to withstand thousands of thermal cycles can be difficult due to the difference between the thermal expansion coefficients of these materials. In this work we investigate the possibility to realize such joints by using W-Cu functional gradient materials (FGMs) produced from nanometric and micrometric metallic powders mixtures and consolidated by spark plasma sintering at about 900 °C. Morphological and thermal properties investigations, performed for typical compositions, shows that the best results are obtained using powders with micrometric dimensions. A resulting 1 mm thick, 3 layers W-Cu FGM produced by this simple method shows a remarkable almost constant thermal conductivity value of 200 W m-1 K-1, from room temperature up to 1000 °C.
NASA Astrophysics Data System (ADS)
Forestier, M.; Haldenwang, P.
We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
NASA Astrophysics Data System (ADS)
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Ijaz; Qayyum, Sumaira; Alsaedi, A.; Khan, M. Imran
2018-03-01
This research addressed entropy generation for MHD stagnation point flow of viscous nanofluid over a stretching surface. Characteristics of heat transport are analyzed through nonlinear radiation and heat generation/absorption. Nanoliquid features for Brownian moment and thermophoresis have been considered. Fluid in the presence of constant applied inclined magnetic field is considered. Flow problem is mathematically modeled and governing expressions are changed into nonlinear ordinary ones by utilizing appropriate transformations. The effects of pertinent variables on velocity, nanoparticle concentration and temperature are discussed graphically. Furthermore Brownian motion and thermophoresis effects on entropy generation and Bejan number have been examined. Total entropy generation is inspected through various flow variables. Consideration is mainly given to the convergence process. Velocity, temperature and mass gradients at the surface of sheet are calculated numerically.
The Proell Effect: A Macroscopic Maxwell's Demon
NASA Astrophysics Data System (ADS)
Rauen, Kenneth M.
2011-12-01
Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Local thermodynamic equilibrium for globally disequilibrium open systems under stress
NASA Astrophysics Data System (ADS)
Podladchikov, Yury
2016-04-01
Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.
NASA Astrophysics Data System (ADS)
Tanikawa, W.; Tadai, O.; Morita, S.; Lin, W.; Yamada, Y.; Sanada, Y.; Moe, K.; Kubo, Y.; Inagaki, F.
2014-12-01
Heat transport properties such as thermal conductivity, heat capacity, and thermal diffusivity are significant parameters that influence on geothermal process in sedimentary basins at depth. We measured the thermal properties of sediment core samples at off-Shimokita basin obtained from the IODP Expedition 337 and Expedition CK06-06 in D/V Chikyu shakedown cruise. Overall, thermal conductivity and thermal diffusivity increased with depth and heat capacity decreased with depth, although the data was highly scattered at the depth of approximately 2000 meters below sea floor, where coal-layers were formed. The increase of thermal conductivity is mainly explained by the porosity reduction of sediment by the consolidation during sedimentation. The highly variation of the thermal conductivity at the same core section is probably caused by the various lithological rocks formed at the same section. Coal shows the lowest thermal conductivity of 0.4 Wm-1K-1, and the calcite cemented sandstone/siltstone shows highest conductivity around 3 Wm-1K-1. The thermal diffusivity and heat capacity are influenced by the porosity and lithological contrast as well. The relationship between thermal conductivity and porosity in this site is well explained by the mixed-law model of Maxwell or geometric mean. One dimensional temperature-depth profile at Site C0020 in Expedition 337 estimated from measured physical properties and radiative heat production data shows regression of thermal gradient with depth. Surface heat flow value was evaluated as 29~30 mWm-2, and the value is consistent with the heat flow data near this site. Our results suggest that increase of thermal conductivity with depth significantly controls on temperature profile at depth of basin. If we assume constant thermal conductivity or constant geothermal gradient, we might overestimate temperature at depth, which might cause big error to predict the heat transport or hydrocarbon formation in deepwater sedimentary basins.
Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)
NASA Astrophysics Data System (ADS)
Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.
2015-11-01
The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
NASA Astrophysics Data System (ADS)
Pierre, S.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.; Groffman, P.; Hewson, I.; Fahey, T.
2016-12-01
Interactions among environmental variables can obfuscate the primary drivers linking soil microbial community function to ecosystem biogeochemistry. These connections are important to understand in order to predict ecosystem responses to global climate change. In particular, the role of mean annual temperature (MAT) in regulating carbon (C) and nitrogen (N) cycling via microbial communities remains unclear. To study these dynamics in situ, we used a a natural elevation gradient of tropical wet montane forest on Mauna Kea, Hawai'i with established permanent plots. Across the gradient, environmental variables besides MAT remain constant. We studied the abundance and activity of the amoA gene, which regulates the rate-limiting step of nitrification, in ammonia oxidizing archaea (AOA) and bacteria (AOB) with relation to N availability and cycling across increasing MAT. Our results show that the abundance of amoA is positively correlated with MAT (p<0.05; r2=0.34) and that MAT and amoA abundance are the primary predictors of nitrate (NO3-) bioavailability (p<0.05). We also found that the relative expression of amoA (cDNA/DNA) is not correlated with MAT or potential net nitrification rate. Our results indicate the direct role of MAT in ammonia oxidizer community structure and demonstrate feedbacks to nutrient availability in forest systems. These findings suggest that forest primary production and carbon cycling may be affected by AOA and AOB responses to rising MAT.
Response of Soft Continuous Structures and Topological Defects to a Temperature Gradient.
Kurita, Rei; Mitsui, Shun; Tanaka, Hajime
2017-09-08
Thermophoresis, which is mass transport induced by a temperature gradient, has recently attracted considerable attention as a new way to transport materials. So far the study has been focused on the transport of discrete structures such as colloidal particles, proteins, and polymers in solutions. However, the response of soft continuous structures such as membranes and gels to a temperature gradient has been largely unexplored. Here we study the behavior of a lamellar phase made of stacked surfactant bilayer membranes under a temperature gradient. We find the migration of membranes towards a low-temperature region, causing the increase in the degree of membrane undulation fluctuations towards that direction. This is contrary to our intuition that the fluctuations are weaker at a lower temperature. We show that this can be explained by temperature-gradient-induced migration of membranes under the topological constraint coming from the connectivity of each membrane. We also reveal that the pattern of an edge dislocation array formed in a wedge-shaped cell can be controlled by a temperature gradient. These findings suggest that application of a temperature gradient provides a novel way to control the organization of soft continuous structures such as membranes, gels, and foams, in a manner essentially different from the other types of fields, and to manipulate topological defects.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment
NASA Technical Reports Server (NTRS)
Berg, Robert F.; Moldover, Michael R.
1993-01-01
Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.
Initial Investigation of a Novel Thermal Storage Concept as Part of a Renewable Energy System
2013-06-01
stress (pascal) z-component of shear stress (pascal) Fslip constant Esl ip constant surface tension gradient (n/m-k) specularity coefficient...Axis x-component of ¥-Component of z- component of x -component of v-component of z-component of Fs l ip constant Esl i p constant Rotation
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
NASA Astrophysics Data System (ADS)
Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.
2012-05-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Using simple environmental variables to estimate below-ground productivity in grasslands
Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.
2002-01-01
In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Gao, Peifeng; Wang, Xingzhe; Zhou, Youhe
2015-10-01
The low temperature superconducting materials, such as Nb3Sn and Nb3Al, have similar crystal structures and elastic properties. However, their critical-temperature degradations always show the distinct way under mechanical stresses. In this study, first-principles calculations for the low temperature superconductors based on plane-wave pseudo-potential density functional theory within the generalized gradient approximation are implemented, and the elastic moduli of Nb3Sn and Nb3Al and those superconductivities in the presence of hydrostatic pressure are evaluated. The Debye temperatures are obtained by the bulk moduli and shear moduli of superconducting materials. The MacMillan equation is further used to acquire the critical temperatures of Nb3Sn and Nb3Al under different hydrostatic pressures. It is found that the elastic constants and bulk moduli of the low temperature superconductors are enhanced by the applied hydrostatic pressure, while the critical temperatures usually are decreased with the pressure. Additionally, the decrease of critical-temperature for Nb3Sn is more sensitive to the hydrostatic pressure than the one for Nb3Al. The prediction results show good agreement with the experimental results in the literatures qualitatively.
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov
The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2012-01-27
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
NASA Technical Reports Server (NTRS)
Palusinski, O. A.; Allgyer, T. T.
1979-01-01
The elimination of Ampholine from the system by establishing the pH gradient with simple ampholytes is proposed. A mathematical model was exercised at the level of the two-component system by using values for mobilities, diffusion coefficients, and dissociation constants representative of glutamic acid and histidine. The constants assumed in the calculations are reported. The predictions of the model and computer simulation of isoelectric focusing experiments are in direct importance to obtain Ampholine-free, stable pH gradients.
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
Thermal Gradient Fining of Glass
NASA Technical Reports Server (NTRS)
Wilcox, W.
1983-01-01
Molten glass fined (cleared of bubbles) by heating with suitable temperature gradient, according to preliminary experiments. Temperature gradient produces force on gas bubbles trapped in molten glass pushing bubbles to higher temperature region where they are collected. Concept demonstrated in experiments on Earth and on rocket.
Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.
Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo
2014-08-01
We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gärtner, S.; Fraser, H. J.; Gundlach, B.
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K.more » By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought.« less
NASA Astrophysics Data System (ADS)
Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao
2016-08-01
Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely the result of heterogeneous streambed hydraulic characteristics in these areas. Our results have significant implications for hyporheic micro-habitats, fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
43 CFR 3252.12 - How deep may I drill a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How deep may I drill a temperature... RESOURCE LEASING Conducting Exploration Operations § 3252.12 How deep may I drill a temperature gradient well? (a) You may drill a temperature gradient well to any depth that we approve in your exploration...
Fully kinetic Biermann battery and associated generation of pressure anisotropy
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Loureiro, N. F.; Silva, L. O.
2018-03-01
The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to the electron Weibel instability. When both density and temperature gradients are present and nonparallel to each other, we obtain a Biermann-like linear-in-time magnetic field growth. Accompanying particle-in-cell numerical simulations are shown to confirm our analytical results.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar
2017-12-01
In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.
Double-spin-echo diffusion weighting with a modified eddy current adjustment.
Finsterbusch, Jürgen
2010-04-01
Magnetic field inhomogeneities like eddy current-related gradient fields cause geometric distortions in echo-planar imaging (EPI). This in particular affects diffusion-weighted imaging where these distortions vary with the direction of the diffusion weighting and hamper the accurate determination of diffusion parameters. The double-spin-echo preparation often used aims to reduce the cumulative eddy current effect by adjusting the diffusion-weighting gradient pulse durations to the time constant of the dominant eddy current contribution. However, eddy currents with a variety of time constants may be present and cause residual distortions. Here, a modification is proposed where the two bipolar gradient pairs of the preparation are adjusted independently to different time constants. At the expense of a slightly prolonged echo time, residual geometric distortions and correspondingly increased values of the diffusion anisotropy can be reduced as is demonstrated in phantoms and the human brain. Thus, it may help to improve the reliability of diffusion-weighted EPI. Copyright 2010 Elsevier Inc. All rights reserved.
Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung
2017-03-22
A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.
Mousavi, Sayed Ali; Kargar-Dehnavi, Vida; Mousavi, Sayed Amir
2012-01-01
Background: Nickel-titanium (Ni-Ti) rotary instrument files are important devices in Endodontics in root canal preparation. Ni-Ti file breakage is a critical and problematic issue and irrigation techniques were applied to decrease risk of file failure root. The aim of the present study was to compare the temperature gradient change of different irrigation solutions with Ni-Ti rotary instrument system during root canal preparation and also to define their effects on the file failure. Materials and Methods: A novel computerized instrumentation was utilized and thirty standard (ProFile #25/.04) files were divided into three groups and subjected to a filing in the root canal test. Changes in temperature on teeth under constant instrumental conditions with custom-designed computerized experimental apparatus were measured by using a temperature sensor bonded to the apical hole. A rotary instrument for canal preparation in three series of solution was used and the changes in temperature after each solution were compared. Finally, the file failure results were mentored according to each step of test. Comparisons were performed between group status clinically by using ANOVA (t) test, once the sample showed up normal and differences of P<0.01 were considered significant. All data collected were computerized and analyzed for frequency, distribution, and statistical description. Results: There was a decrease in the temperature of the instruments, which were immersed in 5% NaOCl, when compared with the water group (P<0.01). There was also a decrease in the temperature of the instruments immersed in water, when compared with the no solution group (P<0.01). Test results showed that sodium hypochlorite, water, or air of root canals does alter the properties of gradual temperature change and contributes to the failure of the instruments. Conclusion: By immersing the file in 5% NaOCl, the temperature gradient decreased and instrument failure was reduced. PMID:23087732
Continuous gradient temperature Raman spectroscopy of oleic and linoleic acids from -100 to 50°C
USDA-ARS?s Scientific Manuscript database
Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DS...
Base metal thermocouples drift rate dependence from thermoelement diameter
NASA Astrophysics Data System (ADS)
Pavlasek, P.; Duris, S.; Palencar, R.
2015-02-01
Temperature measurements are one of the key factors in many industrial applications that directly affect the quality, effectiveness and safety of manufacturing processes. In many industrial applications these temperature measurements are realized by thermocouples. Accuracy of thermocouples directly affects the quality of the final product of manufacturing and their durability determines the safety margins required. One of the significant effects that affect the precision of the thermocouples is short and long term stability of their voltage output. This stability issue occurs in every type of thermocouples and is caused by multiple factors. In general these factors affect the Seebeck coefficient which is a material constant, which determines the level of generated voltage when exposed to a temperature gradient. Changes of this constant result in the change of the thermocouples voltage output thus indicated temperature which can result in production quality issues, safety and health hazards. These alternations can be caused by physical and chemical changes within the thermocouple lead material. Modification of this material constant can be of temporary nature or permanent. This paper concentrates on the permanent, or irreversible changes of the Seebeck coefficient that occur in commonly used swaged MIMS Type N thermocouples. These permanent changes can be seen as systematic change of the EMF of the thermocouple when it is exposed to a high temperature over a period of time. This change of EMF by time is commonly known as the drift of the thermocouple. This work deals with the time instability of thermocouples EMF at temperatures above 1200 °C. Instability of the output voltage was taken into relation with the lead diameter of the tested thermocouples. This paper concentrates in detail on the change of voltage output of thermocouples of different diameters which were tested at high temperatures for the overall period of more than 210 hours. The gather data from this testing was used to establish the relation between the level of EMF drift and the lead diameter of the thermocouple thermoelements. Furthermore this data was also used to create a drift function which mathematically expresses the dependency between the drift rate and the diameter of the thermocouple leads.
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
NASA Astrophysics Data System (ADS)
Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.
2013-12-01
Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.
Reproductive niche conservatism in the isolated New Zealand flora over 23 million years
Conran, John G.; Lee, William G.; Lee, Daphne E.; Bannister, Jennifer M.; Kaulfuss, Uwe
2014-01-01
The temporal stability of plant reproductive features on islands has rarely been tested. Using flowers, fruits/cones and seeds from a well-dated (23 Ma) Miocene Lagerstätte in New Zealand, we show that across 23 families and 30 genera of forest angiosperms and conifers, reproductive features have remained constant for more than 20 Myr. Insect-, wind- and bird-pollinated flowers and wind- and bird-dispersed diaspores all indicate remarkable reproductive niche conservatism, despite widespread environmental and biotic change. In the past 10 Myr, declining temperatures and the absence of low-latitude refugia caused regional extinction of thermophiles, while orogenic processes steepened temperature, precipitation and nutrient gradients, limiting forest niches. Despite these changes, the palaeontological record provides empirical support for evidence from phylogeographical studies of strong niche conservatism within lineages and biomes. PMID:25319820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.
A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less
Theory of an experiment in an orbiting space laboratory to determine the gravitational constant.
NASA Technical Reports Server (NTRS)
Vinti, J. P.
1972-01-01
An experiment is discussed for determining the gravitational constant with the aid of an isolated system consisting of an artificial satellite moving around an artificial planet. The experiment is to be conducted in a spherical laboratory traveling in an orbit around the earth. Difficulties due to the gravity-gradient term are considered, and the three-tunnel method proposed by Wilk (1969) is examined. The rotation of the sphere is discussed together with aspects of the reference systems used, the equations of motion of the spacecraft and of the test objects, the field from the earth's gravity gradient at the test object, higher harmonic terms in the gravity gradient force, gravitational effects of the spacecraft itself, and a computer simulation.
Numerical study on the thermo-chemically driven Geodynamo
NASA Astrophysics Data System (ADS)
Trümper, Tobias; Hansen, Ulrich
2014-05-01
In our numerical study we consider magneto-convection in the Earth's outer core driven by buoyancy induced by heterogeneities both in the thermal and the chemical field. The outer core is thus treated as a self-gravitating, rotating, spherical shell with unstable thermal and chemical gradients across its radius. The thermal gradient is maintained by secular cooling of the core and the release of latent heat at the inner core freezing front. Simultaneously, the concentration of the light constituents of the liquid phase increases at the inner core boundary since only a smaller fraction of the light elements can be incorporated during solidification. Thus, the inner core boundary constitutes a source of compositional buoyancy. The molecular diffusivities of the driving agents differ by some orders of magnitude so that a double-diffusive model is employed in order to study the flow dynamics of this system. We investigate the influence of different thermo-chemical driving scenarios on the structure of the flow and the internal magnetic field. A constant ratio of the diffusivities (Le=10) and a constant Ekman number (Ek=10-4) are adopted. Apart from testing different driving scenarios, the double-diffusive approach also allows to implement distinct boundary conditions on temperature and composition. Isochemical and fixed chemical flux boundary conditions are implemented in order to investigate their respective influence on the flow and magnetic field generation.
In laboratory test, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperature (Tbs) of C. serpentina were lower tha...
Thermotropism by primary roots of maize
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortin, M.-C.; Poff, K.L.
1990-05-01
Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less
Schey, Bernadette M; Williams, David Y; Bucknall, Tracey
2010-01-01
To examine the evidential basis underpinning the monitoring of skin temperature and core-peripheral temperature gradient as elements of hemodynamic assessment in critically ill and adult cardiac surgical patients. Twenty-six studies examining the efficacy of skin temperature or temperature gradient as markers of hemodynamic status were selected as part of an integrative review. Evidence pertaining to the efficacy of these parameters as markers of cardiac function is equivocal and has not been well appraised in the adult cardiac surgical population. Skin temperature and systemic vascular resistance are also affected by factors other than cardiac output. Skin temperature and core-peripheral temperature gradient should not be considered in isolation from other hemodynamic parameters when assessing cardiac status until they are validated by further large-scale prospective studies. 2010. Published by Mosby, Inc.
The temporal distribution of directional gradients under selection for an optimum.
Chevin, Luis-Miguel; Haller, Benjamin C
2014-12-01
Temporal variation in phenotypic selection is often attributed to environmental change causing movements of the adaptive surface relating traits to fitness, but this connection is rarely established empirically. Fluctuating phenotypic selection can be measured by the variance and autocorrelation of directional selection gradients through time. However, the dynamics of these gradients depend not only on environmental changes altering the fitness surface, but also on evolution of the phenotypic distribution. Therefore, it is unclear to what extent variability in selection gradients can inform us about the underlying drivers of their fluctuations. To investigate this question, we derive the temporal distribution of directional gradients under selection for a phenotypic optimum that is either constant or fluctuates randomly in various ways in a finite population. Our analytical results, combined with population- and individual-based simulations, show that although some characteristic patterns can be distinguished, very different types of change in the optimum (including a constant optimum) can generate similar temporal distributions of selection gradients, making it difficult to infer the processes underlying apparent fluctuating selection. Analyzing changes in phenotype distributions together with changes in selection gradients should prove more useful for inferring the mechanisms underlying estimated fluctuating selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Influence of temperature gradients on charge transport in asymmetric nanochannels.
Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A
2017-10-25
Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Crystal growth and annealing method and apparatus
Gianoulakis, Steven E.; Sparrow, Robert
2001-01-01
A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.
Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules
NASA Technical Reports Server (NTRS)
Rind, David
1999-01-01
Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.
Interfacial free energy and stiffness of aluminum during rapid solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Interfacial free energy and stiffness of aluminum during rapid solidification
Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin
2017-05-01
Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less
Dynamical Defects in Rotating Magnetic Skyrmion Lattices
NASA Astrophysics Data System (ADS)
Pöllath, S.; Wild, J.; Heinen, L.; Meier, T. N. G.; Kronseder, M.; Tutsch, L.; Bauer, A.; Berger, H.; Pfleiderer, C.; Zweck, J.; Rosch, A.; Back, C. H.
2017-05-01
The chiral magnet Cu2 OSeO3 hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, raising the question of which of these scenarios better describes the violent dynamics at the domain boundaries. Here, we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz transmission electron microscope different parts of the Skyrmion lattice can be set into motion with different angular velocities. Tracking the time dependence, we show that the constant rearrangement of domain walls is governed by dynamic 5-7 defects arranging into lines. An analysis of the associated defect density is described by Frank's equation and agrees well with classical 2D Monte Carlo simulations. Fluctuations of boundaries show a surgelike rearrangement of Skyrmion clusters driven by defect rearrangement consistent with simulations treating Skyrmions as point particles. Our findings underline the particle character of the Skyrmion.
NASA Technical Reports Server (NTRS)
Houdeville, R.; Cousteix, J.
1979-01-01
The development of a turbulent unsteady boundary layer with a mean pressure gradient strong enough to induce separation, in order to complete the extend results obtained for the flat plate configuration is presented. The longitudinal component of the velocity is measured using constant temperature hot wire anemometer. The region where negative velocities exist is investigated with a laser Doppler velocimeter system with BRAGG cells. The boundary layer responds by forced pulsation to the perturbation of potential flow. The unsteady effects observed are very important. The average location of the zero skin friction point moves periodically at the perturbation frequency. Average velocity profiles from different instants in the cycle are compared. The existence of a logarithmic region enables a simple calculation of the maximum phase shift of the velocity in the boundary layer. An attempt of calculation by an integral method of boundary layer development is presented, up to the point where reverse flow starts appearing.
Temperature and deflection data from the asymmetric heating of cross-ply composite tubes
NASA Technical Reports Server (NTRS)
Hyer, Michael W.; Cooper, David E.; Tompkins, S. S.; Cohen, David
1987-01-01
Data generated while heating several cross-ply graphite-epoxy tubes on one side, along their lengths, and cooling them on the other side are presented. This heating arrangement produces a circumferential temperature gradient, and the data show that the gradient can be represented by a cosinusoidal temperature distribution. The thermally induced bending deflections caused by the temperature gradient are also presented.
Grauwet, Tara; Van der Plancken, Iesel; Vervoort, Liesbeth; Hendrickx, Marc E; Van Loey, Ann
2009-01-01
The potential of Bacillus subtilis alpha-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400-600 MPa; T(i) 10-40 degrees C; 1-15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA-MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. (c) 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009.
Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motta, Arthur; Ivanov, Kostadin; Arramova, Maria
2015-04-29
The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split intomore » two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.« less
Sound control by temperature gradients
NASA Astrophysics Data System (ADS)
Sánchez-Dehesa, José; Angelov, Mitko I.; Cervera, Francisco; Cai, Liang-Wu
2009-11-01
This work reports experiments showing that airborne sound propagation can be controlled by temperature gradients. A system of two heated tubes is here used to demonstrate the collimation and focusing of an ultrasonic beam by the refractive index profile created by the temperature gradients existing around the tubes. Numerical simulations supporting the experimental findings are also reported.
43 CFR 3252.16 - How must I abandon a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...
43 CFR 3252.15 - When must I abandon a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...
43 CFR 3252.16 - How must I abandon a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...
43 CFR 3252.16 - How must I abandon a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...
43 CFR 3252.15 - When must I abandon a temperature gradient well?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...
43 CFR 3252.16 - How must I abandon a temperature gradient well?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...
43 CFR 3252.15 - When must I abandon a temperature gradient well?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...
43 CFR 3252.15 - When must I abandon a temperature gradient well?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...
Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)
NASA Astrophysics Data System (ADS)
Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie
2013-04-01
In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.
NASA Astrophysics Data System (ADS)
Kisiel, Z.; Pszczólkowski, L.; Fowler, P. W.; Legon, A. C.
1997-09-01
Rotational spectra of the most abundant isotopic species of the weakly bound dimer formed between dinitrogen and hydrogen chloride were investigated. Spectroscopic constants for 14N 2 · H 37Cl were determined for the first time and those for 14N 2 · H 35Cl improved. Analysis of observed nuclear quadrupole spliting patterns within the framework of coupling of three nonequivalent nuclear spins allowed determination of splitting constants for both nuclei in the complexed dinitrogen molecule. Electric field gradient calculations at the SCF supermolecule level for the dimer are presented and account for the observed values of the nitrogen splitting constants.
A new paradigm for predicting zonal-mean climate and climate change
NASA Astrophysics Data System (ADS)
Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.
2016-12-01
How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.
Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J
2016-01-01
The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.
Brain surface temperature under a craniotomy
Kalmbach, Abigail S.
2012-01-01
Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36–38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments. PMID:22972953
Studies on interface curvature during vertical Bridgman growth of InP in a flat-bottom container
NASA Astrophysics Data System (ADS)
Rudolph, P.; Matsumoto, F.; Fukuda, T.
1996-01-01
A simplified numerical simulation of the dynamic behaviour of the solid-liquid interface curvature during modified vertical Bridgman growth of 2 inch InP single crystals, in a flat-bottom container, with a seed of the same diameter is presented. The results agree with striation patterns observed by transmission X-ray topography. A nearly flat interface with slightly constant concavity has been ascertained in the front half of the grown ingots. It can be assumed that such a steady interface morphology is one of the basic requirements for the observed twin-free and reduced dislocation growth in this region. In an attempt to optimize the shape of the melting point isotherm in the last-to-freeze part of the crystals, the axial temperature gradient, the seed length, the growth velocity, the melt temperature and the conditions of heat transfer (different ambient atmospheres and plugs) as well as the temperature profile in the top region above the encapsulant have been varied in the model.
Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland
2012-01-01
Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.
Solar Pond devices: free energy or bioreactors for Artemia biomass production?
Gouveia, Luisa; Sousa, João; Marques, Ana; Tavares, Célia; Giestas, Margarida
2009-08-01
The recent exponential growth in industrial aquaculture has led to a huge increase in Artemia biomass production in order to meet increased fish production needs. The present study explores the potential use of salt gradient solar ponds (SGSPs) for production of Artemia nauplii. An SGSP is a basin of water where solar energy is trapped and collected via an artificially imposed gradient. Three zones can be identified in an SGSP: upper and lower zones, which are both convective, and a middle zone, which is intended to be non-convective. The latter acts as a transparent insulation layer and allows for storage of solar energy at the bottom, where it is available for use. The combination of salt, temperature and high transparency could make SGSPs promising bioreactors for the production of Artemia nauplii. Using particle image velocymetry (PIV) and Shadowgraph visualisation techniques, the behaviour of Artemia nauplii under critical cultivation parameters (namely, salinity, temperature and light) was monitored to determine movement velocity, and how movement of Artemia affects the salt gradient. It was observed that Artemia nauplii constantly follow light, irrespective of adverse salinity and/or temperature conditions. However, despite the substantial displacement of Artemia following the light source, the salt gradient is not disrupted. The suitability of SGSPs as bioreactors for Artemia biomass production was then tested. The results were disappointing, probably due to the lack of sufficient O(2) for Artemia survival and growth. Follow-up trials were conducted aimed at using the SGSP as a green and economically attractive energy source to induce faster hatching of cysts and improved Artemia nauplii growth. The results of these trials, and a case study of Artemia nauplii production using an SGSP, are presented. The authors constructed a Solar Pond device, which they suggest as a novel way of supplying thermal energy for Artemia biomass production in an aquaculture enterprise. Finally, the authors suggest a method of producing and collecting Artemia biomass, and of heating a fish larval tank, in an 'ideal' Solar Pond device, profiting from the low investment costs of using a decommissioned salt works.
TEMPERATURE-GRADIENT PLATES FOR GROWTH OF MICROORGANISMS
Landman, Otto E.; Bausum, Howard T.; Matney, Thomas S.
1962-01-01
Landman, Otto E. (Fort Detrick, Frederick, Md.), Howard T. Bausum, and Thomas S. Matney. Temperature-gradient plates for growth of microorganisms. J. Bacteriol. 83:463–469. 1962.—Different temperature-gradient plates have been devised for the study of microbial growth on solid media through continuous temperature ranges or in liquid media at finely graded temperatures. All plates are made of heavy-gauge aluminum; heat supplied at one end is dissipated along the length of the metal so that a gradient is produced. The shape and range of the gradient depends on the amount of heat supplied, the insulation, the ambient temperature, and other factors. Differences of 0.2 C in temperature sensitivity between bacterial strains can be detected. The plates are simple to construct and operate. The dimensions of the aluminum, the mode of temperature measurement, and the method of heating may all be modified without diminishing the basic utility of the device. A sharp growth front develops at the maximal temperature of growth of bacteria. In most strains, all bacteria below the front form colonies and all bacteria above the front are killed, except for a few temperature-resistant mutants. Images PMID:14461975
NASA Astrophysics Data System (ADS)
Musari, A. A.; Joubert, D. P.; Adebayo, G. A.
2018-04-01
Cuprite (Cu2O) is a solid mineral and a compound whose simplicity of preparation, non toxic nature, low band gap and its abundance has made it a prospective candidate for the realisation of low cost photovoltaic applications. The present work successfully dopes Cuprite with Ag ({{{Cu}}}2(1-{{x})}{{{Ag}}}2{{x}}{{O}}) at different concentrations x = 0, 0.25, 0.5, 0.75 and 1, their first-principle calculations of their electronic, dynamical and thermodynamic properties have been investigated extensively within the generalised gradient approximation. Direct band gap energies at {{Γ }} are predicted for all the studied systems. A small bowing parameter for lattice constants ba and bulk modulus bB of 0.4245 \\mathring{{A}} and 0.8747 GPa were obtained when compared to Vegard’s law. The results of phonon dispersion when x = 0 and 1 indicate stability, these agree with available theoretical and experimental results while negative frequencies observed along the Brillouin zone for the doped systems when x = 0.25, 0.5 and 0.75 imply that they are dynamically unstable. The thermodynamic properties between 0 to 800 K were determined using the calculated phonon density of states within the harmonic approximation and the values of the specific heat capacity at constant volume at ambient temperature and the temperature at which lattice vibrations and thermal motion of electrons contribute to the constant volume specific heat capacity are presented for all the systems.
Reilly, John; Glisic, Branko
2018-03-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.
Temperature gradient effects on vapor diffusion in partially-saturated porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, S.W.
1999-07-01
Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less
Sound beam manipulation based on temperature gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Feng; School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500; Quan, Li
Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest tomore » fields such as noise control or acoustic cloaking.« less
Separation of charge-regulated polyelectrolytes by pH-assisted diffusiophoresis.
Hsu, Jyh-Ping; Hsu, Yen-Rei; Shang-Hung, Hsieh; Tseng, Shiojenn
2017-03-29
The potential of separating colloidal particles through simultaneous application of a salt gradient and a pH gradient, or pH-assisted diffusiophoresis, is evaluated by considering the case of spherical polyelectrolytes (PEs) having different equilibrium dissociation constants in an aqueous solution with KCl as the background salt. The simulation results gathered reveal that the dependence of the particle velocity on pH is more sensitive than that in pH-assisted electrophoresis, where an electric field and a pH gradient are applied simultaneously. This implies that the separation efficiency of pH-assisted diffusiophoresis can be better than that of pH-assisted electrophoresis. In particular, two types of PE having different equilibrium dissociation constants can be separated effectively by applying the former by enhancing/reducing their diffusiophoretic velocities.
Investigation of flame driving and flow turning in axial solid rocket instabilities
NASA Astrophysics Data System (ADS)
Zinn, Ben T.; Daniel, Brady R.; Matta, Lawrence M.
1993-08-01
An understanding of the processes responsible for driving and damping acoustic oscillations in solid rocket motors is necessary for developing practical design methods that eliminate or reduce the occurrence combustion instabilities. While state of the art solid rocket stability prediction methods generally account for the flow turning loss, the magnitude and characteristics of this loss have never been fully investigated. Results of an investigation of the role of the flow turning loss in the stability of solid rockets and its dependence upon motor design and operating parameters are described. A one dimensional acoustic stability equation that verifies that the flow turning loss term is appropriately included in the one dimensional stability formulation was derived for a chamber with a constant mean temperature and pressure by an approach independent from that of Culick. This study was extended providing the background and expressions needed to guide an experimental study of the flow turning loss in the presence of mean temperature and density gradients. This allows the study of combustion systems in which mean temperature gradients and heat losses are significant. The relevant conservation equations were solved numerically for the experimental configuration in order to predict the behavior of the flow turning loss and to assist in the analysis of experimental results. Experiments performed, with and without combustion, showed that the flow turning loss strongly depends upon the propellant burning rate and the location of the flow turning region relative to the standing pressure wave.
Epiphytes as an Indicator of Climate Change in Hawaii
NASA Astrophysics Data System (ADS)
Kettwich, S. K.
2013-12-01
Although climate change threatens many ecosystems, current research in this field suggests tropical vegetation lags in response. Epiphytes, or arboreal vegetation, occupy tight, climate-defined niches compared with co-occurring life forms such as trees, yet there have been few studies of Hawaii's epiphyte communities. Because of Hawaii Island's natural climatic diversity, it is an ideal location to understand how these intrinsically climate sensitive plants interact with the atmosphere and evaluate how they may serve as a near-term indicator of climate change. Here we establish a baseline from which changes in corticolous epiphyte communities can be monitored as a leading indicator of likely forest changes by 1) investigating patterns of epiphyte abundance and species composition across elevation and precipitation gradients on windward Hawaii Island, and 2) using physiological measurements to investigate the relative importance of rain vs. fog in epiphyte-atmosphere interactions. The precipitation gradient keeps elevation constant at 1000m, while varying precipitation between 2,400 and 6,400 mm/year. The elevation gradient keeps rainfall constant at 3000mm/year, and varies elevation between 200 and 1750 m. Forest sites are dominated by Ohia Lehua (Metrosideros polymorpha) across broad geographic and climatological ranges thus allowing examination of epiphytes on this single host. We quantified bryophytes and vascular plants growing on Ohia trunks with standardized diameter and branching characteristics. Overall, epiphyte communities showed much finer scale responses to climate variation when compared with structurally dominant vegetation (which was broadly similar at all sites). The precipitation gradient exhibits a clear increase in abundance of all epiphyte groups and a definable increase in diversity with increasing rainfall. Results across the elevation gradient show a higher abundance of filmy ferns and bryophytes above the lifting condensation level (about 600 m) where fog incidence is highest and PET is lowest, as well as a marked difference in composition, whereby larger species dominate lower elevations where temperatures are greater. We are also analyzing O18 stable isotopes of both fog and rain water at two forest locations differing in fog input but in which elevation and rainfall are held constant at 1000m and 3000mm respectively. A laboratory experiment uses O18 stable isotope analysis to trace water uptake by five species of epiphytes. Results suggest that fog is an important determinant of how ecophysiological characteristics of epiphytes respond to the environments they inhabit. We further evaluate these results with respect to fine-scale climate models based on statistical downsampling of GCM's. Small, short lived species, especially filmy ferns are likely to exhibit the most rapid response to Hawaii's changing climate whereas larger, longer lived species are likely to respond more slowly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less
Reduction of particle deposition on substrates using temperature gradient control
Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.
2000-01-01
A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.
2016-12-01
In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.
Reproductive niche conservatism in the isolated New Zealand flora over 23 million years.
Conran, John G; Lee, William G; Lee, Daphne E; Bannister, Jennifer M; Kaulfuss, Uwe
2014-10-01
The temporal stability of plant reproductive features on islands has rarely been tested. Using flowers, fruits/cones and seeds from a well-dated (23 Ma) Miocene Lagerstätte in New Zealand, we show that across 23 families and 30 genera of forest angiosperms and conifers, reproductive features have remained constant for more than 20 Myr. Insect-, wind- and bird-pollinated flowers and wind- and bird-dispersed diaspores all indicate remarkable reproductive niche conservatism, despite widespread environmental and biotic change. In the past 10 Myr, declining temperatures and the absence of low-latitude refugia caused regional extinction of thermophiles, while orogenic processes steepened temperature, precipitation and nutrient gradients, limiting forest niches. Despite these changes, the palaeontological record provides empirical support for evidence from phylogeographical studies of strong niche conservatism within lineages and biomes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Temperature gradient interaction chromatography of polymers: A molecular statistical model.
Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun
2010-11-01
A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chibani, S.; Arbouche, O.; Zemouli, M.; Amara, K.; Benallou, Y.; Azzaz, Y.; Belgoumène, B.; Bentayeb, A.; Ameri, M.
2018-01-01
The structural, electronic, elastic, and thermoelectric properties of TiIrX (X = As and Sb) half-Heusler compounds with 18 valence electrons were studied using density functional theory. The generalized gradient approximation of Perdew-Burke and Ernzerhof used for calculation of the structural parameters and elastic properties of TiIrAs and TiIrSb denotes that the computed lattice constants were in excellent agreement with the available experimental data and previous theoretical works. Furthermore, the calculated elastic constants for both compounds satisfy the Born criteria indicating their mechanical stabilities. The modified Becke-Johnson potential (TB-mBJ) was used to provide a better description of the electronic structures, which indicate that both compounds are narrow-gap semiconductors. Additionally, the investigations of thermoelectric performance were carried out using the results of ab initio band-structure calculations and the semi-classical Boltzmann theory within the constant relaxation time approximations. The predicted values of the figure of merit ZT e are close to unity at room temperature. This reveals that TiIrAs and TiIrSb compounds are excellent candidates for practical applications in the thermoelectric devices.
NASA Technical Reports Server (NTRS)
Avis, L. M.
1976-01-01
Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.
Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width
NASA Astrophysics Data System (ADS)
Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.
2016-06-01
Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.
NASA Astrophysics Data System (ADS)
Watson, Gregory S.; Gregory, Emily A.; Johnstone, Charmaine; Berlino, Manuel; Green, David W.; Peterson, Nicola R.; Schoeman, David S.; Watson, Jolanta A.
2018-04-01
Ghost crabs, Ocypode cordimanus, inhabit relatively hostile environments subject to thermal fluctuations, including both diurnal and seasonal cycles. For many ectotherms, including ghost crabs, a major challenge is to remain cool during hot daytime temperatures. This can be achieved by adopting a fossorial lifestyle, taking advantage of thermal refuge afforded by burrows of sufficient depth. Another consideration, often overlooked, is the potential advantage associated with ready access to a thermal energy source (a "charging station") when surface temperatures are cooler. Being able to rapidly elevate body temperature during cool periods would enhance the crab's ability to maintain rate processes and carry out essential activities. We have measured ghost crab burrow temperature profiles at two times of the day with contrasting sun exposure (06:00 and 14:00), demonstrating how effective burrow depth (up to a maximum of 40 cm) provides thermal regulation below the surface of the sand (e.g., at dawn (06:00) and early afternoon (14:00) at a depth of 5 cm, temperatures (±SD) of 16.32 ± 0.96 °C and 25.04 ± 1.47 °C were recorded, respectively. Corresponding temperatures at a depth of 30 cm were 19.17 ± 0.59 °C and 19.78 ± 1.60 °C, respectively). This demonstrates that while temperature conditions at the surface vary dramatically from night to day, ghost crab burrows can maintain relatively constant temperatures at the burrow base throughout the diurnal cycle, at least during winter. As a consequence, the burrow heat signatures undergo a corresponding thermal gradient reversal between night and day, as revealed by infra-red photography. Complementing these field observations, we also determined heating and cooling times/constants for O. cordimanus in the laboratory (τ = 17.54 and 16.59 JK-1, respectively), and analysed chemical composition of their carapace (external (with β Chitin evident) and internal (predominance of α Chitin)), which is the primary thermal interface with the environment. We find that ghost crabs both gain and lose heat relatively rapidly, which likely affects the range and duration of surface activities under different thermal conditions, and renders the thermal characteristics of their burrows vital for their persistence on beaches. Finally, we speculate that the distinctly contrasting thermal signatures of ghost crab burrows in comparison to the surrounding sand could in principle be used by crabs as spatial markers for navigation and to identify holes on return from nightly excursions, being identified either by direct thermal sensing or odours rising from the burrow base as a consequence of the thermal flux.
A sandwich-designed temperature-gradient incubator for studies of microbial temperature responses.
Elsgaard, Lars; Jørgensen, Leif Wagner
2002-03-01
A temperature-gradient incubator (TGI) is described, which produces a thermal gradient over 34 aluminium modules (15x30x5 cm) intersected by 2-mm layers of partly insulating graphite foil (SigraFlex Universal). The new, sandwich-designed TGI has 30 rows of six replicate sample wells for incubation of 28-ml test tubes. An electric plate heats one end of the TGI, and the other end is cooled by thermoelectric Peltier elements in combination with a liquid cooling system. The TGI is equipped with 24 calibrated Pt-100 temperature sensors and insulated by polyurethane plates. A PC-operated SCADA (Supervisory Control And Data Acquisition) software (Genesis 4.20) is applied for temperature control using three advanced control loops. The precision of the TGI temperature measurements was better than +/-0.12 degrees C, and for a 0-40 degrees C gradient, the temperature at the six replicate sample wells varied less than +/-0.04 degrees C. Temperatures measured in incubated water samples closely matched the TGI temperatures, which showed a linear relationship to the sample row number. During operation for 8 days with a gradient of 0-40 degrees C, the temperature at the cold end was stable within +/-0.02 degrees C, while the temperatures at the middle and the warm end were stable within +/-0.08 degrees C (n=2370). Using the new TGI, it was shown that the fine-scale (1 degrees C) temperature dependence of S(o) oxidation rates in agricultural soil (0-29 degrees C) could be described by the Arrhenius relationship. The apparent activation energy (E(a)) for S(o) oxidation was 79 kJ mol(-1), which corresponded to a temperature coefficient (Q(10)) of 3.1. These data demonstrated that oxidation of S(o) in soil is strongly temperature-dependent. In conclusion, the new TGI allowed a detailed study of microbial temperature responses as it produced a precise, stable, and certifiable temperature gradient by the new and combined use of sandwich-design, thermoelectric cooling, and advanced control loops. The sandwich-design alone reduced the disadvantageous thermal gradient over individual sample wells by 56%.
NASA Technical Reports Server (NTRS)
Snow, W. L.
1974-01-01
The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.
Convective and morphological instabilities during crystal growth: Effect of gravity modulation
NASA Technical Reports Server (NTRS)
Coreill, S. R.; Murray, B. T.; Mcfadden, G. B.; Wheeler, A. A.; Saunders, B. V.
1992-01-01
During directional solidification of a binary alloy at constant velocity in the vertical direction, morphological and convective instabilities may occur due to the temperature and solute gradients associated with the solidification process. The effect of time-periodic modulation (vibration) is studied by considering a vertical gravitational acceleration which is sinusoidal in time. The conditions for the onset of solutal convection are calculated numerically, employing two distinct computational procedures based on Floquet theory. In general, a stable state can be destabilized by modulation and an unstable state can be stabilized. In the limit of high frequency modulation, the method of averaging and multiple-scale asymptotic analysis can be used to simplify the calculations.
Stability of a viscous fluid in a rectangular cavity in the presence of a magnetic field
NASA Technical Reports Server (NTRS)
Liang, C. Y.; Hung, Y. Y.
1976-01-01
The stability of an electrically conducting fluid subjected to two dimensional disturbance was investigated. A physical system consisting of two parallel infinite vertical plates which are thermally insulated was studied. An external magnetic field of constant strength was applied to normal plates. The fluid was heated from below so that a steady temperature gradient was maintained in the fluid. The governing equations were derived by perturbation technique, and solutions were obtained by a modified Galerkin method. It was found that the presence of the magnetic field increases the stability of the physical system and instability can occur in the form of neutral or oscillatory instability.
NASA Astrophysics Data System (ADS)
Benlamari, S.; Boukhtouta, M.; Taïri, L.; Meradji, H.; Amirouche, L.; Ghemid, S.
2018-03-01
Structural, electronic, optical, and thermal properties of ternary II-IV-V2 (BeSiSb2 and MgSiSb2) chalcopyrite semiconductors have been calculated using the full-potential linearized augmented plane wave scheme␣in the generalized gradient approximation. The optimized equilibrium structural parameters ( a, c, and u) are in good agreement with theoretical results obtained using other methods. The band structure and density of states reveal that BeSiSb2 has an indirect (Γ-Z) bandgap of about 0.61 eV, whereas MgSiSb2 has a direct (Γ-Γ) bandgap of 0.80 eV. The dielectric function, refractive index, and extinction coefficient were calculated to investigate the optical properties, revealing that BeSiSb2 and MgSiSb2 present very weak birefringence. The temperature dependence of the volume, bulk modulus, Debye temperature, and heat capacities ( C v and C p) was predicted using the quasiharmonic Debye model at different pressures. Significant differences in properties are observed at high pressure and high temperature. We predict that, at 300 K and 0 GPa, the heat capacity at constant volume C v, heat capacity at constant pressure C P, Debye temperature θ D, and Grüneisen parameter γ will be about 94.91 J/mol K, 98.52 J/mol K, 301.30 K, and 2.11 for BeSiSb2 and about 96.08 J/mol K, 100.47 J/mol K, 261.38 K, and 2.20 for MgSiSb2, respectively.
A FEM simulation study of the solid state hydrostatic extrusion of PMMA
NASA Astrophysics Data System (ADS)
Costa, André L. M.; Riffel, Douglas B.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
Solid state hydrostatic extrusion (SSHE) of polymers below glass transition temperature is used to obtain highly oriented structures. Experimental studies on the SSHE of polymethyl-methacrylate (PMMA) have been made since early eighties but there is no information on internal temperature, stress and strain distribution. In this work we have made 3D FEM simulations of SSHE of PMMA by using the commercial DEFORM package with experimental flow curves and thermal properties from literature. The initial temperature of tooling and workpiece was 90°C, ram speeds were 1.0 and 10.0 mm/min with extrusion ratio R = 3.0. For a comparative analysis, SSHE simulation of the AA7108 aluminum alloy at 400°C was also performed. These ranges of parameters were chosen in order to encompass the parameters found in previously mentioned experiments. The best correlation with experimental hydrostatic pressure was verified for a shear friction coefficient at the material-conical die interface m = 0.50. Force-displacement curve for PMMA presented a constitutive and thermal softening in contrast to a constant force curve for aluminum. The internal temperature in the deformation zone increased in a characteristic "owl's face" profile in contrast to quasi-constant profile of aluminum alloy. In both PMMA and aluminum the stress is hydrostatic inside the container, but the stress profiles are significantly different inside the deformation zone. As expected, the strain and strain-rate profiles are practically the same for the two materials, but the temperature profile has promoted slightly differences in material flow. The velocity gradient from center to surface is higher in PMMA than aluminum. It's supposed that during hydrostatic extrusion solid PMMA has a characteristic thermally-inducted mechanical behavior.
Reilly, John; Glisic, Branko
2018-01-01
Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University. PMID:29494496
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
NASA Astrophysics Data System (ADS)
Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.
2017-03-01
The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.
The role of moisture in the nest thermoregulation of social wasps.
Klingner, R; Richter, K; Schmolz, E; Keller, B
2005-09-01
Paper nests of social wasps are intriguing constructions for both, biologists and engineers. We demonstrate that moisture and latent heat significantly influence the thermal performance of the nest construction. Two colonies of the hornet Vespa crabro were investigated in order to clarify the relation of the temperature and the moisture regime inside the nest. Next to fairly stable nest temperatures the hornets maintain a high relative humidity inside the nest. We found that in consequence a partial vapor-pressure gradient between nest and ambient drives a constant vapor flux through the envelope. The vapor flux is limited by the diffusion resistance of the envelope. The driving force of vapor flux is heat, which is consumed through evaporation inside the nest. The colony has to compensate this loss with metabolic heat production in order to maintain a stable nest temperature. However, humidity fluctuations inside the nest induce circadian adsorption and desorption cycles, which stabilize the nest temperature and thus contribute significantly to temperature homeostasis. Our study demonstrates that both mechanisms influence nest thermoregulation and need to be considered to understand the thermodynamic behavior of nests of wasps and social insects in general.
Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations
NASA Astrophysics Data System (ADS)
Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.
2018-05-01
We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.
Crystal Properties and Radiation Effects in Solid Molecular Hydrogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozioiziemski, B
2000-09-01
The crystal lattice structure, growth shapes and helium generated by beta-decay of solid deuterium-tritium (D-T) mixtures have been studied. Understanding of these D-T properties is important for predicting and optimizing the target design of the National Ignition Facility (NIF). Raman spectroscopy showed the D-T crystal structure is hexagonal close packed, common to the non-tritiated isotopes. The isotopic mixtures of both tritiated and non-tritiated species broadens the rotational transitions, especially of the lighter species in the mixture. The vibrational frequencies of each isotope is shifted to higher energy in the mixture than the pure components. The J = 1-0 population decreasesmore » exponentially with a 1/e time constant which rapidly increases above 10.5 K for both D{sub 2} and T{sub 2} in D-T. The conversion rate is nearly constant from 5 K to 10 K for both D{sub 2} and T{sub 2} at 7.1 hours and 2.1 hours, respectively. The smoothing of D-T layers by beta decay heating is limited by the crystal surface energy. Deuterium and hydrogen-deuteride crystals were grown at a number of temperatures below the triple point to determine the surface energy and roughening transition. Several distinct crystal shapes were observed on a number of different substrates. The a facet roughens between 0.9 T{sub TP} and T{sub TP}, while the c facet persists up to the melting temperature. This is very different from the behavior of the other rare gas crystals which grow completely rounded above 0.8 T{sub TP}. Helium bubbles formed as a product of the beta decay were observed using optical microscopy and the diffusion of smaller bubbles measured with dynamic light scattering. Bubble diffusion coefficients as high as 2.0 x 10{sup -16} m{sup 2}/s were measured for 10-50 nm bubbles. The bubbles move in response to a thermal gradient, with speeds between 1 {micro}m/hour and 100 {micro}m/hour for thermal gradients and temperatures appropriate to NIF targets.« less
IMPROVED TEMPERATURE GRADIENT FOR MONITORING BEHAVIORAL THERMOREGULATION IN THE RAT
Past studies have found that the laboratory rat placed In a temperature gradient prefers temperatures that are markedly below its lower critical ambient temperature (LCT), whereas other rodents (e.g., mouse, hamster, and guinea pig) generally select thermal environments associate...
Detection of Intracluster Gas Bulk Velocities in the Perseus and Centaurus Clusters
NASA Astrophysics Data System (ADS)
Dupke, Renato A.; Bregman, Joel N.
We report the results of spatially resolved X-ray spectroscopy of 8 different ASCApointings distributed symmetrically around the center of the Perseus cluster. The outer region of the intracluster gas is roughly isothermal, with temperature ~ 6-7 keV, and metal abundance ~ 0.3 Solar. Spectral analysis of the central pointing is consistent with the presence of a cooling flow and a central metal abundance gradient. A significant velocity gradient is found along an axis highly discrepant with the major axis of the X-ray elongation. The radial velocity difference is found to be greater than 1000 km s-1Mpc-1 at the 90% confidence level. Simultaneous fittings of GIS 2 & 3 indicate that two symmetrically opposed regions have different radial velocities at the 95% confidence level and the F-test rules out constant velocities for these regions at the 99% level. Intrinsic short and long term variations of gain are unlikely (P < 0.03) to explain the velocity discrepancies. We also report the preliminary results of a similar analysis carried out for the Centaurus cluster, where long-exposure SIS data is available. We also find a significant velocity gradient near the central regions (3'-8' of Centaurus. If attributed to bulk rotation the correspondent circular velocity is ~1500±150 km s-1 (at 90% confidence). The line of maximum velocity gradient in Centaurus is near-perpendicular to the infalling galaxy group associated with NGC 4709.
Do, F; Rocheteau, A
2002-06-01
The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.
Duffy, M C; Blitzer, B L; Boyer, J L
1983-10-01
To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral enzyme Na+,K+-ATPase provides the driving force for "uphill" bile acid transport by establishing a trans-membrane sodium gradient.
Large Eddy Simulation Study for Fluid Disintegration and Mixing
NASA Technical Reports Server (NTRS)
Bellan, Josette; Taskinoglu, Ezgi
2011-01-01
A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not totally satisfactory. With a model for the additional term in the momentum equation, the predictions of the constant-coefficient Smagorinsky and constant-coefficient Scale-Similarity models were improved to a certain extent; however, most of the improvement was obtained for the Gradient model. The previously derived model and a newly developed model for the additional term in the momentum equation were both tested, with the new model proving even more successful than the previous model at reproducing the high density-gradient magnitude regions. Several dynamic SGS-flux models, in which the SGS-flux model coefficient is computed as part of the simulation, were tested in conjunction with the new model for this additional term in the momentum equation. The most successful dynamic model was a "mixed" model combining the Smagorinsky and Gradient models. This work is directly applicable to simulations of gas turbine engines (aeronautics) and rocket engines (astronautics).
NASA Technical Reports Server (NTRS)
Mosher, Richard A.; Thormann, Wolfgang; Graham, Aly; Bier, Milan
1985-01-01
Two methods which utilize simple buffers for the generation of stable pH gradients (useful for preparative isoelectric focusing) are compared and contrasted. The first employs preformed gradients comprised of two simple buffers in density-stabilized free solution. The second method utilizes neutral membranes to isolate electrolyte reservoirs of constant composition from the separation column. It is shown by computer simulation that steady-state gradients can be formed at any pH range with any number of components in such a system.
Dynamic variation in sapwood specific conductivity in six woody species
Jean-Christophe Domec; Frederick C. Meinzer; Barbara Lachenbruch; Johann Housset
2008-01-01
Our goals were to quantify how non-embolism inducing pressure gradients influence trunk sapwood specific conductivity (ks) and to compare the impacts of constant and varying pressure gradients on ks with KCl and H20 as the perfusion solutions. We studied six woody species (three conifers and three...
NASA Astrophysics Data System (ADS)
Cai, Haibing; Xu, Liuxun; Yang, Yugui; Li, Longqi
2018-05-01
Artificial liquid nitrogen freezing technology is widely used in urban underground engineering due to its technical advantages, such as simple freezing system, high freezing speed, low freezing temperature, high strength of frozen soil, and absence of pollution. However, technical difficulties such as undefined range of liquid nitrogen freezing and thickness of frozen wall gradually emerge during the application process. Thus, the analytical solution of the freezing-temperature field of a single pipe is established considering the freezing temperature of soil and the constant temperature of freezing pipe wall. This solution is then applied in a liquid nitrogen freezing project. Calculation results show that the radius of freezing front of liquid nitrogen is proportional to the square root of freezing time. The radius of the freezing front also decreases with decreased the freezing temperature, and the temperature gradient of soil decreases with increased distance from the freezing pipe. The radius of cooling zone in the unfrozen area is approximately four times the radius of the freezing front. Meanwhile, the numerical simulation of the liquid nitrogen freezing-temperature field of a single pipe is conducted using the Abaqus finite-element program. Results show that the numerical simulation of soil temperature distribution law well agrees with the analytical solution, further verifies the reliability of the established analytical solution of the liquid nitrogen freezing-temperature field of a single pipe.
Air temperature gradient in large industrial hall
NASA Astrophysics Data System (ADS)
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, B.L.; Gardner, M.C.; Koenig, J.B.
The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Westernmore » Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.« less
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
Ion temperature gradient mode driven solitons and shocks
NASA Astrophysics Data System (ADS)
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
On the temperature and velocity through the photosphere of a sunspot penumbra
NASA Technical Reports Server (NTRS)
Del Toro Iniesta, J. C.; Tarbell, T. D.; Cobo, B. Ruiz
1994-01-01
We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau(sub 5) relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of the generalized response function of Dopplergrams to velocity fluctuations.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
NASA Astrophysics Data System (ADS)
Wojdeł, Jacek C.; Moreira, Ibério de P. R.; Illas, Francesc
2009-01-01
This paper presents a detailed theoretical analysis of the electronic structure of the CsFe[Cr(CN)6] prussian blue analog with emphasis on the structural origin of the experimentally observed spin crossover transition in this material. Periodic density functional calculations using generalized gradient approximation (GGA)+U and nonlocal hybrid exchange-correlation potentials show that, for the experimental low temperature crystal structure, the t2g6eg0 low spin configuration of FeII is the most stable and CrIII (S =3/2, t2g3eg0) remains the same in all cases. This is also found to be the case for the low spin GGA+U fully relaxed structure with the optimized unit cell. A completely different situation emerges when calculations are carried out using the experimental high temperature structure. Here, GGA+U and hybrid density functional theory calculations consistently predict that the t2g4eg2 FeII high spin configuration is the ground state. However, the two spin configurations appear to be nearly degenerate when calculations are carried out for the geometries arising from a GGA+U full relaxation of the atomic structure carried out at experimental high temperature lattice constant. A detailed analysis of the energy difference between the two spin configurations as a function of the lattice constant strongly suggests that the observed spin crossover transition has a structural origin with non-negligible entropic contributions of the high spin state.
NASA Astrophysics Data System (ADS)
Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki
2018-06-01
The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.
Effect of temperature gradient on the optical quality of mercurous chloride crystals
NASA Technical Reports Server (NTRS)
Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.
1989-01-01
Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.
NASA Technical Reports Server (NTRS)
Tegen, Ina; Rind, David
2000-01-01
To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.
Shadowgraph Study of Gradient Driven Fluctuations
NASA Technical Reports Server (NTRS)
Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William
2002-01-01
A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The sample was confined between two horizontal parallel sapphire plates with a vertical spacing of 1 mm. The temperatures of the sapphire plates were controlled by independent circulating water loops that used Peltier devices to add or remove heat from the room air as required. For a mixture with a temperature gradient, two effects are involved in generating the vertical refractive index gradient, namely thermal expansion and the Soret effect, which generates a concentration gradient in response to the applied temperature gradient. For the aniline/cyclohexane system, the denser component (aniline) migrates toward the colder surface. Consequently, when heating from above, both effects result in the sample density decreasing with altitude and are stabilizing in the sense that no convective motion occurs regardless of the magnitude of the applied temperature gradient. The Soret effect is strong near a binary liquid critical point, and thus the dominant effect is due to the induced concentration gradient. The results clearly show the divergence at low q and the predicted gravitational quenching. Results obtained for different applied temperature gradients at varying temperature differences from the critical temperature, clearly demonstrate the predicted divergence of the thermal diffusion ratio. Thus, the more closely the critical point is approached, the smaller becomes the temperature gradient required to generate the same signal. Two different methods have been used to generate pure concentration gradients. In the first, a sample cell was filled with a single fluid, ethylene glycol, and a denser miscible fluid, water, was added from below thus establishing a sharp interface to begin the experiment. As time went on the two fluids diffused into each other, and large amplitude fluctuations were clearly observed at low q. The effects of gravitational quenching were also evident. In the second method, the aniline/cyclohexane sample was used, and after applying a vertical temperature gradient for several hours, the top and bottom temperatures were set equal and the thermal gradient died on a time scale of seconds, leaving the Soret induced concentration gradient in place. Again, large-scale fluctuations were observed and died away slowly in amplitude as diffusion destroyed the initial concentration gradient.
The PRISM3D paleoenvironmental reconstruction
Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.
2010-01-01
The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may have provided the enhanced ocean heat transport necessary to move warm surface water to the Arctic. New deep ocean temperature data also suggests greater warmth and further southward penetration of paleo NADW.
NASA Astrophysics Data System (ADS)
Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.
2016-12-01
The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.
NASA Astrophysics Data System (ADS)
Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin
2018-03-01
A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.
Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges
2010-10-15
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. Copyright © 2010 Elsevier B.V. All rights reserved.
Harmonic Bloch and dipole oscillations and their transition in elliptical optical waveguide arrays
NASA Astrophysics Data System (ADS)
Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah
2011-03-01
We have studied harmonic oscillations in an elliptical optical waveguide array in which the couplings between neighboring waveguides are varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, the long-living optical Bloch oscillation (BO) and dipole oscillation (DO) are obtained. Moreover, when a linear gradient in the propagation constant is applied, we achieve a switching from DO to BO and vice versa by ramping up or down the gradient profile]. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals. Work supported by the General Research Fund of the Hong Kong SAR Government.
Renormalization group analysis of anisotropic diffusion in turbulent shear flows
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Barton, J. Michael
1991-01-01
The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.
[Monitoring of brightness temperature fluctuation of water in SHF range].
Ivanov, Yu D; Kozlov, A F; Galiullin, R A; Tatu, V Yu; Vesnin, S G; Ziborov, V S; Ivanova, N D; Pleshakova, T O
2017-01-01
The purpose of the research consisted in detection of fluctuation of brightness temperature (TSHF) of water in the area of the temperature Т = 42°С (that is critical for human) during its evaporation by SHF radiometry. Methods: Monitoring of the changes in brightness temperature of water in superhigh frequency (SHF) range (3.8-4.2 GHz) near the phase transition temperature of water Т = 42°С during its evaporation in the cone dielectric cell. The brightness temperature measurements were carried out using radiometer. Results: Fluctuation with maximum of brightness temperature was detected in 3.8-4.2 GHz frequency range near at the temperature of water Т = 42°С. It was characteristic for these TSHF fluctuations that brightness temperature rise time in this range of frequencies in ~4°С temperature range with 0.05-15°С/min gradient and a sharp decrease during 10 s connected with measuring vapor conditions. Then nonintensive fluctuation series was observed. At that, the environment temperature remained constant. Conclusion: The significant increasing in brightness temperature of water during its evaporation in SHF range near the temperature of Т ~42°С were detected. It was shown that for water, ТSHF pull with the amplitude DТSHF ~4°C are observed. At the same time, thermodynamic temperature virtually does not change. The observed effects can be used in the development of the systems for diadnostics of pathologies in human and analytical system.
An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures
Amadei, B.; Savage, W.Z.
2001-01-01
We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaertner, Sabrina; Gundlach, Bastian; Headen, Thomas F.; Ratte, Judy; Oesert, Joachim; Gorb, Stanislav N.; Youngs, Tristan G. A.; Bowron, Daniel T.; Blum, Jürgen; Fraser, Helen
2018-06-01
Models and observations suggest that particle aggregation at and beyond the snowline is aided by water ice. As icy particles play such a crucial role in the earliest stages of planet formation, many laboratory studies have exploited their collisional properties across a wide range of parameters (particle size, impact velocity, temperature T, and pressure P).However, not all of these parameters have always been varied systematically, leading to apparently contradictory results on collision outcomes. Previous experiments only agreed that a temperature dependence set in above ≈210 K. Open questions remain as to what extent the structural properties of the particles themselves dictate collision outcomes. The P–T gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. To understand how effectively collision experiments reproduce protoplanetary disk conditions, environmental impacts on particle structure need to be investigated.We characterized the bulk and surface structure of icy particles used in collision experiments, exploiting the unique capabilities of the NIMROD neutron scattering instrument. Varying temperature at a constant pressure of around 30 mbar, we studied structural alterations to determine which of the observed properties matches the temperature dependencies observed in collisional behaviour.Our icy grains are formed under liquid nitrogen and heated from 103 to 247 K. As a result, they undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) suggests increased molecular mobility at temperatures above ≈210 K.Because none of the other changes ties in with the temperature trends in collisional outcomes, we conclude that the diffuse interface plays a key role in collision experiments at these temperatures. Consequently, the P–T environment may have a larger influence on collision outcomes than previously thought.
Edge effects on moisture reduce wood decomposition rate in a temperate forest.
Crockatt, Martha E; Bebber, Daniel P
2015-02-01
Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.
Bury, R. Bruce; Nebeker, A.B.; Adams, Michael J.
2000-01-01
In laboratory tests, young Chelydra serpentina and Trachemys scripta altered their distribution in the presence of a temperature gradient. Selection of temperatures in the gradient for hatchlings and yearlings showed that body temperatures (Tbs) of C. serpentina were lower than T. scripta, but the difference was insignificant. Relatively low Tbs could allow greater activity range and reduced metabolic maintenance cost for C. serpentina, which seldom leaves water.
Crystal growth and annealing for minimized residual stress
Gianoulakis, Steven E.
2002-01-01
A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.
Method for single crystal growth of photovoltaic perovskite material and devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinsong; Dong, Qingfeng
Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.
Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved
2014-01-01
This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.
Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite
Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved
2014-01-01
This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375
Time-dependent disk accretion in X-ray Nova MUSCAE 1991
NASA Astrophysics Data System (ADS)
Mineshige, Shin; Hirano, Akira; Kitamoto, Shunji; Yamada, Tatsuya T.; Fukue, Jun
1994-05-01
We propose a new model for X-ray spectral fitting of binary black hole candidates. In this model, it is assumed that X-ray spectra are composed of a Comptonized blackbody (hard component) and a disk blackbody spectra (soft component), in which the temperature gradient of the disk, q identically equal to -d log T/d log r, is left as a fitting parameter. With this model, we have fitted X-ray spectra of X-ray Nova Muscae 1991 obtained by Ginga. The fitting shows that a hot cloud, which Compton up-scatters soft photons from the disk, gradually shrank and became transparent after the main peak. The temperature gradient turns out to be fairly constant and is q approximately 0.75, the value expected for a Newtonian disk model. To reproduce this value with a relativistic disk model, a small inclination angle, i approximately equal to 0 deg to 15 deg, is required. It seems, however, that the q-value temporarily decreased below 0.75 at the main flare, and q increased in a transient fashion at the second peak (or the reflare) occurring approximately 70 days after the main peak. Although statistics are poor, these results, if real, would indicate that the disk brightening responsible for the main and secondary peaks are initiated in the relatively inner portions of the disk.
Growth Structure and Properties of Gradient Nanocrystalline Coatings of the Ti-Al-Si-Cu-N System
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. V.; Pinzhin, Yu. P.
2016-10-01
Methods of electron microprobe analysis, X-ray structure analysis and electron microscopy were used to study the element composition and features of the structure-phase, elastic stress state of nanocrystalline coatings of the Ti- Al- Si- Cu- N system with gradient of copper concentration across their thickness. The authors established the effects of element composition modification, non-monotonous behavior of the lattice constant of alloyed nitride and rise in the bending-torsion value of the crystalline lattice in individual nanocrystals to values of around 400 degrees/μm with increase in copper concentration, whereas the sizes of alloyed nitride crystals remained practically unchanged. Mechanical (hardness), adhesion and tribological properties of coatings were examined. Comparative analysis demonstrates higher values of adhesion characteristics in the case of gradient coatings of the Ti- Al- Si- Cu- N system than in the case of single-layer (with constant element concentration) analogues.
NASA Astrophysics Data System (ADS)
Liu, Jiangguo; Tavener, Simon; Wang, Zhuoran
2018-04-01
This paper investigates the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces, specifically RT0 for triangles and unmapped RT[0] for quadrilaterals. These discrete weak gradients are used to approximate the classical gradient when solving the Darcy equation. The method produces continuous normal fluxes and is locally mass-conservative, regardless of mesh quality, and has optimal order convergence in pressure, velocity, and normal flux, when the quadrilaterals are asymptotically parallelograms. Implementation is straightforward and results in symmetric positive-definite discrete linear systems. We present numerical experiments and comparisons with other existing methods.
Preparative electrophoresis for space
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1987-01-01
A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.
Preparative electrophoresis for space
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1988-01-01
A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.
Wang, Yejun; Kulatilaka, Waruna D
2017-04-10
In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan
2017-04-01
Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.
Bowman, William P; Turnbull, Matthew H; Tissue, David T; Whitehead, David; Griffin, Kevin L
2008-10-01
Temperature plays a critical role in the regulation of respiration rates and is often used to scale measurements of respiration to the stand-level and calculate annual respiratory fluxes. Previous studies have indicated that failure to consider temperature gradients between sun-exposed stems and branches in the crown and shaded lower stems may result in errors when deriving stand-level estimates of stem CO(2) efflux. We measured vertical gradients in sapwood temperature in a mature lowland podocarp rain forest in New Zealand to: (1) estimate the effects of within-stem temperature variation on the vertical distribution of stem CO(2) efflux; and (2) use these findings to estimate stand-level stem CO(2) efflux for this forest. Large within-stem gradients in sapwood temperature (1.6 +/- 0.1 to 6.0 +/- 0.5 degrees C) were observed. However, these gradients did not significantly influence the stand-level estimate of stem CO(2) efflux in this forest (536 +/- 42 mol CO(2) ha(-1) day(-1)) or the vertical distribution of stem CO(2) efflux, because of the opposing effects of daytime warming and nighttime cooling on CO(2) efflux in the canopy, and the small fraction of the woody biomass in the crowns of forest trees. Our findings suggest that detailed measurements of within-stand temperature gradients are unlikely to greatly improve the accuracy of tree- or stand-level estimates of stem CO(2) efflux.
Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids
USDA-ARS?s Scientific Manuscript database
A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...
USDA-ARS?s Scientific Manuscript database
Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...
Skarstrom, C.
1959-03-10
A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.
Nuccio, V.F.; Johnson, S.Y.; Schenk, C.J.
1989-01-01
Paleogeothermal gradients and timing of oil generation for the Lower and Middle Pennsylvanian Belden Formation have been estimated for four locations in the Eagle Basin of northwestern Colorado, by comparing measured vitrinite reflectance with maturity modeling. Two thermal models were made for each location: one assumes a constant paleogeothermal gradient through time while the other is a two-stage model with changing paleogeothermal gradients. The two-stage paleogeothermal gradient scenario is considered more geologically realistic and is used to estimate the timing of oil generation throughout the Eagle basin. From the data and interpretations, one would expect Belden oil to be found in either upper Paleozoic or Mesozoic reservoir rocks. -Authors
Brittle crack arrestability of thick steel plate welds in large structure
NASA Astrophysics Data System (ADS)
An, Gyu Baek; Park, Joon Sik
2011-10-01
Recently, there has been such a critical issue in shipbuilding industry that much larger and stronger ships are required to develop oil and gas in the Arctic region. Attention has been paid to obtaining high strength, good toughness at low temperature, and good weldability. An experimental study was performed to evaluate the brittle crack arrest toughness value (Kca) and brittle crack arrest method of welded joints using EH40 grade steel with a thickness of 80 mm. The test specimens were made by both flux cored arc welding (FCAW) and combined welding (EGW+FCAW) processes. Temperature gradient ESSO test was performed to measure the Kca of the base metal. Also, a constant temperature (-10 °C) ESSO test was performed to establish a brittle crack arrest method using high toughness welding consumable with real structural specimens. The research aims in this study were to investigate the effect of joint design and welding consumable for the crack arrestability of thick steel plates using EH40 grade shipbuilding steel of straight block joint weld line with two kinds of welding processes.
Improved Creep Measurements for Ultra-High Temperature Materials
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Ye, X.; Rogers, Jan R.
2010-01-01
Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.
Multiple parent bodies of ordinary chondrites
NASA Technical Reports Server (NTRS)
Yomogida, K.; Matsui, T.
1984-01-01
Thermal histories of chondrite parent bodies are calculated from an initial state with material in a powder-like form, taking into account the effect of consolidation state on thermal conductivity. The very low thermal conductivity of the starting materials makes it possible for a small body with a radius of less than 100 km to be heated by several hundred degrees even if long-lived radioactive elements in chondritic abundances are the only source of heat. The maximum temperature is determined primarily by the temperature at which sintering of the constituent materials occurs. The thermal state of the interior of a chondrite parent body after sintering has begun is nearly isothermal. Near the surface, however, where the material is unconsolidated and the thermal conductivity is much lower, the thermal gradient is quite large. This result contradicts the conventional 'onion-shell' model of chondrite parent bodies. But because the internal temperature is almost constant through the whole body, it supports a 'multiple-parent bodies' model, according to which each petrologic type of chondrite comes from a different parent body.
NASA Astrophysics Data System (ADS)
Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek
2015-06-01
The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.
Customised spatiotemporal temperature gradients created by a liquid metal enabled vortex generator.
Zhu, Jiu Yang; Thurgood, Peter; Nguyen, Ngan; Ghorbani, Kamran; Khoshmanesh, Khashayar
2017-11-07
Generating customised temperature gradients in miniaturised flow-free liquid chambers is challenging due to the dominance of diffusion. Inducing internal flows in the form of vortices is an effective strategy for overcoming the limitations of diffusion in such environments. Vortices can be produced by applying pressure, temperature and electric potential gradients via miniaturised actuators. However, the difficulties associated with the fabrication, integration, maintenance and operation of such actuators hinder their utility. Here, we utilise liquid metal enabled pumps to induce vortices inside a miniaturised liquid chamber. The configuration and rotational velocity of these vortices can be controlled by tuning the polarity and frequency of the energising electrical signal. This allows creation of customised spatial temperature gradients inside the chamber. The absence of conventional moving elements in the pumps facilitates the rapid reconfiguration of vortices. This enables quick transition from one temperature profile to another, and creates customised spatiotemporal temperature gradients. This allows temperature oscillation from 35 to 62 °C at the hot spot, and from 25 to 27 °C at the centre of the vortex within 15 seconds. Our liquid metal enabled vortex generator can be fabricated, integrated and operated easily, and offers opportunities for studying thermo-responsive materials and biological samples.
Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results
Goff, S.J.; Goff, F.; Janik, C.J.
1992-01-01
Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagnik, S.K.
1982-09-01
It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of bothmore » all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables.« less
Effects of solid-propellant temperature gradients on the internal ballistics of the Space Shuttle
NASA Technical Reports Server (NTRS)
Sforzini, R. H.; Foster, W. A., Jr.; Shackelford, B. W., Jr.
1978-01-01
The internal ballistic effects of combined radial and circumferential grain temperature gradients are evaluated theoretically for the Space Shuttle solid rocket motors (SRMs). A simplified approach is devised for representing with closed-form mathematical expressions the temperature distribution resulting from the anticipated thermal history prior to launch. The internal ballistic effects of the gradients are established by use of a mathematical model which permits the propellant burning rate to vary circumferentially. Comparative results are presented for uniform and axisymmetric temperature distributions and the anticipated gradients based on an earlier two-dimensional analysis of the center SRM segment. The thrust imbalance potential of the booster stage is also assessed based on the difference in the thermal loading of the individual SRMs of the motor pair which may be encountered in both summer and winter environments at the launch site. Results indicate that grain temperature gradients could cause the thrust imbalance to be approximately 10% higher in the Space Shuttle than the imbalance caused by SRM manufacturing and propellant physical property variability alone.
In Search for Diffuse Hydrothermal Venting at North Pond, Western Flank of the Mid-Atlantic-Ridge
NASA Astrophysics Data System (ADS)
Villinger, H. W.; Becker, K.; Hulme, S.; Kaul, N. E.; Müller, P.; Wheat, C. G.
2015-12-01
We present results from temperature measurements made with a ROV temperature lance in sediments deposited on the slopes of abyssal hills and small basins surrounding North Pond. North Pond is a ~8x15 km large sediment basin located on ~7 Ma year old crust west of the Mid-Atlantic Ridge at 23°N. Data were collected with the ROV Jason II during cruise MSM37 on the German RV Maria S. Merian in April 2014. The temperature lance consists of a 60 cm long stainless steel tube (o.d. 12 mm) housing 8 thermistors with a spacing of 80 mm, resulting in an active length of 56 cm. Data are logged with an 8-channel data logger (XR-420-T8, RBR, Ottawa) and transmitted online to the control van of the ROV. Data reduction and temperature gradient calculation is done according to the HFRED algorithm (Villinger & Davis, 1987). 90 sites in total were visited, 88 gave good data for temperature gradient calculation. Calculated gradients are usually of good to very good quality. The gradients vary between less than 20 to more than 1000 mK/m reflecting the very heterogeneous distribution of geothermal heat flow. The expected conductive lithospheric heat flow for North Pond is ~190 mW/m2 (geothermal gradient of ~190 mK/m with a thermal conductivity of 1 W/Km). The highest temperature gradients are measured in places where temperature ~50 cm below the sediment-water boundary exceeds bottom water temperature by ~0.5 K . These high temperature gradients may reflect local hydrothermal circulation within the pillow lavas, however no focused discharge was detected. The analysis of temperature measurements made with the ROV-mounted CTD shows clearly detectable bottom water temperature anomalies. We infer that they are either caused by hydrothermal discharge through the thin sediment cover or through unsedimented pillow basalts nearby. Hydrothermal circulation in a North-Pond-like environment appears to be diffuse in nature, hence very difficult if not impossible to detect and to quantify.
Ngowi, Benignus V; Tonnang, Henri E Z; Mwangi, Evans M; Johansson, Tino; Ambale, Janet; Ndegwa, Paul N; Subramanian, Sevgan
2017-01-01
There is a scarcity of laboratory and field-based results showing the movement of the diamondback moth (DBM) Plutella xylostella (L.) across a spatial scale. We studied the population growth of the diamondback moth (DBM) Plutella xylostella (L.) under six constant temperatures, to understand and predict population changes along altitudinal gradients and under climate change scenarios. Non-linear functions were fitted to continuously model DBM development, mortality, longevity and oviposition. We compiled the best-fitted functions for each life stage to yield a phenology model, which we stochastically simulated to estimate the life table parameters. Three temperature-dependent indices (establishment, generation and activity) were derived from a logistic population growth model and then coupled to collected current (2013) and downscaled temperature data from AFRICLIM (2055) for geospatial mapping. To measure and predict the impacts of temperature change on the pest's biology, we mapped the indices along the altitudinal gradients of Mt. Kilimanjaro (Tanzania) and Taita Hills (Kenya) and assessed the differences between 2013 and 2055 climate scenarios. The optimal temperatures for development of DBM were 32.5, 33.5 and 33°C for eggs, larvae and pupae, respectively. Mortality rates increased due to extreme temperatures to 53.3, 70.0 and 52.4% for egg, larvae and pupae, respectively. The net reproduction rate reached a peak of 87.4 female offspring/female/generation at 20°C. Spatial simulations indicated that survival and establishment of DBM increased with a decrease in temperature, from low to high altitude. However, we observed a higher number of DBM generations at low altitude. The model predicted DBM population growth reduction in the low and medium altitudes by 2055. At higher altitude, it predicted an increase in the level of suitability for establishment with a decrease in the number of generations per year. If climate change occurs as per the selected scenario, DBM infestation may reduce in the selected region. The study highlights the need to validate these predictions with other interacting factors such as cropping practices, host plants and natural enemies.
Nikitas, P; Pappa-Louisi, A
2005-09-01
The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.
Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055
Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.
NASA Astrophysics Data System (ADS)
Arslanturk, Cihat
2011-02-01
Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.
Quantum Metric of Classic Physics
NASA Astrophysics Data System (ADS)
Machusky, Eugene
2017-09-01
By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.
Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa
2016-01-01
Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.
A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."
ERIC Educational Resources Information Center
Fenske, Christiane; McCauley, Robert
2002-01-01
Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2017-12-01
In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.
Soliveres, Santiago; Eldridge, David J.; Maestre, Fernando T.; Bowker, Matthew A.; Tighe, Matthew; Escudero, Adrián
2015-01-01
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as a driver of such responses. PMID:25914601
O'Brien, Eleanor K; Higgie, Megan; Reynolds, Alan; Hoffmann, Ary A; Bridle, Jon R
2017-05-01
Predicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species distribution models (SDMs) use the current relationship between environmental variation and species' abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (i) that the relationship of environment with abundance or fitness is constant throughout a species' range and will remain so in future and (ii) that abiotic factors (e.g. temperature, humidity) determine species' distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high-altitude sites, and declined towards warmer, low-altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower-altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species' range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high-altitude than low-altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (i) measuring genetic variation in key traits under ecologically relevant conditions, and (ii) considering the effect of biotic interactions when predicting species' responses to environmental change. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Soliveres, Santiago; Eldridge, David J; Maestre, Fernando T; Bowker, Matthew A; Tighe, Matthew; Escudero, Adrián
2011-11-20
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient equally affecting the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal richness-biomass curve, which is not as general as previously thought. We ignored these assumptions to assess changes in plant-plant interactions, and their effect on local species richness, across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we were able to see how our nurse plants (trees, shrubs and tussock grasses) not only increased local richness by expanding the niche of neighbouring species, but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum changed depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant-plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. These results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as a driver of such responses.
Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, I.H.
The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.
Minimum maximum temperature gradient coil design.
While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart
2013-08-01
Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.
Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo; ...
2017-05-10
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damodaran, Anoop R.; Pandya, Shishir; Qi, Yubo
A range of modern applications require large and tunable dielectric, piezoelectric or pyroelectric response of ferroelectrics. Such effects are intimately connected to the nature of polarization and how it responds to externally applied stimuli. Ferroelectric susceptibilities are, in general, strongly temperature dependent, diminishing rapidly as one transitions away from the ferroelectric phase transition (T C). In turn, researchers seek new routes to manipulate polarization to simultaneously enhance susceptibilities and broaden operational temperature ranges. Here, we demonstrate such a capability by creating composition and strain gradients in Ba 1-xSr xTiO 3 films which result in spatial polarization gradients as large asmore » 35 μC cm -2 across a 150 nm thick film. These polarization gradients allow for large dielectric permittivity with low loss (ε r≈775, tan δ<0.05), negligible temperature-dependence (13% deviation over 500 °C) and high-dielectric tunability (greater than 70% across a 300 °C range). The role of space charges in stabilizing polarization gradients is also discussed.« less
Effect of composition gradient on magnetothermal instability modified by shear and rotation
NASA Astrophysics Data System (ADS)
Gupta, Himanshu; Chaudhuri, Anya; Sadhukhan, Shubhadeep; Chakraborty, Sagar
2018-02-01
We model the intracluster medium as a weakly collisional plasma that is a binary mixture of the hydrogen and the helium ions, along with free electrons. When, owing to the helium sedimentation, the gradient of the mean-molecular weight (or equivalently, composition or helium ions' concentration) of the plasma is not negligible, it can have appreciable influence on the stability criteria of the thermal convective instabilities, e.g. the heat-flux-buoyancy instability and the magnetothermal instability (MTI). These instabilities are consequences of the anisotropic heat conduction occurring preferentially along the magnetic field lines. In this paper, without ignoring the magnetic tension, we first present the mathematical criterion for the onset of composition gradient modified MTI. Subsequently, we relax the commonly adopted equilibrium state in which the plasma is at rest, and assume that the plasma is in a sheared state which may be due to differential rotation. We discuss how the concentration gradient affects the coupling between the Kelvin-Helmholtz instability and the MTI in rendering the plasma unstable or stable. We derive exact stability criterion by working with the sharp boundary case in which the physical variables - temperature, mean-molecular weight, density and magnetic field - change discontinuously from one constant value to another on crossing the boundary. Finally, we perform the linear stability analysis for the case of the differentially rotating plasma that is thermally and compositionally stratified as well. By assuming axisymmetric perturbations, we find the corresponding dispersion relation and the explicit mathematical expression determining the onset of the modified MTI.
Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.
2014-01-01
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213
Temperature Dependence Of Elastic Constants Of Polymers
NASA Technical Reports Server (NTRS)
Simha, Robert; Papazoglou, Elisabeth
1989-01-01
Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.
Biosensing in a microelectrofluidic system using optical whispering-gallery mode spectroscopy
Huang, Lei; Guo, Zhixiong
2011-01-01
Label-free detection of biomolecules using an optical whispering-gallery mode sensor in a microelectrofluidic channel is simulated. Negatively charged bovine serum albumin is considered as the model protein analyte. The analyte transport in aqueous solution is controlled by an externally applied electrical field. The finite element method is employed for solving the equations of the charged species transport, the Poisson equation of electric potential, the equations of conservation of momentum and energy, and the Helmholtz equations of electromagnetic waves. The adsorption process of the protein molecules on the microsensor head surface is monitored by the resonance frequency shifts. Frequency shift caused by temperature variation due to Joule heating is analyzed and found to be negligible. The induced shifts behave in a manner similar to Langmuir-like adsorption kinetics; but the time constant increases due to the presence of the external electrical field. A correlation of the frequency shift, the analyte feed concentration in the solution, and the applied voltage gradient is obtained, in which an excellent linear relationship between the frequency shift and the analyte concentration is revealed. The applied voltage gradient enhances significantly the analyte concentration in the vicinity of the sensor surface; thus, the sensor sensitivity which has a power function of the voltage gradient with exponent 2.85 in the controlled voltage range. Simulated detection of extremely low protein concentration to the pico-molar level is carried out. PMID:22662041
NASA Astrophysics Data System (ADS)
Li, Sen; Zhong, Zhong
2014-02-01
An improved flux-gradient relationship between momentum φm(ζ) and sensible heat φh(ζ) is obtained by the use of the observational data over an alpine meadow in the eastern Tibet Plateau, in Maqu of China during the period June to August, 2010. The empirical coefficients of Businger—Dyer type function for the cases of unstable and stable stratification are modified. Non-dimensional vertical gradients of wind and potential temperature are calculated by three fitting functions; that is, the log—linear, log—square, and log—cubic functions, respectively. It is found that the von Karman constant approaches 0.4025 and the Prandtl number is about 1.10 based on the measurements in near-neutral conditions, which are within reasonable range proposed in previous studies. The revised flux-gradient profile functions of -1/5 power law for momentum and -1/3 power law for sensible heat are best fitted in unstable stratification conditions. Meanwhile, 2/5 power law, instead of linear functions, is more appropriate in stable stratification cases for momentum and sensible heat. Compared with results from previous studies in which traditional functions are used, the momentum and sensible heat fluxes estimated by the revised profile functions in the current study are much closer to the observations for the unstable and stable stratification conditions.
Behrens, M.D.; Lafferty, K.D.
2007-01-01
Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.
The impact of summer rainfall on the temperature gradient along the United States-Mexico border
NASA Technical Reports Server (NTRS)
Balling, Robert C., Jr.
1989-01-01
The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.
Jeong, Mi-Yun; Kwak, Keumcheol
2016-11-20
In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.
Piatt, Joseph J.; Backhus, Debera A.; Capel, Paul D.; Eisenreich, Steven J.
1996-01-01
Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 °C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (Kd) increased 1.1−1.6 times with a decrease in temperature of 22 °C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 °C. Desorption rate constants (k2) decreased 1.2−2.6 times with a decrease in temperature of 22 °C. Times to equilibrium were at least 40 h. The magnitude of observed Kd and k2 values and the effect of temperature on Kd (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (foc = 0.02%) on the sediments. The temperature dependence of Kd and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and-treat times could be decreased because increased temperature decreases both retardation and tailing.
NASA Astrophysics Data System (ADS)
Allison, K.; Reinen, L. A.
2011-12-01
Slip on non-planar faults produces stress perturbations in the surrounding host rock that can yield secondary faults at a scale too small to be resolved on seismic surveys. Porosity changes during failure may affect the ability of the rock to transmit fluids through dilatant cracking or, in porous rocks, shear-enhanced compaction (i.e., cataclastic flow). Modeling the mechanical behavior of the host rock in response to slip on non-planar faults can yield insights into the role of fault geometry on regions of enhanced or inhibited fluid flow. To evaluate the effect of normal fault geometry on deformation in porous sandstones, we model the system as a linear elastic, homogeneous, whole or half space using the boundary-element modeling program Poly3D. We consider conditions leading to secondary deformation using the maximum Coulomb shear stress (MCSS) as an index of brittle deformation and proximity to an elliptical yield envelope (Y), determined experimentally for porous sandstone (Baud et al., JGR, 2006), for cataclastic flow. We model rectangular faults consisting of two segments: an upper leg with a constant dip of 60° and a lower leg with dips ranging 15-85°. We explore far-field stress models of constant and gradient uniaxial strain. We investigate the potential damage in the host rock in two ways: [1] the size of the damage zone, and [2] regions of enhanced deformation indicated by elevated MCSS or Y. Preliminary results indicate that, along a vertical transect passing through the fault kink, [1] the size of the damage zone increases in the footwall with increasing lower leg dip and remains constant in the hanging wall. [2] In the footwall, the amount of deformation does not change as a function of lower leg dip in constant stress models; in gradient stress models, both MCSS and Y increase with dip. In the hanging wall, Y decreases with increasing lower leg dip for both constant and gradient stress models. In contrast, MCSS increases: as lower leg dip increases for constant stress models, and as the difference between lower leg dip and 60° increases for gradient stress models. These preliminary results indicate that the dip of the lower fault segment significantly affects the amount and style of deformation in the host rock.
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro
2015-09-01
Electron beam (EB) lithography is a key technology for the fabrication of photomasks for ArF immersion and extreme ultraviolet (EUV) lithography and molds for nanoimprint lithography. In this study, the temporal change in the chemical gradient of line-and-space patterns with a 7 nm quarter-pitch (7 nm space width and 21 nm line width) was calculated until it became constant, independently of postexposure baking (PEB) time, to clarify the feasibility of single nano patterning on quartz substrates using EB lithography with chemically amplified resist processes. When the quencher diffusion constant is the same as the acid diffusion constant, the maximum chemical gradient of the line-and-space pattern with a 7 nm quarter-pitch did not differ much from that with a 14 nm half-pitch under the condition described above. Also, from the viewpoint of process control, a low quencher diffusion constant is considered to be preferable for the fabrication of line-and-space patterns with a 7 nm quarter-pitch on quartz substrates.
Febrile response to infection in the American alligator (Alligator mississippiensis).
Merchant, Mark; Williams, Stephanie; Trosclair, Phillip L; Elsey, Ruth M; Mills, Kaili
2007-12-01
Temperature probes were inserted into the stomachs of juvenile American alligators (Alligator mississippiensis) maintained outdoors at ambient fluctuating temperatures. Internal body temperatures (T(b)) were measured every 15 min for two days, and then the alligators were injected with bacterial lipopolysaccharide (LPS), pyrogen-free saline, or left untreated. Alligators injected intraperitoneally with LPS exhibited maximum T(b)s 2.6+/-1.1 degrees C and 3.5+/-1.2 degrees C higher than untreated control animals on days one and two after treatment, respectively. T(b)s for these animals fell to within control ranges by day three postinjection. Similarly, mean preferred body temperatures (MPBTs) were significantly higher for LPS-injected alligators on days one (4.2+/-1.8 degrees C) and two (3.5+/-1.6 degrees C) after treatment. Intraperitoneal injection of heat-killed Aeromonas hydrophila, a gram-negative bacterium known to infect crocodilians, resulted in a fever while injection of Staphylococcus aureus (gram positive) did not elicit a febrile response. Injection of LPS in alligators maintained indoors in a constant temperature environment resulted in no increase in internal T(b). These results indicate that alligators did not exhibit a febrile response in the absence of a thermal gradient, and suggest that febrile responses observed are probably behavioral in nature.
Gravity and gravity gradient changes caused by a point dislocation
NASA Astrophysics Data System (ADS)
Huang, Jian-Liang; Li, Hui; Li, Rui-Hao
1995-02-01
In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.
NASA Technical Reports Server (NTRS)
Schmidt, D. D.; Alter, W. S.; Hamilton, W. D.; Parr, R. A.
1989-01-01
MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
We tested hatchling and yearling Florida red-bellied turtles (Pseudemys nelsoni) in laboratory thermal gradient chambers to determine if they would prefer particular temperatures. Most 1995 hatchlings selected the highest temperature zone of 27degrees C (Test 1) and 30 degrees ...
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
NASA Astrophysics Data System (ADS)
De Lucas, Javier; Segovia, José Juan
2018-05-01
Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.
Hayamizu, Kikuko; Seki, Shiro; Haishi, Tomoyuki
2018-06-21
The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [μm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [μm], and compared it with Rdiffraction and mean square displacement (MSD) [μm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.
Study of the possibility of growing germanium single crystals under low temperature gradients
NASA Astrophysics Data System (ADS)
Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.
2014-03-01
The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.
NASA Astrophysics Data System (ADS)
Shoji, M.; Omura, Y.; Grison, B.; Pickett, J. S.; Dandouras, I. S.; Engebretson, M. J.
2011-12-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Astrophysics Data System (ADS)
Shoji, Masafumi; Omura, Yoshiharu; Grison, Benjamin; Pickett, Jolene; Dandouras, Iannis; Engebretson, Mark
2011-09-01
Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch.
NASA Technical Reports Server (NTRS)
Agnone, A. M.
1972-01-01
The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.
High-temperature langatate elastic constants and experimental validation up to 900 degrees C.
Davulis, Peter M; da Cunha, Mauricio Pereira
2010-01-01
This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
NASA Astrophysics Data System (ADS)
Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.
2014-01-01
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Thermopower analysis of the electronic structure around the metal-insulator transition in V1-xWxO2
NASA Astrophysics Data System (ADS)
Katase, Takayoshi; Endo, Kenji; Ohta, Hiromichi
2014-10-01
The electronic structure across the metal-insulator (MI) transition of electron-doped V1-xWxO2 epitaxial films (x =0-0.06) grown on α-Al2O3 substrates was studied by means of thermopower (S) measurements. Significant increase of |S | values accompanied by MI transition was observed, and the transition temperatures of S (TS) decreased with x in a good linear relation with MI transition temperatures. |S| values of V1-xWxO2 films at T>TS were constant at low values of 23μVK-1 independently of x, which reflects a metallic electronic structure, whereas those at T
Effects of nitrogen seeding on core ion thermal transport in JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Citrin, J.; Giroud, C.; Lerche, E.; Sozzi, C.; Taylor, D.; Tsalas, M.; Van Eester, D.; contributors, JET
2018-02-01
A set of experiments was carried out in JET ILW (Joint European Torus with ITER-Like Wall) L-mode plasmas in order to study the effects of light impurities on core ion thermal transport. N was puffed into some discharges and its profile was measured by active Charge Exchange diagnostics, while ICRH power was deposited on- and off-axis in ({\\hspace{0pt}}3He)-D minority scheme in order to have a scan of local heat flux at constant total power with and without N injection. Experimentally, the ion temperature profiles are more peaked for similar heat fluxes when N is injected in the plasma. Gyro-kinetic simulations using the GENE code indicate that a stabilization of Ion Temperature Gradient driven turbulent transport due to main ion dilution and to changes in Te/Ti and s/q is responsible of the enhanced peaking. The quasi-linear models TGLF and QuaLiKiz are tested against the experimental and the gyro-kinetic results.
SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.
NASA Technical Reports Server (NTRS)
Sears, B.; Narayanan, R.; Anderson, T. J.; Fripp, A. L.
1992-01-01
An electrochemical titration method was used to investigate the dynamic states in a cylindrical layer of convecting tin. The liquid tin was contained in a cell, with curved boundaries made of quartz and flat boundaries made of a solid state electrolyte - yttria-stabilized zirconia (YSZ). The electrolyte acted as a window through which a trace amount of oxygen could be pumped in or out by the application of a constant voltage. The concentration at the YSZ interface was monitored by operating the electrochemical cell in the galvanic mode. Experimentally determined effective diffusivities of oxygen were compared with the molecular diffusivity. Dynamic states in the convective flow were thus inferred. Temperature measurements were simultaneously made in order to identify the onset of oscillations from a steady convective regime. The experiments were conducted for two different aspect ratios for various imposed temperature gradients and two different orientations with respect to gravity. Transcritical states were identified and comparison to two-dimensional numerical models were made.
Nonlinear transport for a dilute gas in steady Couette flow
NASA Astrophysics Data System (ADS)
Garzó, V.; López de Haro, M.
1997-03-01
Transport properties of a dilute gas subjected to arbitrarily large velocity and temperature gradients (steady planar Couette flow) are determined. The results are obtained from the so-called ellipsoidal statistical (ES) kinetic model, which is an extension of the well-known BGK kinetic model to account for the correct Prandtl number. At a hydrodynamic level, the solution is characterized by constant pressure, and linear velocity and parabolic temperature profiles with respect to a scaled variable. The transport coefficients are explicitly evaluated as nonlinear functions of the shear rate. A comparison with previous results derived from a perturbative solution of the Boltzmann equation as well as from other kinetic models is carried out. Such a comparison shows that the ES predictions are in better agreement with the Boltzmann results than those of the other approximations. In addition, the velocity distribution function is also computed. Although the shear rates required for observing non-Newtonian effects are experimentally unrealizable, the conclusions obtained here may be relevant for analyzing computer results.
The ion temperature gradient: An intrinsic property of Earth's magnetotail
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.
2017-08-01
Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.
Direct measurement of asperity contact growth in quartz at hydrothermal conditions
Beeler, Nicholas M.; Hickman, Stephen H.
2015-01-01
Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981
Paulachok, Gary N.
1986-01-01
Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.
Multiple-Point Temperature Gradient Algorithm for Ring Laser Gyroscope Bias Compensation
Li, Geng; Zhang, Pengfei; Wei, Guo; Xie, Yuanping; Yu, Xudong; Long, Xingwu
2015-01-01
To further improve ring laser gyroscope (RLG) bias stability, a multiple-point temperature gradient algorithm is proposed for RLG bias compensation in this paper. Based on the multiple-point temperature measurement system, a complete thermo-image of the RLG block is developed. Combined with the multiple-point temperature gradients between different points of the RLG block, the particle swarm optimization algorithm is used to tune the support vector machine (SVM) parameters, and an optimized design for selecting the thermometer locations is also discussed. The experimental results validate the superiority of the introduced method and enhance the precision and generalizability in the RLG bias compensation model. PMID:26633401
NASA Astrophysics Data System (ADS)
Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele
2018-03-01
In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.
Influences of a temperature gradient and fluid inertia on acoustic streaming in a standing wave.
Thompson, Michael W; Atchley, Anthony A; Maccarone, Michael J
2005-04-01
Following the experimental method of Thompson and Atchley [J. Acoust. Soc. Am. 117, 1828-1838 (2005)] laser Doppler anemometry (LDA) is used to investigate the influences of a thermoacoustically induced axial temperature gradient and of fluid inertia on the acoustic streaming generated in a cylindrical standing-wave resonator filled with air driven sinusoidally at a frequency of 308 Hz. The axial component of Lagrangian streaming velocity is measured along the resonator axis and across the diameter at acoustic-velocity amplitudes of 2.7, 4.3, 6.1, and 8.6 m/s at the velocity antinodes. The magnitude of the axial temperature gradient along the resonator wall is varied between approximately 0 and 8 K/m by repeating measurements with the resonator either surrounded by a water jacket, suspended within an air-filled tank, or wrapped in foam insulation. A significant correlation is observed between the temperature gradient and the behavior of the streaming: as the magnitude of the temperature gradient increases, the magnitude of the streaming decreases and the shape of the streaming cell becomes increasingly distorted. The observed steady-state streaming velocities are not in agreement with any available theory.
Mastikhin, Igor; Barnhill, Marie
2014-11-01
An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013
Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland
2014-01-01
Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1988-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
Convective flows in enclosures with vertical temperature or concentration gradients
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chai, A. T.; Sun, D. J.
1989-01-01
The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.
NASA Astrophysics Data System (ADS)
Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.
2017-02-01
Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.
Thermal-gradient migration of brine inclusions in salt crystals
NASA Astrophysics Data System (ADS)
Yagnik, S. K.
1982-09-01
High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2017-12-01
Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.
Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism
NASA Astrophysics Data System (ADS)
Wang, X.; Baker, I.
2014-12-01
The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.
Gradient-based adaptation of general gaussian kernels.
Glasmachers, Tobias; Igel, Christian
2005-10-01
Gradient-based optimizing of gaussian kernel functions is considered. The gradient for the adaptation of scaling and rotation of the input space is computed to achieve invariance against linear transformations. This is done by using the exponential map as a parameterization of the kernel parameter manifold. By restricting the optimization to a constant trace subspace, the kernel size can be controlled. This is, for example, useful to prevent overfitting when minimizing radius-margin generalization performance measures. The concepts are demonstrated by training hard margin support vector machines on toy data.
Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K
2017-01-01
African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.
Haupt, Meghan; Bennett, Nigel C.
2017-01-01
African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
Qu, Zhechao; Werhahn, Olav; Ebert, Volker
2018-06-01
The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO 2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.
Oviposition activity of Drosophila suzukii as mediated by ambient and fruit temperature
2017-01-01
The invasive pest Drosophila suzukii was introduced to southern Europe in 2008 and spread throughout Central Europe in the following years. Precise reliable data on the temperature-dependent behavior of D. suzukii are scarce but will help forecasting and cultivation techniques. Depending on physico-chemical properties, surface temperature of objects may differ from ambient temperatures, determining physical activity, and affect oviposition on or into substrate, determining preimaginal development later. Therefore, the preferred ambient temperatures of D. suzukii and fruit temperature for oviposition were examined on a linear temperature gradient device. Thirty adults (15 ♀; 15 ♂) were adapted to different temperatures (10, 20, 30°C) for six days and then exposed to different temperature gradients (10–25, 20–35, 25–40°C). D. suzukii adapted to 10°C remained in cooler regions and suffered from a significantly higher mortality at the 25–40°C gradient. Animals adapted to warmer temperatures had a wider temperature preference on the gradient device. Acclimation to lower temperatures and the resulting lower temperature preferences may allow the flies to disperse better in spring to search for oviposition sites. The oviposition activity decreased continuously at a fruit temperature above 28°C and below 15°C, with highest oviposition activity in fruits with temperatures between 19.7°C and 24.8°C. The preferred fruit temperature is in accordance with the temperature optimum of reproduction biology and preimaginal development of D. suzukii reported in the literature. PMID:29121635
Riquelme, Nicza Alveal; Díaz-Páez, Helen; Ortiz, Juan Carlos
2016-08-01
Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10°C and 20°C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34°C, a critical thermal maxima of 34.6-41.4°C, and a critical thermal minima of 2.6-0.8°C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner. The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
Prediction of Turbulent Temperature Fluctuations in Hot Jets
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2017-01-01
Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.
Gautam, Bal K; Henderson, Gregg
2011-10-01
Foraging groups of Formosan subterranean termites, Coptotermes formosanus Shiraki were tested for their relative humidity (RH) preference in a humidity gradient arena in the laboratory at a constant temperature of 26°C. Five RH levels (9%, 33%, 53%, 75%, and 98%) were maintained in the test arena comprising of a series of closed containers by using dry silica gel, saturated salt solutions, or distilled water alone. Termites gradually aggregated to the highest RH chamber in the arena. After 1 h, a significantly greater percentage of termites (≈46%) aggregated to the highest RH chamber (98%) than to the lower RH chambers (≤75%). After 12 h, > 97% of the termites aggregated to the 98% RH chamber. In survival tests, where termites were exposed to 15 combinatorial treatments of five RH levels (9%, 33%, 53%, 75%, and 98%) and three temperatures (20°C, 28°C, and 36°C) for a week, the survival was significantly influenced by RH, temperature, and their interaction. A significantly higher mortality was observed on termites exposed to ≤75% RH chambers than to 98% RH chamber at the three temperatures and significantly lower survival was found at 36°C than at 28°C or 20°C. The combination of temperature and RH plays an important role in the survival of C. formosanus.
Surface tension and density of liquid In-Sn-Zn alloys
NASA Astrophysics Data System (ADS)
Pstruś, Janusz
2013-01-01
Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.
NASA Astrophysics Data System (ADS)
Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.
2018-06-01
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L, a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.
Ullah, Mohammad Shaef; Lim, Un Taek
2015-06-01
Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.
Zhang, Yinan; Luo, Yi; Lu, Huijuan; Wang, Niansong; Shen, Yixie; Chen, Ruihua; Fang, Pingyan; Yu, Hong; Wang, Congrong; Jia, Weiping
2015-04-01
Urine samples were collected from eleven randomly selected patients with kidney disease, including diabetic nephropathy, chronic nephritis, and nephritic syndrome. Urine samples were treated with one of four protocols for freezing and thawing: freeze directly and thaw directly; freeze directly and thaw by temperature gradient; freeze by temperature gradient and thaw directly; and freeze by temperature gradient and thaw by temperature gradient. After one to six freeze/thaw cycles at -20°C or -80°C, different biomarkers showed differential stabilities. The concentrations of total protein, calcium, and potassium did not change significantly after five freeze/thaw cycles at either -20°C or -80°C. Albumin could only sustain three freeze/thaw cycles at -20°C before it started to degrade. We recommend that urine be stored at -80°C as albumin and the organic ions could sustain five and six freeze/thaw cycles, respectively, using the simple "direct freeze and direct thaw" protocol. Furthermore, in most cases, gradient freeze/thaw cycles are not necessary for urine sample storage.
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
2016-08-26
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Andrewartha, Sarah J; Mitchell, Nicola J; Frappell, Peter B
2010-01-01
Many lineages of parthenogenetic organisms have persisted through significant environmental change despite the constraints imposed by their fixed genotype and limited evolutionary potential. The ability of parthenogens to occur sympatrically with sexual relatives may in part be due to phenotypic plasticity in their responses to their environment, especially with respect to incubation temperature--a maternally selected trait. Here we measured the incubation temperatures selected by two lineages of triploid parthenogenic geckos in the Heteronotia binoei complex by allowing them to deposit clutches along a thermal gradient. The average nest temperature selected was 28.4 degrees C, with no significant differences between parthenogenic races or individual clones. To investigate the effect of nest-temperature variability on physiological and morphological traits, we incubated eggs from different races at one of four incubation regimes (32 degrees +/- 0 degrees, +/- 3 degrees , +/- 5 degrees , or +/- 9 degrees C). Embryos incubated at constant 32 degrees C developed faster than embryos reared under increasing extremes of diel temperature fluctuation (+/- 3 degrees , +/- 5 degrees C), and incubation at 32 degrees +/- 9 degrees C was unsuccessful. Incubation regime had no effect on the body size, preferred substrate temperature, or mass-specific .V(O2) of hatchlings. However, parthenogenic race had a significant effect on egg mass, tail length, snout-to-vent length, total length, and .V(O2) . We conclude that developmental traits are strongly influenced by clonal genotypes in this parthenogenic complex but are well buffered against fluctuations in incubation temperature.
NASA Astrophysics Data System (ADS)
Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš
2017-05-01
To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.
NASA Astrophysics Data System (ADS)
Ohkubo, I.; Christen, H. M.; Kalinin, Sergei V.; Jellison, G. E.; Rouleau, C. M.; Lowndes, D. H.
2004-02-01
We have developed a multisample film growth method on a temperature-gradient substrate holder to quickly optimize the film growth temperature in pulsed-laser deposition. A smooth temperature gradient is achieved, covering a range of temperatures from 200 to 830 °C. In a single growth run, the optimal growth temperature for SrxBa1-xNb2O6 thin films on MgO(001) substrates was determined to be 750 °C, based on results from ellipsometry and piezoresponse force microscopy. Variations in optical properties and ferroelectric domains structures were clearly observed as function of growth temperature, and these physical properties can be related to their different crystalline quality. Piezoresponse force microscopy indicated the formation of uniform ferroelectric film for deposition temperatures above 750 °C. At 660 °C, isolated micron-sized ferroelectric islands were observed, while samples deposited below 550 °C did not exhibit clear piezoelectric contrast.
SW New Mexico BHT geothermal gradient calculations
Shari Kelley
2015-07-24
This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.
Surface Tension Gradients Induced by Temperature: The Thermal Marangoni Effect
ERIC Educational Resources Information Center
Gugliotti, Marcos; Baptisto, Mauricio S.; Politi, Mario J.
2004-01-01
Surface tensions gradients were generated in a thin liquid film because of the local increase in temperature, for demonstration purposes. This is performed using a simple experiment and allows different alternatives for heat generation to be used.
High-gradient compact linear accelerator
Carder, B.M.
1998-05-26
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.
High-gradient compact linear accelerator
Carder, Bruce M.
1998-01-01
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.
NASA Astrophysics Data System (ADS)
Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang
2018-03-01
Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.
Mesoscale Dynamical Regimes in the Midlatitudes
NASA Astrophysics Data System (ADS)
Craig, G. C.; Selz, T.
2018-01-01
The atmospheric mesoscales are characterized by a complex variety of meteorological phenomena that defy simple classification. Here a full space-time spectral analysis is carried out, based on a 7 day convection-permitting simulation of springtime midlatitude weather on a large domain. The kinetic energy is largest at synoptic scales, and on the mesoscale it is largely confined to an "advective band" where space and time scales are related by a constant of proportionality which corresponds to a velocity scale of about 10 m s-1. Computing the relative magnitude of different terms in the governing equations allows the identification of five dynamical regimes. These are tentatively identified as quasi-geostrophic flow, propagating gravity waves, stationary gravity waves related to orography, acoustic modes, and a weak temperature gradient regime, where vertical motions are forced by diabatic heating.
HOT PRESSING WITH A TEMPERATURE GRADIENT
Hausner, H.H.
1958-05-20
A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.
John H. Fryer; F. Thomas Ledig
1972-01-01
Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093
2016-08-15
We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less
Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Han; Zhang, Xingwang; Chau, Fook Siong
2016-04-25
We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the futuremore » nanooptoelectromechanical systems.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2003-01-01
The development of low conductivity, robust thermal and environmental barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity and cyclic resistance at very high surface temperatures (up to 1700 C) under large thermal gradients. In this study, a laser high-heat-flux test approach is established for evaluating advanced low conductivity, high temperature capability thermal and environmental barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) program. The test approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity, which initially rises under the steady-state high temperature thermal gradient test due to coating sintering, and later drops under the cyclic thermal gradient test due to coating cracking/delamination. The coating system is then evaluated based on damage accumulation and failure after the combined steady-state and cyclic thermal gradient tests. The lattice and radiation thermal conductivity of advanced ceramic coatings can also be evaluated using laser heat-flux techniques. The external radiation resistance of the coating is assessed based on the measured specimen temperature response under a laser- heated intense radiation-flux source. The coating internal radiation contribution is investigated based on the measured apparent coating conductivity increases with the coating surface test temperature under large thermal gradient test conditions. Since an increased radiation contribution is observed at these very high surface test temperatures, by varying the laser heat-flux and coating average test temperature, the complex relation between the lattice and radiation conductivity as a function of surface and interface test temperature may be derived.
NASA Astrophysics Data System (ADS)
Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua
2018-01-01
Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.
Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y
2018-06-21
The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.
The effects of thermal gradients on the Mars Observer Camera primary mirror
NASA Technical Reports Server (NTRS)
Applewhite, Roger W.; Telkamp, Arthur R.
1992-01-01
The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.
Karvelas, E G; Lampropoulos, N K; Sarris, I E
2017-04-01
This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017 Elsevier B.V. All rights reserved.
Savill, George P; Michalski, Adam; Powers, Stephen J; Wan, Yongfang; Tosi, Paola; Buchner, Peter; Hawkesford, Malcolm J
2018-05-25
Gradients exist in the distribution of storage proteins in the wheat (Triticum aestivum) endosperm and determine the milling properties and protein recovery rate of the grain. A novel image analysis technique was developed to quantify both the gradients in protein concentration, and the size distribution of protein bodies within the endosperm of wheat plants grown under two different (20 or 28 °C) post-anthesis temperatures, and supplied with a nutrient solution with either high or low nitrogen content. Under all treatment combinations, protein concentration was greater in the endosperm cells closest to the aleurone layer and decreased towards the centre of the two lobes of the grain, i.e. a negative gradient. This was accompanied by a decrease in size of protein bodies from the outer to the inner endosperm layers in all but one of the treatments. Elevated post-anthesis temperature had the effect of increasing the magnitude of the negative gradients in both protein concentration and protein body size, whilst limiting nitrogen supply decreased the gradients.
Srivastava, Diane S.; McCallum, Cindy; Fraser, Lauchlan H.; Turkington, Roy
2017-01-01
Global analyses of bird communities along elevation gradients suggest that bird diversity on arid mountains is primarily limited by water availability, not temperature or altitude. However, the mechanism by which water availability, and subsequently primary productivity, increases bird diversity is still unclear. Here we evaluate two possible mechanisms from species-energy theory. The more individuals hypothesis proposes that a higher availability of resources increases the total number of individuals that can be supported, and therefore the greater number of species that will be sampled. By contrast, the more specialization hypothesis proposes that increasing resource availability will permit specialists to exploit otherwise rare resources, thus increasing total diversity. We used 5 years of surveys of grassland songbird communities along an elevational gradient in British Columbia, Canada, to distinguish between these hypotheses. Vegetation changed markedly in composition along the gradient and contrary to the expectations of the more specialization hypothesis, bird community composition was remarkably constant. However, both total abundance and species richness of birds increased with increasing water availability to plants. When we used rarefaction to correct species richness for differences in total abundance, much of the increase in bird diversity was lost, consistent with the expectations of the more individuals hypothesis. Furthermore, high species richness was associated with reductions in territory size of common bird species, rather than the fine-scale spatial partitioning of the landscape. This suggests that bird diversity increases when greater resource availability allows higher densities rather than greater habitat specialization. These results help explain a pervasive global pattern in bird diversity on arid mountains, and suggest that in such landscapes conservation of grassland birds is strongly linked to climate and hydrology. PMID:29059252
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping
2015-09-21
We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.
Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
Irving, M; Maylie, J; Sizto, N L; Chandler, W K
1990-04-01
Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.
Airi, Valentina; Prantoni, Selena; Calegari, Marco; Lisini Baldi, Veronica; Gizzi, Francesca; Marchini, Chiara; Levy, Oren; Falini, Giuseppe; Dubinsky, Zvy; Goffredo, Stefano
2017-01-01
Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.
Keil, Lorenz; Hartmann, Michael; Lanzmich, Simon; Braun, Dieter
2016-07-27
How can living matter arise from dead matter? All known living systems are built around information stored in RNA and DNA. To protect this information against molecular degradation and diffusion, the second law of thermodynamics imposes the need for a non-equilibrium driving force. Following a series of successful experiments using thermal gradients, we have shown that heat gradients across sub-millimetre pores can drive accumulation, replication, and selection of ever longer molecules, implementing all the necessary parts for Darwinian evolution. For these lab experiments to proceed with ample speed, however, the temperature gradients have to be quite steep, reaching up to 30 K per 100 μm. Here we use computer simulations based on experimental data to show that 2000-fold shallower temperature gradients - down to 100 K over one metre - can still drive the accumulation of protobiomolecules. This finding opens the door for various environments to potentially host the origins of life: volcanic, water-vapour, or hydrothermal settings. Following the trajectories of single molecules in simulation, we also find that they are subjected to frequent temperature oscillations inside these pores, facilitating e.g. template-directed replication mechanisms. The tilting of the pore configuration is the central strategy to achieve replication in a shallow temperature gradient. Our results suggest that shallow thermal gradients across porous rocks could have facilitated the formation of evolutionary machines, significantly increasing the number of potential sites for the origin of life on young rocky planets.
M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates
NASA Astrophysics Data System (ADS)
Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.
2018-06-01
Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in larger samples.
Ganzenmüller, Georg C.; Hiermaier, Stefan; Steinhauser, Martin O.
2012-01-01
We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different definitions of temperature in the continuum and atomistic domain – internal energy and heat capacity versus particle velocity – are accounted for in a straightforward and conceptually intuitive way by the DPDE thermostat. We verify the here-proposed scheme using a fluid, which is simultaneously represented as a continuum using Smooth Particle Hydrodynamics, and as an atomistically resolved liquid using Molecular Dynamics. In the case of equilibrium contact between both domains, we show that the correct microscopic equilibrium properties of the atomistic fluid are obtained. As an example of a strong non-equilibrium situation, we consider the propagation of a steady shock-wave from the continuum domain into the atomistic domain, and show that the coupling scheme conserves both energy and shock-wave dynamics. To demonstrate the applicability of our scheme to real systems, we consider shock loading of a phospholipid bilayer immersed in water in a multi-scale simulation, an interesting topic of biological relevance. PMID:23300586
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
Plastic breeding system response to day length in the California wildflower Mimulus douglasii.
Barnett, Laryssa L; Troth, Ashley; Willis, John H
2018-04-25
Angiosperms have evolved multiple breeding systems that allow reproductive success under varied conditions. Striking among these are cleistogamous breeding systems, where individuals can produce alternative flower types specialized for distinct mating strategies. Cleistogamy is thought to be environmentally-dependent, but little is known about environmental triggers. If production of alternate flowers is environmentally induced, populations may evolve locally adapted responses. Mimulus douglasii, exhibits a cleistogamous breeding system, and ranges across temperature and day-length gradients, providing an ideal system to investigate environmental parameters that control cleistogamy. We compared flowering responses across Mimulus douglasii population accessions that produce distinct outcrossing and self-pollinating flower morphs. Under controlled conditions, we determined time to flower, and number and type of flowers produced under different temperatures and day lengths. Temperature and day length both affect onset of flowering. Long days shift flower type from predominantly chasmogamous to cleistogamous. The strength of the response to day length varies across accessions whether temperature varies or is held constant. Cleistogamy is an environmentally sensitive polyphenism in Mimulus douglasii, allowing transition from one mating strategy to another. Longer days induce flowering and production of cleistogamous flowers. Shorter days induce chasmogamous flowers. Population origin has a small effect on response to environmental cues. © 2018 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Inskeep, W.
2014-12-01
Microbial activity is responsible for the mineralization of Fe(III)-oxides in high-temperature chemotrophic communities that flourish within oxygenated zones of low pH (2.5 - 4) geothermal outflow channels (Yellowstone National Park, WY). High-temperature Fe(II)-oxidizing communities contain several lineages of Archaea, and are excellent model systems for studying microbial interactions and spatiotemporal dynamics across geochemical gradients. We hypothesize that acidic Fe(III)-oxide mats form as a result of constant interaction among primary colonizers including Hydrogenobaculum spp. (Aquificales) and Metallosphaera spp. (Sulfolobales), and subsequent colonization by archaeal heterotrophs, which vary in abundance as a function of oxygen, pH and temperature. We are integrating a complementary suite of geochemical, stable isotope, genomic, proteomic and modeling analyses to study the role of microorganisms in Fe(III)-oxide mat development, and to elucidate the primary microbial interactions that are coupled with key abiotic events. Curated de novo assemblies of major phylotypes are being used to analyze additional -omics datasets from these microbial mats. Hydrogenobaculum spp. (Aquificales) are the dominant bacterial population(s) present, and predominate during early mat development (< 30 d). Other Sulfolobales populations known to oxidize Fe(II) and fix carbon dioxide (e.g., Metallosphaera spp.) represent a secondary stage of mat development (e.g., 14 - 30 d). Hydrogenobaculum filaments appear to promote the nucleation and subsequent mineralization of Fe(III)-oxides, which likely affect the growth and turnover rates of these organisms. Other heterotrophs colonize Fe(III)-oxide mats during succession (> 30 d), including novel lineages of Archaea and representatives within the Crenarchaeota, Euryarchaeota, Thaumarchaeota and Nanoarchaeota. In situ oxygen consumption rates show that steep gradients occur within the top 1 mm of mat surface, and which correlate with changes in the abundance of different organisms that occupy these microenvironments. The relative consumption of oxygen by different members of Fe(II)-oxidizing mat communities has implications for autotroph-heterotroph associations and the dynamic micromorphology of active Fe(III)-oxide terraces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less
Lane, Michael
2013-06-28
Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.
Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model
NASA Astrophysics Data System (ADS)
Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg
2017-11-01
Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjánsson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.
2012-06-01
In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project) and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change"). In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
NASA Astrophysics Data System (ADS)
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a <1 04). Flow visualizations show a steady cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
NASA Technical Reports Server (NTRS)
Lee, Jeffrey M.
1999-01-01
This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.
Temperature Gradient-Induced Instability of Perovskite via Ion Transport.
Wang, Xinwei; Liu, Hong; Zhou, Feng; Dahan, Jeremy; Wang, Xin; Li, Zhengping; Shen, Wenzhong
2018-01-10
Perovskite has been known as a promising novel material for photovoltaics and other fields because of its excellent opto-electric properties and convenient fabrication. However, its stability has been a widely known haunting factor that has severely deteriorated its application in reality. In this work, it has been discovered for the first time that perovskite can become significantly chemically unstable with the existence of a temperature gradient in the system, even at temperature far below its thermal decomposition condition. A study of the detailed mechanism has revealed that the existence of a temperature gradient could induce a mass transport process of extrinsic ionic species into the perovskite layer, which enhances its decomposition process. Moreover, this instability could be effectively suppressed with a reduced temperature gradient by simple structural modification of the device. Further experiments have proved the existence of this phenomenon in different perovskites with various mainstream substrates, indicating the universality of this phenomenon in many previous studies and future research. Hopefully, this work may bring deeper understanding of its formation mechanisms and facilitate the general development of perovskite toward its real application.
NASA Astrophysics Data System (ADS)
Zhao, N.; Zhong, Y.; Dong, W.; Huang, M. L.; Ma, H. T.; Wong, C. P.
2017-02-01
β-Sn grain orientation and configuration are becoming crucial factors to dominate the lifetime of solder interconnects in three-dimensional integrated circuit packaging. In this paper, we found that a temperature gradient during solidification significantly dominated the orientation and configuration of the final β-Sn grains in Cu/SnAgCu/Cu micro interconnects. Being different from the random orientations and growth fronts meeting or cyclic twin boundary forming near the center after homogeneous temperature bonding, the β-Sn grains solidified under a certain temperature gradient were observed to follow a highly preferred orientation with their c-axis departing from the direction of temperature gradient by about 45°-88°. Meanwhile, these preferred oriented β-Sn grains consisted of low angle grain boundary structures with misorientation in the range of 0°-15°. The mechanism was explained in terms of the anisotropy and directional growth of β-Sn grains. The results pave the way for grain orientation control in 3D packaging technology.
Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar; Safran, Sam A.
2018-05-01
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Forest productivity varies with soil moisture more than temperature in a small montane watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Liang; Zhou, Hang; Link, Timothy E
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
Forest productivity varies with soil moisture more than temperature in a small montane watershed
Wei, Liang; Zhou, Hang; Link, Timothy E; ...
2018-05-16
Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less
NASA Astrophysics Data System (ADS)
Rivas, Andrés L.; Pisoni, Juan Pablo
2010-01-01
The location and seasonal variability of surface thermal fronts along the Argentinean Continental Shelf (38-55°S) were studied using 18 years (1985-2002) of sea surface temperature (SST) satellite data. Monthly SST gradients were calculated and a threshold was used to identify frontal pixels. Frontal areas were classified into 4 zones according to their seasonal evolution and the main forcings leading to the front's formation were identified for each group. The shelf break front was easily detected due to the large number of frontal pixels in the region and its high mean gradient values. This front showed a marked annual cycle and relatively constant position associated to the bottom slope; it tended to be located where the core of the Malvinas current is closest to the shelf. Tidal fronts also showed a strong annual cycle, being detected in three well-defined regions during spring and summer. Along the coasts of Tierra del Fuego and Santa Cruz, the combination of strong tidal mixing and low-salinity coastal plumes led to semi-annual seasonal cycles of frontal intensity and persistence that showed a relative maximum in winter. A similar behavior (semi-annual) was found at the coast off the Buenos Aires Province. There, the coastal dilution and the bathymetric gradient generated near-coastal fronts that changed direction seasonally. In the northern mid-shelf, a front linked to the intrusion of warm waters formed in the San Matías Gulf was identified during the winter.
Gika, Helen G; Theodoridis, Georgios; Extance, Jon; Edge, Anthony M; Wilson, Ian D
2008-08-15
The applicability and potential of using elevated temperatures and sub 2-microm porous particles in chromatography for metabonomics/metabolomics was investigated using, for the first time, solvent temperatures higher than the boiling point of water (up to 180 degrees C) and thermal gradients to reduce the use of organic solvents. Ultra performance liquid chromatography, combined with mass spectrometry, was investigated for the global metabolite profiling of the plasma and urine of normal and Zucker (fa/fa) obese rats (a well established disease animal model). "Isobaric" high temperature chromatography, where the temperature and flow rate follow a gradient program, was developed and evaluated against a conventional organic solvent gradient. LC-MS data were first examined by established chromatographic criteria in order to evaluate the chromatographic performance and next were treated by special peak picking algorithms to allow the application of multivariate statistics. These studies showed that, for urine (but not plasma), chromatography at elevated temperatures provided better results than conventional reversed-phase LC with higher peak capacity and better peak asymmetry. From a systems biology point of view, better group clustering and separation was obtained with a larger number of variables of high importance when using high temperature-ultra performance liquid chromatography (HT-UPLC) compared to conventional solvent gradients.
Temperature and Voltage Offsets in High- ZT Thermoelectrics
NASA Astrophysics Data System (ADS)
Levy, George S.
2018-06-01
Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.
Temperature and Voltage Offsets in High-ZT Thermoelectrics
NASA Astrophysics Data System (ADS)
Levy, George S.
2017-10-01
Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.
Thermal rectification in thin films driven by gradient grain microstructure
NASA Astrophysics Data System (ADS)
Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel
2018-03-01
As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.
Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem
2012-01-01
2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when