Rate dependent deformation of porous sandstone across the brittle-ductile transition
NASA Astrophysics Data System (ADS)
Jefferd, M.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.
2017-12-01
Porous sandstones transition from dilatant, brittle deformation at low pressure, to compactant, ductile deformation at high pressure. Both deformation modes are driven by microcracking, and are expected to exhibit a time dependency due to chemical interactions between the pore fluid and the rock matrix. In the brittle regime, time-dependent failure and brittle creep are well documented. However, much less is understood in the ductile regime. We present results from a series of triaxial deformation experiments, performed in the brittle-ductile transition zone of fluid saturated Bleurswiller sandstone (initial porosity = 23%). Samples were deformed at 40 MPa effective pressure, to 4% axial strain, under either constant strain rate (10-5 s-1) or constant stress (creep) conditions. In addition to stress, axial strain and pore volume change, P wave velocities and acoustic emission were monitored throughout. During constant stress tests, the strain rate initially decreased with increasing strain, before reaching a minimum and accelerating to a constant level beyond 2% axial strain. When plotted against axial strain, the strain rate evolution under constant stress conditions, mirrors the stress evolution during the constant strain rate tests; where strain hardening occurs prior to peak stress, which is followed by strain softening and an eventual plateau. In all our tests, the minimum strain rate during creep occurs at the same inelastic strain as the peak stress during constant strain tests, and strongly decreases with decreasing applied stress. The microstructural state of the rock, as interpreted from similar volumetric strain curves, as well as the P-wave velocity evolution and AE production rate, appears to be solely a function of the total inelastic strain, and is independent of the length of time required to reach said strain. We tested the sensitivity of fluid chemistry on the time dependency, through a series of experiments performed under similar stress conditions, but with chemically inert decane instead of water as the pore fluid. Under the same applied stress, decane saturated samples reached a minimum strain rate 2 orders of magnitude lower than the water saturated samples. This is consistent with a mechanism of subcritical crack growth driven by chemical interactions between the pore fluid and the rock.
User Instructions for the Final Version of the EPIC Research Code
1996-04-01
by which library fracture strain constants (D1, D2, EFMIN- defined later) are multiplied. DFRAC = 1.0 will provide the exact library constants. EFAIL ...If EFAIL > 999, the check for total failure will be omitted. Deription Card for Solids Input Data (415, aX F5.0, A50) - This card (plus five additional...hydrostatic pressure capability remains. Can be used only with DAM 1. T142M 57 0 0 0 0 0 0 0 0 0 EFAIL - Equivalent plastic strain, or volumetric strain
Elastic constants from microscopic strain fluctuations
Sengupta; Nielaba; Rao; Binder
2000-02-01
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Turbulent Plane Wakes Subjected to Successive Strains
NASA Technical Reports Server (NTRS)
Rogers, Michael M.
2003-01-01
Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases considered here, the wake Reynolds number and the ratio of the turbulent kinetic energy to the square of the wake mean velocity deficit are determined nearly entirely by the total strain. For these measures the order in which the strains are applied does not matter and the changes brought about by the strain are nearly reversible. The wake mean velocity deficit and width, on the other hand, differ by about a factor of three when the total strain returns to one, depending on whether the wake was first "favourably" or "adversely" strained. The strain history is important for predicting the evolution of these quantities.
Osbourn, G.C.
1983-10-06
An intrinsic semiconductor electro-optical device comprises a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8 to 12 ..mu..m. This radiation responsive p-n junction comprises a strained-layer superlattice (SLS) of alternating layers of two different III-V semiconductors. The lattice constants of the two semiconductors are mismatched, whereby a total strain is imposed on each pair of alternating semiconductor layers in the SLS structure, the proportion of the total strain which acts on each layer of the pair being proportional to the ratio of the layer thicknesses of each layer in the pair.
Song, Bo; Sanborn, Brett
2018-05-07
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Sanborn, Brett
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
NASA Astrophysics Data System (ADS)
Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.
1993-04-01
The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.
Low-temperature creep of austenitic stainless steels
NASA Astrophysics Data System (ADS)
Reed, R. P.; Walsh, R. P.
2017-09-01
Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.
NASA Astrophysics Data System (ADS)
Jost, Benjamin; Klein, Marcus; Eifler, Dietmar
This paper focuses on the ductile cast iron EN-GJS-600 which is often used for components of combustion engines. Under service conditions, those components are mechanically loaded at different temperatures. Therefore, this investigation targets at the fatigue behavior of EN-GJS-600 at ambient and elevated temperatures. Light and scanning electron microscopic investigations were done to characterize the sphericity of the graphite as well as the ferrite, pearlite and graphite fraction. At elevated temperatures, the consideration of dynamic strain ageing effects is of major importance. In total strain increase, temperature increase and constant total strain amplitude tests, the plastic strain amplitude, the stress amplitude, the change in temperature and the change in electrical resistance were measured. The measured values depend on plastic deformation processes in the bulk of the specimens and at the interfaces between matrix and graphite. The fatigue behavior of EN-GJS-600 is dominated by cyclic hardening processes. The physically based fatigue life calculation "PHYBALSIT" (SIT = strain increase test) was developed for total strain controlled fatigue tests. Only one temperature increase test is necessary to determine the temperature interval of pronounced dynamic strain ageing effects.
NASA Technical Reports Server (NTRS)
Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.
1976-01-01
An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.
Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems
NASA Technical Reports Server (NTRS)
Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing
2011-01-01
The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric constant at both resonance and off resonance frequencies. The effective piezoelectric constant can be alternated by varying the size of each component, the degree of the pre-curvature of the positive strain components, the thickness of each layer in the multilayer stacks, and the piezoelectric constant of the material used. Because all of the elements are piezoelectric components, Stacked HYBATS can serve as projector and receiver for underwater detection. The performance of this innovation can be enhanced by improving the piezoelectric properties.
NASA Astrophysics Data System (ADS)
Mirseraji, Mojtaba; Shahraki, Mehran Gholipour
2018-06-01
A Local Density Approximation (LDA) was employed to investigate the influence of applied strains on valence charge distributions, atomic displacements, Tisbnd O (3) bond distances and the total polarizations in barium titanate (BaTiO3). Four types of various strains were imposed on perfect tetragonal BaTiO3 along the a, c, ab and abc axial directions. Electromechanical properties of BaTiO3 were evaluated in LDA framework and a good agreement with previous results was achieved. The results show that, in the cases of a, ab strains, the values of polarization are almost constant in negative strains and increased by gradual increasing of the positive strains after a sudden enhancement at about +0.1% strain. In the case of c-strain, axial oxygen and Ti atoms underwent the highest displacements and the polarization linearly increased by applied strain. The case of abc-strain, represent the both types of features. In negative abc-strain show a similar polarization behavior like c-strain case and in positive region, polarization behavior is the same as a- and ab-strain cases. In the abc-strains of -0.3% and +0.1%, an abrupt jump in total polarization curve and a small change, are observed due to abnormal atomic displacements. In the most cases a direct relation between polarization and Tisbnd O (3) bond distance was also beheld. Finally, the effects of valence charge distributions on the atomic displacements and total polarizations are studied. It is found that there is a direct relation between polarization and Valence Charge Asymmetry of 3d -orbitals.
Modelling and analysis of creep deformation and fracture in a 1 Cr 1/2 Mo ferritic steel
NASA Astrophysics Data System (ADS)
Dyson, B. F.; Osgerby, D.
A quantitative model, based upon a proposed new mechanism of creep deformation in particle-hardened alloys, has been validated by analysis of creep data from a 13CrMo 4 4 (1Cr 1/2 Mo) material tested under a range of stresses and temperatures. The methodology that has been used to extract the model parameters quantifies, as a first approximation, only the main degradation (damage) processes - in the case of the 1CR 1/2 Mo steel, these are considered to be the parallel operation of particle-coarsening and a progressively increasing stress due to a constant-load boundary condition. These 'global' model parameters can then be modified (only slightly) as required to obtain a detailed description and 'fit' to the rupture lifetime and strain/time trajectory of any individual test. The global model parameter approach may be thought of as predicting average behavior and the detailed fits as taking account of uncertainties (scatter) due to variability in the material. Using the global parameter dataset, predictions have also been made of behavior under biaxial stressing; constant straining rate; constant total strain (stress relaxation) and the likely success or otherwise of metallographic and mechanical remanent lifetime procedures.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
High-rate operant behavior in two mouse strains: a response-bout analysis.
Johnson, Joshua E; Pesek, Erin F; Newland, M Christopher
2009-06-01
Operant behavior sometimes occurs in bouts characterized by an initiation rate, within-bout response rate, and bout length. The generality of this structure was tested using high-rate nose-poking in mice. Reinforcement of short interresponse times produced high response rates while a random-interval schedule held reinforcement rates constant. BALB/c mice produced bouts that were more frequent, longer, and contained a higher within-bout rate of responding (nine nose-pokes/s) than did the C57BL/6 mice (five nose-pokes/s). Adding a running wheel decreased total nose-pokes and bout length, and increased bout-initiation rate. Free-feeding reduced nose-poking by decreasing bout-initiation rate. Photoperiod reversal decreased bout-initiation rate but not total nose-poke rate. Despite strain differences in bout structure, both strains responded similarly to the interventions. The three bout measures were correlated with overall rate but not with each other. Log-survival analyses provided independent descriptors of the structure of high-rate responding in these two strains.
Creep of Ni(3)Al in the temperature regime of anomalous flow behavior
NASA Astrophysics Data System (ADS)
Uchic, Michael David
Much attention has been paid to understanding the dynamics of dislocation motion and substructure formation in Ni3Al in the anomalous flow regime. However, most of the experimental work that has been performed in the lowest temperatures of the anomalous flow regime has been under constant-strain-rate conditions. An alternative and perhaps more fundamental way to probe the plastic behavior of materials is a monotonic creep test, in which the stress and temperature are held constant while the time-dependent strain is measured. The aim of this study is to use constant-stress experiments to further explore the plastic flow anomaly in L12 alloys at low temperatures. Tension creep experiments have been carried out on <123> oriented single crystals of Ni75Al24Ta1 at temperatures between 293 and 473 K. We have observed primary creep leading to exhaustion at all temperatures and stresses, with creep rates declining faster than predicted by the logarithmic creep law. The total strain and creep strain have an anomalous dependence on temperature, which is consistent with the flow stress anomaly. We have also observed other unusual behavior in our creep experiments; for example, the reinitiation of plastic flow at low temperatures after a modest increment in applied stress shows a sigmoidal response, i.e., there is a significant time delay before the plastic strain rate accelerates to a maximum value. We also examined the ability to reinitiate plastic flow in samples that have been crept to exhaustion by simply lowering the test temperature. In addition, we have also performed conventional constant-displacement-rate experiments in the same temperature range. From these experiments, we have discovered that unlike most metals, Ni3Al displays a negative dependence of the work hardening rate (WHR) with increasing strain rate. For tests at intermediate temperatures (373 and 423 K), the WHRs of crystals tested at moderately high strain rates (10-2 s-1) are half the WHRs of crystals tested at conventional strain rates (10 -5 s-1), and this anomalous dependence has also been shown to be reversible with changes in strain rate. The implications of all results are discussed in light of our efforts to model plastic deformation in these alloys.
NASA Astrophysics Data System (ADS)
MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.
2018-03-01
Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.
A Limited In-Flight Evaluation of the Constant Current Loop Strain Measurement Method
NASA Technical Reports Server (NTRS)
Olney, Candida D.; Collura, Joseph V.
1997-01-01
For many years, the Wheatstone bridge has been used successfully to measure electrical resistance and changes in that resistance. However, the inherent problem of varying lead wire resistance can cause errors when the Wheatstone bridge is used to measure strain in a flight environment. The constant current loop signal-conditioning card was developed to overcome that difficulty. This paper describes a limited evaluation of the constant current loop strain measurement method as used in the F-16XL ship 2 Supersonic Laminar Flow Control flight project. Several identical strain gages were installed in close proximity on a shock fence which was mounted under the left wing of the F- 1 6XL ship 2. Two strain gage bridges were configured using the constant current loop, and two were configured using the Wheatstone bridge circuitry. Flight data comparing the output from the constant current loop configured gages to that of the Wheatstone bridges with respect to signal output, error, and noise are given. Results indicate that the constant current loop strain measurement method enables an increased output, unaffected by lead wire resistance variations, to be obtained from strain gages.
Strain localization and elastic-plastic coupling during deformation of porous sandstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas A.; Issen, Kathleen A.; Holcomb, David J.
Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli,more » C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.« less
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
The Shigella human challenge model.
Porter, C K; Thura, N; Ranallo, R T; Riddle, M S
2013-02-01
Shigella is an important bacterial cause of infectious diarrhoea globally. The Shigella human challenge model has been used since 1946 for a variety of objectives including understanding disease pathogenesis, human immune responses and allowing for an early assessment of vaccine efficacy. A systematic review of the literature regarding experimental shigellosis in human subjects was conducted. Summative estimates were calculated by strain and dose. While a total of 19 studies evaluating nine strains at doses ranging from 10 to 1 × 1010 colony-forming units were identified, most studies utilized the S. sonnei strain 53G and the S. flexneri strain 2457T. Inoculum solution and pre-inoculation buffering has varied over time although diarrhoea attack rates do not appear to increase above 75-80%, and dysentery rates remain fairly constant, highlighting the need for additional dose-ranging studies. Expansion of the model to include additional strains from different serotypes will elucidate serotype and strain-specific outcome variability.
Revisit of the relationship between the elastic properties and sound velocities at high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenju; Yan, Xiaozhen; Institute of Atomic and Molecular Sciences, Sichuan University, Chengdu 610065
2014-09-14
The second-order elastic constants and stress-strain coefficients are defined, respectively, as the second derivatives of the total energy and the first derivative of the stress with respect to strain. Since the Lagrangian and infinitesimal strain are commonly used in the two definitions above, the second-order elastic constants and stress-strain coefficients are separated into two categories, respectively. In general, any of the four physical quantities is employed to characterize the elastic properties of materials without differentiation. Nevertheless, differences may exist among them at non-zero pressures, especially high pressures. Having explored the confusing issue systemically in the present work, we find thatmore » the four quantities are indeed different from each other at high pressures and these differences depend on the initial stress applied on materials. Moreover, the various relations between the four quantities depicting elastic properties of materials and high-pressure sound velocities are also derived from the elastic wave equations. As examples, we calculated the high-pressure sound velocities of cubic tantalum and hexagonal rhenium using these nexus. The excellent agreement of our results with available experimental data suggests the general applicability of the relations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Kaoru, E-mail: n-kaoru@criepi.denken.or.jp; Higuchi, Sadao; Ohnuma, Toshiharu
2016-03-21
Using density functional perturbation theory, we investigated the effect of various substitutional dopant elements and in-plane strain on the piezoelectric properties of ZnO. The piezoelectric stress constant e{sub 33} of doped ZnO was found to depend on the formal charge of the substitutional dopant. By decomposing the piezoelectric stress constant e{sub 33} into the individual atomic contributions, the change in the piezoelectric properties was found to originate from a change in the coupling between the atomic displacement and the strain. Furthermore, we found that in-plane tensile strain along the a axis, which is specific to the thin film, can enhancemore » the piezoelectric constant of ZnO. A phase transition from wurtzite to h-BN-type structure was found to occur with increasing in-plane tensile. The piezoelectric strain constant d{sub 33} was predicted to reach ∼200 pC/N for 2.78 at. % V-substituted ZnO at 5.5% in-plane strain, just before the phase transition. These theoretical results suggest that the piezoelectric constant of ZnO can be enhanced by controlling the in-plane strain via selection of the substrate material and dopant element.« less
NASA Astrophysics Data System (ADS)
Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe
2018-02-01
InGaAs/GaAsP strain-compensated multiple quantum wells were prepared by metal organic chemical vapor deposition on GaAs (100) substrates with misorientation of 15° toward [111]. In order to obtain better strain-compensated abrupt heterojunction interfaces, the compressive strain and relaxation of different quantum well and the total accumulated strain were investigated by adjusting In composition and the thickness of InxGa1-xAs well and GaAs1-yPy barrier keep constant. High resolution X-ray diffraction results indicate the crystal and interfacial structures of In0.18Ga0.82As (7 nm)/GaAs1-yPy with the least relaxation and total strain mismatch are better than others. From in-situ surface reflectivity curves, we observed the slope of reflectivity curve of multiple quantum wells increases with increasing lattice relaxation. Atomic force microscopic results show surface morphologies of three samples are Volmer-Weber mode. Indium segregation at heterointerface between well and barrier were investigated by secondary ion mass spectrometry which indicate indium diffusion width increase with the increasing total strain mismatch. Finally, a shoulder peak was observed from Gaussian fitting of photoluminescence, stemming from the lattice relaxation. These results demonstrate that the relaxation process is introduced and indium segregation length widens as the relaxation increases. The experimental results will be favorable for optimizing the epitaxial growth of InGaAs/GaAsP strain-compensated quantum wells in order to obtain high quality smooth heterointerface.
The mathematical formulation of a generalized Hooke's law for blood vessels.
Zhang, Wei; Wang, Chong; Kassab, Ghassan S
2007-08-01
It is well known that the stress-strain relationship of blood vessels is highly nonlinear. To linearize the relationship, the Hencky strain tensor is generalized to a logarithmic-exponential (log-exp) strain tensor to absorb the nonlinearity. A quadratic nominal strain potential is proposed to derive the second Piola-Kirchhoff stresses by differentiating the potential with respect to the log-exp strains. The resulting constitutive equation is a generalized Hooke's law. Ten material constants are needed for the three-dimensional orthotropic model. The nondimensional constant used in the log-exp strain definition is interpreted as a nonlinearity parameter. The other nine constants are the elastic moduli with respect to the log-exp strains. In this paper, the proposed linear stress-strain relation is shown to represent the pseudoelastic Fung model very well.
Energy evolution mechanism in process of Sandstone failure and energy strength criterion
NASA Astrophysics Data System (ADS)
Wang, Yunfei; Cui, Fang
2018-07-01
To reveal the inherent relation between energy change and confining pressure during the process of sandstone damage, and its characteristics of energy storage and energy dissipation in different deformation stage. Obtaining the mechanical parameters by testing the Sandstone of two1 coal seam roof under uniaxial compression in Zhaogu coalmine, using Particle Flow Code (PFC) and fish program to get the meso-mechanical parameters, studying Sandstone energy evolution mechanism under different confining pressures, and deducing energy strength criterion based on energy principle of rock failure, some main researching results are reached as follows: with the increasing of confining pressure, the Sandstone yield stage and ductility increases, but brittleness decreases; Under higher confining pressure, the elastic strain energy of Sandstone before peak approximately keeps constant in a certain strain range, and rock absorbs all the energy which converts into surface energy required for internal damage development; Under lower confining pressure, Sandstone no longer absorbs energy with increasing strain after peak under lower confining pressure, while it sequentially absorbs energy under higher confining pressure; Under lower confining pressure, the energy Sandstone before peak absorbed mainly converts into elastic strain energy, while under higher confining pressure, dissipation energy significantly increases before peak, which indicates that the degree rock strength loss is higher under higher confining pressure; with the increasing of confining pressure, the limit of elastic strain energy increases and there exists a favourable linear variation relationship; At the peak point, the ratio of elastic strain energy to total energy of Sandstone nonlinearly decreases, while the ratio of dissipation energy to total energy nonlinearly increases with the increasing of confining pressure; According to energy evolution mechanism of rock failure, an energy strength criterion is derived. The criterion equation includes lithology constants and three principal stresses, and its physical meaning is clear. This criterion has an evident advantage than Hoek-Brown and Drucker-Prager criterion in calculation accuracy and can commendably describe rock failure characteristics.
[Susceptibility of enterococci to natural and synthetic iron chelators].
Lisiecki, Paweł; Mikucki, Jerzy
2002-01-01
A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.
Law of damage accumulation and fracture criteria in highly filled polymer materials
NASA Astrophysics Data System (ADS)
Bykov, D. L.; Kazakov, A. V.; Konovalov, D. N.; Mel'nikov, V. P.; Milyokhin, Yu. M.; Peleshko, V. A.; Sadovnichii, D. N.
2014-09-01
We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.
Creep fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, Vito; Nissley, David; Lin, Li-Sen Jim
1985-01-01
The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.
Low cycle fatigue behavior of a ferritic reactor pressure vessel steel
NASA Astrophysics Data System (ADS)
Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.
2015-07-01
The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2009-12-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.
NASA Technical Reports Server (NTRS)
Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.
1981-01-01
A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek Agarwal; Richard Wright; Timothy Roney
A relatively simple method using the nominal constant average stress information and the creep rupture model is developed to predict the creep-fatigue lifetime of Alloy 617, in terms of time to rupture. The nominal constant average stress is computed using the stress relaxation curve. The predicted time to rupture can be converted to number of cycles to failure using the strain range, the strain rate during each cycle, and the hold time information. The predicted creep-fatigue lifetime is validated against the experimental measurements of the creep-fatigue lifetime collected using conventional laboratory creep-fatigue tests. High temperature creep-fatigue tests of Alloy 617more » were conducted in air at 950°C with a tensile hold period of up to 1800s in a cycle at total strain ranges of 0.3% and 0.6%. It was observed that the proposed method is conservative in that the predicted lifetime is less than the experimentally determined values. The approach would be relevant to calculate the remaining useful life to a component like a steam generator that might fail by the creep-fatigue mechanism.« less
Crack networks in damaged glass
NASA Astrophysics Data System (ADS)
Mallet, Celine; Fortin, Jerome; Gueguen, Yves
2013-04-01
We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).
NASA Technical Reports Server (NTRS)
Berkovits, Avraham
1961-01-01
Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad
2016-07-01
In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-01-01
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-12-23
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongyu, Xu; Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208; Xin, Cheng
2014-12-28
The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction ofmore » piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.« less
Guevara, Miguel; Lodeiros, César; Gómez, Olga; Lemus, Nathalie; Núñez, Paulino; Romero, Lolymar; Vásquez, Aléikar; Rosales, Néstor
2005-01-01
We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaüer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production.
NASA Astrophysics Data System (ADS)
Kruger, Kevin C.
Nutrient management methods are needed to provide sustainable operation to livestock production that balance the costs of operation and maintenance. Cultivating duckweed on dairy wastes is considered an effective way of nutrient uptake and cycling. Duckweed cultivation has been implemented on nutrient management systems, such as constructed wetlands and waste stabilization ponds that use both domestic and swine wastewater. The objectives of this study were to (1) identify a nutrient concentration and duckweed strain that rapidly produces biomass, (2) removes nutrient content from anaerobically digested dairy manure, and (3) produces starch from nutrient starvation. To complete these objectives, this study targeted estimating growth and nutrient rate constants as well as starch yield of duckweed under different cultivation conditions. The strains of duckweed, Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517 were identified as the promising candidates for their high levels of nutrient uptake, starch accumulation, and biomass production. The growth rate of the duckweed strain was assessed based on the effects of temperature, pH, dissolved oxygen, light intensity, nutrient concentration, and biomass accumulation. The nutrient uptake through duckweed cultivation on the anaerobically digested (AD) dairy manure, characterized by the changes of total nitrogen (TN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and ortho-phosphate-phosphorus (o-PO 4-P), was assessed in four nutrient dilution ratios 1:5, 1:13, 1:18, and 1:27 v/v at two light intensities of 10,000 and 3,000 lux to model seasonal variation. The duckweed strain that exhibited the best biomass production, nutrient removal and starch accumulation was Landoltia punctata 0128 at a dilution ratio of 1:27 at a light intensity of 10,000 lux. The growth rate constant established from zero order kinetics for Landoltia punctata 0128 was 13.3 gm-2d-1. The rate constants for nutrient recovery were 0.122 d-1 of TN, 0.136 d -1 of TKN, 0.145 d-1 of TP, and 0.173d-1 of o-PO4-P. The batch efficiency of cultivation for Landoltia punctata 0128 on dilution ratio 1:27, in terms of nutrient uptake was 38% m/m in relation to the total nitrogen removed. The starch yield was measured at 30% w/w for Landoltia punctata 0128 after the nutrient starvation process. Due to its ability to reduce nutrients from AD dairy manure, accumulate biomass at a rapid growth rate, and accumulate a high yield of starch, Landoltia punctata 0128 has great potential to become a preferred choice for nutrient recovery and biomass and bioethanol production.
Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel
NASA Astrophysics Data System (ADS)
De, P. S.; Chakraborti, P. C.; Bhattacharya, B.; Shome, M.; Bhattacharjee, D.
2013-05-01
Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s-1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10-3 s-1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles ( N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio ( R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.
Ubiquinone Function in Neurospora crassa
Drabikowska, Alicja K.; Kruszewska, Anna
1972-01-01
Mitochondria of cytoplasmic respiratory mutants [mi-1] (poky) and [mi-4] contain about a fourfold molar excess of ubiquinone as compared to the wild-type strain of Neurospora crassa. In the wild type and [mi-1] cultures the concentration of ubiquinone remains constant during the exponential and stationary phase of growth. In [mi-4] cultures it markedly decreases in the stationary phase. The reduction of ubiquinone by substrates is approximately the same in the three strains tested and amounts 60 to 70% of total ubiquinone present in mitochondria, independent of its absolute amount. The reduction of ubiquinone on addition of substrates is accompanied by the similar reduction of cytochrome c. These indicate that mitochondrial ubiquinone and cytochrome c are involved in processes of oxidation in Neurospora and that ubiquinone belongs mainly if not entirely to the cytochrome system of electron transport in these strains. PMID:4344917
Kageyama, Seiji; Agdamag, Dorothy May D; Alesna, Evelyn T; Abellanosa-Tac-An, Ilya P; Corpuz, Aura C; Telan, Elizabeth Freda O; Que, Ernesto R; Leaño, Prisca Susan A; Jereza, Lourdes D; Emphasis, Yvonne Ethyl E; Prasetyo, Afiono A; Tanimoto, Tomoaki; Ichimura, Hiroshi
2009-07-01
From 2002 to 2007, 1,590 individuals were enrolled in an active surveillance program conducted in Metro Cebu, Philippines, where the anti-HCV-positive rate was significantly and constantly high among injecting drug users (83%, 793/960; 71-88%), especially among those living in downtown (89%, 683/770; 87-100%), despite the extremely low percentage of anti-HIV-positives (0.34%, 3/874). Sampling areas were then enlarged nationwide and the number of samples increased to 2,645 at the end of 2007. A total of 444 samples were positive for HCV RNA. Phylogenetic analysis based on NS5B and E1-E2 regions revealed that the most dominant HCV subtype was 1a, and followed by 2b, 2a, and 1b, and that the HCV strains had the largest variety in Metro Manila and its vicinity (P < 0.01). Interestingly, subtype 1b was detected solely in Metro Manila, and four HCV strains collected in this area showed higher homology to specific foreign strains retrieved from the Genbank/EMBL/DDBJ database with bootstrap values of 68-95% comparing with other strains analyzed in this nationwide study. These data suggest that HCV strains may be introduced occasionally into the Philippines possibly through Metro Manila as a main entry point. Considering the fact that an HIV epidemic started primarily via contaminated needle sharing in Asia, the constantly high rate of HCV infections and the newly introduced foreign HCV strains in the absence of HIV epidemic warrant further investigation on HCV entry and spread for early detection of an HIV epidemic in the Philippines. Copyright 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ishibashi, Hidemi
2009-03-01
Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.
Ultra High Strain Rate Nanoindentation Testing.
Sudharshan Phani, Pardhasaradhi; Oliver, Warren Carl
2017-06-17
Strain rate dependence of indentation hardness has been widely used to study time-dependent plasticity. However, the currently available techniques limit the range of strain rates that can be achieved during indentation testing. Recent advances in electronics have enabled nanomechanical measurements with very low noise levels (sub nanometer) at fast time constants (20 µs) and high data acquisition rates (100 KHz). These capabilities open the doors for a wide range of ultra-fast nanomechanical testing, for instance, indentation testing at very high strain rates. With an accurate dynamic model and an instrument with fast time constants, step load tests can be performed which enable access to indentation strain rates approaching ballistic levels (i.e., 4000 1/s). A novel indentation based testing technique involving a combination of step load and constant load and hold tests that enables measurement of strain rate dependence of hardness spanning over seven orders of magnitude in strain rate is presented. A simple analysis is used to calculate the equivalent uniaxial response from indentation data and compared to the conventional uniaxial data for commercial purity aluminum. Excellent agreement is found between the indentation and uniaxial data over several orders of magnitude of strain rate.
NASA Technical Reports Server (NTRS)
Huron, Eric S.
1986-01-01
Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
NASA Astrophysics Data System (ADS)
Neubauer, S. C.; Emerson, D.; Megonigal, J. P.; Weiss, J. V.
2002-05-01
We have discovered a phylogenetically and genotypically coherent group of obligately lithotrophic Fe-oxidizing bacteria that grow at neutral pH and are globally distributed in a range of habitats, from the rhizosphere of freshwater wetlands to deep-sea hydrothermal vents. We have initiated bioreactor studies using pure cultures of these organisms to determine the significance of microbial Fe(II) oxidation at circumneutral pH and identify the biotic and abiotic variables that affect the partitioning between microbial and chemical oxidation. These studies have focused on strain BrT, which was isolated from an iron oxide precipitate in rhizosphere of a wetland plant. In one set of experiments, Fe(II) oxidation rates were measured before and after cultures of strain BrT were poisoned with sodium azide. These experiments indicated that 18 to 53 % of total iron oxidation was due to microbial metabolism. In a second set of experiments, Fe(II) was constantly added to bioreactors inoculated with live cells, killed cells, or no cells. A statistical model fit to the experimental data demonstrated that metabolic Fe(II) oxidation accounted for up to 62 % of total oxidation. Total Fe(II) oxidation rates in these experiments were strongly limited by the rate of Fe(II) delivery to the system, and were also influenced by O2 and total iron concentrations. Additionally, the model suggested that the microbes inhibited rates of abiotic Fe(II) oxidation, perhaps by binding Fe(II) to bacterial exopolymers. The net effect of strain BrT was to accelerate total oxidation rates by up to 18 % versus cell-free treatments. Using two independent techniques, we demonstrated that strain BrT actively metabolizes Fe(II) and can account for up to 50 to 60 % of total Fe(II) oxidation in laboratory cultures. These results suggest that neutrophilic Fe(II)-oxidizing bacteria may compete for limited O2 in the rhizosphere and influence the biogeochemistry of other elements including carbon, phosphorus, and sulfur.
NASA Technical Reports Server (NTRS)
Smith, Robert W.; Smith, Gordon T.
1960-01-01
Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.
Shear enhanced compaction in a porous basalt from San Miguel Island, Azores
NASA Astrophysics Data System (ADS)
Loaiza, S.; Fortin, J.; Schubnel, A. J.; Vinciguerra, S.; Moreira, M.; Gueguen, Y.
2011-12-01
Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well its permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; failure occurs by shear localization. The experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone. Further studies, including Acoustic Emission locations and microstructural observations will be carried out in order to map the compaction bands or zones and confirm or infirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.
NASA Technical Reports Server (NTRS)
Saltsman, J. F.
1994-01-01
TS-SRP/PACK is a set of computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of the Strainrange Partitioning (TS-SRP). The user should be thoroughly familiar with the TS-SRP method before attempting to use any of these programs. The document for this program includes a theory manual as well as a detailed user's manual with a tutorial to guide the user in the proper use of TS-SRP. An extensive database has also been developed in a parallel effort. This database is an excellent source of high-temperature, creep-fatigue test data and can be used with other life-prediction methods as well. Five programs are included in TS-SRP/PACK along with the alloy database. The TABLE program is used to print the datasets, which are in NAMELIST format, in a reader friendly format. INDATA is used to create new datasets or add to existing ones. The FAIL program is used to characterize the failure behavior of an alloy as given by the constants in the strainrange-life relations used by the total strain version of SRP (TS-SRP) and the inelastic strainrange-based version of SRP. The program FLOW is used to characterize the flow behavior (the constitutive response) of an alloy as given by the constants in the flow equations used by TS-SRP. Finally, LIFE is used to predict the life of a specified cycle, using the constants characterizing failure and flow behavior determined by FAIL and FLOW. LIFE is written in interpretive BASIC to avoid compiling and linking every time the equation constants are changed. Four out of five programs in this package are written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS and are designed to read data using the NAMELIST format statement. The fifth is written in BASIC version 3.0 for IBM PC series and compatible computers running MS-DOS version 3.10. The executables require at least 239K of memory and DOS 3.1 or higher. To compile the source, a Lahey FORTRAN compiler is required. Source code modifications will be necessary if the compiler to be used does not support NAMELIST input. Probably the easiest revision to make is to use a list-directed READ statement. The standard distribution medium for this program is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. TS-SRP/PACK was developed in 1992.
Greer, L E; Shelton, D R
1992-01-01
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1622212
Greer, L E; Shelton, D R
1992-05-01
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)
Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories
NASA Technical Reports Server (NTRS)
Valanis, K. C.; Lee, C. F.
1983-01-01
Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.
Effect of strain on the electronic structure and optical properties of germanium
NASA Astrophysics Data System (ADS)
Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu
2018-05-01
The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.
2007-06-01
strain versus creep time curves. During creep , stress remains constant, but strain increases. The creep curves of the unaged specimens at 30...recovery period and then levels off and remains nearly constant until the end of the recovery period. The amount of creep strain recovered may...EFFECTS OF PRIOR AGING ON THE CREEP RESPONSE OF CARBON FIBER REINFORCED PMR-15 NEAT RESIN AT 288ºC IN
NASA Astrophysics Data System (ADS)
Vona, A.; Di Piazza, A.; Romano, C.; De Astis, G.; Soto, G. J.
2014-12-01
We present a study of high-temperature, uniaxial deformation experiments of natural magma from an andesitic eruption of Turrialba volcano (1.9ka Plinian eruption). The aim of this work is to investigate the multiphase rheology (liquid+vesicles+crystals) of natural samples and the effect of vesicles and crystals on the magma viscosity. The experiments were performed using a high-temperature uniaxial Geocomp LoadTrac II press at dry atmospheric conditions and controlled deformation rates. Cores of natural sample (with Φcrys=0.20-0.30 and Φves=0.41-0.58) were deformed isothermally (790-870°C) at variable strain rates (VSR, from 10-6 to 10-4 s-1) and constant strain rate (CSR, 10-5 s-1). VSR were performed at low total amount of strain (e<0.10) to parameterize the flow behavior of these complex natural materials. The stress-strain rate relationships under flow conditions showed a linear trend between the applied stress and strain rate in the temperature interval investigated. All the samples display a steep linear trend, typical of Newtonian fluids (n index ~ 1), with a very small shear thinning behavior. CSR tests were performed at different total amount of strain (e=0.15-0.25-0.35). Strain hardening was observed with increasing deformation, resulting in an increase of apparent viscosity (up to 100.5 Pa s). This increase is related to the loss of total porosity (up to ΔΦves=0.15) due to compaction of the sample as indicated by post-run analyses . The measured multiphase rheology of Turrialba magmas was compared with literature models for both crystal- and bubble-bearing suspension. We calculate a difference of ~101 Pa s in magma apparent viscosity between high and low density samples, that coupled with a lateral temperature gradient inside the conduit of the volcano, could increase up to ~103 Pa s. The large difference in viscosity could be responsible of significant rheological contrasts, possibly resulting in strain localization and brittle fragmentation of magma.
Strain-rate/temperature behavior of high density polyethylene in compression
NASA Technical Reports Server (NTRS)
Clements, L. L.; Sherby, O. D.
1978-01-01
The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant; Harris, Bryan
2009-06-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.
Dutta, Kunal; Shityakov, Sergey; Das, Prangya P; Ghosh, Chandradipa
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L -1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life ( t 1/2 ) and degradation rate constant ( k ) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg -1 soil), t 1/2 = 10.44 days -1 . However, the biodegradation by un-inoculated control soil was found slower ( t 1/2 = 140 days -1 ) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (-9.90 kcal mol -1 ) than wild type (-8.18 kcal mol -1 ) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nah Ac has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.
Experiments on the rheology of vesicle-bearing magmas
NASA Astrophysics Data System (ADS)
Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia
2016-04-01
We present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. Starting materials having variable vesicularity (φ = 0 - 66%) were synthesized by high-temperature foaming (T = 900 - 1050 ° C and P = 1 bar) of cores of natural rhyolitic obsidian from Hrafntinnuhryggur, Krafla, Iceland. These cores were subsequently deformed using a high-temperature uniaxial press at dry atmospheric conditions. Each experiment involved deforming vesicle-bearing cores isothermally (T = 750 ° C), at constant displacement rates (strain rates between 0.5-1 x 10-4 s-1), and to total strains (ɛ) of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods and establishes a baseline for comparing data derived from experiments on vesicle rich cores. At the experimental conditions, the presence of vesicles has a major impact on the rheological response, producing a marked decrease of bulk viscosity (maximum decrease of 2 log units Pa s) that is best described by a two-parameter empirical equation: log ηBulk = log η0 - 1.47 * [φ/(1-φ)]0.48. Our model provides a means to compare the diverse behaviour of vesicle-bearing melts reported in the literature and reflecting material properties (e.g., analogue vs. natural), geometry and distribution of pores (e.g. foamed/natural vs. unconsolidated/sintered materials), and flow regime. Lastly, we apply principles of Maxwell relaxation theory, combined with our parameterization of bubble-melt rheology, to map the potential onset of non-Newtonian behaviour (strain localization) in vesiculated magmas and lavas as a function of melt viscosity, vesicularity, strain rate, and geological condition. Increasing vesicularity in magmas can initiate non-Newtonian behaviour at constant strain rates. Lower melt viscosity sustains homogeneous Newtonian flow in vesiculated magmas even at relatively high strain rates.
Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel
NASA Astrophysics Data System (ADS)
He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.
2014-12-01
Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.
Park, H-D; Noguera, D R
2007-05-01
To obtain ammonia-oxidizing bacterial (AOB) strains inhabiting low dissolved oxygen (DO) environments and to characterize them to better understand their function and ecology. Using a serial dilution method, two AOB strains (ML1 and NL7) were isolated from chemostat reactors operated with low DO concentrations (0.12-0.24 mg l(-1)). Phylogenetically, strains ML1 and NL7 are affiliated to AOB within the Nitrosomonas europaea and Nitrosomonas oligotropha lineages, respectively. Kinetically, strain ML1 had high affinity for oxygen (0.24 +/- 0.13 mg l(-1)) and low affinity for ammonia (1.62 +/- 0.97 mg N l(-1)), while strain NL7 had high affinity for ammonia (0.48 +/- 0.35 mg l(-1)), but a surprisingly low affinity for oxygen (1.22 +/- 0.43 mg l(-1)). A co-culture experiment was used to iteratively estimate decay constants for both strains. The results indicated that AOB without high affinity for oxygen may have other mechanisms to persist in low DO environments, with high affinity for ammonia being important. This study provides a method to determine AOB growth kinetic parameters without assuming or neglecting decay constant. And, this is the first report on oxygen affinity constant of a N. oligotropha strain.
Propagation mode of Portevin-Le Chatelier plastic instabilities in an aluminium-magnesium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeghloul, A.; Mliha-Touati, M.; Bakir, S.
1996-11-01
The Portevin-Le Chatelier (PLC) effect is characterized by the appearance of serrations in load (hard tensile machine for constant strain rate tests) or by steps (soft tensile machine for constant stress rate tests) or by steps (soft tensile machine for constant stress rate tests) on the stress-strain curves. It is now widely accepted that the PLC propagative instability stems from the dynamic interaction between diffusing solute atoms and mobile dislocations in the temperature and strain rate ranges where dynamic strain ageing (DSA) takes place. This competition results in a negative strain-rate sensitivity. However, in some alloys, like concentrated solid solutions,more » shearing of precipitates accompanied by their dissolution and subsequent reprecipitation during tensile test may also lead to a negative strain rate sensitivity. In view of the renewed theoretical interest in propagative instabilities, it is important that the experimental features of band propagation be well characterized. In this work the authors present experimental results that are obtained from the investigation of the PLC bands associated with discontinuous yielding. These results show that the band strain, the band velocity and the propagation mode of the bands depend on the stress rate when the test is carried out on a soft tensile machine.« less
Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table
NASA Astrophysics Data System (ADS)
Nnolim, Neme; Tyson, Trevor
2002-03-01
Total energy calculations as a function of strain along the <001> direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the <001> direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.
Experimental identification and mathematical modeling of viscoplastic material behavior
NASA Astrophysics Data System (ADS)
Haupt, P.; Lion, A.
1995-03-01
Uniaxial torsion and biaxial torsion-tension experiments on thin-walled tubes were carried out to investigate the viscoplastic behavior of stainless steel XCrNi18.9. A series of monotonic tests under strain and stress control shows nonlinear rate dependence and suggests the existence of equilibrium states, which are asymptotically approached during relaxation and creep processes. Strain controlled cyclic experiments display various hardening and softening phenomena that depend on strain amplitude and mean strain. All experiments indicate that the equilibrium states within the material depend on the history of the input process, whereas the history-dependence of the relaxation and creep behavior appears less significant. From the experiments the design of a constitutive model of viscoplasticity is motivated: The basic assumption is a decomposition of the total stress into an equilibrium stress and a non-equilibrium overstress: At constant strain, the overstress relaxes to zero, where the relaxation time depends on the overstress in order to account for the nonlinear rate-dependence. The equilibrium stress is assumed to be a rate independent functional of the total strain history. Classical plasticity is utilized with a kinematic hardening rule of the Armstrong-Frederick type. In order to incorporate the amplitude-dependent hardening and softening behavior, a generalized arc length representation is applied [14]. The introduction of an additional kinematic hardening variable facilitates consideration of additional hardening effects resulting from the non-radiality of the input process. Apart from the common yield and loading criterion of classical plasticity, the proposed constitutive model does not contain any further distinction of different cases. The experimental data are sufficient to identify the material parameters of the constitutive model. The results of the identification procedure demonstrate the ability of the model to represent the observed phenomena with satisfactory approximation.
Constant load and constant volume response of municipal solid waste in simple shear.
Zekkos, Dimitrios; Fei, Xunchang
2017-05-01
Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alessi, Roberto; Pham, Kim
2016-02-01
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.
He, Ying; Chang, Tsung C; Li, Haijing; Shi, Gongyi; Tang, Yi-Wei
2011-07-01
More than 20 species of Legionella have been identified in relation to human infections. Rapid detection and identification of Legionella isolates is clinically useful to differentiate between infection and contamination and to determine treatment regimens. We explored the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) Biotyper system (Bruker Daltonik GmbH, Bremen, Germany) for the identification of Legionella species. The MALDI MS spectra were generated and compared with the Biotyper database, which includes 25 Legionella strains covering 22 species and four Legionella pneumophila serogroups. A total of 83 blind-coded Legionella strains, consisting of 54 reference and 29 clinical strains, were analyzed in the study. Overall, the Biotyper system correctly identified 51 (61.4%) of all strains and isolates to the species level. For species included in the Biotyper database, the method identified 51 (86.4%) strains out of 59 Legionella strains to the correct species level, including 24 (100%) L. pneumophila and 27 (77.1%) non-L. pneumophila strains. The remaining 24 Legionella strains, belonging to species not covered by the Biotyper database, were either identified to the Legionella genus level or had no reliable identification. The Biotyper system produces constant and reproducible MALDI MS spectra for Legionella strains and can be used for rapid and accurate Legionella identification. More Legionella strains, especially the non-L. pneumophila strains, need to be included in the current Biotyper database to cover varieties of Legionella species and to increase identification accuracy.
DETERMINATION OF THE CREEP–FATIGUE INTERACTION DIAGRAM FOR ALLOY 617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J. K.; Carroll, L. J.; Sham, T. -L.
Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, creep-fatigue testing was performed. Testing has been performed primarily on a single heat of material at 850 and 950°C for total strain ranges of 0.3 to 1% and tensile hold times as long as 240 minutes. At 850°C, increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain-controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutesmore » at the 1.0% strain range. At 950°C, the creep-fatigue cycles to failure becomes constant with increasing hold times, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep-fatigue interaction D-diagram. Results from earlier creep-fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D-diagram. The methodology for calculating the damage fractions will be presented, and the effects of strain rate, strain range, temperature, hold time, and strain profile (i.e. holds in tension, compression or both) on the creep-fatigue damage will be explored.« less
Effect of misalignment on mechanical behavior of metals in creep. [computer programs
NASA Technical Reports Server (NTRS)
Wu, H. C.
1979-01-01
Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.
Ultrasonic measurements of breast viscoelasticity.
Sridhar, Mallika; Insana, Michael F
2007-12-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1-20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10(-2) < or = omega < or = 10(0) rad/s (0.0016-0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2 +/- 0.8 and 42.0 +/- 28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging.
Ultrasonic measurements of breast viscoelasticity
Sridhar, Mallika; Insana, Michael F.
2009-01-01
In vivo measurements of the viscoelastic properties of breast tissue are described. Ultrasonic echo frames were recorded from volunteers at 5 fps while applying a uniaxial compressive force (1–20 N) within a 1 s ramp time and holding the force constant for up to 200 s. A time series of strain images was formed from the echo data, spatially averaged viscous creep curves were computed, and viscoelastic strain parameters were estimated by fitting creep curves to a second-order Voigt model. The useful strain bandwidth from this quasi-static ramp stimulus was 10−2 ≤ ω ≤ 100 rad/s (0.0016–0.16 Hz). The stress-strain curves for normal glandular tissues are linear when the surface force applied is between 2 and 5 N. In this range, the creep response was characteristic of biphasic viscoelastic polymers, settling to a constant strain (arrheodictic) after 100 s. The average model-based retardance time constants for the viscoelastic response were 3.2±0.8 and 42.0±28 s. Also, the viscoelastic strain amplitude was approximately equal to that of the elastic strain. Above 5 N of applied force, however, the response of glandular tissue became increasingly nonlinear and rheodictic, i.e., tissue creep never reached a plateau. Contrasting in vivo breast measurements with those in gelatin hydrogels, preliminary ideas regarding the mechanisms for viscoelastic contrast are emerging. PMID:18196803
NASA Astrophysics Data System (ADS)
Peleshko, V. A.
2016-06-01
The deviator constitutive relation of the proposed theory of plasticity has a three-term form (the stress, stress rate, and strain rate vectors formed from the deviators are collinear) and, in the specialized (applied) version, in addition to the simple loading function, contains four dimensionless constants of the material determined from experiments along a two-link strain trajectory with an orthogonal break. The proposed simple mechanism is used to calculate the constants of themodel for four metallic materials that significantly differ in the composition and in the mechanical properties; the obtained constants do not deviate much from their average values (over the four materials). The latter are taken as universal constants in the engineering version of the model, which thus requires only one basic experiment, i. e., a simple loading test. If the material exhibits the strengthening property in cyclic circular deformation, then the model contains an additional constant determined from the experiment along a strain trajectory of this type. (In the engineering version of the model, the cyclic strengthening effect is not taken into account, which imposes a certain upper bound on the difference between the length of the strain trajectory arc and the module of the strain vector.) We present the results of model verification using the experimental data available in the literature about the combined loading along two- and multi-link strain trajectories with various lengths of links and angles of breaks, with plane curvilinear segments of various constant and variable curvature, and with three-dimensional helical segments of various curvature and twist. (All in all, we use more than 80 strain programs; the materials are low- andmedium-carbon steels, brass, and stainless steel.) These results prove that the model can be used to describe the process of arbitrary active (in the sense of nonnegative capacity of the shear) combine loading and final unloading of originally quasi-isotropic elastoplastic materials. In practical calculations, in the absence of experimental data about the properties of a material under combined loading, the use of the engineering version of the model is quite acceptable. The simple identification, wide verifiability, and the availability of a software implementation of the method for solving initial-boundary value problems permit treating the proposed theory as an applied theory.
Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas
2015-01-01
Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907
Electronic structure and optical properties of CuAlO2 under biaxial strain.
Ghosh, C K; Sarkar, D; Mitra, M K; Chattopadhyay, K K
2012-06-13
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ε < 9.13%) effect on elastic, electronic and optical properties of CuAlO(2). All the elastic constants (c(11), c(12), c(13), c(33)) except c(44) decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO(2).
Electronic structure and optical properties of CuAlO2 under biaxial strain
NASA Astrophysics Data System (ADS)
Ghosh, C. K.; Sarkar, D.; Mitra, M. K.; Chattopadhyay, K. K.
2012-06-01
An ab initio calculation has been carried out to investigate the biaxial strain ( - 10.71% < ɛ < 9.13%) effect on elastic, electronic and optical properties of CuAlO2. All the elastic constants (c11, c12, c13, c33) except c44 decrease (increase) during tensile (compressive) strain. The band gap is found to decrease in the presence of tensile as well as compressive strain. The relative decrease of the band gap is asymmetric with respect to the sign of the strain. Significant differences between the parallel and perpendicular components of the dielectric constant and the optical properties have been observed due to anisotropic crystal structure. It is further noticed that these properties are easily tunable by strain. Importantly, the collective oscillation of the valence electrons has been identified for light polarized perpendicular to the c-axis. From calculations, it is clear that the tensile strain can enhance the hole mobility as well as the transparency of CuAlO2.
Effect of uniaxial stress on the electrochemical properties of graphene with point defects
NASA Astrophysics Data System (ADS)
Szroeder, Paweł; Sagalianov, Igor Yu.; Radchenko, Taras M.; Tatarenko, Valentyn A.; Prylutskyy, Yuriy I.; Strupiński, Włodzimierz
2018-06-01
We report a calculational study of electron states and the resulting electrochemical properties of uniaxially strained graphene with point defects. For this study the reduction of ferricyanide to ferrocyanide serves as a benchmark electrochemical reaction. We find that the heterogeneous electron transfer activity of the perfect graphene electrode rises under uniaxial strain. However, evolution of the cathodic reaction rate depends on the direction of strain. For moderate lattice deformations, the zigzag strain improves electrochemical performance better than the armchair strain. Standard rate constant increases by 50% at the zigzag strain of 10%. Vacancies, covalently bonded moieties, charged adatoms and substitutional impurities in the zigzag strained graphene induce changes in the shape of the curve of the cathodic reaction rate. However, this changes do not translate into the electrocatalytic activity. Vacancies and covalently bonded moieties at concentration of 0.1% do not affect the electrochemical performance. Charged adatoms and substitutional impurities give a slight increase in the standard rate constant by, respectively, 2.2% and 3.4%.
NASA Technical Reports Server (NTRS)
Chakrapani, B.; Rand, J. L.
1971-01-01
The material strength and strain rate effects associated with the hypervelocity impact problem were considered. A yield criterion involving the second and third invariants of the stress deviator and a strain rate sensitive constitutive equation were developed. The part of total deformation which represents change in shape is attributable to the stress deviator. Constitutive equation is a means for analytically describing the mechanical response of a continuum under study. The accuracy of the yield criterion was verified utilizing the published two and three dimensional experimental data. The constants associated with the constitutive equation were determined from one dimensional quasistatic and dynamic experiments. Hypervelocity impact experiments were conducted on semi-infinite targets of 1100 aluminum, 6061 aluminum alloy, mild steel, and commercially pure lead using spherically shaped and normally incident pyrex projectiles.
Jimmieson, Nerina L; Hobman, Elizabeth V; Tucker, Michelle K; Bordia, Prashant
2016-10-01
This research undertook a time-ordered investigation of Australian employees in regards to their experiences of change in psychosocial work factors across time (decreases, increases, or no change) in the prediction of psychological, physical, attitudinal, and behavioral employee strain. Six hundred and ten employees from 17 organizations participated in Time 1 and Time 2 psychosocial risk assessments (average time lag of 16.7 months). Multi-level regressions examined the extent to which change in exposure to six demands and four resources predicted employee strain at follow-up, after controlling for baseline employee strain. Increases in demands and decreases in resources exacerbated employee strain, but even constant moderate demands and resources resulted in poor employee outcomes, not just constant high or low exposure, respectively. These findings can help employers prioritize hazards, and guide tailored psychosocial organizational interventions.
Sonne-Hansen; Westermann; Ahring
1999-03-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.
Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.
1999-01-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897
Anisotropic effects on constitutive model parameters of aluminum alloys
NASA Astrophysics Data System (ADS)
Brar, Nachhatter S.; Joshi, Vasant S.
2012-03-01
Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. Model constants are determined from tension, compression or torsion stress-strain at low and high strain rates at different temperatures. These model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloy. Johnson- Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulation go well beyond minor parameter tweaking and experimental results show drastically different behavior it becomes important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy quasi-static and high strain rate tensile tests were performed on specimens fabricated in the longitudinal "L", transverse "T", and thickness "TH" directions of 1' thick Al7075 Plate. While flow stress at a strain rate of ~1/s as well as ~1100/s in the thickness and transverse directions are lower than the longitudinal direction. The flow stress in the bar was comparable to flow stress in the longitudinal direction of the plate. Fracture strain data from notched tensile specimens fabricated in the L, T, and Thickness directions of 1' thick plate are used to derive fracture constants.
Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry
Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo; ...
2017-10-24
Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less
Strain Distribution in REBCO-Coated Conductors Bent With the Constant-Perimeter Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaorong; Arbelaez, Diego; Caspi, Shlomo
Here, cable and magnet applications require bending REBa 2Cu 3O 7-δ (REBCO, RE = rare earth) tapes around a former to carry high current or generate specific magnetic fields. With a high aspect ratio, REBCO tapes favor the bending along their broad surfaces (easy way) than their thin edges (hard way). The easy-way bending forms can be effectively determined by the constant-perimeter method that was developed in the 1970s to fabricate accelerator magnets with flat thin conductors. The method, however, does not consider the strain distribution in the REBCO layer that can result from bending. Therefore, the REBCO layer canmore » be overstrained and damaged even if it is bent in an easy way as determined by the constant-perimeter method. To address this issue, we developed a numerical approach to determine the strain in the REBCO layer using the local curvatures of the tape neutral plane. Two orthogonal strain components are determined: the axial component along the tape length and the transverse component along the tape width. These two components can be used to determine the conductor critical current after bending. The approach is demonstrated with four examples relevant for applications: a helical form for cables, forms for canted cos θ dipole and quadrupole magnets, and a form for the coil end design. The approach allows us to optimize the design of REBCO cables and magnets based on the constant-perimeter geometry and to reduce the strain-induced critical current degradation.« less
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; ...
2016-05-23
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elasticmore » constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.« less
Dynamic response of polyurea subjected to nanosecond rise-time stress waves
NASA Astrophysics Data System (ADS)
Youssef, George; Gupta, Vijay
2012-08-01
Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.
Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia
2017-07-03
The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.
NASA Astrophysics Data System (ADS)
Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab
2017-10-01
The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.
Carbamate and Pyrethroid Resistance in the Akron Strain of Anopheles gambiae
Mutunga, James M.; Anderson, Troy D.; Craft, Derek T.; Gross, Aaron D.; Swale, Daniel R.; Tong, Fan; Wong, Dawn M.; Carlier, Paul R.; Bloomquist, Jeffrey R.
2015-01-01
Insecticide resistance in the malaria vector, Anopheles gambiae is a serious problem, epitomized by the multi-resistant Akron strain, originally isolated in the country of Benin. Here we report resistance in this strain to pyrethroids and DDT (13-fold to 35-fold compared to the susceptible G3 strain), but surprisingly little resistance to etofenprox, a compound sometimes described as a “pseudo-pyrethroid.” There was also strong resistance to topically-applied commercial carbamates (45-fold to 81-fold), except for the oximes aldicarb and methomyl. Biochemical assays showed enhanced cytochrome P450 monooxygenase and carboxylesterase activity, but not that of glutathione-S-transferase. A series of substituted α,α,α,-trifluoroacetophenone oxime methylcarbamates were evaluated for enzyme inhibition potency and toxicity against G3 and Akron mosquitoes. The compound bearing an unsubstituted phenyl ring showed the greatest toxicity to mosquitoes of both strains. Low cross resistance in Akron was retained by all analogs in the series. Kinetic analysis of acetylcholinesterase activity and its inhibition by insecticides in the G3 strain showed inactivation rate constants greater than that of propoxur, and against Akron enzyme inactivation rate constants similar to that of aldicarb. However, inactivation rate constants against recombinant human AChE were essentially identical to that of the G3 strain. Thus, the acetophenone oxime carbamates described here, though potent insecticides that control resistant Akron mosquitoes, require further structural modification to attain acceptable selectivity and human safety. PMID:26047119
Piezo-optic tensor of crystals from quantum-mechanical calculations.
Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Piezo-optic tensor of crystals from quantum-mechanical calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.
Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew
2018-04-11
Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20 Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.
Stresses and elastic constants of crystalline sodium, from molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the resultsmore » to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.« less
Nonlinear Stress/Strain Behavior of a Synthetic Porous Medium at Seismic Frequencies
NASA Astrophysics Data System (ADS)
Roberts, P. M.; Ibrahim, R. H.
2008-12-01
Laboratory experiments on porous core samples have shown that seismic-band (100 Hz or less) mechanical, axial stress/strain cycling of the porous matrix can influence the transport behavior of fluids and suspended particles during steady-state fluid flow through the cores. In conjunction with these stimulated transport experiments, measurements of the applied dynamic axial stress/strain were made to investigate the nonlinear mechanical response of porous media for a poorly explored range of frequencies from 1 to 40 Hz. A unique core-holder apparatus that applies low-frequency mechanical stress/strain to 2.54-cm-diameter porous samples during constant-rate fluid flow was used for these experiments. Applied stress was measured with a load cell in series with the source and porous sample, and the resulting strain was measured with an LVDT attached to the core face. A synthetic porous system consisting of packed 1-mm-diameter glass beads was used to investigate both stress/strain and stimulated mass-transport behavior under idealized conditions. The bead pack was placed in a rubber sleeve and static confining stresses of 2.4 MPa radial and 1.7 MPa axial were applied to the sample. Sinusoidal stress oscillations were applied to the sample at 1 to 40 Hz over a range of RMS stress amplitude from 37 to 275 kPa. Dynamic stress/strain was measured before and after the core was saturated with deionized water. The slope of the linear portion of each stress/strain hysteresis loop was used to estimate Young's modulus as a function of frequency and amplitude for both the dry and wet sample. The modulus was observed to increase after the dry sample was saturated. For both dry and wet cases, the modulus decreased with increasing dynamic RMS stress amplitude at a constant frequency of 23 Hz. At constant RMS stress amplitude, the modulus increased with increasing frequency for the wet sample but remained constant for the dry sample. The observed nonlinear behavior of Young's modulus and the dependence of stress/strain hysteresis on strain amplitude and frequency have implications on how seismic waves can influence the mechanical properties of granular porous materials in the Earth. This work was funded by the U.S. Department of Energy Basic Energy Sciences Program under the Los Alamos National Laboratory contract no. DE-AC52-06NA25396.
Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking
NASA Technical Reports Server (NTRS)
Salpekar, S. A.
1993-01-01
Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.
Verification of Experimental Techniques for Flow Surface Determination
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.
1996-01-01
The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).
Elkin, Benjamin S; Gabler, Lee F; Panzer, Matthew B; Siegmund, Gunter P
2018-03-29
On-field football helmet impacts over a large range of severities have caused concussions in some players but not in other players. One possible explanation for this variability is the struck player's helmet impact location. We examined the effect of impact location on regional brain tissue strain when input energy was held constant. Laboratory impacts were performed at 12 locations distributed over the helmet and the resulting head kinematics were simulated in two finite element models of the brain: the Simulated Injury Monitor and the Global Human Body Model Consortium brain model. Peak kinematics, injury metrics and brain strain varied significantly with impact location. Differences in impact location explained 33 to 37% of the total variance in brain strain for the whole brain and cerebrum, considerably more than the variance explained by impact location for the peak resultant head kinematics (8 to 23%) and slightly more than half of the variance explained by the difference in closing speed (57 to 61%). Both finite element models generated similar strain results, with minor variations for impacts that generated multi-axial rotations, larger variations in brainstem strains for some impact locations and a small bias for the cerebellum. Based on this experimental and computational simulation study, impact location on the football helmet has a large effect on regional brain tissue strain. We also found that the lowest strains consistently occurred in impacts to the crown and forehead, helmet locations commonly associated with the striking player. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
A sequence of physical processes quantified in LAOS by continuous local measures
NASA Astrophysics Data System (ADS)
Lee, Ching-Wei; Rogers, Simon A.
2017-11-01
The response to large amplitude oscillatory shear of a soft colloidal glass formed by a suspension of multiarm star polymers is investigated by means of well-defined continuous local measures. The local measures provide information regarding the transient elastic and viscous response of the material, as well as elastic extension via a shifting equilibrium position. It is shown that even when the amplitude of the strain is very large, cages reform and break twice per period and exhibit maximum elasticity around the point of zero stress. It is also shown that around the point of zero stress, the cages are extended by a nearly constant amount of approximately 5% at 1 rad/s and 7% at 10 rad/s, even when the total strain is as large as 420%. The results of this study provide a blueprint for a generic approach to elucidating the complex dynamics exhibited by soft materials under flow.
Biller, Patrick; Friedman, Cerri; Ross, Andrew B
2013-05-01
Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Talia, J M; Alvarez, M A; Debattista, N B; Pappano, N B
2009-11-01
In order to determine the existence of synergism of the bacteriostatic action of flavonoids against G(+) bacteria between a clinically interesting conventional antibiotic and a flavonoid, combinations of oxacillin (OXC) and 2,4-dihydroxychalcone (DCH) as enhancer were assayed against methicillin-sensitive Staphylococcus aureus ATCC 29 213 and methicillin-resistant S. aureus ATCC 43 300. Using a kinetic-turbidimetric method, growth kinetics was monitored in a broth containing variable amounts of OXC alone and combinations of variable OXC-constant DCH. The minimum inhibitory concentrations (MIC) of OXC alone and in combination with DCH were evaluated. For the 29 213 strain, OXC MIC was 25 microg/mL, while combinations of 2-8 microg/mL OXC with 10 microg/mL of DCH totally inhibited growth and showed synergism. The resistance of the 43 300 strain in the presence of OXC was verified; OXC-DCH combinations decreased bacterial growth by 35 %. DCH augments the action of OXC against methicillin-susceptible S. aureus and therefore constitutes a good bacteriostatic agent for methicillin-resistant S. aureus.
High temperature static strain gage development
NASA Technical Reports Server (NTRS)
Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Anderson, W. L.; Przybyszewski, J. S.
1991-01-01
Final results are presented from a program to develop a thin film static strain gage for use on the blades and vanes of running, test stand gas turbine engines with goals of an 3 x 3 mm gage area and total errors of less than 10 pct. of + or - 2,000 microstrain after 50 hrs at 1250 K. Pd containing 13 Wt. pct. Cr was previously identified as a new strain sensor alloy that appeared to be potentially usable to 1250 K. Subsequently, it was discovered, in contrast with its behavior in bulk, that Pd-13Cr suffered from oxidation attack when prepared as a 4.5 micron thick thin film. Continuing problems with electrical leakage to the substrate and the inability of sputtered alumina overcoats to prevent oxidation led to the discovery that sputtered alumina contains appreciable amounts of entrapped argon. After the argon has been exsolved by heating to elevated temperatures, the alumina films undergo a linear shrinkage of about 2 pct. resulting in formation of cracks. These problems can be largely overcome by sputtering the alumina with the substrate heated to 870 K. With 2 micron thick hot sputtered alumina insulation and overcoat films, total 50 hr drifts of about 100 microstrain (2 tests) and about 500 microstrain (1 test) were observed at 1000 and 1100 K, respectively. Results of tests on complete strain gage systems on constant moment bend bars with Pd temperature compensation grids revealed that oxidation of the Pd grid was a major problem even when the grid was overcoated with a hot or cold sputtered alumina overcoat.
NASA Astrophysics Data System (ADS)
Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.
2017-12-01
Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the contribution of small strain-free recrystallized grains is larger in CTR than in CT samples. Our results suggest that loading conditions substantially affect material heterogeneity-induced localization in its nucleation and transient stages.
Stress evolution and associated microstructure during transient creep of olivine at 1000-1200 °C
NASA Astrophysics Data System (ADS)
Thieme, M.; Demouchy, S.; Mainprice, D.; Barou, F.; Cordier, P.
2018-05-01
We study the mechanical response and correlated microstructure of axial deformed fine-grained olivine aggregates as a function of incremental finite strains. Deformation experiments were conducted in uniaxial compression in an internally heated gas-medium deformation apparatus at temperatures of 1000 and 1200 °C, at strain rates of 10-6 s-1 to 10-5 s-1 and at confining pressure of 300 MPa. Sample volumes are around 1.2 cm3. Finite strains range from 0.1 to 8.6% and corresponding maximal (final) differential stresses range from 80 to 1073 MPa for deformation at 1000 °C and from 71 to 322 MPa for deformation at 1200 °C. At 1200 °C, samples approach steady state deformation after about 8% of strain. At 1000 °C, significant strain hardening leads to stresses exceeding the confining pressure by a factor of 3.5 with brittle deformation after 3% of strain. Deformed samples were characterized by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD maps with step sizes as low as 50 nm were acquired without introducing analytical artifacts for the first time. The grain size of deformed samples ranges from 2.1 to 2.6 μm. Despite clear strain hardening, texture or microstructure do not change as a function of stress or finite strain. This observation is supported by a constant texture strength (J-index) and symmetry (BA-index), constant grain shape and aspect ratio, constant density of geometrically necessary dislocations, grain orientation spread, and constant subgrain boundary spacing and misorientation in between samples. TEM shows that all samples exhibit unambiguous dislocation activity but with a highly heterogeneous dislocation distribution. Olivine grains display evidence of [1 0 0] and [0 0 1] slip activity, but there is no evidence of interaction between the dislocations from the different slip systems. Several observations of grain boundaries acting as dislocation sources have been found. We find no confirmation of increasing dislocation densities as the cause for strain hardening during transient creep. This suggests other, yet not fully understood mechanisms affecting the strength of deformed olivine. These mechanisms could possibly involve grain boundaries. Such mechanisms are relevant for the deformation of uppermost mantle rocks, where the Si diffusion rate is too slow and dislocation glide must be accommodated in another way to fulfill the von Mises criterion.
Thompson, B.D.; Young, R.P.; Lockner, D.A.
2006-01-01
New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.
Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale
NASA Astrophysics Data System (ADS)
Chang, C.; Zoback, M. D.
2002-12-01
We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.
NASA Astrophysics Data System (ADS)
Saengow, Chaimongkol; Giacomin, A. Jeffrey
2018-03-01
In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.
Tamadapu, Ganesh; Dhavale, Nikhil Nandkumar; DasGupta, Anirvan
2013-11-01
The occurrence of the limit-point instability is an intriguing phenomenon observed during stretching of hyperelastic membranes. In toy rubber balloons, this phenomenon may be experienced in the sudden reduction in the level of difficulty of blowing the balloon accompanied by its rapid inflation. The present paper brings out a link between the geometry and strain-hardening parameter of the membrane, and the occurrence of the limit-point instability. Inflation of membranes with different geometries and boundary conditions is considered, and the corresponding limit-point pressures are obtained for different strain-hardening parameter values. Interestingly, it is observed that the limit-point pressure for the different geometries is inversely proportional to a geometric parameter of the uninflated membrane. This dependence is shown analytically, which can be extended to a general membrane geometry. More surprisingly, the proportionality constant has a power-law dependence on the nondimensional material strain-hardening parameter. The constants involved in the power-law relation are universal constants for a particular membrane geometry.
Fatigue testing of a NiTi rotary instrument. Part 1: Strain-life relationship.
Cheung, G S P; Darvell, B W
2007-08-01
To examine the fatigue behaviour using a strain-life approach, and to determine the effect of water on the fatigue life of a NiTi rotary instrument. Instruments of one brand of NiTi engine-file (size 25, ProFile 0.04 and 0.06) were subjected to rotational bending either in air or under water, the number of revolutions to fracture (N(f)) being recorded using an optical counter and an electronic break-detection circuit. The effective surface strain amplitude (epsilon(a)) for each specimen was determined from the curvature of the instrument (on a photograph) and the diameter of the fracture cross-section (from a scanning electron micrograph of the fracture surface). Strain was plotted against fatigue life and the low-cycle fatigue (LCF) region identified. Values were examined using two-way analysis of variance for difference between various instrument-environment combinations. A total of 212 instruments were tested. A strain-life relationship typical of metals was found. N(f) declined with an inverse power function dependence on epsilon(a). A fatigue limit was present at about 0.7% strain. The apparent fatigue-ductility exponent, a material constant for the LCF life of metals, was found to be between -0.45 and -0.55. There was a significant effect of the environmental condition on the LCF life, water being more detrimental than air. The fatigue behaviour of NiTi rotary instrument is typical of most metals, provided that the analysis is based on the surface strain amplitude, and showed a high-cycle and a LCF region. The LCF life is adversely affected by water.
NASA Astrophysics Data System (ADS)
Huang, Cheng; Zhang, Qiming
2004-07-01
The development of high dielectric constant polymers as active materials in high-performance devices is one of the challenges in polymeric electronics and opto-electronics such as flexible thin-film capacitors, memory devices and microactuators for deformable micromirror technology. A group of poly(vinylidene fluoridetrifluoroethylene) P(VDF-TrFE) based high-dielectric-constant fluoroterpolymers have been developed, which have high room-temperature dielectric constant (K>60) and very high strain level and high energy density. The longitudinal and transverse strain of these materials can reach about -7% and 4.5%, respectively, and the elastic energy density is around 1.1 J/cm^3 under a high electric field of 150 MV/m. The influence on the electromechanical properties of copolymerizing poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) with a third monomer, chlorofluoroethylene (CFE), was investigated. It was found that increasing the CFE content from 0 to 8.5% slowly converts the ferroelectric structure of the copolymer to a relaxor ferroelectric system. This allows for a greatly decreased polarization and dielectric hysteresis and a much higher strain. Above 8.5%, increased CFE content substantially degrades the bulk crystallinity and the Young's modulus. These terpolymers have the potential to achieve above 10 J/cm^3 whole capacity energy density, which makes them good candidates for applications in pulse power capacitors. An all-polymer percolative composite by the combination of conductive polyaniline particles (K>10^5) within a fluoroterpolymer matrix, is introduced which exhibits very high dielectric constant (>7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cm^3 can be achieved under a low field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis. Flexible high dielectric constant electroactive polymers provide potential applications in high-energy-density (HED) energy storage and conversion systems such as lightweight field effect actuators and capacitors.
Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration
NASA Astrophysics Data System (ADS)
Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.
2009-05-01
We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.
Strain localization parameters of AlCu4MgSi processed by high-energy electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.
NASA Technical Reports Server (NTRS)
James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.
NASA Astrophysics Data System (ADS)
Kabirian, Farhoud
Mechanical responses and texture evolution of extruded AZ31 Mg are measured under uniaxial (tension-compression) and multiaxial (free-end torsion) loadings. Compression loading is carried out in three different directions at temperature and strain rate ranges of 77-423 K and 10-4 -3000 s -1, respectively. Texture evolution at different intermediate strains reveals that crystal reorientation is exhausted at smaller strains with increase in strain rate while increase in temperature retards twinning. In addition to the well-known tension-compression yield asymmetry, a strong anisotropy in strain hardening response is observed. Strain hardening during the compression experiment is intensified with decreasing and increasing temperature and strain rate, respectively. This complex behavior is explained through understanding the roles of deformation mechanisms using the Visco-Plastic Self Consistent (VPSC) model. In order to calibrate the VPSC model's constants as accurate as possible, a vast number of mechanical responses including stress-strain curves in tension, compression in three directions, and free-end torsion, texture evolution at different strains, lateral strains of compression samples, twin volume fraction, and axial strain during the torsion experiment. Modeling results show that depending on the number of measurements used for calibration, roles of different mechanisms in plastic deformation change significantly. In addition, a precise definition of yield is established for the extruded AZ31magnesium alloy after it is subjected to different loading conditions (uniaxial to multiaxial) at four different plastic strains. The yield response is measured in ?-? space. Several yield criteria are studied to predict yield response of extruded AZ31. This study proposes an asymmetrical fourth-order polynomial yield function. Material constants in this model can be directly calculated using mechanical measurements. Convexity of the proposed model is discussed, and domains of constants where convexity holds are determined. Effects of grain refinement induced by Equal Channel Angular Pressing, ECAP, on mechanical responses and texture evolution are investigated. Yield strength in compression increases after ECAP, however, strain-hardening rate drops with number of ECAP passes while failure strain increases. Texture measurements reveal the higher propensity to twinning in the extruded material compared with ECAPed magnesium. Calculated Schmid factor maps are utilized to connect the observed mechanical responses to the texture.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1984-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1985-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
NASA Astrophysics Data System (ADS)
Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.
2018-01-01
Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.
NASA Astrophysics Data System (ADS)
Nicholson, D. E.; Benafan, O.; Padula, S. A.; Clausen, B.; Vaidyanathan, R.
2018-03-01
Loading path dependencies and control mode effects in polycrystalline shape memory NiTi were investigated using in situ neutron and synchrotron X-ray diffraction performed during mechanical cycling and thermal cycling at constant strain. Strain-controlled, isothermal, reverse loading (to ± 4%) and stress-controlled, isothermal, cyclic loading (to ± 400 MPa for up to ten cycles) at room temperature demonstrated that the preferred martensite variants selected correlated directly with the macroscopic uniaxial strain and did not correlate with the compressive or tensile state of stress. During cyclic loading (up to ten cycles), no significant cycle-to-cycle evolution of the variant microstructure corresponding to a given strain was observed, despite changes in the slope of the stress-strain response with each cycle. Additionally, thermal cycling (to above and below the phase transformation) under constant strain (up to 2% tensile strain) showed that the martensite variant microstructure correlated directly with strain and did not evolve following thermal cycling, despite relaxation of stress in both martensite and austenite phases. Results are presented in the context of variant reorientation and detwinning processes in martensitic NiTi, the fundamental thermoelastic nature of such processes and the ability of the variant microstructure to accommodate irreversible deformation processes.
Pupal abnormalities among laboratory-reared gypsy moths
Richard W. Hansen
1991-01-01
Gypsy moth cohorts from 10 near-wild strains (one to six previous generations in culture), six wild strains (field-collected egg masses), and the standard "New Jersey" lab strain (34th and 35th generation in culture) were reared on Otis wheat germ-based artificial diet, in a constant environment. Rearings were begun with newly-hatched first instars; pupae...
Zhou, Xin-Wei; Zhao, Xin-Huai
2015-01-01
Previous research has shown that fresh milk might be polluted by some organophosphorus pesticides (OPPs). In this study the dissipation of nine OPPs, namely chlorpyrifos, chlorpyrifos-methyl, diazinon, dichlorvos, fenthion, malathion, phorate, pirimiphos-methyl and trichlorphon, in skimmed milk was investigated to clarify their susceptibility towards lactic acid bacteria (LAB) and yogurt starters. Skimmed milk was spiked with nine OPPs, inoculated with five strains of LAB and two commercial yogurt starters at 42 °C for 24 and 5 h respectively and subjected to quantitative OPP analysis by gas chromatography. Degradation kinetic constants of these OPPs were calculated based on a first-order reaction model. OPP dissipation in the milk was enhanced by the inoculated strains and starters, resulting in OPP concentrations decreasing by 7.0-64.6 and 7.4-19.2% respectively. Totally, the nine OPPs were more susceptible to Lactobacillus bulgaricus, as it enhanced their degradation rate constants by 18.3-133.3%. Higher phosphatase production of the assayed stains was observed to bring about greater OPP degradation in the milk. Both LAB and yogurt starters could enhance OPP dissipation in skimmed milk, with the nine OPPs studied having different susceptibilities towards them. Phosphatase was a key factor governing OPP dissipation. The LAB of higher phosphatase production have more potential to decrease OPPs in fermented foods. © 2014 Society of Chemical Industry.
Epitaxial bain paths and metastable phases of tetragonal iron and manganese
NASA Astrophysics Data System (ADS)
Ma, Hong
2002-04-01
Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.
Hemoglobin in Frankia, a Nitrogen-Fixing Actinomycete†
Tjepkema, John D.; Cashon, Robert E.; Beckwith, Jason; Schwintzer, Christa R.
2002-01-01
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s−1, and the oxygen association rate constant was 206 μM−1 s−1. PMID:11976149
Plastic Stress-strain Relations for 75S-T6 Aluminum Alloy Subjected to Biaxial Tensile Stresses
NASA Technical Reports Server (NTRS)
Marin, Joseph; Ulrich, B H; Hughes, W P
1951-01-01
In this investigation, the material tested was a 75S-T6 aluminum alloy and the stresses were essentially biaxial and tensile. The biaxial tensile stresses were produced in a specially designed testing machine by subjecting a thin-walled tubular specimen to axial tension and internal pressure. Plastic stress-strain relations for various biaxial stress conditions were obtained using a clip-type SR-4 strain gage. Three types of tests were made: Constant-stress-ratio tests, variable-stress-ratio tests, and special tests. The constant-stress-ratio test results gave control data and showed the influence of biaxial stresses on the yield, fracture, and ultimate strength of the material. By means of the variable-stress-ratio tests, it is possible to determine whether there is any significant difference between the flow and deformation type of theory. Finally, special tests were conducted to check specific assumptions made in the theories of plastic flow. The constant-stress-ratio tests show that the deformation theory based on the octahedral, effective; or significant stress-strain relations is in approximate agreement with the test results. The variable-stress-ratio tests show that both the deformation and flow theory are in equally good agreement with the test results.
Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A
2015-10-01
Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental investigation of time dependent behavior of welded Topopah Spring Tuff
NASA Astrophysics Data System (ADS)
Ma, Lumin
Four types of laboratory tests have been performed. Specimens were attained from four lithophysal zones of the welded Topopah Spring Tuff unit at Yucca Mountain, Nevada: upper lithophysal, middle nonlithophysal, lower lithophysal and lower nonlithophysal zones. Two types of tests are conducted to study time-dependent behavior: constant strain rate and creep tests. Sixty-five specimens from the middle nonlithophysal zone were tested at six strain rates: 10-2, 10-4, 10-5, 10-6, 10-7, and 10-8 s-1. Test durations range from 2 seconds to 7 days. Fourteen specimens from middle nonlithophysal, lower lithophysal and lower nonlithophysal zones are creep tested by incremental stepwise loading. All the tests are conducted under uniaxial compression at room temperature and humidity. Specimens exhibit extremely brittle fracture and fail by axial splitting, and show very little dilatancy if any. It is assumed that microfracturing dominates the inelastic deformation and failure of the tuff. Nonlinear regression is applied to the results of the constant strain rate tests to estimate the relations between peak strength, peak axial strain, secant modulus and strain rate. All three these parameters decrease with a decrease of strain rate and follow power functions: sigmapeak = 271.37 3˙0.0212 0.0212, epsilonpeak = 0.006 3˙0.0083 , ES = 41985.4 3˙0.015 . Secant modulus is introduced mainly as a tool to analyze strain rate dependent axial strain. Two threshold stresses define creep behavior. Below about 50% of peak strength, a specimen does not creep. Above about 94% of peak strength, a specimen creeps at an accelerating rate. Between the two threshold stresses, a power law relates strain rate and stress. One hundred fifty-eight Brazilian (Indirect tensile splitting) tests have been performed at six different constant strain rates. Nineteen lithophysal specimens were tested in uniaxial compression to study their fracture pattern. These specimens have a far less brittle failure mode. They slowly crumble, collapse, and maintain considerable relative strength beyond the peak. Due to the presence of multiple relatively large lithophysal cavities, they are far weaker and softer than the nonlithophysal specimens.
Continental collision slowing due to viscous mantle lithosphere rather than topography.
Clark, Marin Kristen
2012-02-29
Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.
Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.
De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E
2013-06-01
Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (p<.0001) and between v1 and v3 (p<.0001). A significant positive effect of loading on delta BM was observed in the distal peri-implant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Manthilake, G.; Matsuzaki, T.; Yoshino, T.; Yamazaki, D.; Yoneda, A.; Ito, E.; Katsura, T.
2008-12-01
So far, two hypotheses have been proposed to explain softening of the oceanic asthenosphere allowing smooth motion of the oceanic lithosphere. One is partial melting, and the other is hydraulitic weakening. Although the hydraulitic weakening hypothesis is popular recently, Yoshino et al. [2006] suggested that this hypothesis cannot explain the high and anisotropic conductivity at the top of the asthenosphere near East Pacific Rise observed by Evans et al. [2005]. In order to explain the conductivity anisotropy over one order of magnitude by the partial melting hypothesis, we measured conductivity of partially molten peridotite analogue under shear conditions. The measured samples were mixtures of forsterite and chemically simplified basalt. The samples were pre- synthesized using a piston-cylinder apparatus at 1600 K and 2 GPa to obtain textural equilibrium. The pre- synthesized samples were formed to a disk with 3 mm in diameter and 1 mm in thickness. Conductivity measurement was carried out also at 1600 K and 2 GPa in a cubic-anvil apparatus with an additional uniaxial piston. The sample was sandwiched by two alumina pistons whose top was cut to 45 degree slope to generate shear. The shear strain rates of the sample were calibrated using a Mo strain marker in separate runs. The lower alumina piston was pushed by a tungsten carbide piston embedded in a bottom anvil with a constant speed. Conductivity was measured in the directions normal and parallel to the shear direction simultaneously. We mainly studied the sample with 1.6 volume percent of basaltic component. The shear strain rates were 0, 1.2x10(-6) and 5.2x10(-6) /s. The sample without shear did not show conductivity anisotropy. In contrast, the samples with shear showed one order of magnitude higher conductivity in the direction parallel to the shear than that normal to the shear. After the total strains reached 0.3, the magnitude of anisotropy became almost constant for both of the strain rates. The magnitude is thus independent of the strain rate. This study demonstrates that the anisotropy at the top of the asthenosphere can be explained based on the partially molten asthenosphere sheared by the plate motion.
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Liu, Xu-Yang; Dong, Hai-Kuan
2016-09-01
We investigate the interface behaviors of Y2O3/GaAs under biaxial strain, triaxial strain, and non-strain conditions. This study is performed by first principles calculations based on density functional theory (DFT). First of all, the biaxial strain is realized by changing the lattice constants in ab plane. Averaged electrostatic potential (AEP) is aligned by establishing Y2O3 and GaAs (110) surfaces. The band offsets of Y2O3/GaAs interface under biaxial strain are investigated by generalized gradient approximation and Heyd-Scuseria-Ernzerhof (HSE) functionals. The interface under biaxial strain is suitable for the design of metal oxide semiconductor (MOS) devices because the valence band offsets (VBO) and conduction band offsets (CBO) are larger than 1 eV. Second, the triaxial strain is applied to Y2O3/GaAs interface by synchronously changing the lattice constants in a, b, and c axis. The band gaps of Y2O3 and GaAs under triaxial strain are investigated by HSE functional. We compare the VBO and CBO under triaxial strain with those under biaxial strain. Third, in the absence of lattice strain, the formation energies, charge state switching levels, and migration barriers of native defects in Y2O3 are assessed. We investigate how they will affect the MOS device performance. It is found that VO+2 and Oi-2 play a very dangerous role in MOS devices. Finally, a direct tunneling leakage current model is established. The model is used to analyze current and voltage characteristics of the metal/Y2O3/GaAs.
2007-01-01
Equation of State R2 – Constant in JWL Equation of State σ – Yield Stress T – Temperature...v – Specific volume w – Constant in JWL Equation of State x – Spatial coordinate y – Spatial coordinate Y – Yield stress Subscripts Comp – Value at...Constant in JWL Equation of State α – Porosity B – Compaction Modulus B1 – Strain Hardening Constant B2 – Constant in JWL Equation of State
NASA Astrophysics Data System (ADS)
Nair, S. P.; Righetti, R.
2015-05-01
Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.
NASA Technical Reports Server (NTRS)
Imig, L. A.
1972-01-01
Fatigue tests were conducted with constant-amplitude axial stresses in the ratio of minimum to maximum stress of 0.05 (R=0.05). Specimens with and without strain gages were tested at 21 C, and superalloy specimens with and without strain gages were tested at 21 C and 815 C.
Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study.
Guiné, V; Spadini, L; Sarret, G; Muris, M; Delolme, C; Gaudet, J P; Martins, J M F
2006-03-15
The acid-base and Zn sorption properties of three bacteria, Cupriavidus metallidurans CH34, Pseudomonas putida ATCC12633, and Escherichia coli K12DH5alpha, were investigated through an original combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and equilibrium titration studies. Acid-base titration curves of the three strains were fitted with a model accounting for three conceptual reactive sites: an acidic (carboxyl and/or phosphodiester), a neutral (phosphomonoester), and a basic (amine and/or hydroxyl) group. Calculated proton and Zn equilibrium constants and site densities compare with literature data. The nature of Zn binding sites was studied by EXAFS spectroscopy. Phosphoester, carboxyl, and unexpectedly sulfhydryl ligands were identified. Their proportions depended on Zn loading and bacterial strain and were consistent with the titration results. These findings were compared to the structure and site density of the major cell wall components. It appeared that the cumulated theoretical site density of these structures (<2 Zn nm(-2)) was much lower than the total site density of the investigated strains (16-56 Zn nm(-2)). These results suggest a dominant role of extracellular polymeric substances in Zn retention processes, although Zn binding to inner cell components cannot be excluded.
Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy
NASA Astrophysics Data System (ADS)
Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing
2018-02-01
Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.
NASA Astrophysics Data System (ADS)
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-01
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Strain doping: Reversible single-axis control of a complex oxide lattice via helium implantation
Guo, Hangwen; Dong, Shuai; Rack, Philip D.; ...
2015-06-25
We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La 0.7Sr 0.3MnO 3 thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain canmore » be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. As a result, the ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials’ functional properties.« less
Silambarasan, Sivagnanam; Abraham, Jayanthi
2014-01-01
A novel fungal strain JAS4 was isolated from agricultural soil and was found to be highly effective in degrading chlorpyrifos and its major degradation product 3,5,6-trichloro-2-pyridinol (TCP). The molecular characterization based on 18S rRNA sequence analysis, revealed strain JAS4 as Ganoderma sp. which could able to degrade chlorpyrifos and its metabolite in an aqueous medium with rate constant of 0.8460 day(-1), following first order rate kinetics, and the time in which the initial insecticide concentration was reduced by 50% (DT(50)) was 0.81 days. Studies on biodegradation in soil with nutrients showed that JAS4 strain exhibited efficient degradation of insecticide with a rate constant of 0.9 day(-1), and DT(50) was 0.73 day. In contrast, degradation of insecticide in soil without nutrients was characterized by a rate constant of 0.7576 day(-1) and the DT(50) was 0.91 day. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin
2018-03-01
A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vurgaftman, I.; Belenky, G., E-mail: gregory.belenky@stonybrook.edu; Lin, Y.
The absorption spectra for the antimonide-based type-II superlattices (SLs) for detection in the long-wave infrared (LWIR) are calculated and compared to the measured data for SLs and bulk materials with the same energy gap (HgCdTe and InAsSb). We include the results for the metamorphic InAsSb{sub x}/InAsSb{sub y} SLs with small periods as well as the more conventional strain-balanced InAs/Ga(In)Sb and InAs/InAsSb SLs on GaSb substrates. The absorption strength in small-period metamorphic SLs is similar to the bulk materials, while the SLs with an average lattice constant matched to GaSb have significantly lower absorption. This is because the electron-hole overlap inmore » the strain-balanced type-II LWIR SLs occurs primarily in the hole well, which constitutes a relatively small fraction of the total thickness.« less
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-01-01
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-07-16
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
Relating Ab Initio Mechanical Behavior of Intergranular Glassy Films in Γ-Si3N4 to Continuum Scales
NASA Astrophysics Data System (ADS)
Ouyang, L.; Chen, J.; Ching, W.; Misra, A.
2006-05-01
Nanometer thin intergranular glassy films (IGFs) form in polycrystalline ceramics during sintering at high temperatures. The structure and properties of these IGFs are significantly changed by doping with rare earth elements. We have performed highly accurate large-scale ab initio calculations of the mechanical properties of both undoped and Yittria doped (Y-IGF) model by theoretical uniaxial tensile experiments. Uniaxial strain was applied by incrementally stretching the super cell in one direction, while the other two dimensions were kept constant. At each strain, all atoms in the model were fully relaxed using Vienna Ab initio Simulation Package VASP. The relaxed model at a given strain serves as the starting position for the next increment of strain. This process is carried on until the total energy (TE) and stress data show that the "sample" is fully fractured. Interesting differences are seen between the stress-strain response of undoped and Y-doped models. For the undoped model, the stress-strain behavior indicates that the initial atomic structure of the IGF is such that there is negligible coupling between the x- and the y-z directions. However, once the behavior becomes non- linear the lateral stresses increase, indicating that the atomic structure evolves with loading [1]. To relate the ab initio calculations to the continuum scales we analyze the atomic-scale deformation field under this uniaxial loading [1]. The applied strain in the x-direction is mostly accommodated by the IGF part of the model and the crystalline part experiences almost negligible strain. As the overall strain on the sample is incrementally increased, the local strain field evolves such that locations proximal to the softer spots attract higher strains. As the load progresses, the strain concentration spots coalesce and eventually form persistent strain localization zone across the IGF. The deformation pattern obtained through ab initio calculations indicates that it is possible to construct discrete grain-scale models that may be used to bridge these calculations to the continuum scale for finite element analysis. Reference: 1. J. Chen, L. Ouyang, P. Rulis, A. Misra, W. Y. Ching, Phys. Rev. Lett. 95, 256103 (2005)
NASA Technical Reports Server (NTRS)
Rogacki, John R.; Tuttle, Mark E.
1992-01-01
This research investigates the response of a fiberless 13 layer hot isostatically pressed Ti-15-3 laminate to creep, constant strain rate, and cyclic constant strain rate loading at temperatures ranging from 482C to 649C. Creep stresses from 48 to 260 MPa and strain rates of .0001 to .01 m/m/sec were used. Material parameters for three unified constitutive models (Bodner-Partom, Miller, and Walker models) were determined for Ti-15-3 from the experimental data. Each of the three models was subsequently incorporated into a rule of mixtures and evaluated for accuracy and ease of use in predicting the thermoviscoplastic response of unidirectional metal matrix composite laminates (both 0 and 90). The laminates were comprised of a Ti-15-3 matrix with 29 volume percent SCS6 fibers. The predicted values were compared to experimentally determined creep and constant strain rate data. It was found that all three models predicted the viscoplastic response of the 0 specimens reasonably well, but seriously underestimated the viscoplastic response of the 90 specimens. It is believed that this discrepancy is due to compliant and/or weak fiber-matrix interphase. In general, it was found that of the three models studied, the Bodner-Partom model was easiest to implement, primarily because this model does not require the use of cyclic constant strain rate tests to determine the material parameters involved. However, the version of the Bodner-Partom model used in this study does not include back stress as an internal state variable, and hence may not be suitable for use with materials which exhibit a pronounced Baushinger effect. The back stress is accounted for in both the Walker and Miller models; determination of the material parameters associated with the Walker model was somewhat easier than in the Miller model.
Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum
Florando, J. N.; Margraf, J. D.; Reus, J. F.; ...
2015-06-06
The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. Here, in order to capture the response, amore » dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.« less
Studies of the physical, yield and failure behavior of aliphatic polyketones
NASA Astrophysics Data System (ADS)
Karttunen, Nicole Renee
This thesis describes an investigation into the multiaxial yield and failure behavior of an aliphatic polyketone terpolymer. The behavior is studied as a function of: stress state, strain rate, temperature, and sample processing conditions. Results of this work include: elucidation of the behavior of a recently commercialized polymer, increased understanding of the effects listed above, insight into the effects of processing conditions on the morphology of the polyketone, and a description of yield strength of this material as a function of stress state, temperature, and strain rate. The first portion of work focuses on the behavior of a set of samples that are extruded under "common" processing conditions. Following this reference set of tests, the effect of testing this material at different temperatures is studied. A total of four different temperatures are examined. In addition, the effect of altering strain rate is examined. Testing is performed under pseudo-strain rate control at constant nominal octahedral shear strain rate for each failure envelope. A total of three different rates are studied. An extension of the first portion of work involves modeling the yield envelope. This is done by combining two approaches: continuum level and molecular level. The use of both methods allows the description of the yield envelope as a function of stress state, strain rate and temperature. The second portion of work involves the effects of processing conditions. For this work, additional samples are extruded with different shear and thermal histories than the "standard" material. One set of samples is processed with shear rates higher and lower than the standard. A second set is processed at higher and lower cooling rates than the standard. In order to understand the structural cause for changes in behavior with processing conditions, morphological characterization is performed on these samples. In particular, the effect on spherulitic structure is important. Residual stresses are also determined to be important to the behavior of the samples. Finally, an investigation into the crystalline structure of a family of aliphatic polyketones is performed. The effects of side group concentration and size are described.
The Extensional Rheology of Non-Newtonian Materials
NASA Technical Reports Server (NTRS)
Spiegelberg, Stephen H.; McKinley, Gareth H.
1996-01-01
The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.
Strain Dependence of Photoluminescense of Individual Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Nikolaev, Pavel N.; Leeuw, Tonya K.; Tsyboulski, Dmitri A.; Bachilo, Sergei M.; Weisman, Bruce; Arepalli, Sivaram
2007-01-01
We have investigated strain dependence of photoluminescense (PL) spectra of single wall carbon nanotubes (SWNT). Nanotubes were sparsely dispersed in a thin PMMA film applied to acrylic bar, and strained in both compression and extension by bending this bar in either direction in a homebuilt four-point bending rig. The average surface strain was measured with high accuracy by a resistive strain gage applied on top of the film. The near infrared imaging and spectroscopy were performed on the inverted microscope equipped with high numerical aperture reflective objective lens and InGaAs CCD cameras. PL was excited with a diode laser at either 658, 730 or 785 nm, linearly polarized in the direction of the strain. We were able to measure (n,m) types and orientation of individual nanotubes with respect to strain direction and strain dependence of their PL maxima. It was found that PL peak shifts with respect to the values measured in SDS micelles are a sum of three components. First, a small environmental shift due to difference in the dielectric constant of the surrounding media, that is constant and independent of the nanotube type. Second, shift due to isotropic compression of the film during drying. Third, shifts produced by the uniaxial loading of the film in the experiment. Second and third shifts follow expression based on the first-order expansion of the TB hamiltonian. Their magnitude is proportional to the nanotube chiral angle and strain, and direction is determined by the nanotube quantum number. PL strain dependence measured for a number of various nanotube types allows to estimate TB carbon-carbon transfer integral.
Zhang, Xinyu; Zhong, Lin; Romero-Severson, Ethan; Alam, Shah Jamal; Henry, Christopher J; Volz, Erik M; Koopman, James S
2012-11-01
A deterministic compartmental model was explored that relaxed the unrealistic assumption in most HIV transmission models that behaviors of individuals are constant over time. A simple model was formulated to better explain the effects observed. Individuals had a high and a low contact rate and went back and forth between them. This episodic risk behavior interacted with the short period of high transmissibility during acute HIV infection to cause dramatic increases in prevalence as the differences between high and low contact rates increased and as the duration of high risk better matched the duration of acute HIV infection. These same changes caused a considerable increase in the fraction of all transmissions that occurred during acute infection. These strong changes occurred despite a constant total number of contacts and a constant total transmission potential from acute infection. Two phenomena played a strong role in generating these effects. First, people were infected more often during their high contact rate phase and they remained with high contact rates during the highly contagious acute infection stage. Second, when individuals with previously low contact rates moved into an episodic high-risk period, they were more likely to be susceptible and thus provided more high contact rate susceptible individuals who could get infected. These phenomena make test and treat control strategies less effective and could cause some behavioral interventions to increase transmission. Signature effects on genetic patterns between HIV strains could make it possible to determine whether these episodic risk effects are acting in a population.
Wanlass, Mark W [Golden, CO; Mascarenhas, Angelo [Lakewood, CO
2012-05-08
Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.
NASA Astrophysics Data System (ADS)
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes
NASA Astrophysics Data System (ADS)
Benafan, O.; Gaydosh, D. J.
2018-07-01
Ni-rich Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy tubes were thermomechanically cycled under constant torques. Four loading configurations were examined that consisted of a series of ascending stresses (low-to-high stress from 0 to 500 MPa outer fiber shear stress), a series of descending stresses (high-to-low stress from 500 to 0 MPa), and a series of thermal cycles at a constant stress of 500 MPa, all using an upper cycle temperature (UCT) of 300 °C. The last configuration consisted of another series of ascending stress levels using a lesser UCT of 250 °C. It was found that the descending series trial stabilized the material response in fewer cycles than the other loading paths. Similarly, cycling at a constant stress of 500 MPa for approximately 100 cycles reached near stabilization (<0.05% residual strain accumulation). Transformation shear strains were the highest and most stable when cycled from lower-to-higher stresses (ascending series), reaching 5.78% at 400 MPa. Cycling to lesser UCTs of 250 °C (versus 300 °C) resulted in the highest two-way shape memory effect (TWSME), measuring over 3.25%. This was attributed to the effect of retained martensite and any transformation dislocations that served to stabilize the TWSME at the lower UCT. Results of this study suggest that different training paths might be used, depending on actuator performance requirements, whether the principal need is to maximize transformation strain, maximize the two-way shear strain, or stabilize the response in fewer cycles.
A LATTICE THEORY OF THE ELECTRO-OPTIC EFFECTS IN SEMICONDUCTORS.
A unified lattice theory of the electro - optic effect in semiconductor crystals, which encompasses the piezo-electric and elasto-optic effects, is...presented. Expressions are derived for the constant stress and constant strain electro - optic coefficients and the results are specialized to crystals of the zincblende structure. (Author)
Intrinsic polymer optical fiber sensors for high-strain applications
NASA Astrophysics Data System (ADS)
Kiesel, Sharon; Van Vickle, Patrick; Peters, Kara; Hassan, Tasnim; Kowalsky, Mervyn
2006-03-01
This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as health monitoring of civil infrastructure systems subjected to earthquake loading or structures with large shape changes such as morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. However, several challenges, addressed in this paper, make the application of the POF interferometer more difficult than its silica counterpart. These include the finite deformation of the POF cross-section at high strain values, nonlinear strain optic effects in the polymer, and the attenuation with strain of the POF. In order to predict the response of the sensor a second-order (in strain) photoelastic effect is derived and combined with the second-order solution of the deformation of the optical fiber when loaded. It is determined that for the small deformation region four constants are required (two mechanical and two photoelastic properties) and for the large deformation region six additional constants are required (two mechanical and four photoelastic properties). This paper also presents initial measurements of the mechanical response of the sensor and comparison to previously reported POFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft,M.; Jisrawi, N.; Zhong, Z.
High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less
1989-05-22
Stress- Strain Relation . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Equivalent Transversely Isotropic Elastic Constants for Periodi- cally...a vertical wavenumber parameters for compressional waves. # : vertical wavenumber parameters for shear waves. 6 dip angle, refer to Fig 3.2. E strain ...been pursued along two different lines[1] : First, in terms of body forces ; second, in terms of disconti- nuities in displacement or strain across a
Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem
2012-01-01
2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when
NASA Astrophysics Data System (ADS)
Casini, Leonardo; Funedda, Antonio
2014-09-01
The mylonites of the Baccu Locci Shear Zone (BLSZ), Sardinia (Italy), were deformed during thrusting along a bottom-to-top strain gradient in lower greenschist facies. The microstructure of metavolcanic protoliths shows evidence for composite deformation accommodated by dislocation creep within strong quartz porphyroclasts, and pressure solution in the finer grained matrix. The evolution of mylonite is simulated in two sets of numerical experiments, assuming either a constant width of the deforming zone (model 1) or a narrowing shear zone (model 2). A 2-5 mm y-1 constant-external-velocity boundary condition is applied on the basis of geologic constraints. Inputs to the models are provided by inverting paleostress values obtained from quartz recrystallized grain-size paleopiezometry. Both models predict a significant stress drop across the shear zone. However, model 1 involves a dramatic decrease in strain rate towards the zone of apparent strain localization. In contrast, model 2 predicts an increase in strain rate with time (from 10-14 to 10-12 s-1), which is consistent with stabilization of the shear zone profile and localization of deformation near the hanging wall. Extrapolating these results to the general context of crust strength suggests that pressure-solution creep may be a critical process for strain softening and for the stabilization of deformation within shear zones.
Thick film wireless and powerless strain sensor
NASA Astrophysics Data System (ADS)
Jia, Yi; Sun, Ke
2006-03-01
The development of an innovative wireless strain sensing technology has a great potential to extend its applications in manufacturing, civil engineering and aerospace industry. This paper presents a novel wireless and powerless strain sensor with a multi-layer thick film structure. The sensor employs a planar inductor (L) and capacitive transducer (C) resonant tank sensing circuit, and a strain sensitive material of a polarized polyvinylidene fluoride (PVDF) piezoelectric thick film to realize the wireless strain sensing by strain to frequency conversion and to receive radio frequency electromagnetic energy for powering the sensor. The prototype sensor was designed and fabricated. The results of calibration on a strain constant cantilever beam show a great linearity and sensitivity about 0.0013 in a strain range of 0-0.018.
Mechanical behavior and localized failure modes in a porous basalt from the Azores
NASA Astrophysics Data System (ADS)
Loaiza, S.; Fortin, J.; Schubnel, A.; Guéguen, Y.; Moreira, M.; Vinciguerra, S.
2012-04-01
Basaltic rocks are the main component of the oceanic upper crust. This is of potential interest for water and geothermal resources, or for storage of CO2. The aim of our work is to investigate experimentally the mechanical behavior and the failure modes of porous basalt as well as the permeability evolution during deformation. Cylindrical basalt samples, from the Azores, of 30 mm in diameter and 60 mm in length were deformed the triaxial cell of the Laboratoire de Geologie at the Ecole Normale Supérieure (Paris) at room temperature and at a constant axial strain rate of 10-5 s-1. The initial porosity of the sample was 18%. The Geodesign triaxial cell can reach 300MPa confining pressure; axial load is performed through a piston and can reach 900 MPa (for a 30mm diameter sample); maximum pore pressure is 100MPa (applied using two precision volumetric pumps). In our study, a set of experiments were performed at confining pressure in the range of 25-290 MPa. The samples were deformed under saturated conditions at a constant pore pressure of 5MPa. Two volumetric pumps kept the pore pressure constant, and the pore volume variations were recorded. The evolution of the porosity was calculated from the total volume variation inside the volumetric pumps. Permeability measurements were performed using the steady-state technique. Our result shows that two modes of deformation can be highlighted in this basalt. At low confining pressure (Pc < 50 MPa), the differential stress attains a peak before the sample undergoes strain softening; the failure of sample occurs by shear localization. Yet, the brittle regime is commonly observed in this low Pc range, the experiments performed at confining pressure higher than 50 MPa, show a totally different mode of deformation. In this second mode of deformation, an appreciable inelastic porosity reduction is observed. Comparing to the hydrostatic loading, the rock sample started to compact beyond a critical stress state; and from then, strain hardening, with stress drops are observed. Such a behavior is characteristic of the formation of compaction localization, due to grain crushing and pore collapse. In addition, this inelastic compaction is accompanied by a decrease of permeability, indicating that these compaction bands or zones act as barrier for fluid flow, in agreement with observations done in sandstone (Fortin et al., 2005). Further studies, including microstructural observations carried out by mapping the compaction bands or zones throughout a mosaic of SEM images at high resolution and acoustic emission recording will be carried in order to confirm the formation of compaction localization, and the micromechanisms (pore collapse and grain crushing) taking place in this second mode of deformation.
Shear, principal, and equivalent strains in equal-channel angular deformation
NASA Astrophysics Data System (ADS)
Xia, K.; Wang, J.
2001-10-01
The shear and principal strains involved in equal channel angular deformation (ECAD) were analyzed using a variety of methods. A general expression for the total shear strain calculated by integrating infinitesimal strain increments gave the same result as that from simple geometric considerations. The magnitude and direction of the accumulated principal strains were calculated based on a geometric and a matrix algebra method, respectively. For an intersecting angle of π/2, the maximum normal strain is 0.881 in the direction at π/8 (22.5 deg) from the longitudinal direction of the material in the exit channel. The direction of the maximum principal strain should be used as the direction of grain elongation. Since the principal direction of strain rotates during ECAD, the total shear strain and principal strains so calculated do not have the same meaning as those in a strain tensor. Consequently, the “equivalent” strain based on the second invariant of a strain tensor is no longer an invariant. Indeed, the equivalent strains calculated using the total shear strain and that using the total principal strains differed as the intensity of deformation increased. The method based on matrix algebra is potentially useful in mathematical analysis and computer calculation of ECAD.
Radial Field Piezoelectric Diaphragms
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.
2002-01-01
A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.
Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran
2016-01-15
The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200 pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.
Invasive group A streptococcal infections in adults, France (2006-2010).
Plainvert, C; Doloy, A; Loubinoux, J; Lepoutre, A; Collobert, G; Touak, G; Trieu-Cuot, P; Bouvet, A; Poyart, C
2012-07-01
Severe invasive group A streptococcal diseases have re-emerged during the past 10-20 years. In order to provide a better insight into the current epidemiological situation in France, we analysed the questionnaires regarding all invasive strains received at the National Reference Center for Streptococci (CNR-Strep) between 2006 and 2010 from patients aged ≥ 18 and characterized them by emm typing, spe gene detection and antibiotic resistance. Among the 1542 invasive GAS strains studied, 78% (n=1206) were from blood cultures, and a streptococcal toxic shock syndrome (STSS) was described in 22% (n=340) of cases, mainly associated with necrotizing fasciitis (NF) and pleuro-pulmonary infections (p<0.001). The in-hospital fatality rate was 15%. A total of 83 different emm types were recovered but the three predominant emm types, representing almost 60% of the isolates, were emm1 (24%), emm28 (17%) and emm89 (15%). The preponderance of each emm type varied according to the year, with a significant constant increase of emm28 strains, whereas emm1 strains, representing approximately 32% of GAS invasive isolates in 2007 and 2008, dropped to <15% in 2010 (p<0.001). The distribution of phage-associated superantigen genes (speA, speC and ssa) was linked to certain emm types. Between 2006 and 2010, the percentage that was macrolide-resistant decreased from 11% to 5%, confirming the trend observed in 2007. Fortunately, emm1 strains associated with the most life-threatening clinical manifestations remain susceptible to all anti-streptococcal antibiotics. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
NASA Astrophysics Data System (ADS)
Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.
2015-12-01
Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.
Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G
2014-03-01
The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.
Reches, Z.; Dieterich, J.H.
1983-01-01
The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.
NASA Astrophysics Data System (ADS)
Reches, Ze'ev; Dieterich, James H.
1983-05-01
The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults.
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.
1991-01-01
The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.
Chronobiology of alcohol: studies in C57BL/6J and DBA/2J inbred mice.
Rosenwasser, Alan M; Fixaris, Michael C
2013-02-17
Human alcoholics display dramatic disruptions of circadian rhythms that may contribute to the maintenance of excessive drinking, thus creating a vicious cycle. While clinical studies cannot establish direct causal mechanisms, recent animal experiments have revealed bidirectional interactions between circadian rhythms and ethanol intake, suggesting that the chronobiological disruptions seen in human alcoholics are mediated in part by alterations in circadian pacemaker function. The present study was designed to further explore these interactions using C57BL/6J (B6) and DBA/2J (D2) inbred mice, two widely employed strains differing in both circadian and alcohol-related phenotypes. Mice were maintained in running-wheel cages with or without free-choice access to ethanol and exposed to a variety of lighting regimens, including standard light-dark cycles, constant darkness, constant light, and a "shift-lag" schedule consisting of repeated light-dark phase shifts. Relative to the standard light-dark cycle, B6 mice showed reduced ethanol intake in both constant darkness and constant light, while D2 mice showed reduced ethanol intake only in constant darkness. In contrast, shift-lag lighting failed to affect ethanol intake in either strain. Access to ethanol altered daily activity patterns in both B6 and D2 mice, and increased activity levels in D2 mice, but had no effects on other circadian parameters. Thus, the overall pattern of results was broadly similar in both strains, and consistent with previous observations that chronic ethanol intake alters circadian activity patterns while environmental perturbation of circadian rhythms modulates voluntary ethanol intake. These results suggest that circadian-based interventions may prove useful in the management of alcohol use disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.
Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M
2013-06-01
The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.
Constitutive relations describing creep deformation for multi-axial time-dependent stress states
NASA Astrophysics Data System (ADS)
McCartney, L. N.
1981-02-01
A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell
2010-01-01
While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.
Carrillo-Navas, H; Avila-de la Rosa, G; Gómez-Luría, D; Meraz, M; Alvarez-Ramirez, J; Vernon-Carter, E J
2014-09-22
Corn starch dispersions (5.0% w/w) were gelatinized by heating at 90°C for 20 min using gentle stirring. Under these conditions, ghosts, which are insoluble material with high amylopectin content, were detected by optical microscopy. Strain sweep tests showed that the gelatinized starch dispersions (GSD) exhibited a loss modulus (G″) overshoot at relatively low strains (∼1%). In order to achieve a greater understanding as to the mechanisms giving rise to this uncharacteristic nonlinear response at low strains, very small constant torques (from 0.05 to 0.5 μN m) were applied in the bulk of the GSD with a rotating biconical disc. This resulted in small deformations exhibiting torque-dependent inertio-elastic damped oscillations which were subjected to phenomenological modelling. Inertial effects played an important role in the starch mechanical response. The model parameters varied with the magnitude of constant small applied torque and could be related to microstructural changes of ghosts and to the viscoelastic response of GSD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hadi, M.F.; Sander, E.A.; Ruberti, J.W.; Barocas, V. H.
2011-01-01
Recent work has demonstrated that enzymatic degradation of collagen fibers exhibits strain-dependent kinetics. Conceptualizing how the strain dependence affects remodeling of collagenous tissues is vital to our understanding of collagen management in native and bioengineered tissues. As a first step towards this goal, the current study puts forward a multiscale model for enzymatic degradation and remodeling of collagen networks for two sample geometries we routinely use in experiments as model tissues. The multiscale model, driven by microstructural data from an enzymatic decay experiment, includes an exponential strain-dependent kinetic relation for degradation and constant growth. For a dogbone sample under uniaxial load, the model predicted that the distribution of fiber diameters would spread over the course of degradation because of variation in individual fiber load. In a cross-shaped sample, the central region, which experiences smaller, more isotropic loads, showed more decay and less spread in fiber diameter compared to the arms. There was also a slight shift in average orientation in different regions of the cruciform. PMID:22180691
NASA Astrophysics Data System (ADS)
van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.
2013-01-01
In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
Bens, S; Ammerpohl, O; Martin-Subero, J I; Appari, M; Richter, J; Hiort, O; Werner, R; Riepe, F G; Siebert, R; Holterhus, P-M
2011-01-01
Male external genital differentiation is accompanied by implementation of a long-term, male-specific gene expression pattern indicating androgen programming in cultured genital fibroblasts. We hypothesized the existence of an epigenetic background contributing to this phenomenon. DNA methylation levels in 2 normal scrotal fibroblast strains from 46,XY males compared to 2 labia majora fibroblast strains from 46,XY females with complete androgen insensitivity syndrome (AIS) due to androgen receptor (AR) mutations were analyzed by Illumina GoldenGate methylation arrays®. Results were validated with pyrosequencing in labia majora fibroblast strains from fifteen 46,XY patients and compared to nine normal male scrotal fibroblast strains. HOXA5 showed a significantly higher methylation level in complete AIS. This finding was confirmed by bisulfite pyrosequencing of 14 CpG positions within the HOXA5 promoter in the same strains. Extension of the 2 groups revealed a constant low HOXA5 methylation pattern in the controls in contrast to a highly variable methylation pattern in the AIS patients. HOXA5 represents a candidate gene of androgen-mediated promoter methylation. The constantly low HOXA5 DNA methylation level of normal male scrotal fibroblast strains and the frequently high methylation levels in labia majora fibroblast strains in AIS indicate for the first time that androgen programming in sexual differentiation is not restricted to global gene transcription but also occurs at the epigenetic level. 2011 S. Karger AG, Basel.
Stress/strain changes and triggered seismicity at The Geysers, California
Gomberg, J.; Davis, S.
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency or equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Stress/strain changes and triggered seismicity at The Geysers, California
NASA Astrophysics Data System (ADS)
Gomberg, Joan; Davis, Scott
1996-01-01
The principal results of this study of remotely triggered seismicity in The Geysers geothermal field are the demonstration that triggering (initiation of earthquake failure) depends on a critical strain threshold and that the threshold level increases with decreasing frequency, or, equivalently, depends on strain rate. This threshold function derives from (1) analyses of dynamic strains associated with surface waves of the triggering earthquakes, (2) statistically measured aftershock zone dimensions, and (3) analytic functional representations of strains associated with power production and tides. The threshold is also consistent with triggering by static strain changes and implies that both static and dynamic strains may cause aftershocks. The observation that triggered seismicity probably occurs in addition to background activity also provides an important constraint on the triggering process. Assuming the physical processes underlying earthquake nucleation to be the same, Gomberg [this issue] discusses seismicity triggered by the MW 7.3 Landers earthquake, its constraints on the variability of triggering thresholds with site, and the implications of time delays between triggering and triggered earthquakes. Our results enable us to reject the hypothesis that dynamic strains simply nudge prestressed faults over a Coulomb failure threshold sooner than they would have otherwise. We interpret the rate-dependent triggering threshold as evidence of several competing processes with different time constants, the faster one(s) facilitating failure and the other(s) inhibiting it. Such competition is a common feature of theories of slip instability. All these results, not surprisingly, imply that to understand earthquake triggering one must consider not only simple failure criteria requiring exceedence of some constant threshold but also the requirements for generating instabilities.
Solvent Assisted Delamination Crack Growth Behavior of Amorphous Thermoplastic Materials
1989-02-01
72CRD285. October 1972. 4. Standard Method of Test for Plane- Strain Fracture Toughness of Metallic Materials. 1988 Annual Book of ASTM Standards, Technical...intensity factor K I or the associated strain energy release rate, G I . ASTM compact tension test yields stress intensity factor, KI, via Equation 1...are such that a constant deadweight load results in increasing strain energy release rate with increasing crack length. Figure 3 shows the neat resin
Influence of gaseous hydrogen on the mechanical properties of high temperature alloys
NASA Technical Reports Server (NTRS)
1976-01-01
Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.
The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat
2014-10-06
We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso programmore » package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.« less
Radii effect on the translation spring constant of force transducer beams
NASA Technical Reports Server (NTRS)
Scott, C. E.
1992-01-01
Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.
Procedures for determining MATMOD-4V material constants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowe, T.C.
1993-11-01
The MATMOD-4V constitutive relations were developed from the original MATMOD model to extend the range of nonelastic deformation behaviors represented to include transient phenomena such as strain softening. Improvements in MATMOD-4V increased the number of independent material constants and the difficulty in determining their values. Though the constitutive relations are conceptually simple, their form and procedures for obtaining their constants can be complex. This paper reviews in detail the experiments, numerical procedures, and assumptions that have been used to determine a complete set of MATMOD-4V constants for high purity aluminum.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
Influence of neutron irradiation at 430$deg;C on the fatigue properties of SA 316L steel
NASA Astrophysics Data System (ADS)
Vandermeulen, W.; Hendrix, W.; Massaut, V.; Van de Velde, J.
1988-07-01
Fatigue tests have been carried out at 430°C on hour-glass shaped specimens of the CEC reference heat of SA 316L stainless steel. The tests were performed under constant total axial strain control with a triangular fully reversed wave shape at frequencies of 0.5, 0.05 and 0.005 Hz. Specimens irradiated at 430°C to doses of 9-12 dpa and helium contents of 80 to 145 appm showed a fatigue life reduction by about a factor of two, compared to unirradiated specimens. The cyclic stress is found to be strongly increased by the irradiation. The test frequency influences the fatigue hardening slightly but it does not affect the fatigue life.
NASA Astrophysics Data System (ADS)
Olgaard, D. L.; Dugan, B. E.; Gooch, M. J.
2001-12-01
Before launching into the title topic, I will share a few ``memories of torsion testing'' that exemplify one of the breakthrough contributions Mervyn Paterson has made to Geodynamics. Mervyn and his machines, the torsion apparatus in particular, have revolutionized structural geology by providing the means to quantify crustal and mantle deformation processes up to and beyond the high shear strains observed in the field. High strain is also important in basin evolution. High strain consolidation tests are used to help understand mechanical and fluid flow processes in deforming sediments on continental slopes. Clay-rich sediments compact from 70% to less than 40% porosity within 1000m below the sea floor [mbsf]. Clay-rich sediments have notoriously low permeabilities and, when combined with rapid deposition rates, can cause pore-fluid pressures greatly in excess of hydrostatic at shallow depths. Such high overpressures are particularly hazardous to slope stability and to deepwater drilling. Recently, Dugan and Flemings [Science, 289, 2000] used forward sedimentation models for the New Jersey continental slope calibrated with ODP data, to predict fluid pressures near lithostatic to depths of 640m. In the current study we use consolidation tests to verify these model predictions. Silty-clay cores were collected from depths of 60 to 650mbsf during ODP Leg 1073. Five samples were tested under drained, uniaxial strain conditions, i.e. zero radial displacement. Cylindrical samples were first subjected to a hydrostatic effective stress of ~0.2MPa, then axially loaded at a constant rate of 0.7kPa/min to maintain drained conditions. Pore pressure [brine] was held constant at 3.5MPa. Confining pressure was increased to maintain the uniaxial strain condition. P-wave velocities and permeabilities were measured at various stress conditions on two samples. The samples compacted rapidly at low stresses, then at decreasing rates as stress increased. A total compaction of 22% volumetric strain was achieved at the maximum axial stress of 22 MPa. The in situ pore pressures for each depth were calculated from the ``maximum effective stress'' determined from the break in slope of the data in log[effective stress] vs. void ratio plots. Test results confirm that pore pressure gradients exceed hydrostatic, approaching lithostatic, from about 60m to the base of the Pleistocene [~550m], then decrease within the underlying Miocene sandy silt. The confining-to-axial effective stress ratio increased asymptotically during loading to a value of 0.6; similar to that expected for silty shales. P-wave velocity-porosity-effective stress trends are used to predict overpressures, and thus anticipate hazards in near-seafloor sediments.
Survival of Salmonella enterica serovar infantis on and within stored table eggs.
Lublin, Avishai; Maler, Ilana; Mechani, Sara; Pinto, Riky; Sela-Saldinger, Shlomo
2015-02-01
Contaminated table eggs are considered a primary source of foodborne salmonellosis globally. Recently, a single clone of Salmonella enterica serovar Infantis emerged in Israel and became the predominant serovar isolated in poultry. This clone is currently the most prevalent strain in poultry and is the leading cause of salmonellosis in humans. Because little is known regarding the potential transmission of this strain from contaminated eggs to humans, the objective of this study was to evaluate the ability of Salmonella Infantis to survive on the eggshell or within the egg during cold storage or at room temperature. Salmonella cells (5.7 log CFU per egg) were inoculated on the surface of 120 intact eggs or injected into the egg yolk (3.7 log CFU per egg) of another 120 eggs. Half of the eggs were stored at 5.5 ± 0.3°C and half at room temperature (25.5 ± 0.1°C) for up to 10 weeks. At both temperatures, the number of Salmonella cells on the shell declined by 2 log up to 4 weeks and remained constant thereafter. Yolk-inoculated Salmonella counts at cold storage declined by 1 log up to 4 weeks and remained constant, while room-temperature storage supported the growth of the pathogen to a level of 8 log CFU/ml of total egg content, as early as 4 weeks postinoculation. Examination of egg content following surface inoculation revealed the presence of Salmonella in a portion of the eggs at both temperatures up to 10 weeks, suggesting that this strain can also penetrate through the shell and survive within the egg. These findings imply that Salmonella enterica serovar Infantis is capable of survival both on the exterior and interior of table eggs and even multiply inside the egg at room temperature. Our findings support the need for prompt refrigeration to prevent Salmonella multiplication during storage of eggs at room temperature.
NASA Astrophysics Data System (ADS)
Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.
2014-03-01
Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.
Gershon, Herman; Parmegiani, Raulo
1962-01-01
Seventy-seven compounds were screened by the disc-plate method against strains of five bacteria and five fungi. A new constant was proposed to describe the antimicrobial activity of a compound in a defined system of organisms. This constant includes not only the inhibitory level of activity of the material but also the number of organisms inhibited. This constant, the antimicrobial spectrum index, was compared with the antimicrobial index of Albert. PMID:13898066
NASA Astrophysics Data System (ADS)
Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing
2013-04-01
Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.
Tensile stress-strain behavior of boron/aluminum laminates
NASA Technical Reports Server (NTRS)
Sova, J. A.; Poe, C. C., Jr.
1978-01-01
The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.
Measurement and Interpretation of Flow Stress Data for the Simulation of Metal-Forming Processes
2010-01-01
fitting constants that differ in each equation): Ludwik Equation: c)εb(aσ += , (29) Voce Equation: )]εcexp([1*a][baσ −−−+= (30) Swift...stress at low strains (ɘ.2) and to overestimate the stress for high strains. For heavily prestrained materials, c ~ 1. The Voce and Swift equations tend
Models for viscosity and shear localization in bubble-rich magmas
NASA Astrophysics Data System (ADS)
Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia
2016-09-01
Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ηBulk =log10 η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.
Parker, Neva; James, Steve; Dicks, Jo; Bond, Chris; Nueno-Palop, Carmen; White, Chris; Roberts, Ian N
2015-01-01
Five British ale yeast strains were subjected to flavour profiling under brewery fermentation conditions in which all other brewing parameters were kept constant. Significant variation was observed in the timing and quantity of flavour-related chemicals produced. Genetic tests showed no evidence of hybrid origins in any of the strains, including one strain previously reported as a possible hybrid of Saccharomyces cerevisiae and S. bayanus. Variation maintained in historical S. cerevisiae ale yeast collections is highlighted as a potential source of novelty in innovative strain improvement for bioflavour production. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25361168
Effects of misalignment on mechanical behavior of metals in creep
NASA Technical Reports Server (NTRS)
Wu, H. C.
1981-01-01
Creep tests were conducted by means of a closed loop servocontrolled materials test system. The strain history prior to creep is carefully monitored. Tests were performed for aluminum alloy 6061-O at 150 C and were monitored by a PDP 11/04 minicomputer at a preset constant plastic strain rate prehistory. The results show that the plastic strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. Intrinsic time and strain rate sensitivity function concepts are employed and modified according to the present observation.
A Critical Review of the Development of Several Viscoplastic Constitutive Theories.
1987-09-15
20, 1241 -1251 (1949). [14] E. Krempl and P. Hewelt, "The Constant Volume Hypothesis for the Inelastic Deformation of Metals in the Small Strain Range...Analytical Representation of the Creep Strain-Time Behavior of Commercially Heat Treated Alloy 718," ORNL /TM-6232, 1978. 71 .r w *~ *U* ~ ~ V.WJW -9...Analytical Representation of the Creep Strain-Time Behavior of Commercially Heat Treated Alloy 718," ORNL /TM 6232, 1978. (67 M.A. Eisenberg and C.F
Moisture Effects on the High Strain-Rate Behavior of Sand (Preprint)
2008-04-01
1986) used a conventional SHPB to evaluate a single short pressure pulse traveling through long specimens of 20/40 dry sand, 50/80 dry sand...constant strain-rate within the specimen. In a conventional SHPB experiment, e.g., on dry sand by Veyera (1994), the incident pulse is nearly...strain-rate of 400 s-1. The sand specimen confined in a hardened steel tube, had a dry density of 1.50 g/cm3 with moisture contents varied from 3% to 20
NASA Astrophysics Data System (ADS)
Montesi, L.; Gueydan, F.
2016-12-01
Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.
NASA Astrophysics Data System (ADS)
Huang, Cheng
High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented by in situ preparation. High dielectric constant copper phthalocyanine oligomer and conductive polyaniline oligomer were successfully bonded to polyurethane backbone to form fully functionalized nano-phase polymers. Improvement of dispersibility of oligomers in polymer matrix makes the system self-organize the nanocomposites possessing oligomer nanophase (below 30nm) within the fully functionalized polymers. The resulting nanophase polymers significantly enhance the interface effect, which through the exchange coupling raises the dielectric response markedly above that expected from simple mixing rules for dielectric composites. Consequently, these nano-phase polymers offer a high dielectric constant (a dielectric constant near 1,000 at 20 Hz), improve the breakdown field and mechanical properties, and exhibit high electromechanical response. A longitudinal strain of more than -14% can be induced under a much reduced field, 23 V/mum, with an elastic energy density of higher than 1 J/cm3. The elastic modulus is as high as 100MPa, and a transverse strain is 7% under the same field. (Abstract shortened by UMI.)
Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercer, Brian Scott
2016-05-19
In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior ofmore » PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate functions. The model is shown to work well for predicting the onset of primary backbone bond failure, as well as the onset of secondary bond failure via chain slippage for the case of isolated non-interacting chain-end defects.« less
Hammer, Arthur; Kling, Sabine; Boldi, Marc-Olivier; Richoz, Olivier; Tabibian, David; Randleman, J Bradley; Hafezi, Farhad
2015-10-01
To establish corneal cross-linking (CXL) with riboflavin and UV-A in in the mouse cornea in vivo and to develop tools to measure the biomechanical changes observed. A total of 55 male C57BL/6 wild-type mice (aged 5 weeks) were divided into 14 groups. Standard CXL parameters were adapted to the anatomy of the mouse cornea, and riboflavin concentration (0.1%-0.5%) and fluence series (0.09-5.4 J/cm²) were performed on the assumption of the endothelial damage thresholds. Untreated and riboflavin only corneas were used as controls. Animals were killed at 30 minutes and at 1 month after CXL. Corneas were harvested. Two-dimensional (2D) biomechanical testing was performed using a customized corneal holder in a commercially available stress-strain extensometer/indenter. Both elastic and viscoelastic analyses were performed. Statistical inference was performed using t-tests and specific mathematical models fitted to the experimental stress-strain and stress-relaxation data. Adjusted P values by the method of Benjamini and Hochberg are reported. For all CXL treatment groups, stress-relaxation showed significant differences (P < 0.0001) after 120 seconds of constant strain application, with cross-linked corneas maintaining a higher stress (441 ± 40 kPa) when compared with controls (337 ± 39 kPa). Stress-strain analysis confirmed these findings but was less sensitive to CXL-induced changes: at 0.5% of strain, cross-linked corneas remained at higher stress (778 ± 111 kPa) when compared with controls (659 ± 121 kPa). Cross-linking was induced in the mouse cornea in vivo, and its biomechanical effect successfully measured. This could create opportunities to study molecular pathways of CXL in transgenic mice.
Jürgens, Hella S; Schürmann, Annette; Kluge, Reinhart; Ortmann, Sylvia; Klaus, Susanne; Joost, Hans-Georg; Tschöp, Matthias H
2006-04-13
Among polygenic mouse models of obesity, the New Zealand obese (NZO) mouse exhibits the most severe phenotype, with fat depots exceeding 40% of total body weight at the age of 6 mo. Here we dissected the components of energy balance including feeding behavior, locomotor activity, energy expenditure, and thermogenesis compared with the related lean New Zealand black (NZB) and obese B6.V-Lep(ob)/J (ob/ob) strains (11% and 65% fat at 23 wk, respectively). NZO mice exhibited a significant hyperphagia that, when food intake was expressed per metabolic body mass, was less pronounced than that of the ob/ob strain. Compared with NZB, NZO mice exhibited increased meal frequency, meal duration, and meal size. Body temperature as determined by telemetry with implanted sensors was reduced in NZO mice, but again to a lesser extent than in the ob/ob strain. In striking contrast to ob/ob mice, NZO mice were able to maintain a constant body temperature during a 20-h cold exposure, thus exhibiting a functioning cold-induced thermogenesis. No significant differences in spontaneous home cage activity were observed among NZO, NZB, and ob/ob strains. When mice had access to voluntary running wheels, however, running activity was significantly lower in NZO than NZB mice and even lower in ob/ob mice. These data indicate that obesity in NZO mice, just as in humans, is due to a combination of hyperphagia, reduced energy expenditure, and insufficient physical activity. Because NZO mice differ strikingly from the ob/ob strain in their resistance to cold stress, we suggest that the molecular defects causing hyperphagia in NZO mice are located distal from leptin and its receptor.
Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca
2007-01-01
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains. PMID:17071783
Fontana, Cecilia; Bassi, Daniela; López, Constanza; Pisacane, Vincenza; Otero, Maria Claudia; Puglisi, Edoardo; Rebecchi, Annalisa; Cocconcelli, Pier Sandro; Vignolo, Graciela
2016-11-07
Llama represents for the Andean regions a valid alternative to bovine and pork meat and thanks to the high proteins and low fat content; it can constitute a good product for the novel food market. In this study, culture-dependent and independent methods were applied to investigate the microbial ecology of naturally fermented llama sausages produced in Northwest Argentina. Two different production technologies of llama sausage were investigated: a pilot-plant scale (P) and an artisanal one (A). Results obtained by High-Throughput Sequencing (HTS) of 16S rRNA amplicons showed that the production technologies influenced the development of microbial communities with a different composition throughout the entire fermentation process. Both sequencing and microbiological counts demonstrated that Lactic Acid Bacteria (LAB) contributed largely to the dominant microbiota. When a total of 230 isolates were approached by RAPD-PCR, presumptive LAB strains from P production exhibited an initial variability in RAPD fingerprints switching to a single profile at the final of ripening, while A production revealed a more heterogeneous RAPD pattern during the whole fermentation process. The constant presence of Lactobacillus sakei along the fermentation in both productions was revealed by HTS and confirmed by species-specific PCR from isolated strains. The technological characterization of Lb. sakei isolates evidenced their ability to grow at 15°C, pH4.5 and 5% NaCl (95%). Most strains hydrolyzed myofibrillar and sarcoplasmic proteins. Bacteriocins encoding genes and antimicrobial resistance were found in 35% and 42.5% of the strains, respectively. An appropriate choice of a combination of autochthonous strains in a starter formulation is fundamental to improve and standardize llama sausages safety and quality. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
NASA Technical Reports Server (NTRS)
Bernett, E. C.; Gerberich, W. W.
1961-01-01
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...
2017-12-05
In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less
Yang, Jingjing; Feng, Yanmei; Zhan, Hui; Liu, Jie; Yang, Fang; Zhang, Kaiyang; Zhang, Lianhui; Chen, Shaohua
2018-01-01
D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L -1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva . Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant ( K i ) of 482.1673 mg⋅L -1 and maximum specific degradation constant ( q max ) of 0.0455 h -1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L -1 . The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.
A unifying strain criterion for fracture of fibrous composite laminates
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1983-01-01
Fibrous composite materials, such as graphite/epoxy, are light, stiff, and strong. They have great potential for reducing weight in aircraft structures. However, for a realization of this potential, designers will have to know the fracture toughness of composite laminates in order to design damage tolerant structures. In connection with the development of an economical testing procedure, there is a great need for a single fracture toughness parameter which can be used to predict the stress-intensity factor (K(Q)) for all laminates of interest to the designer. Poe and Sova (1980) have derived a general fracture toughness parameter (Qc), which is a material constant. It defines the critical level of strains in the principal load-carryng plies. The present investigation is concerned with the calculation of values for the ratio of Qc and the ultimate tensile strain of the fibers. The obtained data indicate that this ratio is reasonably constant for layups which fail largely by self-similar crack extension.
Predicting elastic properties of β-HMX from first-principles calculations.
Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu
2015-05-07
We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.
Uniaxial Stretching of Poly(keto-ether-imide) Films
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Dezern, James F.; Feuz, L.; Klinedinst, D.
1999-01-01
Fully-cured aromatic polyimides were prepared from various combinations of five dianhydrides and six diamines. When heated progressively under constant load, most of the films elongated rapidly near their glass transition temperatures. In about half of the nineteen materials, the strain was self-limiting - a possible indication of strain-induced crystallinity. The presence of crystallinity was established unambiguously for one material.
Telesmanich, N R; Goncharenko, E V; Chaika, S O; Chaika, I A; Telicheva, V O
2016-01-01
Study mechanisms of interaction of diagnostic bacteriophage El Tor with sensitive strain Vibrio cholerae El Tor 18507 using direct protein profiling, identification of constant and variable proteins, taking part in interaction of the phage and cell, as well as carbohydrate-specific phage receptors. . A commercial preparation of cholera diagnostic bacteriophage El Tor, strain V. cholerae El Tor 18507 were used. Effect of carbohydrates on bacteriophage activity was determined in experiments with phage by a classic and modified by us method. Protein profiles of the studied objects were studied using MSP-analysis method. Sucrose was shown to inhibit lytic activity of bacteriophage. Proteome profiles of El Tor bacteriophage and sensitive indicator strains were studied, identification of constant and variable proteins of the studied objects by MSP Peak-list program was carried out. Analysis of changes of profiles of phage and microbial cell during interaction with sucrose gave a basis for assuming, that sucrose in the mixture of culture-phage enters interaction namely with phage protein receptors, blocking receptors specific for cholera vibrio, that subsequently manifests in a sharp decrease of phage activity against the sensitive strain.
Anelastic characterization of soft poroelastic materials by anelastography
NASA Astrophysics Data System (ADS)
Flores B, Carolina; Ammann, Jean Jacques; Rivera, Ricardo
2008-11-01
This paper presents the ID characterization of the local anelastic strain determined in soft poroelastic materials through acoustic scattering in a creep test configuration. Backscattering signals are obtained at successive times in a specimen submitted to a constant stress, applied coaxially to the acoustic beam of a 5 MHz ultrasonic transducer operated in pulse-echo mode. The local displacement is measured by determining the local shift between the RF traces by performing a running cross-correlation operation between equivalent segments extracted from two pairs of RF traces. The local strain the in the specimen is obtained as the displacement gradient. The method has been implemented on biphasic porous materials that present poroelastic behaviors such as synthetic latex sponges impregnated with viscous liquids. The strain/time curves have been interpreted through a continuous bimodal anelastic model (CBA), composed of an infinite set of Kelvin-Voigt cells connected in series with an elastic spring. The fit of an experimental strain/time curve selected at a specific depth through the CBA model allow characterizing the local anelastic behavior through a set of 7 characteristics parameters for the specimen at this location: three short-term and three long-term anelastic parameters and one elastic constant.
The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.
Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A
2004-12-01
The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.
Determining the mechanical properties of a radiochromic silicone-based 3D dosimeter
NASA Astrophysics Data System (ADS)
Kaplan, L. P.; Høye, E. M.; Balling, P.; Muren, L. P.; Petersen, J. B. B.; Poulsen, P. R.; Yates, E. S.; Skyt, P. S.
2017-07-01
New treatment modalities in radiotherapy (RT) enable delivery of highly conformal dose distributions in patients. This creates a need for precise dose verification in three dimensions (3D). A radiochromic silicone-based 3D dosimetry system has recently been developed. Such a dosimeter can be used for dose verification in deformed geometries, which requires knowledge of the dosimeter’s mechanical properties. In this study we have characterized the dosimeter’s elastic behaviour under tensile and compressive stress. In addition, the dose response under strain was determined. It was found that the dosimeter behaved as an incompressible hyperelastic material with a non-linear stress/strain curve and with no observable hysteresis or plastic deformation even at high strains. The volume was found to be constant within a 2% margin at deformations up to 60%. Furthermore, it was observed that the dosimeter returned to its original geometry within a 2% margin when irradiated under stress, and that the change in optical density per centimeter was constant regardless of the strain during irradiation. In conclusion, we have shown that this radiochromic silicone-based dosimeter’s mechanical properties make it a viable candidate for dose verification in deformable 3D geometries.
STUDIES ON THE BIOLOGY OF STREPTOCOCCUS
Stevens, Franklin A.; Dochez, A. R.
1924-01-01
1. Strains of hemolytic streptococci from cases of scarlet fever occurring in New York, San Francisco, Chicago, Baltimore, and Copenhagen, Denmark, all interagglutinate with immune sera prepared with these strains. 2. Sera prepared with these strains do not agglutinate pyogenic streptococci or strains isolated from cases of septic sore throat. 3. The strains obtained from the throats of patients from an epidemic of scarlet fever and the strain from the milk responsible for this epidemic fall into the scarlatinal group according to these agglutination tests. 4. Absorption tests can be carried out with these strains and sera under proper conditions. 5. A group of hemolytic streptococci biologically distinct from streptococci from other sources than scarlet fever is constantly associated with scarlatina. They constitute a group of closely related streptococci which may be identified by agglutination tests. PMID:19868913
NASA Astrophysics Data System (ADS)
Jamróz, Weronika
2016-06-01
The paper shows the way enrgy-based models aproximate mechanical properties of hiperelastic materials. Main goal of research was to create a method of finding a set of material constants that are included in a strain energy function that constitutes a heart of an energy-based model. The most optimal set of material constants determines the best adjustment of a theoretical stress-strain relation to the experimental one. This kind of adjustment enables better prediction of behaviour of a chosen material. In order to obtain more precised solution the approximation was made with use of data obtained in a modern experiment widely describen in [1]. To save computation time main algorithm is based on genetic algorithms.
Phase transition studies of Na3Bi system under uniaxial strain
NASA Astrophysics Data System (ADS)
Nie, Tiaoping; Meng, Lijun; Li, Yanru; Luan, Yanhua; Yu, Jun
2018-03-01
We investigated the electronic properties and phase transitions of Na3Bi in four structural phases (space groups P63/mmc, P \\overline{3} c1, Fm \\overline{3} m and Cmcm) under constant-volume uniaxial strain using the first-principles method. For P63/mmc and P \\overline{3} c1-Na3Bi, an important phase transition from a topological Dirac semimetal (TDS) to a topological insulator appears under compression strain around 4.5%. The insulating gap increases with the increasing compressive strain and up to around 0.1 eV at a strain of 10%. However, both P63/mmc and P \\overline{3} c1-Na3Bi still keep the properties of a TDS within a tensile strain of 0-10%, although the Dirac points move away from the Γ point along Γ-A in reciprocal space as the tensile strain increases. The Na3Bi with space group Fm \\overline{3} m is identified as a topological semimetal with the inverted bands between Na-3s and Bi-6p and a parabolic dispersion in the vicinity of Γ point. Interestingly, for Fm \\overline{3} m-Na3Bi, both compression and tensile strain lead to a TDS which is identified by calculating surface Fermi arcs and topological invariants at time-reversal planes (k z = 0 and k z = π/c) in reciprocal space. Additionally, we confirmed the high pressure phase Cmcm-Na3Bi is an ordinary insulator with a gap of about 0.62 eV. It is noteworthy that its gap almost keeps constant around 0.60 eV within a compression strain of 0-10%. In contrast, a remarkable phase transition from an insulator to a metal phase appears under tensile strain. Moreover, this phase transition is highly sensitive to tensile strain and takes place only at a strain 1.0%. These strain-induced electronic structures and phase transitions of the Na3Bi system in various phases are important due to their possible applications under high pressure in future electronic devices.
Kocaman, Esat Selim; Akay, Erdem; Yilmaz, Cagatay; Turkmen, Halit Suleyman; Misirlioglu, Ibrahim Burc; Suleman, Afzal; Yildiz, Mehmet
2017-01-03
A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally.
Kocaman, Esat Selim; Akay, Erdem; Yilmaz, Cagatay; Turkmen, Halit Suleyman; Misirlioglu, Ibrahim Burc; Suleman, Afzal; Yildiz, Mehmet
2017-01-01
A structural health monitoring (SHM) study of biaxial glass fibre-reinforced epoxy matrix composites under a constant, high strain uniaxial fatigue loading is performed using fibre Bragg grating (FBG) optical sensors embedded in composites at various locations to monitor the evolution of local strains, thereby understanding the damage mechanisms. Concurrently, the temperature changes of the samples during the fatigue test have also been monitored at the same locations. Close to fracture, significant variations in local temperatures and strains are observed, and it is shown that the variations in temperature and strain can be used to predict imminent fracture. It is noted that the latter information cannot be obtained using external strain gages, which underlines the importance of the tracking of local strains internally. PMID:28772393
NASA Astrophysics Data System (ADS)
Muhammad, Nawaz; de Bresser, Hans; Peach, Colin; Spiers, Chris
2016-04-01
Deformation experiments have been conducted on rock samples of the valuable magnesium and potassium salts bischofite and carnallite, and on mixed bischofite-carnallite-halite rocks. The samples have been machined from a natural core from the northern part of the Netherlands. Main aim was to produce constitutive flow laws that can be applied at the in situ conditions that hold in the undissolved wall rock of caverns resulting from solution mining. The experiments were triaxial compression tests carried out at true in situ conditions of 70° C temperature and 40 MPa confining pressure. A typical experiment consisted of a few steps at constant strain rate, in the range 10-5 to 10-8 s-1, interrupted by periods of stress relaxation. During the constant strain rate part of the test, the sample was deformed until a steady (or near steady) state of stress was reached. This usually required about 2-4% of shortening. Then the piston was arrested and the stress on the sample was allowed to relax until the diminishing force on the sample reached the limits of the load cell resolution, usually at a strain rate in the order of 10-9 s-1. The duration of each relaxation step was a few days. Carnallite was found to be 4-5 times stronger than bischofite. The bischofite-carnallite-halite mixtures, at their turn, were stronger than carnallite, and hence substantially stronger than pure bischofite. For bischofite as well as carnallite, we observed that during stress relaxation, the stress exponent nof a conventional power law changed from ˜5 at strain rate 10-5 s-1 to ˜1 at 10-9 s-1. The absolute strength of both materials remained higher if relaxation started at a higher stress, i.e. at a faster strain rate. We interpret this as indicating a difference in microstructure at the initiation of the relaxation, notably a smaller grain size related to dynamical recrystallization during the constant strain rate step. The data thus suggest that there is a gradual change in deformation mechanism with decreasing strain rate for both bischofite and carnallite, from grain size insensitive (GSI) dislocation creep at the higher strain rates to grain size sensitive (GSS, i.e. pressure solution) creep at slow strain rate. We can speculate about the composite GSI-GSS nature of the constitutive laws describing the creep of the salt materials.
Dynamic Strain Aging of Nickel-Base Alloys 800H and 690
NASA Astrophysics Data System (ADS)
Moss, Tyler E.; Was, Gary S.
2012-10-01
The objective of the current investigation is to characterize the dynamic strain aging (DSA) behavior in alloys 800H and 690. Constant extension rate tests were conducted at strain rates in the range of 10-4 s-1 to 10-7 s-1and temperatures between 295 K and 673 K (22 °C and 400 °C), in an argon atmosphere. Maps for the occurrence of serrated flow as a function of strain rate and temperature were built for both alloys. The enthalpy of serrated flow appearance of alloy 800H was found to be 1.07 ± 0.30 eV.
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain can be determined by monitoring the modal pattern variation of an optical fiber. The results of a numerical model developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain is presented. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term for the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae.
Ballester-Tomás, Lidia; Pérez-Torrado, Roberto; Rodríguez-Vargas, Sonia; Prieto, Jose A; Randez-Gil, Francisca
2016-03-10
At near-freezing temperatures (0-4°C), the growth of the yeast Saccharomyces cerevisiae stops or is severely limited, and viability decreases. Under these conditions, yeast cells trigger a biochemical response, in which trehalose and glycerol accumulate and protect them against severe cold and freeze injury. However, the mechanisms that allow yeast cells to sustain this response have been not clarified. The effects of severe cold on the proteome of S. cerevisiae have been not investigated and its importance in providing cell survival at near-freezing temperatures and upon freezing remains unknown. Here, we have compared the protein profile of two industrial baker's yeast strains at 30°C and 4°C. Overall, a total of 16 proteins involved in energy-metabolism, translation and redox homeostasis were identified as showing increased abundance at 4°C. The predominant presence of glycolytic proteins among those upregulated at 4°C, likely represents a mechanism to maintain a constant supply of ATP for the synthesis of glycerol and other protective molecules. Accumulation of these molecules is by far the most important component in enhancing viability of baker's yeast strains upon freezing. Overexpression of genes encoding certain proteins associated with translation or redox homeostasis provided specifically protection against extreme cold damage, underlying the importance of these functions in the near-freezing response. Copyright © 2016 Elsevier B.V. All rights reserved.
Body Weight Changes of Laboratory Animals during Transportation
Lee, Sunghak; Nam, Hyunsik; Kim, Jinsung; Cho, Hyejung; Jang, Yumi; Lee, Eunjung; Choi, Eunsung; Jin, Dong Il; Moon, Hongsik
2012-01-01
The majority of laboratory animals were transported from commercial breeders to a research facility by ground transportation. During the transportation, many biological functions and systems can be affected by stress. In this experiment, the change of body weight during the transportation was measured and the recovery periods from the transportation stress established based on the body weight changes. Total 676 laboratory animals which were aged between 3 to 9 wk old were studied. The transportation time taken from container packing to unpacking the container was approximately 24 h. The temperature of animal container was constantly maintained by air-conditioning and heating equipment. Rats were found to be more sensitive than mice. The body weight of rats was significantly decreased 3.71% (p<0.05) compared to the body weight of mice which decreased 0.9% There was no significant difference between the strains in the same species. When the changes of body weights were compared between delivery days, C57BL/6 mice showed the most variable changes compared to other species and strains. Consequently, C57BL/6 was more sensitive to stress than the other strains and the transportation process needs to be standardized to reduce between day variability. To establish the recovery periods from transportation stress, the body weight changes were measured during the acclimation period. Although the body weight of animals decreased during transportation, animals recovered their weight loss after the next day. PMID:25049564
Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta
2011-11-01
Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).
Nonlinear bulging factor based on R-curve data
NASA Technical Reports Server (NTRS)
Jeong, David Y.; Tong, Pin
1994-01-01
In this paper, a nonlinear bulging factor is derived using a strain energy approach combined with dimensional analysis. The functional form of the bulging factor contains an empirical constant that is determined using R-curve data from unstiffened flat and curved panel tests. The determination of this empirical constant is based on the assumption that the R-curve is the same for both flat and curved panels.
Saed, Mohand O; Torbati, Amir H; Nair, Devatha P; Yakacki, Christopher M
2016-01-19
This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addition reaction. Strain-to-failure and glass transition behavior were investigated as a function of crosslinking monomer, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP). An example non-stoichiometric system of 15 mol% PETMP thiol groups and an excess of 15 mol% acrylate groups was used to demonstrate the robust nature of the material. The LCE formed an aligned and transparent monodomain when stretched, with a maximum failure strain over 600%. Stretched LCE samples were able to demonstrate both stress-driven thermal actuation when held under a constant bias stress or the shape-memory effect when stretched and unloaded. A permanently programmed monodomain was achieved via a second-stage photopolymerization reaction of the excess acrylate groups when the sample was in the stretched state. LCE samples were photo-cured and programmed at 100%, 200%, 300%, and 400% strain, with all samples demonstrating over 90% shape fixity when unloaded. The magnitude of total stress-free actuation increased from 35% to 115% with increased programming strain. Overall, the two-stage TAMAP methodology is presented as a powerful tool to prepare main-chain LCE systems and explore structure-property-performance relationships in these fascinating stimuli-sensitive materials.
In vitro replication highlights the mutability of prions.
Vanni, Ilaria; Di Bari, Michele Angelo; Pirisinu, Laura; D'Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo
2014-01-01
Prions exist as strains, which are thought to reflect PrP(Sc) conformational variants. Prion strains can mutate and it has been proposed that prion mutability depends on an intrinsic heterogeneity of prion populations that would behave as quasispecies. We investigated in vitro prion mutability of 2 strains, by following PrP(Sc) variations of populations serially propagated in PMCA under constant environmental pressure. Each strain was propagated either at low dilution of the seed, i.e., by large population passages, or at limiting dilution, mimicking bottleneck events. In both strains, PrP(Sc) conformational variants were identified only after large population passages, while repeated bottleneck events caused a rapid decline in amplification rates. These findings support the view that mutability is an intrinsic property of prions.
Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J
2014-11-28
A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.
Rheology of welding: experimental constraints
NASA Astrophysics Data System (ADS)
Quane, S. L.; Russell, J. K.; Kennedy, L. A.
2003-04-01
The rheological behavior of pyroclastic deposits during welding is incompletely understood and is based on a surprisingly small number of experimental studies. Previous pioneering experimental studies were done on small (1 cm thick) samples of ash/crystal mixtures under constant load. They established minimum welding temperatures between 600 and 700^oC under loads of 0.7 MPa (˜40 m of ignimbrite) to 3.6 MPa (˜250 m depth of ignimbrite). However, these data are neither sufficiently comprehensive nor coherent enough to fully describe the rheology of pyroclastic mixtures. In addition, previous studies did not examine the microstructural and geometric changes associated with welding compaction. Our goal is to provide accurate and comprehensive constitutive relationships between material properties, temperature, load and strain rate for pyroclastic material undergoing welding. Here we present results from a newly designed experimental apparatus. The experimental apparatus consists of a LoadTrac II fully automated uniaxial compression load frame manufactured by Geocomp Corporation. The load frame has a built in displacement transducer and can run both constant strain rate (10-6 to 0.25 cm/s) and constant load (up to 1150 kg) tests to a maximum displacement of 7.5 cm. The sample assembly comprises 5 cm diameter cylindrical upper and lower pistons (insulating ceramic with steel conductive ends) housed in a copper jacket. Samples are 5 cm diameter cores and can vary in length from 1 to 15 cm depending on experimental needs. A fiber insulated tube furnace capable of reaching temperatures ≈1000^oC surrounds the sample assembly. Temperature is measured using a thermocouple located inside the sample through the bottom piston; the furnace controller is capable of maintaining temperature fluctuations to <5^oC. Deformation experiments are performed on pre-fabricated cylinders of soda-lime glass beads and rhyolitic volcanic ash, as well as, cores of pumiceous rhyodacite. Experimental runs use strain rates of 10-4 and 10-5 cm/s and loads of ˜0 to 4.5 MPa. Experiments are run at temperatures between 400 and 850^oC corresponding to below and above the calorimetric glass transition temperatures of the respective materials. Data deriving from constant load and constant strain rate experiments are being used to constrain rheological models for welding of pyroclastic material.
On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy
NASA Technical Reports Server (NTRS)
Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.
2015-01-01
Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress generation capability.
NASA Astrophysics Data System (ADS)
Mrlík, M.; Leadenham, S.; AlMaadeed, M. A.; Erturk, A.
2016-04-01
The harvesting of mechanical strain and kinetic energy has received great attention over the past two decades in order to power wireless electronic components such as those used in passive and active monitoring applications. Piezoelectric ceramics, such as PZT (lead zirconate titanate), constitute the most commonly used electromechanical interface in vibration energy harvesters. However, there are applications in which piezoelectric ceramics cannot be used due to their low allowable curvature and brittle nature. Soft polymer PVDF (polyvinylidene fluoride) is arguably the most popular non-ceramic soft piezoelectric energy harvester material for such scenarios. Another type of polymer that has received less attention is PP (polypropylene) for electret-based energy harvesting using the thickness mode (33- mode). This work presents figure of merit comparison of PP versus PVDF for off-resonant energy harvesting in thickness mode operation, revealing substantial advantage of PP over PVDF. For thickness mode energy harvesting scenarios (e.g. dynamic compression) at reasonable ambient vibration frequencies, the figure of merit for the maximum power output is proportional to the square of the effective piezoelectric strain constant divided by the effective permittivity constant. Under optimal conditions and for the same volume, it is shown that PP can generate more than two orders of magnitude larger electrical power as compared to PVDF due to the larger effective piezoelectric strain constant and lower permittivity of the former.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
ERIC Educational Resources Information Center
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-01-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends. The…
NASA Astrophysics Data System (ADS)
Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia
2018-02-01
The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.
Large strain dynamic compression for soft materials using a direct impact experiment
NASA Astrophysics Data System (ADS)
Meenken, T.; Hiermaier, S.
2006-08-01
Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.
NASA Astrophysics Data System (ADS)
Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo
2018-02-01
Structural, electronic properties and elastic anisotropy of hexagonal C40 XSi2 (X = Cr, Mo, W) under equibiaxial in-plane strains are systematically studied using first-principle calculations. The energy gaps show significant changes with biaxial strains, whereas they are always indirect band-gap materials for -6% <ɛxx < 6%. All elastic constants, bulk modulus, shear modulus, Young's modulus increase (decrease) almost linearly with increasing compressive (tensile) strains. The evolutions of BH /GH ratio and Poisson's ratio indicate that these compounds have a better (worse) ductile behaviour under compressive (tensile) strains. A set of 3D plots show a larger directional variability in the Young's modulus E and shear modulus G at different strains for the three compounds, which is consist with the values of anisotropy factors. Moreover, the evolution of Debye temperature and anisotropy of sound velocities with biaxial strains are discussed.
Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi
2017-05-01
Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.
Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C
2014-12-01
This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.
NASA Astrophysics Data System (ADS)
Shimada, Kazuhiro
2018-03-01
We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.
Shear modulus of porcine coronary artery in reference to a new strain measure.
Zhang, Wei; Lu, Xiao; Kassab, Ghassan S
2007-11-01
To simplify the stress-strain relationship of blood vessels, we define a logarithmic-exponential (log-exp) strain measure to absorb the nonlinearity. As a result, the constitutive relation between the second Piola-Kirchhoff stress and the log-exp strain can be written as a generalized Hooke's law. In this work, the shear modulus of porcine coronary arteries is determined from the experimental data in inflation-stretch-torsion tests. It is found that the shear modulus with respect to the log-exp strain can be viewed as a material constant in the full range of elasticity, and the incremental shear modulus for Cauchy shear stress and small shear strain at various loading levels can be predicted by the proposed Hooke's law. This result further validates the linear constitutive relation for blood vessels when shear deformation is involved.
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Material characterization of structural adhesives in the lap shear mode
NASA Technical Reports Server (NTRS)
Sancaktar, E.; Schenck, S. C.
1983-01-01
A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.
Finite element analysis of notch behavior using a state variable constitutive equation
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.
1985-01-01
The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.
2017-11-01
This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.
Peng, Shoujian; Fang, Zhiming; Shen, Jian; Xu, Jiang; Wang, Geoff
2017-10-30
The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.
A Universal Threshold for the Assessment of Load and Output Residuals of Strain-Gage Balance Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Volden, T.
2017-01-01
A new universal residual threshold for the detection of load and gage output residual outliers of wind tunnel strain{gage balance data was developed. The threshold works with both the Iterative and Non{Iterative Methods that are used in the aerospace testing community to analyze and process balance data. It also supports all known load and gage output formats that are traditionally used to describe balance data. The threshold's definition is based on an empirical electrical constant. First, the constant is used to construct a threshold for the assessment of gage output residuals. Then, the related threshold for the assessment of load residuals is obtained by multiplying the empirical electrical constant with the sum of the absolute values of all first partial derivatives of a given load component. The empirical constant equals 2.5 microV/V for the assessment of balance calibration or check load data residuals. A value of 0.5 microV/V is recommended for the evaluation of repeat point residuals because, by design, the calculation of these residuals removes errors that are associated with the regression analysis of the data itself. Data from a calibration of a six-component force balance is used to illustrate the application of the new threshold definitions to real{world balance calibration data.
Single and two-phase flows of shear-thinning media in safety valves.
Moncalvo, D; Friedel, L
2009-09-15
This study is the first one in the scientific literature to investigate the liquid and two-phase flows of shear-thinning media, here aqueous solutions of polyvinylpyrrolidone, in a fully opened safety valve. In liquid flows the volume flux at the valve seat does not show any appreciable reduction when increasing the percental weight of polymer in the solution. This result may suggest that the viscous losses in the valve do not increase sensibly from the most aqueous to the most viscous solution. The authors explain it considering that in the region between the seat and the disk, where large pressure and velocity gradients occur, large shear rates are expected. On behalf of the rheological measurements, which show that both the pseudoplasticity and the zero-shear viscosity of the solutions increase with the polymer weight, the difference between the viscosities of the most viscous and those of the most aqueous solution is between the seat and the disk far less than that existing at zero-shear condition. Therefore, the effective viscous pressure drop of the safety valve, which occurs mostly in that region, must increase only modestly with the polymer percental weight in the solution. In two-phase flows the total mass flow rate at constant quality and constant relieving pressure increases remarkably with the polymer weight. The analogy with similar results in cocurrent pipe flows suggests that air entrainment causes large velocity gradients in the liquids and strains them to very large shear rates. It suggests also that a redistribution of the gas agglomerates within the liquid must be expected when increasing the polymer weight in the solutions. In fact, the gas agglomerates react to the larger viscous drag of the liquid by compressing their volume in order to exert a higher internal pressure. The reduction of the void fraction of the mixture at constant quality and constant relieving pressure imposes an increment in the total mass flow rate, since otherwise it would lead to a reduction in the momentum of the mixture and therefore to a drop in the relieving pressure.
High resolution simulations of energy absorption in dynamically loaded cellular structures
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.
2017-03-01
Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.
Linking strain anisotropy and plasticity in copper metallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Conal E., E-mail: conal@us.ibm.com; Jordan-Sweet, Jean; Priyadarshini, Deepika
2015-05-04
The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence onmore » plastic deformation induced during in-situ and ex-situ thermal treatments.« less
Investigation of creep by use of closed loop servo-hydraulic test system
NASA Technical Reports Server (NTRS)
Wu, H. C.; Yao, J. C.
1981-01-01
Creep tests were conducted by means of a closed loop servo-controlled materials test system. These tests are different from the conventional creep tests in that the strain history prior to creep may be carefully monitored. Tests were performed for aluminum alloy 6061-0 at 150 C and monitored by a PDP 11/04 minicomputer at a preset constant plastic-strain rate prehistory. The results show that the plastic-strain rate prior to creep plays a significant role in creep behavior. The endochronic theory of viscoplasticity was applied to describe the observed creep curves. The concepts of intrinsic time and strain rate sensitivity function are employed and modified according to the present observation.
Model of an axially strained weakly guiding optical fiber modal pattern
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1991-01-01
Axial strain may be determined by monitoring the modal pattern variation of an optical fiber. In this paper we present the results of a numerical model that has been developed to calculate the modal pattern variation at the end of a weakly guiding optical fiber under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction and the propagation constants of each fiber mode change. In consequence, the modal phase term of the fields and the fiber output pattern are also modified. For multimode fibers, very complicated patterns result. The predicted patterns are presented, and an expression for the phase variation with strain is derived.
Determination of the technical constants of laminates in oblique directions
NASA Technical Reports Server (NTRS)
Vidouse, F.
1979-01-01
An off-axis tensile test theory based on Hooke's Law is applied to glass fiber reinforced laminates. A corrective parameter dependent on the characteristics of the strain gauge used is introduced by testing machines set up for isotropic materials. Theoretical results for a variety of strain gauges are compared with those obtained by a finite element method and with experimental results obtained on laminates reinforced with glass.
Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds
van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.
1993-01-01
With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1989-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 deg and +/- 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was develolped to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Far-field strains at failure were calculated from the strain intensity factor, and then strengths were calculated from the far-field strains using uniaxial stress-strain curves. The predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only +/- 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Prabhakaran, R.; Tompkins, S.
1987-01-01
The hole-drilling technique for the measurement of residual stresses using electrical resistance strain gages has been widely used for isotropic materials and has been adopted by the ASTM as a standard method. For thin isotropic plates, with a hole drilled through the thickness, the idealized hole-drilling calibration constants are obtained by making use of the well-known Kirsch's solution. In this paper, an analogous attempt is made to theoretically determine the three idealized hole-drilling calibration constants for thin orthotropic materials by employing Savin's (1961) complex stress function approach.
Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis
NASA Technical Reports Server (NTRS)
Manson, S. S.
1979-01-01
The paper presents closed-form solutions (collocation method and spline-function method) for the constants of the cyclic fatigue life equation so that they can be easily incorporated into cumulative damage analysis. The collocation method involves conformity with the experimental curve at specific life values. The spline-function method is such that the basic life relation is expressed as a two-part function, one applicable at strains above the transition strain (strain at intersection of elastic and plastic lines), the other below. An illustrative example is treated by both methods. It is shown that while the collocation representation has the advantage of simplicity of form, the spline-function representation can be made more accurate over a wider life range, and is simpler to use.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, II, Santo A (Inventor)
2013-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
A knitted glove sensing system with compression strain for finger movements
NASA Astrophysics Data System (ADS)
Ryu, Hochung; Park, Sangki; Park, Jong-Jin; Bae, Jihyun
2018-05-01
Development of a fabric structure strain sensor has received considerable attention due to its broad application in healthcare monitoring and human–machine interfaces. In the knitted textile structure, it is critical to understand the surface structural deformation from a different body motion, inducing the electrical signal characteristics. Here, we report the electromechanical properties of the knitted glove sensing system focusing on the compressive strain behavior. Compared with the electrical response of the tensile strain, the compressive strain shows much higher sensitivity, stability, and linearity via different finger motions. Additionally, the sensor exhibits constant electrical properties after repeated cyclic tests and washing processes. The proposed knitted glove sensing system can be readily extended to a scalable and cost-effective production due to the use of a commercialized manufacturing system.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, Santo A., II (Inventor)
2016-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
Axial strain insensitivity of weakly guiding optical fibers
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1993-01-01
A numerical model has been developed to calculate the modal phase shift of circular step index profile weakly guiding fibers under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each mode change. In consequence, the phase of each mode is also modified. A relationship for the modal phase shift is presented. This relation is applied to both single mode and two-mode fibers in order to determine the sensitivity characteristics of strained fibers. It was found that the phase shift is strongly dependent on the core refractive index, n(co). It was also found that it is possible to design fibers which are insensitive to axial strain. Practical applications of strain insensitive fibers are discussed.
Dense flow around a sphere moving into a cloud of grains
NASA Astrophysics Data System (ADS)
Gondret, Philippe; Faure, Sylvain; Lefebvre-Lepot, Aline; Seguin, Antoine
2017-06-01
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone of about constant solid fraction builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size that increases with the initial solid fraction ϕ0 of the cloud. A detailed analysis of the local strain rate and local stress fields inside the cluster reveals that, despite different spatial variations of strain and stresses, the local friction coeffcient μ appears to depend only on the local inertial number I as well as the local solid fraction ϕ, which means that a local rheology does exist in the present non parallel flow. The key point is that the spatial variations of I inside the cluster does not depend on the sphere velocity and explore only a small range between about 10-2 and 10-1. The influence of sidewalls is then investigated on the flow and the forces.
NASA Technical Reports Server (NTRS)
Yeh, Hsien-Yang
1988-01-01
The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a composite laminated plate containing a small circular hole. This advanced composite was used to manufacture the X-29A forward-swept wing. It was found for composite material, that the anisotropic stress concentration is no longer a constant, and that the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the loading axis. The analysis showed that through the lamination process, the stress concentration factor could be reduced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and the constant strain approach were used to calculate the stress concentration factor of room temperature. The results predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the results predicted by the constant strain approach matched the testing data very well. This showed the importance of the inplane shear effect on the evaluation of the stress concentration factor for the X-29A composite plate.
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants
Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan
2017-01-01
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487
Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan
2017-08-09
Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.
Burton, Kevin; Simmons, Robert M; Sleep, John; Smith, David A
2006-01-01
Redevelopment of isometric force following shortening of skeletal muscle is thought to result from a redistribution of cross-bridge states. We varied the initial force and cross-bridge distribution by applying various length-change protocols to active skinned single fibres from rabbit psoas muscle, and observed the effect on the slowest phase of recovery (‘late recovery’) that follows transient changes. In response to step releases that reduced force to near zero (∼8 nm (half sarcomere)−1) or prolonged shortening at high velocity, late recovery was well described by two exponentials of approximately equal amplitude and rate constants of ∼2 s−1 and ∼9 s−1 at 5°C. When a large restretch was applied at the end of rapid shortening, recovery was accelerated by (1) the introduction of a slow falling component that truncated the rise in force, and (2) a relative increase in the contribution of the fast exponential component. The rate of the slow fall was similar to that observed after a small isometric step stretch, with a rate of 0.4–0.8 s−1, and its effects could be reversed by reducing force to near zero immediately after the stretch. Force at the start of late recovery was varied in a series of shortening steps or ramps in order to probe the effect of cross-bridge strain on force redevelopment. The rate constants of the two components fell by 40–50% as initial force was raised to 75–80% of steady isometric force. As initial force increased, the relative contribution of the fast component decreased, and this was associated with a length constant of about 2 nm. The results are consistent with a two-state strain-dependent cross-bridge model. In the model there is a continuous distribution of recovery rate constants, but two-exponential fits show that the fast component results from cross-bridges initially at moderate positive strain and the slow component from cross-bridges at high positive strain. PMID:16497718
NASA Technical Reports Server (NTRS)
Zhang, Q. M.
2003-01-01
This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.
Preliminary investigation of the kinetics of primary creep of a two phase gamma TiAl alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, R.W.
1993-11-01
It is the intent of this communication to present and discuss some data regarding the kinetics of primary creep of a two phase gamma TiAl alloy which had been studied previously to determine the mechanisms giving rise to the minimum strain rate. In order to study the kinetics of primary creep of the present gamma TiAl alloy an approach previously taken by Dorn et al and also recently employed by Argon and Bhattacharya was taken. Dorn et al demonstrated that at a given constant stress, the strain rate during primary creep is governed by a combined time-temperature parameter [Theta] =more » t exp([minus]Q/RT) where Q is the activation energy for self diffusion which many times also governs the process of steady-state creep. It was shown that at the same constant stress level all primary creep curves were found to collapse on one another when the primary creep strain is plotted as a function of [Theta][sup (9)].« less
Viscoplasticity based on overstress with a differential growth law for the equilibrium stress
NASA Technical Reports Server (NTRS)
Krempl, E.; Mcmahon, J. J.; Yao, D.
1985-01-01
Two coupled, nonlinear differential equations are proposed for the modeling of the elastic and rate (time) dependent inelastic behavior of structural metals in the absence of recovery and aging. The structure of the model is close to the unified theories but contains essential differences. It is shown that the model reproduces almost elastic regions upon initial loading and in the unloading regions of the hysteresis loop. Under loading, unloading and reloading in strain control the model simulated the experimentally observed sharp transition from nearly elastic to inelastic behavior. When a formulation akin to existing unified theories is adopted the almost elastic regions reduce the points and the transition upon reloading is very gradual. For different formulations the behavior under sudden in(de)creases of the strain rate by two orders of magnitude is simulated by numerical experiments and differences are noted. The model represents cyclically neutral behavior and contains three constants and two positive, decreasing functions. The determination of constants and functions from monotonic loading with strain rate changes and relaxation periods is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poet, Torka S.; Wu, Hong; English, J C.
2004-11-15
Hydroquinone (HQ) is an important industrial chemical that also occurs naturally in foods and in the leaves and bark of a number of plant species. Exposure of laboratory animals to HQ may result in a species-, sex-, and strain-specific nephrotoxicity. The sensitivity of male F344 vs. female F344 and Sprague-Dawley rats or B6C3F1 mice appears to be related to differences in the rates of formation and further metabolism of key nephrotoxic metabolites. Metabolic rate constants for the conversion of HQ through several metabolic steps to the mono-glutathione conjugate and subsequent detoxification via mercapturic acid were measured in suspension cultures ofmore » hepatocytes isolated from male F344 rats and humans. An in vitro mathematic kinetic model was used to analyze each metabolic step by simultaneously fitting the disappearance of each substrate and the appearance of subsequent metabolites. An iterative, nested approach was used whereby downstream metabolites were considered first and the model was constrained by the requirement that rate constants determined during analysis of individual metabolic steps must also satisfy the complete, integrated metabolism scheme, including competitive pathways. The results from this study indicated that the overall capacity for metabolism of HQ and its mono-glutathione conjugate is greater in hepatocytes from humans than those isolated from rats, suggesting a greater capacity for detoxification of the glutathione conjugates. Metabolic rate constants were applied to an existing physiologically based pharmacokinetic model and the model was used to predict total glutathione metabolites produced in the liver. The results showed that body burdens of these metabolites will be much higher in rats than humans.« less
Prediction of fracture profile using digital image correlation
NASA Astrophysics Data System (ADS)
Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.
2015-04-01
Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.
Quiñones, Miguel A; Ruiz-Díez, Beatriz; Fajardo, Susana; López-Berdonces, Miguel A; Higueras, Pablo L; Fernández-Pascual, Mercedes
2013-12-01
One strain of Bradyrhizobium canariense (L-7AH) was selected for its metal-resistance and ability to nodulate white lupin (Lupinus albus L.) plants, from a collection of rhizobial strains previously created from soils of the Almadén mining district (Spain) with varying levels of Hg contamination. Plants were inoculated with either strain L-7AH (Hg-tolerant) or L-3 (Hg-sensitive, used as control), and watered with nutrient solutions supplemented with various concentrations (0-200 μM) of HgCl2 in a growth chamber. L. albus inoculated with L-7AH were able to nodulate even at the highest concentration of Hg while those inoculated with L-3 had virtually no nodules at Hg concentrations above 25 μM. Plants inoculated with L-7AH, but not those with the control strain, were able to accumulate large amounts of Hg in their roots and nodules. Nodulation with L-7AH allowed plants to maintain constant levels of both chlorophylls and carotenoids in their leaves and a high photosynthetic efficiency, whereas in those inoculated with L-3 both pigment content and photosynthetic efficiency decreased significantly as Hg concentration increased. Nitrogenase activity of plants nodulated with L-7AH remained fairly constant at all concentrations of Hg used. Results suggest that this symbiotic pair may be used for rhizoremediation of Hg-contaminated soils. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Time-dependent brittle deformation (creep) at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2009-04-01
Mt. Etna is the largest and most active volcano in Europe. Time-dependent weakening mechanisms, leading to slow fracturing, have been shown to act during pre-eruptive patterns of flank eruptions at Mt. Etna volcano. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
Time-dependent Brittle Deformation in Etna Basalt
NASA Astrophysics Data System (ADS)
Heap, M. J.; Baud, P.; Meredith, P. G.; Vinciguerra, S.; Bell, A. F.; Main, I. G.
2008-12-01
Mt Etna is the largest and most active volcano in Europe. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts one of the biggest hydrogeologic reservoirs of Sicily (Ogniben, 1966). Pre-eruptive patterns of flank eruptions, closely monitored by means of ground deformation and seismicity, revealed the slow development of fracture systems at different altitudes, marked by repeated bursts of seismicity and accelerating/decelerating deformation patterns acting over the scale of months to days. The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as 'brittle creep'. Stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short- term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data demonstrate that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time- to-failure properties of the basaltic volcanic pile.
Time-dependent brittle deformation at Mt. Etna volcano
NASA Astrophysics Data System (ADS)
Baud, Patrick; Heap, Michael; Meredith, Philip; Vinciguerra, Sergio; Bell, Andrew; Main, Ian
2010-05-01
Time-dependent weakening mechanisms, leading to slow fracturing, are likely to act during the build up to flank eruptions at Mt. Etna volcano and are potentially a primary control on pre-eruptive patterns of seismicity and deformation. Due to the high permeability of its volcanic rocks, the volcanic edifice hosts a large water reservoir (Ogniben, 1966). The presence of a fluid phase in cracks within rock has been shown to dramatically affect both mechanical and chemical interactions. Chemically, it promotes time-dependent brittle deformation through such mechanisms as stress corrosion cracking that allows rocks to deform at stresses far below their short-term failure strength. Such crack growth is highly non-linear and accelerates towards dynamic failure over extended periods of time, even under constant applied stress; a phenomenon known as ‘brittle creep'. Here we report results from a study of time-dependent brittle creep in water-saturated samples of Etna basalt (EB) under triaxial stress conditions (confining pressure of 50 MPa and pore fluid pressure of 20 MPa). Samples of EB were loaded at a constant strain rate of 10-5 s-1 to a pre-determined percentage of the short-term strength and left to deform under constant stress until failure. Crack damage evolution was monitored throughout each experiment by measuring the independent damage proxies of axial strain, pore volume change and output of acoustic emission (AE) energy, during brittle creep of creep strain rates ranging over four orders of magnitude. Our data not only demonstrates that basalt creeps in the brittle regime but also that the applied differential stress exerts a crucial influence on both time-to-failure and creep strain rate in EB. Furthermore, stress corrosion is considered to be responsible for the acceleratory cracking and seismicity prior to volcanic eruptions and is invoked as an important mechanism in forecasting models. Stress-stepping creep experiments were then performed to allow the influence of the effective confining stress to be studied in detail. Experiments were performed under effective stress conditions of 10, 30 and 50 MPa (whilst maintaining a constant pore fluid pressure of 20 MPa). In addition to the purely mechanical influence of water, governed by the effective stress, which results in a shift of the creep strain rate curves to lower strain rates at higher effective stresses. Our results also demonstrate that the chemically-driven process of stress corrosion cracking appears to be inhibited at higher effective stress. This results in an increase in the gradient of the creep strain rate curves with increasing effective stress. We suggest that the most likely cause of this change is a decrease in water mobility due to a reduction in crack aperture and an increase in water viscosity at higher pressure. Finally, we show that a theoretical model based on mean-field damage mechanics creep laws is able to reproduce the experimental strain-time relations and inverse seismicity plots using our experimental AE data. Our results indicate that the local changes in the stress field and fluid circulation can have a profound impact in the time-to-failure properties of the basaltic volcanic pile.
Highly tensile-strained Ge/InAlAs nanocomposites
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry
2017-01-01
Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.
Effects of value strains on psychopathology of Chinese rural youths.
Zhang, Jie; Zhao, Sibo
2013-12-01
The Strain Theory of Suicide postulates that psychological strains usually precede mental disorders including suicidal behavior. This paper focuses on the effect of conflicting social value strains on the individual's psychopathology. We analyzed the data of 2031 respondents who were proxy informants for suicides and community living controls in a large scale psychological autopsy study in rural China, with the CES-D depression measure for the psychopathology. Individuals having experienced value conflicts between Confucian gender role and gender equalitarianism in modern society scored on depression significantly higher than the individuals who do not experience the value conflict, and it is also true when several other relevant variables were held constant in the multiple regression model. This study supports the hypotheses that people who confront value conflicts are likely to experience psychopathological strain, and the higher the level of strain, the stronger the depression. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of Value Strains on Psychopathology of Chinese Rural Youths
Zhang, Jie; Zhao, Sibo
2013-01-01
The Strain Theory of Suicide postulates that psychological strains usually precede mental disorders including suicidal behavior. This paper focuses on the effect of conflicting social value strains on the individual’s psychopathology. We analyzed the data of 2,031 respondents who were proxy informants for suicides and community living controls in a large scale psychological autopsy study in rural China, with the CES-D depression measure for the psychopathology. Individuals having experienced value conflicts between Confucian gender role and gender equalitarianism in modern society scored on depression significantly higher than the individuals who do not experience the value conflict, and it is also true when several other relevant variables were held constant in the multiple regression model. This study supports the hypotheses that people who confront value conflicts is likely to lead to psychopathological strain, and the higher the level of strain, the stronger the depression. PMID:24309863
Highly tensile-strained Ge/InAlAs nanocomposites
Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry
2017-01-01
Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282
Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Saj Mohan M., M.; Ramadurai, Ranjith
2018-04-01
Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.
Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires.
Albani, Marco; Assali, Simone; Verheijen, Marcel A; Koelling, Sebastian; Bergamaschini, Roberto; Pezzoli, Fabio; Bakkers, Erik P A M; Miglio, Leo
2018-04-19
We address the role of non-uniform composition, as measured by energy-dispersive x-ray spectroscopy, in the elastic properties of core/shell nanowires for the Ge/GeSn system. In particular, by finite element method simulations and transmission electron diffraction measurements, we estimate the residual misfit strain when a radial gradient in Sn and a Ge segregation at the nanowire facet edges are present. An elastic stiffening of the structure with respect to the uniform one is concluded, particularly for the axial strain component. More importantly, refined predictions linking the strain and the Sn percentage at the nanowire facets enable us to quantitatively determine the maximum compressive strain value allowing for additional Sn incorporation into a GeSn alloy. The progressive incorporation with increasing shell thickness, under constant growth conditions, is specifically induced by the nanowire configuration, where a larger elastic relaxation of the misfit strain takes place.
NASA Astrophysics Data System (ADS)
Zhang, Shuiqiang; Mao, Shuangshuang; Arola, Dwayne; Zhang, Dongsheng
2014-09-01
Characterizing the strain-life fatigue behavior of thin sheet metals is often challenging since the required specimens have short gauge lengths to avoid buckling, thereby preventing the use of conventional mechanical extensometers. To overcome this obstacle a microscopic optical imaging system has been developed to measure the strain amplitude during fatigue testing using Digital Image Correlation (DIC). A strategy for rapidly recording images is utilized to enable sequential image sampling rates of at least 10 frames per second (fps) using a general digital camera. An example of a complete strain-life fatigue test for thin sheet steel under constant displacement control is presented in which the corresponding strain within the gage section of the specimen is measured using the proposed imaging system. The precision in strain measurement is assessed and methods for improving the image sampling rates in dynamic testing are discussed.
Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13
NASA Astrophysics Data System (ADS)
Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen
2017-09-01
Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.
Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2002-01-01
A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.
Low-Temperature Friction-Stir Welding of 2024 Aluminum
NASA Technical Reports Server (NTRS)
Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.
1998-01-01
Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).
Rock Deformation at High Confining Pressure and Temperature.
debugged, delivered and installed to the contracting agency. Clay specimens of illite, kaolinite and montmorillonite were deformed in tri-axial compression...at 25 and 3000C at a constant confining pressure of 2 kb and a constant strain rate of .0001 sec. The illite and kaolinite are stronger under these...conditions than montmorillonite . Cores from dolomite single crystals were deformed at a confining pressure of 7 kb and temperatures of 300 and 500C
1984-12-15
7] used this interpretation as the basis for a hypothesis that microplastic hysteresis energy is a constant at fatigue failure. Although they were...that microplastic strain energy dissipated is not constant at fatigue failure, but suggested that it increases with fatigue lifetime in a predictable...nonlinear thermodynamics must be addressed. The microplastic hysteresis energy is related to dislocation theory, which is directly related to
A relation to describe rate-dependent material failure.
Voight, B
1989-01-13
The simple relation OmegaOmega-alpha = 0, where Omega is a measurable quantity such as strain and A and alpha are empirical constants, describes the behavior of materials in terminal stages of failure under conditions of approximately constant stress and temperature. Applicable to metals and alloys, ice, concrete, polymers, rock, and soil, the relation may be extended to conditions of variable and multiaxial stress and may be used to predict time to failure.
A Naturally-Calibrated Flow Law for Quartz
NASA Astrophysics Data System (ADS)
Lusk, A. D.; Platt, J. P.
2017-12-01
Flow laws for power-law behavior of quartz deforming by crystal-plastic processes with grain size sensitive creep included take the general form: ė = A σn f(H2O) exp(-Q/RT) dmWhere A - prefactor; σ - differential stress; n - stress exponent; f(H2O) - water fugacity; Q - activation energy; R - gas constant; T - temperature (K); d - grain size sensitivity raised to power m. Assuming the dynamically recrystallized grain size for quartz follows the peizometric relationship, substitute dm = (K σ-p)m, where K - piezometric constant; σ - differential stress; p - piezometric exponent. Rearranging the above flow law: ė = A K σ(n-pm) f(H2O) exp(-Q/RT)We use deformation temperatures, paleo-stresses, and strain rates calculated from rocks deformed in the Caledonian Orogeny, NW Scotland, along with existing experimental data, to compare naturally-calibrated values of stress exponent (n-pm) and activation energy (Q) to those determined experimentally. Microstructures preserved in the naturally-strained rocks closely resemble those produced by experimental work, indicating that quartz was deformed by the same mechanism(s). These observations validate the use of predetermined values for A as well as the addition of experimental data to calculate Q. Values for f(H2O) are based on calculated pressure and temperature conditions. Using the abovementioned constraints, we compare results, discuss challenges, and explore implications of naturally- vs. experimentally-derived flow laws for dislocation creep in quartz. Rocks used for this study include quartzite and quartz-rich psammite of the Cambrian-Ordovician shelf sequence and tectonically overlying Moine Supergroup. In both cases, quartz is likely the primary phase that controlled rheological behavior. We use the empirically derived piezometer for the dynamically recrystallized grain size of quartz to calculate the magnitude of differential stress, along with the Ti-in-quartz thermobarometer and the c-axis opening angle thermometer to determine temperatures of deformation. Tensor strain rates are calculated from plate convergence rate, based on total displacement and duration of thrusting within the Moine thrust zone, and shear zone thickness calculated from four detailed structural and microstructural transects taken parallel to the direction of displacement.
Erba, Alessandro; Caglioti, Dominique; Zicovich-Wilson, Claudio Marcelo; Dovesi, Roberto
2017-02-15
Two alternative approaches for the quantum-mechanical calculation of the nuclear-relaxation term of elastic and piezoelectric tensors of crystalline materials are illustrated and their computational aspects discussed: (i) a numerical approach based on the geometry optimization of atomic positions at strained lattice configurations and (ii) a quasi-analytical approach based on the evaluation of the force- and displacement-response internal-strain tensors as combined with the interatomic force-constant matrix. The two schemes are compared both as regards their computational accuracy and performance. The latter approach, not being affected by the many numerical parameters and procedures of a typical quasi-Newton geometry optimizer, constitutes a more reliable and robust mean to the evaluation of such properties, at a reduced computational cost for most crystalline systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Park, Jae-Hyeong; Choi, Jin-Oh; Park, Seung Woo; Cho, Goo-Yeong; Oh, Jin Kyung; Lee, Jae-Hwan; Seong, In-Whan
2018-02-01
Right ventricular (RV) strain values by 2-dimensional strain echocardiography (STE) can be used as objective markers of RV systolic function. However, there is little data about normal reference RV strain values according to age and gender. We measured normal RV strain values by STE. RV strain values were analyzed from the digitally stored echocardiographic images from NORMAL (Normal echOcardiogRaphic diMensions and functions in KoreAn popuLation) study for the measurement of normal echocardiographic values performed in 23 Korean university hospitals. We enrolled total 1003 healthy persons in the NORMAL study. Of them, we analyzed 2-dimensional RV strain values in 493 subjects (261 females, mean 47 ± 15 years old) only with echocardiographic images by GE machines. Their LV systolic and diastolic functions were normal. RV fractional area change was 48 ± 6% and tricuspid annular plane systolic excursion was 23 ± 3 mm. Total RV global longitudinal peak systolic strain (RVGLS total ) was -21.5 ± 3.2%. Females had higher absolute RVGLS total (-22.3 ± 3.3 vs -20.7 ± 2.9%, p < 0.001) than males. Younger (<50 years old) females had higher absolute RVGLS total (-22.9 ± 3.2 vs -20.5 ± 2.8%, p < 0.001) than age matched males. RVGLS total in females gradually increased according to age (p for trend = 0.002) and becomes almost similar in age ≥50 years. However, this trend was not seen in males (p for trend = 0.287), and younger males had similar RVGLS total value to that of older males (age ≥50 years, -20.5 ± 2.8 vs -20.9 ± 3.1%, p = 0.224). We calculated normal RVGLS values in normal population. Females have higher absolute strain values than males, especially in younger age groups (<50 years old).
Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions.
Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel
2016-05-01
An all-soft-matter composite with exceptional electro-elasto properties is demonstrated by embedding liquid-metal inclusions in an elastomer matrix. This material exhibits a unique combination of high dielectric constant, low stiffness, and large strain limit (ca. 600% strain). The elasticity, electrostatics, and electromechanical coupling of the composite are investigated, and strong agreement with predictions from effective medium theory is found. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Naruse, Hiroshi; Tateda, Mitsuhiro; Ohno, Hiroshige; Shimada, Akiyoshi
2002-12-01
We theoretically derive the shape of the Brillouin gain spectrum, that is, the Brillouin backscattered-light power spectrum, produced in an optical fiber under conditions of a strain distribution that changes linearly with a constant slope. The modeled measurement system is an optical time-domain reflectometer-type strain sensor system. The linear strain distribution is one of the fundamental distributions and is produced in, for example, a beam to which a concentrated load is applied. By analyzing a function that expresses the shape of the derived Brillouin gain spectrum, we show that the strain calculated from the frequency at which the spectrum has a peak value coincides with that at the center of the effective pulsed light. In addition, the peak value and the full width at half-maximum of the Brillouin gain spectrum are both influenced by the strain difference between the two ends of the effective pulse. We investigate this influence in detail and obtain the relationship between strain difference and strain measurement error.
NASA Technical Reports Server (NTRS)
Rand, J. L.
1981-01-01
Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.
Felgenhauer, B; Trautner, K
1982-01-01
The activities of glucanhydrolase (EC 3.2.1.11) and glucosyltransferase (EC 2.4.1.5) in crude enzyme preparations of 44 strains of Streptococcus mutans of five serotypes were investigated. The strains were grown in a laboratory fermentor for 16 h and the enzymes were isolated by adding solid ammonium sulphate to the culture supernatant, resulting in a 12-fold enrichment of the enzymes. For glucanhydrolase, strains of serotype a showed the lowest total activity (0.768 U, approx. 120 ml), whereas strains of serotype d had an activity 39 times higher (29.9 U). The total activities of strains of serotypes b, c and e were 5.56, 6.30 and 7.06 U, respectively. For glucosyltransferase, strains of type e showed the highest total activity (293 U), whereas differences between strains of the other four types were insignificant (type a: 158 U; type b: 175 U; type c: 191 U; type d: 225 U; approx. 120 ml). A strong correlation was found between the glucanhydrolase activity and the percentage of insoluble glucan synthesized in vitro by the respective strains. This correlation was not substantially changed if the enzyme activities were expressed as specific activities, or as total activities against bacterial weight.
The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori
Marcus, Elizabeth A.; Sachs, George; Scott, David R.
2013-01-01
Background Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. Materials and Methods A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison to wildtype. Results Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation were similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supra-physiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. Conclusions ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential non-antibiotic target for H. pylori eradication. PMID:23600974
Mechanisms of aerobic performance impairment with heat stress and dehydration.
Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N
2010-12-01
Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.
Theory of equilibria of elastic 2-braids with interstrand interaction
NASA Astrophysics Data System (ADS)
Starostin, E. L.; van der Heijden, G. H. M.
2014-03-01
Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.
Santarpia, Lidia; Bozzetti, Federico
2018-02-01
Since there is no information regarding quality of life of caregivers assisting patients with advanced malignancy on home parenteral nutrition, herewith we report a preliminary series of 19 patients who received total parenteral nutrition at home under the strict supervision of their relatives. The relatives of 19 incurable patients with cancer-related cachexia, discharged from the hospital with a home parenteral nutrition program, were prospectively studied. They filled out a validated questionnaire, the Family Strain Questionnaire Short Form, prior to patient discharge and after 2 weeks of home care. The questionnaire included 30 items, which explored different domains regarding the superimposed burden on caregivers in relation to the assistance given to their relatives. Our findings show that the basal level of strain was relatively high (about three quarters of positive answers) but did not increase after 2 weeks of home care. Similarly, there was no difference in the nutritional status and quality of life of the patients. Eight patients and their relatives could be also analyzed after 2 months and the results maintained unchanged. This preliminary investigation shows that home parenteral nutrition does not exacerbate the level of strain on caregivers involved in surveillance of such a supportive intervention. It is possible that the perception of an active contribution to the benefit of patients, who maintained unchanged their nutritional status and quality of life, could gratify caregivers despite the objective burden in the constant supervision of administering Parenteral Nutrition.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Zhong-ping; Li, Chun-wang
2018-03-01
This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.
NASA Technical Reports Server (NTRS)
Sikora, Paul F.; Hall, Robert W.
1961-01-01
Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.
Cyclic strain rate effects in fatigued face-centred and body-centred cubic metals
NASA Astrophysics Data System (ADS)
Mughrabi, Haël
2013-09-01
The present work deals mainly with the effect and the use of strain rate and temperature changes during cyclic deformation as a means to obtain valuable information on the thermally activated dislocation glide processes, based on the assessment of reversible changes of the thermal effective stress and of transient changes of the athermal stress. The importance of closed-loop testing in true plastic strain control with constant cyclic plastic strain rate throughout the cycle is explained and emphasized, especially with respect to the case of strain rate sensitive materials. Stress responses of face-centred cubic and body-centred cubic (bcc) metals to cyclic strain rate changes are presented to illustrate that the deformation modes of these two classes of materials differ characteristically at temperatures below that the so-called knee temperature of bcc metals. When such tests are performed in cyclic saturation, the temperature and strain rate dependence of bcc metals can be measured very accurately on one and the same specimen, permitting a thorough analysis of thermal activation.
NASA Astrophysics Data System (ADS)
Wu, Hualian; Li, Tao; Wang, Guanghua; Dai, Shikun; He, Hui; Xiang, Wenzhou
2016-03-01
Phaeodactylum tricornutum is a potential livestock for the combined production of eicosapentaenoic acid (EPA) and fucoxanthin. In this study, six marine diatom strains identified as P. tricornutum were cultured and their total lipid, fatty acid composition and major photosynthetic pigments determined. It was found that the cell dry weight concentration and mean growth rate ranged between 0.24-0.36 g/L and 0.31-0.33/d, respectively. Among the strains, SCSIO771 presented the highest total lipid content, followed by SCSIO828, and the prominent fatty acids in all strains were C16:0, C16:1, C18:1, and C20:5 (EPA). Polyunsaturated fatty acids, including C16:2, C18:2, and EPA, comprised a significant proportion of the total fatty acids. EPA was markedly high in all strains, with the highest in SCSIO828 at 25.65% of total fatty acids. Fucoxanthin was the most abundant pigment in all strains, with the highest in SCSIO828 as well, at 5.50 mg/g. The collective results suggested that strain SCSIO828 could be considered a good candidate for the concurrent production of EPA and fucoxanthin.
Endochronic theory of transient creep and creep recovery
NASA Technical Reports Server (NTRS)
Wu, H. C.; Chen, L.
1979-01-01
Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.
Thermal transport and anharmonic phonons in strained monolayer hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Li, Shasha; Chen, Yue
2017-03-01
Thermal transport and phonon-phonon coupling in monolayer hexagonal boron nitride (h-BN) under equibiaxial strains are investigated from first principles. Phonon spectra at elevated temperatures have been calculated from perturbation theory using the third-order anharmonic force constants. The stiffening of the out-of-plane transverse acoustic mode (ZA) near the Brillouin zone center and the increase of acoustic phonon lifetimes are found to contribute to the dramatic increase of thermal transport in strained h-BN. The transverse optical mode (TO) at the K point, which was predicted to lead to mechanical failure of h-BN, is found to shift to lower frequencies at elevated temperatures under equibiaxial strains. The longitudinal and transverse acoustic modes exhibit broad phonon spectra under large strains in sharp contrast to the ZA mode, indicating strong in-plane phonon-phonon coupling.
Zhu, Mengshi; Murayama, Hideaki; Wada, Daichi
2017-10-12
A novel method is introduced in this work for effectively evaluating the performance of the PANDA type polarization-maintaining fiber Bragg grating (PANDA-FBG) distributed dynamic strain and temperature sensing system. Conventionally, the errors during the measurement are unknown or evaluated by using other sensors such as strain gauge and thermocouples. This will make the sensing system complicated and decrease the efficiency since more than one kind of sensor is applied for the same measurand. In this study, we used the approximately constant ratio of primary errors in strain and temperature measurement and realized the self-evaluation of the sensing system, which can significantly enhance the applicability, as well as the reliability in strategy making.
NASA Astrophysics Data System (ADS)
Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef
2014-07-01
We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a < 1.07 grown on SrTiO3 (001) substrates, which results in significant frequency dispersion of the dielectric constant and strong Rayleigh type behavior in those samples. This combined structural-electrical study provides a framework for investigating strain relaxation in thin films and can provide useful insights into the mechanisms of fatigue in ferroelectric materials.
Finite element stress analysis of polymers at high strains
NASA Technical Reports Server (NTRS)
Durand, M.; Jankovich, E.
1973-01-01
A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynanmic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall performance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gauge output power spectra. The combined damping consists of aerodynamic and structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given equivalent speed, equivalent mass flow, and pressure ratio while structural and mechanical damping are assumed to be constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third stage rotor blade aerodynamic damping is presented and discussed for 70, 80, 90, and 100 percent design equivalent speed. The compressor overall performance and experimental Campbell diagrams for the third stage rotor blade row are also presented.
NASA Technical Reports Server (NTRS)
Newman, Frederick A.
1988-01-01
Rotor blade aerodynamic damping is experimentally determined in a three-stage transonic axial flow compressor having design aerodynamic performance goals of 4.5:1 pressure ratio and 65.5 lbm/sec weight flow. The combined damping associated with each mode is determined by a least squares fit of a single degree of freedom system transfer function to the nonsynchronous portion of the rotor blade strain gage output power spectra. The combined damping consists of the aerodynamic damping and the structural and mechanical damping. The aerodynamic damping varies linearly with the inlet total pressure for a given corrected speed, weight flow, and pressure ratio while the structural and mechanical damping is assumed to remain constant. The combined damping is determined at three inlet total pressure levels to obtain the aerodynamic damping. The third-stage rotor blade aerodynamic damping is presented and discussed for the design equivalent speed with the stator blades reset for maximum efficiency. The compressor overall preformance and experimental Campbell diagrams for the third-stage rotor blade row are also presented.
Teaching Ethics in Civil Procedure Courses.
ERIC Educational Resources Information Center
Matasar, Richard A.
1989-01-01
Civil procedure courses are ideal for connecting doctrine and ethics because procedural rules strain constantly to balance competing interests. A University of Iowa course includes at least one significant moral discussion during each general doctrinal unit. (MSE)
NASA Astrophysics Data System (ADS)
Stavrianaki, K.; Vallianatos, F.; Sammonds, P. R.; Ross, G. J.
2014-12-01
Fracturing is the most prevalent deformation mechanism in rocks deformed in the laboratory under simulated upper crustal conditions. Fracturing produces acoustic emissions (AE) at the laboratory scale and earthquakes on a crustal scale. The AE technique provides a means to analyse microcracking activity inside the rock volume and since experiments can be performed under confining pressure to simulate depth of burial, AE can be used as a proxy for natural processes such as earthquakes. Experimental rock deformation provides us with several ways to investigate time-dependent brittle deformation. Two main types of experiments can be distinguished: (1) "constant strain rate" experiments in which stress varies as a result of deformation, and (2) "creep" experiments in which deformation and deformation rate vary over time as a result of an imposed constant stress. We conducted constant strain rate experiments on air-dried Darley Dale sandstone samples in a variety of confining pressures (30MPa, 50MPa, 80MPa) and in water saturated samples with 20 MPa initial pore fluid pressure. The results from these experiments used to determine the initial loading in the creep experiments. Non-extensive statistical physics approach was applied to the AE data in order to investigate the spatio-temporal pattern of cracks close to failure. A more detailed study was performed for the data from the creep experiments. When axial stress is plotted against time we obtain the trimodal creep curve. Calculation of Tsallis entropic index q is performed to each stage of the curve and the results are compared with the ones from the constant strain rate experiments. The Epidemic Type Aftershock Sequence model (ETAS) is also applied to each stage of the creep curve and the ETAS parameters are calculated. We investigate whether these parameters are constant across all stages of the curve, or whether there are interesting patterns of variation. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.
Total strain version of strainrange partitioning for thermomechanical fatigue at low strains
NASA Technical Reports Server (NTRS)
Halford, G. R.; Saltsman, J. F.
1987-01-01
A new method is proposed for characterizing and predicting the thermal fatigue behavior of materials. The method is based on three innovations in characterizing high temperature material behavior: (1) the bithermal concept of fatigue testing; (2) advanced, nonlinear, cyclic constitutive models; and (3) the total strain version of traditional strainrange partitioning.
A Modified Constant-Stress Coupon for Enhanced Natural Crack Start during Fatigue Testing
2016-05-01
improved numerically controlled manufacture. DSTO Research Report DSTO-RR-0340, July 2009. Wescott R, M Jones, M Heller. Stress analysis for design of...has been confirmed by Yu et al. (2014) through experimental strain measurement as well as fatigue tests under spectrum loading. However, as designed ...the results of analyses of a variety of typical non -optimal non -constant stress dog-bone coupon designs . One of those designs has in fact previously
Characterization of the Dynamic Material Properties of Magnetostrictive Terfenol-D
NASA Technical Reports Server (NTRS)
Calkins, Frederick T.; Flatau, Alison B.; Hall, David L.
1996-01-01
A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.
Observation of Failure and Domain Switching in Lead Zirconate Titanate Ceramics
NASA Astrophysics Data System (ADS)
Okayasu, Mitsuhiro; Sugiyama, Eriko; Sato, Kazuto; Mizuno, Mamoru
The mechanical and electrical properties (electromechanical coupling coefficient, piezoelectric constant and dielectric constant) of lead zirconate titanate (PZT) ceramics are investigated during mechanical static and cyclic loading. There are several failure characteristics which can alter the material properties of PZT ceramics. The elastic constant increases and electrical properties decrease with increasing the applied load. This is due to the internal strain arising from the domain switching. In this case, 90° domain switching occurs anywhere in the samples as the sample is loaded. It is also apparent that electrogenesis occurs several times during cyclic loading to the final fracture. This occurrence is related to the domain switching. The elastic constant and electrical properties can decrease because of crack generation in the PZT ceramics. Moreover, the elastic constant increases with increase of the mechanical load and decreases with decrease of the load. On the contrary, the opposite sense of change of the electrical properties is observed.
Rasmussen, S. R.; Aarestrup, F. M.; Jensen, N. E.; Jorsal, S. E.
1999-01-01
A total of 122 Streptococcus suis serotype 2 strains were characterized thoroughly by comparing clinical and pathological observations, ribotype profiles, and antimicrobial resistance. Twenty-one different ribotype profiles were found and compared by cluster analysis, resulting in the identification of three ribotype clusters. A total of 58% of all strains investigated were of two ribotypes belonging to different ribotype clusters. A remarkable relationship existed between the observed ribotype profiles and the clinical-pathological observations because strains of one of the two dominant ribotypes were almost exclusively isolated from pigs with meningitis, while strains of the other dominant ribotype were never associated with meningitis. This second ribotype was isolated only from pigs with pneumonia, endocarditis, pericarditis, or septicemia. Cluster analysis revealed that strains belonging to the same ribotype cluster as one of the dominant ribotypes came from pigs that showed clinical signs similar to those of pigs infected with strains with the respective dominant ribotype profiles. Furthermore, strains belonging to different ribotype clusters had totally different patterns of resistance to antibiotics because strains isolated from pigs with meningitis were resistant to sulfamethazoxazole and strains isolated from pigs with pneumonia, endocarditis, pericarditis, or septicemia were resistant to tetracycline. PMID:9889228
Material approaches to stretchable strain sensors.
Park, Jaeyoon; You, Insang; Shin, Sangbaie; Jeong, Unyong
2015-04-27
With the recent progress made in wearable electronics, devices now require high flexibility and stretchability up to large strain levels (typically larger than 30 % strain). Wearable strain sensors or deformable strain sensors have been gaining increasing research interest because of the rapid development of electronic skins and robotics and because of their biomedical applications. Conventional brittle strain sensors made of metals and piezoresistors are not applicable for such stretchable sensors. This Review summarizes recent advances in stretchable sensors and focuses on material aspects for high stretchability and sensitivity. It begins with a brief introduction to the Wheatstone bridge circuit of conventional resistive strain sensors. Then, studies on the manipulation of materials are reviewed, including waved structural approaches for making metals and semiconductors stretchable, the use of liquid metals, and conductive filler/elastomer composites by using percolation among the fillers. For capacitive strain sensors, the constant conductivity of the electrode is a key factor in obtaining reliable sensors. Possible approaches to developing capacitive strain sensors are presented. This Review concludes with a discussion on the major challenges and perspectives related to stretchable strain sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectral rheology in a sphere. [for geological models
NASA Technical Reports Server (NTRS)
Caputo, M.
1984-01-01
An earth model is considered whose rheology is described by a stress train relation similar to that which seems to fit the laboratory data resulting from constant strain rate and creep experiments on polycrystalline halite and granite. The response of the model to a surface load is studied. It is found that the displacement and the creep are weakly dependent on the wavenumber and that the strain energy is concentrated in the low wavenumber and coherent over large regions.
Modeling the initial mechanical response and yielding behavior of gelled crude oil
NASA Astrophysics Data System (ADS)
Lei, Chen; Gang, Liu; Xingguo, Lu; Minghai, Xu; Yuannan, Tang
2018-05-01
The initial mechanical response and yielding behavior of gelled crude oil under constant shear rate conditions were investigated. By putting the Maxwell mechanical analog and a special dashpot in parallel, a quasi-Jeffreys model was obtained. The kinetic equation of the structural parameter in the Houska model was simplified reasonably so that a simplified constitutive equation of the special dashpot was expressed. By introducing a damage factor into the constitutive equation of the special dashpot and the Maxwell mechanical analog, we established a constitutive equation of the quasi-Jeffreys model. Rheological tests of gelled crude oil were conducted by imposing constant shear rates and the relationship between the shear stress and shear strain under different shear rates was plotted. It is found that the constitutive equation can fit the experimental data well under a wide range of shear rates. Based on the fitted parameters in the quasi-Jeffreys model, the shear stress changing rules of the Maxwell mechanical analog and the special dashpot were calculated and analyzed. It is found that the critical yield strain and the corresponding shear strain where shear stress of the Maxwell analog is the maximum change slightly under different shear rates. And then a critical damage softening strain which is irrelevant to the shearing conditions was put forward to describe the yielding behavior of gelled crude oil.
NASA Astrophysics Data System (ADS)
Łepkowski, S. P.
2008-10-01
We investigate the contribution arising from third-order elasticity to the pressure coefficient of the light emission (dEE/dP) in strained zinc-blende InGaAs/GaAs and InGaN/GaN quantum wells (QWs) grown in a (001) direction. In the framework of the third-order elasticity theory, we develop a model of pressure tuning of strains in these structures, which is then used to determine the coefficient dEE/dP . In the calculations of dEE/dP , we use a consistent set of the second- and third-order elastic constants which has been obtained from ab initio calculations. Our results indicate that the usage of third-order elasticity leads to significant reduction in dEE/dP in strained (001)-oriented InGaAs/GaAs and InGaN/GaN QWs, in comparison to the values of dEE/dP obtained by using the linear theory of elasticity. In the case of InGaAs/GaAs QWs, the values of dEE/dP calculated using third-order elasticity are in reasonable agreement with experimental data. For InGaN/GaN QWs, better agreement between theoretical and experimental values of dEE/dP is obtained when instead of third-order elasticity, pressure dependence of the second-order elastic constants is taken into account.
Wilkerson, L. S.; Eagon, R. G.
1974-01-01
Sodium inhibited citrate uptake by two of the four strains of Aerobacter (Enterobacter) aerogenes used in these studies, had no effect on one strain, and stimulated citrate uptake by one strain. Two of the four strains grew well anaerobically on citrate in the presence of Na+, one grew poorly, and one grew not at all either in the presence or absence of Na+. Na+ stimulated the aerobic growth of one strain on citrate, increased the total growth but not the rate of growth of one strain, and prolonged the lag phase but not the rate of growth or total growth of two strains. The experimental data reported herein, therefore, indicate that there are appreciable physiological differences among strains of A. aerogenes. PMID:4418533
Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator
NASA Astrophysics Data System (ADS)
Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.
2014-07-01
We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.
Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation
NASA Technical Reports Server (NTRS)
Mcadam, D J; Mebs, R W
1939-01-01
The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.
Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs.
Kitahara, M; Sakata, S; Benno, Y
2005-01-01
Five different sourdoughs were investigated for the composition of lactic acid bacteria (LAB) and the biodiversity of Lactobacillus sanfranciscensis strains. A total of 57 strains were isolated from five sourdoughs. Isolated strains were all identified by the 16S rDNA sequence and species-specific primers for L. sanfranciscensis. Results of identification showed that LAB strains were L. sanfranciscensis, Lactobacillus plantarum, Lactobacillus paralimentarius, Lactobacillus fermentum, Lactobacillus pontis, Lactobacillus casei, Weisella confusa and Pediococcus pentosaceus. A total of 21 strains were identified as L. sanfranciscensis and these isolates were detected in all five sourdoughs. Ribotyping was applied to investigate the relationship between intraspecies diversity of L. sanfranciscensis and sourdough. A total of 22 strains of L. sanfranciscensis including L. sanfranciscensis JCM 5668T were compared by ribotyping. The dendrogram of 21 ribotyping patterns showed four clusters, and L. sanfranciscensis JCM 5668T was independent of the others. The different biotypes of L. sanfranciscensis were present in two sourdoughs compared with other three sourdoughs. The LAB compositions of five sourdoughs were different and the relationship between intraspecies diversity of L. sanfranciscensis strains and five sourdoughs was shown by ribotyping. This study demonstrated that ribotyping was useful for distinguishing L. sanfranciscensis strains. A further important result is that the intra-species diversity of L. sanfranciscensis strains seems to be related to the sourdough preparation.
Adamus-Bialek, Wioletta; Zajac, Elzbieta; Parniewski, Pawel; Kaca, Wieslaw
2013-04-01
Escherichia coli and Proteus mirabilis are important urinary tract pathogens. The constant increase in the antibiotic resistance of clinical bacterial strains has become an important clinical problem. The aim of this study was to compare the antibiotic resistance of 141 clinical (Sweden and Poland) and 42 laboratory (Czech Republic) P. mirabilis strains and 129 clinical (Poland) uropathogenic E. coli strains. The proportion of unique versus diverse patterns in Swedish clinical and laboratory P. mirabilis strain collections was comparable. Notably, a similar proportion of unique versus diverse patterns was observed in Polish clinical P. mirabilis and E. coli strain collections. Mathematical models of the antibiotic resistance of E. coli and P. mirabilis strains based on Kohonen networks and association analysis are presented. In contrast to the three clinical strain collections, which revealed complex associations with the antibiotics tested, laboratory P. mirabilis strains provided simple antibiotic association diagrams. The monitoring of antibiotic resistance patterns of clinical E. coli and P. mirabilis strains plays an important role in the treatment procedures for urinary tract infections and is important in the context of the spreading drug resistance in uropathogenic strain populations. The adaptability and flexibility of the genomes of E. coli and P. mirabilis strains are discussed.
Slow plastic strain rate compressive flow in binary CoAl intermetallics
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1985-01-01
Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.
Creep strain and creep-life prediction for alloy 718 using the omega method
NASA Astrophysics Data System (ADS)
Yeom, Jong-Taek; Kim, Jong-Yup; Na, Young-Sang; Park, Nho-Kwang
2003-12-01
The creep behavior of Alloy 718 was investigated in relation to the MPCs omega (Ω) method. To evaluate the creep model and determine material parameters, constant load creep tests were performed at different initial stresses in a temperature range between 550°C and 700°C. The imaginary initial strain rate ɛ limits^. _0 and omega (Ω), considered to be important variables in the model, were expressed as a function of initial stress and temperature. For these variables, power-law and hyperbolic sine-law equations were used as constitutive equations for the creep of Alloy 718. To consider the effect of γ″ coarsening leading to a radical drop of tensile strength and creep strength at temperatures above 650°C, different material constants at the temperatures above 650°C were applied. The reliability of the models was investigated in relation to the creep curve and creep life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.
1999-03-01
Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less
Measurement and analysis of critical crack tip processes during fatigue crack growth
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J.; Dexter, R. J.
1985-01-01
The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.
Strozzi, G Paolo; Mogna, Luca
2008-09-01
Folic acid, or vitamin B9, is involved in appropriate regulation of DNA replication, synthesis of purines and deoxythymidine (dTMP), conversion of homocysteine to methionine, histidine catabolism, and correct differentiation of the neural tube during fetal organogenesis. Folic acid from food sources is almost completely absorbed in the small intestine, mostly in the jejunum, and does not reach the large intestine. The administration of probiotic strains able to synthesize folates de novo and release them in the extracellular space may provide an additional, constant endogenous source of this important vitamin in the intestinal lumen of humans. A pilot study involving 23 healthy volunteers was conducted to evaluate the ability of 3 probiotic strains, Bifidobacterium adolescentis DSM 18350, B. adolescentis DSM 18352, and Bifidobacterium pseudocatenulatum DSM 18353, to produce folates in the human intestine. Volunteers were randomly assigned to 1 of 3 groups for treatment with a specific probiotic strain (5 x 10(9) colony forming units/d). Strain effectiveness was evaluated by determination of the folate concentration in feces evacuated within 48 hours before and after administration of the probiotics. Quantification of microorganisms belonging to the genus Bifidobacterium was performed in parallel to folate analysis. Ingestion of these probiotic strains resulted in a significant increase of folic acid concentration in human feces in all treated groups. Analysis of the fecal Bifidobacteria confirmed the potential of all strains, especially B. adolescentis DSM 18352, to colonize the intestinal environment. The demonstrated ability of the probiotic microorganisms B. adolescentis DSM 18350, B. adolescentis DSM 18352, and B. pseudocatenulatum DSM 18353 to synthesize and secrete folates in the human intestinal environment may provide a complementary endogenous source of such molecules, which is especially useful for the homeostasis of mucosal enterocytes of the colon and, unlike oral administration of the vitamin, ensures its constant bioavailability.
Theoretical study on elastic properties of Si2N2O by ab initio calculation
NASA Astrophysics Data System (ADS)
Tsuboi, Seiya; Adachi, Kanta; Nagakubo, Akira; Ogi, Hirotsugu
2018-07-01
The elastic constants of crystalline Si2N2O remain unknown since it was discovered in the 1960s. We determine the nine independent elastic constants of orthorhombic Si2N2O by ab initio calculations. We applied various deformation modes with strains up to ±0.01 to a unit cell, calculated the energy-strain relationships, and deduced all the elastic constants by fitting the harmonic-oscillation function. Our results are as follows: C 11 = 311.1, C 22 = 238.5, C 33 = 317.9, C 44 = 136.1, C 55 = 57.6, C 66 = 73.9, C 12 = 79.6, C 13 = 52.2, and C 23 = 33.6 GPa. Despite the different crystal structures and symmetries, the direction-over-averaged Young’s modulus of Si2N2O is well explained by the nitrogen content and Young’s moduli of α-SiO2 and β-Si3N4. The anisotropy of sound-wave velocity was investigated, and its origin was examined on the basis of the crystallographic structure. The quasi-isotropic plane for the longitudinal-wave propagation was identified.
Composition of Fatty Acids and Carbohydrates in Leptospira1
Kondo, Eiko; Ueta, Nobuo
1972-01-01
The fatty acid and monosaccharide composition of four pathogenic and two saprophytic strains of Leptospira was analyzed by gas chromatography (GC) and GC-mass spectrometry. Among the fatty acids, palmitic acid was most abundant and constituted 30 to 50% of the total fatty acids. Even-numbered unsaturated acids including octadecenoic, hexadecenoic, octadecadienoic, and tetradecadienoic acids comprised 40 to 60% of the total fatty acids. Tetradecanoic acid was about 5% in saprophytic strains, but 1% or less in pathogenic strains. The amount of chloroform-methanol extract of L. biflexa strain Ancona was 14 to 20% of the dry weight of the cell. Tetradecadienoic acid was found in the chloroform-methanol insoluble fraction, suggesting the presence of the acid in a bound form. GC analysis of monosaccharides revealed the existence of arabinose, xylose, rhamnose, mannose, galactose, glucose, glucosamine, and muramic acid in the cells. Among the neutral sugars, glucose was a minor component and was especially low in pathogenic strains. Total pentose content was about two to three times greater than total hexose. PMID:5022167
NASA Astrophysics Data System (ADS)
Nural, Yahya; Gemili, Muge; Seferoglu, Nurgul; Sahin, Ertan; Ulger, Mahmut; Sari, Hayati
2018-05-01
A novel bicyclic thiohydantoin fused to pyrrolidine compound, methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate, was synthesized by the cyclization reaction of dimethyl 5,5-diphenylpyrrolidine-2,4-dicarboxylate and 4-chlorophenyl isothiocyanate in the presence of 4-(dimethylamino)pyridine to form methyl 2-(4-chlorophenyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate with concomitant addition reaction of the 4-chlorophenyl isothiocyanate in 79% yield. The structural characterization was performed by NMR, FT-IR, MS and HRMS techniques, and the stereochemistry of the compound was determined by single crystal X-ray diffraction study. In addition, the molecular structure and 1H and 13C NMR chemical shifts of the compound were obtained with the density functional theory and Hartree-Fock calculations. Acid dissociation constants of the compound were determined using potentiometric titration method in 25% (v/v) dimethyl sulfoxide-water hydroorganic solvent at 25 ± 0.1 °C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Four acid dissociation constants were obtained for the compound, and we suggest that these acid dissociation constants are related to the NH, for two groups of enthiols and enol groups. Antimicrobial activity study was performed against S. aureus, B. subtilis, A. hydrophila, E. coli and A. baumannii as bacterial standard strains, and against M. tuberculosis H37Rv as mycobacterial strain. The compound exhibited antibacterial activity in the range of 31.25-62.5 μg/mL, and antimycobacterial activity with a MIC value of 40 μg/mL against the indicated strains.
Isothermal fatigue mechanisms in Ti-based metal matrix composites
NASA Technical Reports Server (NTRS)
Majumdar, Bhaskar S.; Newaz, Golam M.
1993-01-01
Stress-controlled isothermal fatigue experiments were performed at room temperature (RT) and 548 C (in argon) on (0)8 SCS6/Ti 15-3 metal matrix composites (MMC's) with 15 and 41 volume percent SCS6 (SiC) fibers. The primary objectives were to evaluate the mechanical responses, and to obtain a clear understanding of the damage mechanisms leading to failure of the MMC's. The mechanical data indicated that strain ranges attained fairly constant values in the stress-controlled experiments at both RT and 538 C, and remained so for more than 85 percent of life. The fatigue data for MMC's with different volume fraction fibers showed that MMC life was controlled by the imposed strain range rather than the stress range. At RT, and at low and intermediate strain ranges, the dominant fatigue mechanism was matrix fatigue, and this was confirmed metallurgically from fractographic evidence as well as from observations of channel type dislocation structures in the matrix of fatigued MMC specimens. Reaction-zone cracks acted as important crack initiating sites at RT, with their role being to facilitate slip band formation and consequent matrix crack initiation through classical fatigue mechanisms. MMC life agreed with matrix life at the lower strain ranges, but was smaller than matrix life at higher strain ranges. Unlike the case of monotonic deformation, debonding damage was another major damage mechanism during fatigue at RT, and it increased for higher strain ranges. At high strain ranges at RT, fractography and metallography showed an absence of matrix cracks, but long lengths of debonds in the outer layers of the SCS6 fibers. Such debonding and consequent rubbing during fatigue is believed to have caused fiber damage and their failure at high strain ranges. Thus, whereas life was matrix dominated at low and intermediate strain ranges, it was fiber dominated at high strain ranges. At 538 C, the mean stain constantly increased (ratchetting) with the number of cycles. At high strain ranges, such ratchetting led to overload failure of the fibers, and debonding of the type at RT was very small. At intermediate strain ranges, fractography showed large areas of matrix cracks. However, in spite of this matrix dominated mechanism, the MMC life at elevated temperatures was significantly less than the matrix fatigue life at all strain ranges. The reason for this difference is still unclear, although metallographic and fractographic evidences suggest that internal crack initiation sites at Mo-ribbons and reaction-zone cracks may have played a critical role, with the former tending to dominate.
NASA Technical Reports Server (NTRS)
Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen
2010-01-01
The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.
1200 and 1300 K slow plastic compression properties of Ni-50Al composites
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.
1991-01-01
XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao
2015-01-01
We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.
NASA Astrophysics Data System (ADS)
Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.
2013-08-01
Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.
Cyclic loading of simulated fault gouge to large strains
NASA Astrophysics Data System (ADS)
Jones, Lucile M.
1980-04-01
As part of a study of the mechanics of simulated fault gouge, deformation of Kayenta Sandstone (24% initial porosity) was observed in triaxial stress tests through several stress cycles. Between 50- and 300-MPa effective pressure the specimens deformed stably without stress drops and with deformation occurring throughout the sample. At 400-MPa effective pressure the specimens underwent strain softening with the deformation occurring along one plane. However, the difference in behavior seems to be due to the density variation at different pressures rather than to the difference in pressure. After peak stress was reached in each cycle, the samples dilated such that the volumetric strain and the linear strain maintained a constant ratio (approximately 0.1) at all pressures. The behavior was independent of the number of stress cycles to linear strains up to 90% and was in general agreement with laws of soil behavior derived from experiments conducted at low pressure (below 5 MPa).
Tsai, Hsin-Jen; Chang, Fu-Kuei
2016-01-01
This study was aimed to evaluate the cross-sectional and longitudinal associations between various perceived-stress and depressive symptoms in old Taiwanese men and women aged 50 years and over. Data were derived from the Taiwan Longitudinal Study on Aging. Stress for health, finance, and family members' related issues were all cross-sectionally associated with concurrent depressive symptoms for men and women (all P<0.05). Increased/constant-high health stress was positively associated with subsequent depressive symptoms in both genders (all P<0.05). Constantly high job stress and increased stress over family members' problems were associated with higher likelihood of subsequent depressive symptoms in men (P<0.05). Constantly high/increased financial stress and relationship strain with family members were positively associated with subsequent depressive symptoms in women (all P<0.05). The results suggest that stress for health, job, finance, and family members-related issues are unequally associated with depressive symptoms among Taiwanese men and women aged 50 years and over. Changes of health stress even reduced are significantly associated with subsequent depressive symptoms. Long-term job stress and increased stress over family members' problems increase occurrences of men's depressive symptoms, while increased/long-term financial stress and relationship-strain with family members increase occurrences of women's depressive symptoms. Long-term high health stress has more impacts on men's depressive symptoms than women's, while long-term high relationship strain with family members has more impacts on women's depressive symptoms than men's. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Campbell, J.; Dean, J.; Clyne, T. W.
2017-02-01
This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.
NASA Astrophysics Data System (ADS)
Park, Jae Yong; Lee, Illhwan; Ham, Juyoung; Gim, Seungo; Lee, Jong-Lam
2017-06-01
Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%.
Strain relaxation in single crystal SrTiO3 grown on Si (001) by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Choi, Miri; Posadas, Agham; Dargis, Rytis; Shih, Chih-Kang; Demkov, Alexander A.; Triyoso, Dina H.; David Theodore, N.; Dubourdieu, Catherine; Bruley, John; Jordan-Sweet, Jean
2012-03-01
An epitaxial layer of SrTiO3 grown directly on Si may be used as a pseudo-substrate for the integration of perovskite oxides onto silicon. When SrTiO3 is initially grown on Si (001), it is nominally compressively strained. However, by subsequent annealing in oxygen at elevated temperature, an SiOx interlayer can be formed which alters the strain state of SrTiO3. We report a study of strain relaxation in SrTiO3 films grown on Si by molecular beam epitaxy as a function of annealing time and oxygen partial pressure. Using a combination of x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy, we describe the process of interfacial oxidation and strain relaxation of SrTiO3 on Si (001). Understanding the process of strain relaxation of SrTiO3 on silicon will be useful for controlling the SrTiO3 lattice constant for lattice matching with functional oxide overlayers.
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
Ryu, Seongwoo; Lee, Phillip; Chou, Jeffrey B; Xu, Ruize; Zhao, Rong; Hart, Anastasios John; Kim, Sang-Gook
2015-06-23
The increasing demand for wearable electronic devices has made the development of highly elastic strain sensors that can monitor various physical parameters an essential factor for realizing next generation electronics. Here, we report an ultrahigh stretchable and wearable device fabricated from dry-spun carbon nanotube (CNT) fibers. Stretching the highly oriented CNT fibers grown on a flexible substrate (Ecoflex) induces a constant decrease in the conductive pathways and contact areas between nanotubes depending on the stretching distance; this enables CNT fibers to behave as highly sensitive strain sensors. Owing to its unique structure and mechanism, this device can be stretched by over 900% while retaining high sensitivity, responsiveness, and durability. Furthermore, the device with biaxially oriented CNT fiber arrays shows independent cross-sensitivity, which facilitates simultaneous measurement of strains along multiple axes. We demonstrated potential applications of the proposed device, such as strain gauge, single and multiaxial detecting motion sensors. These devices can be incorporated into various motion detecting systems where their applications are limited to their strain.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1988-01-01
A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Noebe, R. D.
2013-01-01
This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and a corresponding development of a back stress due to a significant increase in the dislocation density during thermal cycling.
Effect of Naturally Occurring nif Reiterations on Symbiotic Effectiveness in Rhizobium phaseoli
Romero, David; Singleton, Paul W.; Segovia, Lorenzo; Morett, Enrique; Bohlool, B. Ben; Palacios, Rafael; Dávila, Guillermo
1988-01-01
Most naturally occurring strains of Rhizobium phaseoli possess reiteration of the nif genes. Three regions contain nitrogenase structural genes in strain CFN42. Two of these regions (a and b) have copies of nifH, nifD, and nifK, whereas the third region (c) contains only nifH. Strains containing mutations in either nif region a or nif region b had significantly diminished symbiotic effectiveness compared with the wild-type strain on the basis of nodule mass, total nitrogenase activity per plant, nitrogenase specific activity, total nitrogen in the shoot, and percentage of nitrogen. A strain containing mutations in both nif region a and nif region b was totally ineffective. These data indicate that both nif region a and nif region b are needed for full symbiotic effectiveness in R. phaseoli. PMID:16347593
Impact resistance of fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1982-01-01
Stress-strain curves are obtained for a variety of glass fiber and carbon fiber reinforced plastics in dynamic tension, over the stress-strain range of 0.00087-2070/sec. The test method is of the one-bar block-to-bar type, using a rotating disk or a pendulum as the loading apparatus and yielding accurate stress-strain curves up to the breaking strain. In the case of glass fiber reinforced plastic, the tensile strength, strain to peak impact stress, total strain and total absorbed energy all increase significantly as the strain rate increases. By contrast, carbon fiber reinforced plastics show lower rates of increase with strain rate. It is recommended that hybrid composites incorporating the high strength and rigidity of carbon fiber reinforced plastic with the high impact absorption of glass fiber reinforced plastics be developed for use in structures subjected to impact loading.
Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen
2011-01-01
A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015
Heuberer, Philipp R; Smolen, Daniel; Pauzenberger, Leo; Plachel, Fabian; Salem, Sylvia; Laky, Brenda; Kriegleder, Bernhard; Anderl, Werner
2017-05-01
The number of arthroscopic rotator cuff surgeries is consistently increasing. Although generally considered successful, the reported number of retears after rotator cuff repair is substantial. Short-term clinical outcomes are reported to be rarely impaired by tendon retears, whereas to our knowledge, there is no study documenting long-term clinical outcomes and tendon integrity after arthroscopic rotator cuff repair. To investigate longitudinal long-term repair integrity and clinical outcomes after arthroscopic rotator cuff reconstruction. Case series; Level of evidence, 4. Thirty patients who underwent arthroscopic rotator cuff repair with suture anchors for a full-tendon full-thickness tear of the supraspinatus or a partial-tendon full-thickness tear of the infraspinatus were included. Two and 10 years after initial arthroscopic surgery, tendon integrity was analyzed using magnetic resonance imaging (MRI). The University of California, Los Angeles (UCLA) score and Constant score as well as subjective questions regarding satisfaction with the procedure and return to normal activity were used to evaluate short- and long-term outcomes. At the early MRI follow-up, 42% of patients showed a full-thickness rerupture, while 25% had a partial rerupture, and 33% of tendons remained intact. The 10-year MRI follow-up (129 ± 11 months) showed 50% with a total rerupture, while the other half of the tendons were partially reruptured (25%) or intact (25%). The UCLA and Constant scores significantly improved from preoperatively (UCLA total: 50.6% ± 20.2%; Constant total: 44.7 ± 10.5 points) to 2 years (UCLA total: 91.4% ± 16.0% [ P < .001]; Constant total: 87.8 ± 15.3 points [ P < .001]) and remained significantly higher after 10 years (UCLA total: 89.7% ± 15.9% [ P < .001]; Constant total: 77.5 ± 15.6 points [ P < .001]). The Constant total score and Constant strength subscore, but not the UCLA score, were also significantly better at 10 years postoperatively in patients with intact tendons compared with patients with retorn tendons (Constant total: 89.0 ± 7.8 points vs 75.7 ± 14.1 points, respectively [ P = .034]; Constant strength: 18.0 ± 4.9 points vs 9.2 ± 5.2 points, respectively [ P = .006]). The majority of patients rated their satisfaction with the procedure as "excellent" (83.3%), and 87.5% returned to their normal daily activities. Arthroscopic rotator cuff repair showed good clinical long-term results despite a high rate of retears. Nonetheless, intact tendons provided significantly superior clinical long-term outcomes, making the improvement of tendon healing and repair integrity important goals of future research efforts.
Acrylic Plastic Spherical Pressure Hull for Continental Shelf Depths
1993-03-01
the con- l and secure conduit for the instrumentation leads at cave surface of the sphere (figure 26). The meridi- any external pressure to which the...constant pressure monitoring. In-line pressure CEA-06-1 25WT-120 with a gage factor of 2.11, transducers sense chamber pressures and send a bonded to the...wired to a strain gage conditioner that sensed strain as an analog FINDINGS voltage corresponding to the change in resistance occuring in each gage as it
Bacterial Population Adherent to the Epithelium on the Roo of the Dorsal Rumen of Sheep †
Dehority, Burk A.; Grubb, Jean A.
1981-01-01
By anaerobic procedures, the total number of adherent bacteria was determined on tissue samples obtained from the roof of the dorsal rumen of three sheep. After four washings, 1.91 × 107, 0.34 × 107, and 1.23 × 107 bacteria per cm2 were still attached to the rumen epithelium in sheep 1, 2, and 3, respectively. A total of 95 strains of bacteria were isolated from these three samples. Based on morphology, Gram stain, anaerobiosis, motility, and fermentation end products, they were presumptively identified as follows: Butyrivibrio fibrisolvens, 30 strains; atypical Butyrivibrio, 5 strains; Bacteroides ruminicola, 22 strains; Lactobacillus, 1 strain; and unknown Bacteroides species, 37 strains. For sheep 3, washing the rumen epithelium a total of 10 times reduced the adherent bacterial population by 93% (8.4 × 105 bacteria per cm2). Of 30 strains isolated from this sample, 22 were presumptively identified as Butyrivibrio and Bacteroides types. These results suggest that the epithelium on the roof of the dorsal rumen is primarily colonized by two genera of bacteria, Butyrivibrio and Bacteroides. Most Butyrivibrio and Bacteroides ruminicola strains appeared to be similar to previously isolated rumen strains. However, the unknown Bacteroides species differed considerably from the three species of this genus which are commonly isolated from rumen contents. PMID:16345797
NASA Astrophysics Data System (ADS)
Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.
2013-10-01
The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.
Expression and refolding of tobacco anionic peroxidase from E. coli inclusion bodies.
Hushpulian, D M; Savitski, P A; Rojkova, A M; Chubar, T A; Fechina, V A; Sakharov, I Yu; Lagrimini, L M; Tishkov, V I; Gazaryan, I G
2003-11-01
Coding DNA of the tobacco anionic peroxidase gene was cloned in pET40b vector. The problem of 11 arginine codons, rare in procaryotes, in the tobacco peroxidase gene was solved using E. coli BL21(DE3) Codon Plus strain. The expression level of the tobacco apo-peroxidase in the above strain was approximately 40% of the total E. coli protein. The tobacco peroxidase refolding was optimized based on the earlier developed protocol for horseradish peroxidase. The reactivation yield of recombinant tobacco enzyme was about 7% with the specific activity of 1100-1200 U/mg towards 2,2;-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). It was shown that the reaction of ABTS oxidation by hydrogen peroxide catalyzed by recombinant tobacco peroxidase proceeds via the ping-pong kinetic mechanism as for the native enzyme. In the presence of calcium ions, the recombinant peroxidase exhibits a 2.5-fold decrease in the second order rate constant for hydrogen peroxide and 1.5-fold decrease for ABTS. Thus, calcium ions have an inhibitory effect on the recombinant enzyme like that observed earlier for the native tobacco peroxidase. The data demonstrate that the oligosaccharide part of the enzyme has no effect on the kinetic properties and calcium inhibition of tobacco peroxidase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stebner, A. P.; Brown, D. W.; Brinson, L. C.
2013-05-27
Polycrystalline, monoclinic nickel-titanium specimens were subjected to tensile and compressive deformations while neutron diffraction spectra were recorded in situ. Using these data, orientation-specific and macroscopic Young's moduli are determined from analysis of linear-elastic deformation exhibited by 13 unique orientations of monoclinic lattices and their relationships to each macroscopic stress and strain. Five of 13 elastic compliance constants are also identified: s{sub 11} = 1.15, s{sub 15} = -1.10, s{sub 22} = 1.34, s{sub 33} = 1.06, s{sub 35} = -1.54, all Multiplication-Sign 10{sup -2} GPa{sup -1}. Through these results, recent atomistic calculations of monoclinic nickel-titanium elastic constants are validated.
Tensile properties of AZ11A-0 magnesium-alloy sheet under rapid-heating and constant temperature
NASA Technical Reports Server (NTRS)
Kurg, Ivo M
1956-01-01
Specimens of AZ31A-0 magnesium alloy sheet were heated to rupture at nominal rates of 0.2 F to 100 F per second under constant tensile load conditions. The data are presented and compared with the results of conventional tensile stress-strain tests at elevated temperatures after 1.2-hour exposure. A temperature-rate parameter was used to construct master curves from which stresses and temperatures for yield and rupture can be predicted under rapid-heating conditions. A comparison of the elevated-temperature tensile properties of AZ31A-0 and HK31XA-H24 magnesium-alloy sheet under both constant-temperature and rapid-heating conditions is included.
Hink, Linda; Lycus, Pawel; Gubry-Rangin, Cécile; Frostegård, Åsa; Nicol, Graeme W; Prosser, James I; Bakken, Lars R
2017-12-01
Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N 2 O) than ammonia oxidising archaea (AOA), due to their higher N 2 O yield under oxic conditions and denitrification in response to oxygen (O 2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N 2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH 3 + NH4+) and O 2 . Half-saturation constants for O 2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N 2 O production reached maxima near O 2 half-saturation constant concentration (2-10 μM O 2 ) and decreased to zero in response to complete O 2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O 2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Phonon dispersion evolution in uniaxially strained aluminum crystal
NASA Astrophysics Data System (ADS)
Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi
2018-04-01
The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2017-11-01
Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.
Microstrip patch antenna for simultaneous strain and temperature sensing
NASA Astrophysics Data System (ADS)
Mbanya Tchafa, F.; Huang, H.
2018-06-01
A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.
NASA Technical Reports Server (NTRS)
Gupta, P. K.; Tessarzik, J. M.; Cziglenyi, L.
1974-01-01
Dynamic properties of a commerical polybutadiene compound were determined at a constant temperature of 32 C by a forced-vibration resonant mass type of apparatus. The constant thermal state of the elastomer was ensured by keeping the ambient temperature constant and by limiting the power dissipation in the specimen. Experiments were performed with both compression and shear specimens at several preloads (nominal strain varying from 0 to 5 percent), and the results are reported in terms of a complex stiffness as a function of frequency. Very weak frequency dependence is observed and a simple power law type of correlation is shown to represent the data well. Variations in the complex stiffness as a function of preload are also found to be small for both compression and shear specimens.
[Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].
Levchuk, A A; Vasilenko, S L; Bulyga, I M; Titok, M A; Thomas, K M
2005-01-01
Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.
Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss)
Gingerich, W.H.; Pityer, R.A.; Rach, J.J.
1990-01-01
1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA).2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain.3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines.4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.
NASA Astrophysics Data System (ADS)
Escuti, Michael J.; Cairns, Darran R.; Crawford, Gregory P.
2004-03-01
The optomechanical characteristics of oriented polymer films made from a photopolymerizable liquid crystal diacrylate (BASF LC242) were examined, with general implications for oriented films of similar materials being used and considered for display-component applications. The birefringence of these uniaxial films before and after polymerization was determined by measuring the retardation between crossed polarizers, (resulting in Δn=0.142±0.002 at 633 nm for the cured polymer films). Optical-strain characteristics were also determined by measuring the transmittance of the films between crossed polarizers at two wavelengths (612 and 633 nm) during the application of a monotonically increasing tensile strain. Under the conservative assumption that Poisson's ratio is constant for the relatively small strains in our experiment, we develop a strained-waveplate model to detect changes in birefringence directly from the modulation in transmittance with increasing strain. We show that strain applied along the axis of the polymer chains did not substantially affect the birefringence, and strain applied perpendicularly caused only a slight decrease (˜1% decrease for 10% strain). These results highlight the robustness of fully polymerized reactive mesogen optical films to withstand the moderate strains anticipated during manufacturing processes and in-service deformation caused by bending or impact.
Piping support system for liquid-metal fast-breeder reactor
Brussalis, Jr., William G.
1984-01-01
A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.
McKay, Craig S; Chigrinova, Mariya; Blake, Jessie A; Pezacki, John Paul
2012-04-21
Strain-promoted cycloadditions of cyclic nitrones with biaryl-aza-cyclooctynone (BARAC) proceed with rate constants up to 47.3 M(-1) s(-1), this corresponds to a 47-fold rate enhancement relative to reaction of BARAC with benzyl azide and a 14-fold enhancement over previously reported strain promoted alkyne-nitrone cycloadditions (SPANC). Studies of the SPANC reaction using the linear free energy relationship defined by the Hammett equation demonstrated that the cycloaddition reaction has a rho value of 0.25 ± 0.04, indicating that reaction is not sensitive to substituents and thus should have broad applicability. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Law, Richard
2015-04-01
Traced for ~ 1500 km along the foreland edge of the Himalaya from NW India to Bhutan published reports indicate a remarkable along-strike continuity of quartz recrystallization microstructures in the footwall and hanging wall to the Main Central Thrust (MCT). Recrystallization in Lesser Himalayan Series (LHS) rocks in the footwall to the MCT is dominated by grain boundary bulging (BLG) microstructures, while recrystallization in Greater Himalayan Series (GHS) rocks in the hanging wall is dominated by grain boundary migration microstructures that traced structurally upwards transition in to the anatectic core of the GHS. In foreland-positioned high-strain rocks adjacent to the MCT recrystallization is dominated by subgrain rotation (SGR) with transitional BLG-SGR and SGR-GBM microstructures being recorded at structural distances of up to a few hundred meters below and above the MCT, respectively. Correlation with available information on temperatures of metamorphism indicated by mineral phase equilibria and RSCM data suggests that recrystallization in the structural zones dominated by BLG, SGR and GBM occurred at temperatures of ~ 350-450, 450-550 and 550- > 650 °C, respectively. It should be kept in mind, however, that these temperatures are likely to be 'close-to-peak' temperatures of metamorphism, whereas penetrative shearing and recrystallization may have continued during cooling. The dominance of SGR along the more foreland-positioned exposures of the MCT intuitively suggests that shearing occurred under a relatively restricted range of deformation temperatures and strain rates. Plotting the 'close-to-peak' 450-500 °C temperatures of metamorphism indicated for SGR-dominated rocks located at up to a few hundred meters below/above the MCT on the quartz recrystallization map developed by Stipp et al. (2002) indicates 'ball-park' strain rates of ~ 10-13 to 10-10 sec-1. However, only strain rates slower than 10-12 sec-1 on the MCT are likely to be compatible with know convergence rates between the Indian and Asian plates. If shearing continued during retrograde cooling while remaining in the SGR field, then the recrystallization map suggests that a significant drop in deformation temperature (> ~75-100 °C) would result in a decrease in strain rate. In general, however, the presence of a single recrystallization microstructure traced over a large (regional scale) distance does not necessarily mean that deformation temperature (or strain rate) remains constant but could, for example, indicate that spatial variations in deformation temperature are compensated for by changes in strain rate, with grain-scale deformation remaining within a particular recrystallization regime. Constant stress conditions plot along a straight line in the 1/T versus log strain rate space used in the quartz recrystallization mechanism map. This suggests that the observed along-strike consistency of SGR-dominated recrystallization microstructures may indicate near to constant stress boundary conditions (albeit with varying temperatures and strain rates) prevailing along what are now the more foreland-positioned exposures of the MCT. Extrapolation of the Hirth et al. (2001) flow law suggests a flow stress of ~ 30-50 MPa based on the deformation temperatures and strain rates inferred for foreland-positioned exposures of the MCT, in agreement with flow stresses estimated from recrystallized quartz grain size data.
Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad
2015-03-07
Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.
Lattice strain of osmium diboride under high pressure and nonhydrostatic stress
NASA Astrophysics Data System (ADS)
Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.
2012-07-01
The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostatic pressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.
NASA Astrophysics Data System (ADS)
Nurul, Islam Md.; Arai, Yoshio; Araki, Wakako
Strain range controlled low-cycle fatigue tests were conducted using ultrasonic method in order to investigate the effect of plastic strain range on the remaining life of austenitic stainless steel SUS316NG before the onset of crack growth in its early stages of fatigue. It was found that the decrease in ultrasonic back-reflection intensity from the surface of the material, caused by the increase in average dislocation density with localized plastic deformation at persistent slip bands (PSBs), starts earlier with increase in the plastic strain range. The amount of decrease in ultrasonic back-reflection before the onset of crack growth increases for larger plastic strain range. The difference in the cumulative plastic strains at the onset of crack growth and at the onset of decrease in the ultrasonic back-reflection remained constant over the range of tested plastic strain. This result can be used to predict the remaining life before the onset of crack growth within the plastic strain range used in this study. In addition, we present and evaluate another method to predict damage evolution involving ultrasound attenuation caused by PSBs.
Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.; ...
2015-02-27
We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. In conclusion, although winter rye’s yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Xiongjun; DiMarco, Kay; Richard, Tom L.
We report that winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughlymore » constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. In conclusion, although winter rye’s yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer.« less
Analysis, compensation, and correction of temperature effects on FBG strain sensors
NASA Astrophysics Data System (ADS)
Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis
2013-05-01
One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.
Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.
Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian
2018-05-22
Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao,J.; Yang, L.; Grashow, J.
2007-01-01
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilizedmore » to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain ({epsilon}{sub D}) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, {epsilon}{sub D} increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using {epsilon}{sub D}, the tangent modulus of collagen fibrils was estimated to be 95.5{+-}25.5 MPa, which was {approx}27 times higher than the tissue tensile tangent modulus of 3.58{+-}1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and D remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min {epsilon}{sub D} was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a 'load-locking' behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.« less
Lott, Donovan J; Hastings, Mary K; Commean, Paul K; Smith, Kirk E; Mueller, Michael J
2007-03-01
Ground reaction forces from walking result in stress (pressure) and soft tissue strain at the plantar aspect of the foot. Excessive plantar pressure and tissue strain on the insensate foot may lead to ulceration. Our study investigated the effect of therapeutic footwear and custom-made orthotic inserts on pressure and tissue strain along the second ray of the plantar foot, and how these two variables are associated. Twenty subjects (mean age 57.3 [SD 9.3] years, 12 male, 8 female, body mass index 32.5 [SD 7.4] kg/m2) with diabetes mellitus, peripheral neuropathy, and a history of a plantar ulcer participated. Plantar pressure data were recorded during computed tomography scans for four conditions (barefoot, shoe, shoe+total contact insert, and shoe+total contact insert+metatarsal pad). For each condition tested, tissue strain and plantar pressure were determined at the second metatarsal head and at 15 other points along the second ray. Differences were noted between the 4 conditions for pressure (P<0.004) and soft tissue strain (P<0.042) at the second metatarsal head. Correlation coefficients demonstrated an association between pressure and strain (Barefoot r=0.81, Shoe r=0.75, Shoe+total contact insert r=0.73, and Shoe+total contact insert+metatarsal pad r=0.44). Footwear and orthotic devices tested in this study decreased pressure and soft tissue strain at the second ray of the foot, and these two variables were strongly related. A better understanding of the role tissue strain plays in distributing plantar forces may lead to improvements in the design of orthotic devices.
Lott, Donovan J.; Hastings, Mary K.; Commean, Paul K.; Smith, Kirk E.; Mueller, Michael J.
2007-01-01
Background Ground reaction forces from walking result in stress (pressure) and soft tissue strain at the plantar aspect of the foot. Excessive plantar pressure and tissue strain on the insensate foot may lead to ulceration. Our study investigated the effect of therapeutic footwear and custom-made orthotic inserts on pressure and tissue strain along the second ray of the plantar foot, and how these two variables are associated. Methods Twenty subjects (mean age 57.3 [SD 9.3], 12 male, 8 female, body mass index 32.5 [SD 7.4]) with diabetes mellitus, peripheral neuropathy, and a history of a plantar ulcer participated. Plantar pressure data were recorded during computed tomography scans for four conditions (barefoot, shoe, shoe+total contact insert, and shoe+total contact insert+metatarsal pad). For each condition tested, tissue strain and plantar pressure were determined at the second metatarsal head and at 15 other points along the second ray. Findings Differences were noted between the 4 conditions for pressure (p < 0.004) and soft tissue strain (p < 0.042) at the second metatarsal head. Correlation coefficients demonstrated an association between pressure and strain (Barefoot r = 0.81, Shoe r = 0.75, Shoe+total contact insert r = 0.73, and Shoe+total contact insert+metatarsal pad r = 0.44). Intepretation Footwear and orthotic devices tested in this study decreased pressure and soft tissue strain at the second ray of the foot, and these two variables were strongly related. A better understanding of the role tissue strain plays in distributing plantar forces may lead to improvements in the design of orthotic devices. PMID:17182156
Structures Formed in Experimentally Sheared Artificial Fault Gouge: Precise Statistical Measurements
NASA Astrophysics Data System (ADS)
Dilov, T.; Yoshida, S.; Kato, A.; Nakatani, M.; Mochizuki, H.; Otsuki, K.
2004-12-01
The physical parameters governing earthquakes change with the ongoing formation and evolution of structures, formed in the course of a single or multiple earthquakes, within a particular fault zone or in a broad volume containing interacting tectonic faults. Our precise knowledge of these complex phenomena is still elusive. Especially, works considering geometrical evolution of shear structures under controlled conditions are rare. In order to gain some insights we accomplished a set of 12 laboratory experiments using a servo-controlled direct-shear apparatus, under room temperature and without controlling the air humidity. Two fault gouge layers (industrially produced quartz powder, average particle size of 5 μ m, and pre-shear thickness of 1.5, 2.0 and 3.0 mm,) were sandwiched between three granite blocks. The middle block was slid in order to create frictional structures within the simulated gouge. The total imposed shear strain varies between 0.14 and 11.80. The post-shear gouge layer thickness ranges from 0.99-2.11 mm. Each experiment was run under a constant normal stress (varying from 10-44 MPa through the experiments) and at a constant shear velocity (0.07, 0.7 and 7 μ m/s, through the experiments). Later, in cross-sections of solidified by epoxy glue gouge (parallel to the shear direction, normal to the gouge walls,) we quantified the numerous R-shears, according to their density distribution, fracture thickness (measured perpendicularly to the fracture walls), fracture angle and morphology, and fracture length. In gouge views parallel to the sliding blocks, we measured fracture length and along-strike R-shear morphology. Although the latter data are with lower quality, both observational sets provide precise statistical fracture data as well snapshots of evolving 3D structures. We observe shear localization with decreasing gouge layer thickness and with increasing normal stress. The average density of major fractures increases from 2.83 to 3.67 [fracture/cm] for decrease of the post-shear gouge layer thickness. This is at the expense of a considerable decrease of visible more diffusive minor fractures. On the other hand, the fractures formed at lower normal stress are more irregular and show average fracture density of 4.48 [fracture/cm]. The latter decreases down to 3.64 at higher normal stress, as the fracture morphology becomes more regular. The fracture density increases abruptly from zero, after a small total shear strain (0.15-0.50), and later the change is slower or none with the increase of the total shear strain; the fractures are already localized and they accommodate most of the brittle deformation. Also we observe weak polarity in fracture development in accordance to the sliding sense, especially in the subset of fractures starting from the gouge wall and dying out within the gouge layer. More such fractures are developed along the leading part of the sliding blocks. Our results throw new light over the formation and development of fault-related structures and their dependency on the earthquake-governing physical parameters.
2014-01-01
Background It is well known that different Eimeria maxima strains exhibit significant antigenic variation. However, the genetic basis of these phenotypes remains unclear. Methods Total RNA and mRNA were isolated from unsporulated oocysts of E. maxima strains SH and NT, which were found to have significant differences in immunogenicity in our previous research. Two subtractive cDNA libraries were constructed using suppression subtractive hybridization (SSH) and specific genes were further analyzed by dot-blot hybridization and qRT-PCR analysis. Results A total of 561 clones were selected from both cDNA libraries and the length of the inserted fragments was 0.25–1.0 kb. Dot-blot hybridization revealed a total of 86 differentially expressed clones (63 from strain SH and 23 from strain NT). Nucleotide sequencing analysis of these clones revealed ten specific contigs (six from strain SH and four from strain NT). Further analysis found that six contigs from strain SH and three from strain NT shared significant identities with previously reported proteins, and one contig was presumed to be novel. The specific differentially expressed genes were finally verified by RT-PCR and qRT-PCR analyses. Conclusions The data presented here suggest that specific genes identified between the two strains may be important molecules in the immunogenicity of E. maxima that may present potential new drug targets or vaccine candidates for coccidiosis. PMID:24894832
Avetisian, L R; Voronina, O L; Chernukha, M Iu; Kunda, M S; Gabrielian, N I; Lunin, V G; Shaginian, I A
2012-01-01
Study genetic diversity of P. aeruginosa strains persisting in patients of Federal Scientific Center of Transplantology and Artificial Organs, and main factors facilitating persistence of strains in the hospital. 136 P. aeruginosa strains isolated from patients of the center for 3 years 6 months were genotyped by RAPD-PCR and MLST methods and studied for antibiotics resistance and presence of integrons. Genetic diversity of strains persisting in hospital was established. Strains of main genotypes ST235, ST446, ST598 were isolated from patients of various surgical departments. Patients were shown to be colonized by these strains during stay in reanimation and intensive therapy department (RITD) of the hospital. Strains of dominant genotype 235 were isolated from 47% of examined patients during more than 3 years. Only genotype 235 strains contained integron with cassettes of antibiotics resistance genes blaGES5 and aadA6 in the genome. The data obtained show that over the period of observation in the center 1 clone of P. aeruginosa that belonged to genotype 235 dominated. This clone was endemic for this hospital and in the process of prolonged persistence became more resistant to antibiotics. Colonization of patients with these strains occurs in RITD. This confirms the necessity of constant monitoring of hospital microflora for advance detection of potentially dangerous epidemic hospital strains able to cause hospital infections.
Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M
1999-04-01
In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.
NASA Astrophysics Data System (ADS)
Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo
2017-04-01
Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.
1983-11-01
boundary sliding. As a result, the steady state creep rate will have the form: Es EDIS ÷ GBS where I DIS = strain rate from dislocation motion and 6GBS...prevent diffusion bonding between the specimen heads and grips. The test apparatus used to perform the tensile tests was an Instron- Satec furnace...testing was done utilizing leveled creep racks (12,000 lb. capacity) modified to produce constant load or constant stress. The furnaces were of the Satec
On the role of constant-stress surfaces in the problem of minimizing elastic stress concentration
NASA Technical Reports Server (NTRS)
Wheeler, L.
1976-01-01
Cases involving antiplane shear deformation, axisymmetric torsion, and plane strain theory, with surfaces of constant stress magnitude optimal in terms of minimizing stress, are investigated. Results for the plane theory refer to exterior doubly connected domains. Stresses generated by torsion of an elastic solid lying within a radially convex region of revolution with plane ends, body force absent, and lateral surface traction-free, are examined. The unknown portion of the boundary of such domains may involve a hole, fillet, or notch.
NASA Astrophysics Data System (ADS)
Palmer, John; Dobrovolny, Hana M.; Beauchemin, Catherine A. A.
2017-01-01
Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate of chronic infections. In the present work, we use a nonlinear mathematical model representing the course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship relating the true treatment dose and time elapsed between doses to the constant drug dose required to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral infection parameters, such as infection and production rate, so that it is not possible to extract drug efficacy from viral decay rate alone.
Lipid Content of Antibiotic-Resistant and -Sensitive Strains of Serratia marcescens
Chang, Chuan-Yi; Molar, Roger E.; Tsang, Joseph C.
1972-01-01
The lipid content of antibiotic-resistant, nonpigmented strain (Bizio) and antibiotic-sensitive, pigmented strain (08) of Serratia marcescens was studied. The resistant strain contains at least three times more total extractable lipid and phospholipid than the sensitive strain. Lysophosphatidylethanolamine, phosphatidylserine, lecithin, phosphatidylglycerol, phosphatidylethanolamine, and polyglycerolphosphatide were identified in the phospholipid fractions of both strains. Images PMID:4568257
NASA Astrophysics Data System (ADS)
Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin
2018-02-01
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2015-01-01
Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions
Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.
Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus
2018-01-01
The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Gao, Y. C.
1983-01-01
A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.
Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraskar, Bharat G.; Kakade, S. G.; Kambale, R. C., E-mail: rckambale@gmail.com
2016-05-23
The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization currentmore » density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.« less
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
NASA Technical Reports Server (NTRS)
Gil, Christopher M.
1998-01-01
An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.
Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J
2018-05-01
A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.
Creep-fatigue of low cobalt superalloys
NASA Technical Reports Server (NTRS)
Halford, G. R.
1982-01-01
Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.
2015-04-01
of unit length: da = F L a αδ α Ad A , da = F L−1αaδ A α dA . (2.12) The metric tensor associated with the deformed... A spatial density tensor θ and Frank vector ω̂ of the following forms are consistent with geometry of the problem: θ = θzzgz ⊗ gz = ω̂δ(r)gz ⊗ gz = δ...stress depends quadratically on strain, with the elastic potential cubic in strain and including elastic constants of
Long-time dynamic compatibility of elastomeric materials with hydrazine
NASA Technical Reports Server (NTRS)
Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.
1973-01-01
The tensile property surfaces for two elastomeric materials, EPT-10 and AF-E-332, were generated in air and in liquid hydrazine environments using constant strain rate tensile tests over a range of temperatures and elongation rates. These results were used to predict the time-to-rupture for these materials in hydrazine as a function of temperature and amount of strain covering a span of operating times from less than a minute to twenty years. The results of limited sheet-folding tests and their relationship to the tensile failure boundary are presented and discussed.
Solano-Altamirano, J M; Goldman, Saul
2015-12-01
We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.
Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...
2016-06-14
In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less
A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues.
Nicolle, S; Vezin, P; Palierne, J-F
2010-03-22
Biological soft tissues exhibit a strongly nonlinear viscoelastic behaviour. Among parenchymous tissues, kidney and liver remain less studied than brain, and a first goal of this study is to report additional material properties of kidney and liver tissues in oscillatory shear and constant shear rate tests. Results show that the liver tissue is more compliant but more strain hardening than kidney. A wealth of multi-parameter mathematical models has been proposed for describing the mechanical behaviour of soft tissues. A second purpose of this work is to develop a new constitutive law capable of predicting our experimental data in the both linear and nonlinear viscoelastic regime with as few parameters as possible. We propose a nonlinear strain-hardening fractional derivative model in which six parameters allow fitting the viscoelastic behaviour of kidney and liver tissues for strains ranging from 0.01 to 1 and strain rates from 0.0151 s(-1) to 0.7s(-1). Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz
2016-01-01
Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Ying; Lee, Sangheon; Freysoldt, Christoph; Neugebauer, Jörg
2015-08-01
The structural and electronic properties of InxGa1 -xN alloys are studied as a function of c -plane biaxial strain and In ordering by density functional theory with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. A nonlinear variation of the c lattice parameter with In content is observed in biaxial strain and should be taken into account when deducing In content from interplanar distances. From compressive to tensile strain, the character of the top valence-band state changes, leading to a nonlinear variation of the band gap in InxGa1 -xN . Interestingly, the well-known bowing of the InxGa1 -xN band gap is largely removed for alloys grown strictly coherently on GaN, while the actual values for band gaps at x <0.33 are hardly affected by strain. Ordering plays a minor role for lattice constants but may induce changes of the band gap up to 0.15 eV.
Strain dependence of In incorporation in m-oriented GaInN/GaN multi quantum well structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horenburg, Philipp, E-mail: p.horenburg@tu-braunschweig.de; Buß, Ernst Ronald; Rossow, Uwe
We demonstrate a strong dependence of the indium incorporation efficiency on the strain state in m-oriented GaInN/GaN multi quantum well (MQW) structures. Insertion of a partially relaxed AlInN buffer layer opens up the opportunity to manipulate the strain situation in the MQW grown on top. By lattice-matching this AlInN layer to the c- or a-axis of the underlying GaN, relaxation towards larger a- or smaller c-lattice constants can be induced, respectively. This results in a modified template for the subsequent MQW growth. From X-ray diffraction and photoluminescence measurements, we derive significant effects on the In incorporation efficiency and In concentrationsmore » in the quantum well (QW) up to x = 38% without additional accumulation of strain energy in the QW region. This makes strain manipulation a very promising method for growth of high In-containing MQW structures for efficient, long wavelength light-emitting devices.« less
On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium
NASA Astrophysics Data System (ADS)
Kovtanyuk, L. V.; Panchenko, G. L.
2017-11-01
The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.
Dynamic room temperature precipitation during cyclic deformation of an Al-Zn-Mg-Cu alloy
NASA Astrophysics Data System (ADS)
Hutchinson, C. R.; de Geuser, F.; Deschamps, A.
The effect of pre-straining on a precipitation heat treatment is a well-chartered area and is relevant to a number of Al alloy manufacturing processes. When straining and precipitation occur concurrently, the situation is less clear. This may arise during creep, fatigue or elevated temperature forming operations. Straining introduces dislocations and strain-induced vacancies that may enhance nucleation and growth processes but the dislocations may also shear and/or cause precipitate dissolution. This study reports a systematic characterization of precipitation during room temperature cyclic deformation of the AA7050 (Al-Zn-Mg-Cu) alloy. The mechanical response is monitored using plastic strain controlled cyclic deformation tests and the precipitation state is characterized using small angle x-ray scattering. It is shown that the precipitate volume fraction increases with the number of deformation cycles and is well correlated with the hardening increment observed but the mean precipitate radii remains relatively constant during cycling at 4-5A.
NASA Technical Reports Server (NTRS)
Hebsur, M. G.; Miner, R. V.
1986-01-01
The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.
Dynamic Recrystallization Behavior of AISI 422 Stainless Steel During Hot Deformation Processes
NASA Astrophysics Data System (ADS)
Ahmadabadi, R. Mohammadi; Naderi, M.; Mohandesi, J. Aghazadeh; Cabrera, Jose Maria
2018-02-01
In this work, hot compression tests were performed to investigate the dynamic recrystallization (DRX) process of a martensitic stainless steel (AISI 422) at temperatures of 950, 1000, 1050, 1100 and 1150 °C and strain rates of 0.01, 0.1 and 1 s-1. The dependency of strain-hardening rate on flow stress was used to estimate the critical stress for the onset of DRX. Accordingly, the critical stress to peak stress ratio was calculated as 0.84. Moreover, the effect of true strain was examined by fitting stress values to an Arrhenius type constitutive equation, and then considering material constants as a function of strain by using a third-order polynomial equation. Finally, two constitutive models were used to investigate the competency of the strain-dependent constitutive equations to predict the flow stress curves of the studied steel. It was concluded that one model offers better precision on the flow stress values after the peak stress, while the other model gives more accurate results before the peak stress.
ERIC Educational Resources Information Center
DeMott, Benjamin
1990-01-01
A faculty member at Amherst discusses the challenges that have shaken his "self-edifice." He says there was strain "in the scrambling, adjusting, re-doing, remodeling of the mind, and in the constant collisions with past fatuity and obliviousness." Mina Shaughnessy's "Errors and Expectations" is recommended. (MLW)
DOT National Transportation Integrated Search
1972-01-01
The correlation between asphaltic concrete tensile stiffness and fatigue life was determined in the laboratory. Constant strain fatigue tests were utilized and indirect tensile tests were selected because of their simplicity and applicability. Four a...
Immune responses of poultry to newcastle disease virus
USDA-ARS?s Scientific Manuscript database
Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are cont...
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.
2018-03-01
Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.
NASA Astrophysics Data System (ADS)
Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang
2008-02-01
The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.
THE FAILURE OF STRUCTURAL METALS SUBJECTED TO STRAIN-CYCLING CONDITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, R.W.; Douglas, D.A.
1958-11-01
Data showing the isothermal strain-cycling capacity of three metals, inconel, Hastelloy "B," and beryllium, are presented. It is noted that at frequencies of 0.5 cycles per minute the data satisfied am equation of the form N/ sup alpha / epsilon /sub p/ = K, where N is the number of cycles to failure, epsilon /sub p/ is the plastic strain per cycle, and alpha and K are constants whose values depend on the structure and test conditions. Data on Ihconel are given to establish the effect of grain size, specimen geometry, temperature, and frequency. It is found that at temperaturesmore » above 1300 F, grain sine amd frequency exert a pronounced effect on the rupture life. Fine-gralned metal survives more cycles before failure than coarsegrained material. Lomg time cycles shorten the number of cycles to failure when the strain per cycle is low. Thermal strain cycling dain for ihconel are compared to strain cycling data at the same mean temperature. Good correlation is found to exist between the two types of data. (auth)« less
1000 to 1300 K slow plastic compression properties of Al-deficient NiAl
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.
1991-01-01
Nickel aluminides containing 37, 38.5 and 40 at. pct Al have been fabricated by XD synthesis and hot pressing. Such materials were compression tested in air under constant velocity conditions between 1000 and 1300 K. Examination of the microstructures of hot pressed and compression tested aluminides indicated that the structure consisted of two phases, gamma-prime and NiAl, for essentially all conditions, where gamma-prime was usually found on the NiAl grain boundaries. The stress-strain behavior of all three intermetallics was similar where flow at a nominally constant stress occurred after about two-percent plastic deformation. Furthermore, the 1000 to 1300 K flow stress-strain rate properties are nearly identical for these materials, and they are much lower than those for XD processed Ni-50Al. The overall deformation of the two phase nickel aluminides appears to be controlled by dislocation climb in NiAl rather than processes in gamma-prime.
"Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange
NASA Astrophysics Data System (ADS)
Webber, Sam; Ellis, Susan; Fagereng, Åke
2018-04-01
What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.
Atkinson, M. R.; Murray, A. W.
1965-01-01
1. A strain of Ehrlich ascites-tumour cells that showed little inhibition of growth in the presence of 6-mercaptopurine accumulated less than 5% as much 6-thioinosine 5′-phosphate in vivo, in the presence of 6-mercaptopurine, as did the sensitive strain from which it was derived. 2. Specific activities of the phosphoribosyltransferases that convert adenine, guanine, hypoxanthine and 6-mercaptopurine into AMP, GMP, IMP and 6-thioinosine 5′-phosphate were similar in extracts of the resistant and the sensitive cells. 3. As found previously with sensitive cells, 6-mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase from the resistant cells and does not inhibit the adenine phosphoribosyltransferase from these cells. Michaelis constants and inhibitor constants of the purine phosphoribosyltransferases from resistant cells did not differ significantly from those measured with the corresponding enzymes from sensitive cells. 4. Resistance to 6-mercaptopurine in this case is probably not due to qualitative or quantitative changes in these transferases. PMID:14342251
Thermodynamically consistent relations involving plasticity, internal energy and thermal effects.
Schreyer, H L; Maudlin, P J
2005-11-15
Experimental data associated with plastic deformations indicate that the temperature is less than that predicted from dissipation based on plastic work. To obtain reasonable correlation between theoretical and experimental results, the plastic work is often multiplied by a constant beta. This paper provides an alternative thermodynamic framework in which it is proposed that there is an additional internal energy associated with dislocation pile-up or increase in dislocation density. The form of this internal energy follows from experimental data that relates flow stress to dislocation density and to equivalent plastic strain. The result is that beta is not a constant but a derived function. Representative results for beta and temperature as functions of effective plastic strain are provided for both an uncoupled and a coupled thermoplastic theory. In addition to providing features that are believed to be representative of many metals, the formulation can be used as a basis for more advanced theories such as those needed for large deformations and general forms of internal energy.
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
A Linearized and Incompressible Constitutive Model for Arteries
Liu, Y.; Zhang, W.; Wang, C.; Kassab, G. S.
2011-01-01
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke’s law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young’s moduli E1 (circumferential), E2 (axial), and E3 (radial) are necessary to fit the data. The advantages and limitations of this model are discussed. PMID:21605567
A linearized and incompressible constitutive model for arteries.
Liu, Y; Zhang, W; Wang, C; Kassab, G S
2011-10-07
In many biomechanical studies, blood vessels can be modeled as pseudoelastic orthotropic materials that are incompressible (volume-preserving) under physiological loading. To use a minimum number of elastic constants to describe the constitutive behavior of arteries, we adopt a generalized Hooke's law for the co-rotational Cauchy stress and a recently proposed logarithmic-exponential strain. This strain tensor absorbs the material nonlinearity and its trace is zero for volume-preserving deformations. Thus, the relationships between model parameters due to the incompressibility constraint are easy to analyze and interpret. In particular, the number of independent elastic constants reduces from ten to seven in the orthotropic model. As an illustratory study, we fit this model to measured data of porcine coronary arteries in inflation-stretch tests. Four parameters, n (material nonlinearity), Young's moduli E₁ (circumferential), E₂ (axial), and E₃ (radial) are necessary to fit the data. The advantages and limitations of this model are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
2018-01-01
The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS’s for aircrew. PMID:29723267
Influence of protein deposition on bacterial adhesion to contact lenses.
Subbaraman, Lakshman N; Borazjani, Roya; Zhu, Hua; Zhao, Zhenjun; Jones, Lyndon; Willcox, Mark D P
2011-08-01
The aim of the study is to determine the adhesion of Gram positive and Gram negative bacteria onto conventional hydrogel (CH) and silicone hydrogel (SH) contact lens materials with and without lysozyme, lactoferrin, and albumin coating. Four lens types (three SH-balafilcon A, lotrafilcon B, and senofilcon A; one CH-etafilcon A) were coated with lysozyme, lactoferrin, or albumin (uncoated lenses acted as controls) and then incubated in Staphylococcus aureus (Saur 31) or either of two strains of Pseudomonas aeruginosa (Paer 6294 and 6206) for 24 h at 37 °C. The total counts of the adhered bacteria were determined using the H-thymidine method and viable counts by counting the number of colony-forming units on agar media. All three strains adhered significantly lower to uncoated etafilcon A lenses compared with uncoated SH lenses (p < 0.05). Lysozyme coating on all four lens types increased binding (total and viable counts) of Saur 31 (p < 0.05). However, lysozyme coating did not influence P. aeruginosa adhesion (p > 0.05). Lactoferrin coating on lenses increased binding (total and viable counts) of Saur 31 (p < 0.05). Lactoferrin-coated lenses showed significantly higher total counts (p < 0.05) but significantly lower viable counts (p < 0.05) of adhered P. aeruginosa strains. There was a significant difference between the total and viable counts (p < 0.05) that were bound to lactoferrin-coated lenses. Albumin coating of lenses increased binding (total and viable counts) of all three strains (p < 0.05). Lysozyme deposited on contact lenses does not possess antibacterial activity against certain bacterial strains, whereas lactoferrin possess an antibacterial effect against strains of P. aeruginosa.
Strain transfer between disconnected, propagating rifts in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; Tapponnier, P.; Courtillot, V.; Gallet, Y.; Jacques, E.; Gillot, P.-Y.
2001-01-01
We showed before that both the Aden and Red Sea plate boundaries are currently rifting and propagating along two distinct paths into Afar through the opening of a series of disconnected, propagating rifts. Here we use new geochronological, tectonic, and paleomagnetic data that we acquired mostly in the southeastern part of Afar to examine the geometry, kinematics, and time-space evolution of faulting related to strain transfer processes. It appears that transfer of strain is accommodated by a bookshelf faulting mechanism wherever rifts or plate boundaries happen to overlap without being connected. This mechanism implies the rotation about a vertical axis of small rigid blocks along rift-parallel faults that are shown to slip with a left-lateral component, which is as important as their normal component of slip (rates of ˜2-3 mm/yr). By contrast, where rifts do not overlap, either a classic transform fault (Maskali) or an oblique transfer zone (Mak'arrasou) kinematically connects them. The length of the Aden-Red Sea overlap has increased in the last ˜0.9 Myr, as the Aden plate boundary propagated northward into Afar. As a consequence, the first-order blocks that we identify within the overlap did not all rotate during the same time-span nor by the same amounts. Similarly, the major faults that bound them did not necessarily initiate and grow as their neighboring faults did. Despite these variations in strain distribution and kinematics, the overlap kept accommodating a constant amount of strain (7 to 15% of the extension amount imposed by plate driving forces), which remained distributed on a limited number (seven or eight) of major faults, each one having slipped at constant rates (˜3 and 2 mm/yr for vertical and lateral rates, respectively). The fault propagation rates and the block rotation rates that we either measure or deduce are so fast (30-130 mm/yr and 15-38°/Myr, respectively) that they imply that strain transfer processes are transient, as has been shown to be the case for the processes of tearing, rift propagation, and strain jumps in Afar.
NASA Astrophysics Data System (ADS)
Diak, Bradley James
Forming limit predictions that incorporate crystal plasticity models still cannot adequately predict the deformation performance of polycrystalline materials. The reason for the limitation in predictive power is that the constitutive equations used to connect to the atomic scale assume an affine deformation which do not have a physical basis, but give general trends. This study was undertaken to better elucidate the microplastic process and how it manifests itself phenomenologically. In this endeavour, the strain rate sensitivity of the flow stress was identified as one parameter that greatly affects the forming limit. Hence, an attempt was made to properly define and measure the strain rate sensitivity according to the dictates of thermodynamics. The thermodynamics of systems can delineate the evolution of the state of a material if the state variables can be characterized and measured. Inevitably, these variables must be determined at constant structure. Using the theory of thermally activated flow, where the movement of dislocations past obstacles is the rate controlling step, the mechanical testing techniques have been designed to statistically assess the dynamic evolution of the microstructure by controlling the temperature, T, and strain rate, dotvarepsilon, and measuring the stress, sigma, mean slip distance, lambda, and mean slip velocity, dotlambda, to define sigma=f(lambda,dotlambda, T). The apparent activation volume, which characterizes the obstacle resistance of strain centres, is determined at constant structure by applying the strain rate change technique. Strain rate sensitivity data are compared to the Cottrell-Stokes relation, and the Haasen plot is used to separate the different contributions to the flow stress. Using these precise measurements at interrupted segments of strain, the evolution of a microstructure during plastic flow can be monitored. By this examination of different rate controlling obstacles, the microstructural parameters which correlate to formability were assessed. Detailed experimental evidence is given for different aluminum alloys containing mainly fast or slow diffusing solute species, transition precipitates, dispersed particles, and/or dislocation debris. These systems of Al-Fe, Al-Cr, Al-Cu, Al-Mg, and Al-Mg-Si, all displayed unique dislocation-defect interactions which could be elucidated by the current theory of thermally activated flow.
Quality parameters and RAPD-PCR differentiation of commercial baker's yeast and hybrid strains.
El-Fiky, Zaki A; Hassan, Gamal M; Emam, Ahmed M
2012-06-01
Baker's yeast, Saccharomyces cerevisiae, is a key component in bread baking. Total of 12 commercial baker's yeast and 2 hybrid strains were compared using traditional quality parameters. Total of 5 strains with high leavening power and the 2 hybrid strains were selected and evaluated for their alpha-amylase, maltase, glucoamylase enzymes, and compared using random amplified polymorphic DNA (RAPD). The results revealed that all selected yeast strains have a low level of alpha-amylase and a high level of maltase and glucoamylase enzymes. Meanwhile, the Egyptian yeast strain (EY) had the highest content of alpha-amylase and maltase enzymes followed by the hybrid YH strain. The EY and YH strains have the highest content of glucoamylase enzyme almost with the same level. The RAPD banding patterns showed a wide variation among commercial yeast and hybrid strains. The closely related Egyptian yeast strains (EY and AL) demonstrated close similarity of their genotypes. The 2 hybrid strains were clustered to Turkish and European strains in 1 group. The authors conclude that the identification of strains and hybrids using RAPD technique was useful in determining their genetic relationship. These results can be useful not only for the basic research, but also for the quality control in baking factories. © 2012 Institute of Food Technologists®
Liu, Xiao Bin; Feng, Bang; Li, Jing; Yan, Chen; Yang, Zhu L
2016-10-10
Flammulina velutipes is one of the most widely cultivated mushroom species in China. However, its genetic background remains poorly understood due to the limited sampling and poor molecular markers used. In this study, 124 F. velutipes strains were employed, including 110 cultivars and 14 wild strains, and 25 new SSR markers were developed based on the genome of F. velutipes. A total of 153 alleles were detected in 124 strains to investigate the improper cultivar naming, genetic diversity and breeding history of F. velutipes in China. Our fingerprinting analyses indicated that 65 strains can be differentiated from the total of 124 strains, and over 53% of the strains are labeled with improper commercial names. The genetic diversities of wild strains are higher than those of the cultivars, suggesting that wild strains may harbor a large "arsenal" gene pool in nature available for strain breeding. The white cultivars in China were originally introduced from Japan, while the yellow cultivars were directly domesticated from wild strains isolated from southeastern China or hybridized between the white cultivars and yellow strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Total lipid and fatty acid composition of eight strains of marine diatoms
NASA Astrophysics Data System (ADS)
Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun
2000-12-01
Fatty acid composition and total lipid content of 8 strains of marine diatoms ( Nitzschia frustrula, Nitzschia closterium, Nitzschia incerta, Navicula pelliculosa, Phaeodactylum tricornutum, Synedra fragilaroides) were examined. The microalgae were grown under defined conditions and harvested at the late exponential phase. The major fatty acids in most strains were 14∶0 (1.0% 6.3%), 16∶0 (13.5 26.4%), 16∶1n-7 (21.1% 46.3%) and 20∶5n-3 (6.5% 19.5%). The polyunsaturated fatty acids 16∶2n-4, 16∶3n-4, 16∶4n-1 and 20∶4n-6 also comprised a significant proportion of the total fatty acids in some strains. The characteristic fatty acid composition of diatoms is readily distinguishable from those of other microalgal groups. Significant concentration of the polyunsaturated fatty acid 20∶5n-3 (eicosapentaenoic acid) was present in each strain, with the highest proportion in B222 (19.5%).
Desai, Manisha Rajib; Ghosh, Sandip
2003-01-01
A study was undertaken on environmental mycoflora of rice mills situated in Bawla town, Ahmedabad district. The airborne fungal communities were isolated and identified quantitatively by using Andersen-6-stage viable sampler, midget impinger and high volume samplers (Cone and Hexhlet for total and respirable dusts respectively). Of all the isolates, genus Aspergillus was predominant and among the Aspergillus species, A. flavus was the common isolate, irrespective of the method applied for sample collection. Number of isolates recovered from the working place was significantly greater (p < 0.01) compared to control. Total percentage of aflatoxin positive strains of A. flavus was 8 %. These aflatoxin producing strains were identified on various media, such as Czapek agar (Cz) with 0.05 % anisaldehyde, APA and CAM. Surface morphology of aflatoxin positive strains was studied by SEM. Highly significant total and respirable dust concentrations were found in the work place (p < 0.01) whereas in the store, only the total dust concentration was significantly higher (p < 0.05) than the control site. The study indicates that the rice mill workers are occupationally exposed to airborne aflatoxin producing strains of A. flavus. Thus, they require protective mask for their safety.
NASA Astrophysics Data System (ADS)
Liang, Ying; Mai, Kang-Sen; Sun, Shi-Chun; Yu, Dao-Zhan
2001-09-01
The effect of light intensity (1500 lx and 5000 lx) on the total lipid and fatty acid composition of six strains of marine diatoms Cylindrotheca fusiformis (B211), Phaeodactylum tricornutum (B114, B118 and B221) Nitzschia closterium (B222) and Chaetoceros gracilis (B13) was investigated. The total lipids of B13, B114, and B211 grown at 5000 lx were lower than those grown at 1500 lx. No evident changes were observed in B118, B221 and B222. Fatty acid composition changed considerably at different light intensity although no consistent correlation between the relative proportion of a single FA and light intensity. The major fatty acids of the 6 strains were 14∶0, 16∶0, 16∶1 (n-7) and 20∶5(n-3). Cylindrotheca fusiformis had high percentage of 20∶4n 6(9.2 10.9%). The total polyunsaturated fatty acid in all 6 strains decreased with increasing light intensity. The percentage of the highly unsaturated fatty acid eicosapentaenoic acid (EPA) decreased with increasing light intensity in all strains except Chaetoceros gracilis.
Yielding of tantalum at strain rates up to 10{sup 9 }s{sup −1}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowhurst, Jonathan C., E-mail: crowhurst1@llnl.gov; Armstrong, Michael R., E-mail: armstrong30@llnl.gov; Gates, Sean D.
2016-08-29
We have used a 45 μJ laser pulse to accelerate the free surface of fine-grained tantalum films up to peak velocities of ∼1.2 km s{sup −1}. The films had thicknesses of ∼1–2 μm and in-plane grain widths of ∼75–150 nm. Using ultrafast interferometry, we have measured the time history of the velocity of the surface at different spatial positions across the accelerated region. The initial part of the histories (assumed to correspond to the “elastic precursor” observed previously) exhibited measured strain rates of ∼0.6 to ∼3.2 × 10{sup 9 }s{sup −1} and stresses of ∼4 to ∼22 GPa. Importantly, we find that elastic amplitudes exhibit littlemore » variation with strain rate for a constant peak surface velocity, even though, via covariation of the strain rate with peak surface velocity, they vary with strain rate. Furthermore, by comparison with data obtained at lower strain rates, we find that amplitudes are much better predicted by peak velocities rather than by either strain rate or sample thickness.« less
Importance of Xanthobacter autotrophicus in toluene biodegradation within a contaminated stream.
Tay, S T; Hemond, H F; Polz, M F; Cavanaugh, C M; Krumholz, L R
1999-02-01
Toluene-degrading strains T101 and T102 were isolated from rock surface biomass in a toluene-contaminated freshwater stream. These organisms were present at a density of 5.5 x 10(6) cells/g of rock surface biomass. Both are aerobic, rod-shaped, Gram-negative, non-motile, catalase-positive, oxidase-positive, with yellow pigments, and can grow on benzene. Phylogenetic analyses show that strains T101 and T102 have 16S rDNA sequences identical to Xanthobacter autotrophicus. Fatty acid analyses indicate that they are different strains of the same species Xanthobacter autotrophicus, and that they have high levels of cis-11-octadecenoic acid and cis-9-hexadecenoic acid; 3-hydroxyhexadecanoic acid is the major hydroxy fatty acid present. Strains T101 and T102 had maximal velocities (Vmax) for toluene biodegradation of 3.8 +/- 0.5 and 28.3 +/- 2.2 mumoles toluene/mgprotein-hr, and half-saturation constants (Ks) of 0.8 +/- 0.5 and 11.5 +/- 2.4 microM, respectively. Strain T102 has a higher capacity than strain T101 to degrade toluene, and kinetic calculations suggest that strain T102 may be a major contributor to toluene biodegradation in the stream.
Nonlinearity of bituminous mixtures
NASA Astrophysics Data System (ADS)
Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.
2018-02-01
This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).
Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity
Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut
2015-01-01
Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235
Atomic-scale reversibility in sheared glasses
NASA Astrophysics Data System (ADS)
Fan, Meng; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey
Systems become irreversible on a macroscopic scale when they are sheared beyond the yield strain and begin flowing. Using computer simulations of oscillatory shear, we investigate atomic scale reversibility. We employ molecular dynamics simulations to cool binary Lennard-Jones liquids to zero temperature over a wide range of cooling rates. We then apply oscillatory quasistatic shear at constant pressure to the zero-temperature glasses and identify neighbor-switching atomic rearrangement events. We determine the critical strain γ*, beyond which atoms in the system do not return to their original positions upon reversing the strain. We show that for more slowly cooled glasses, the average potential energy is lower and the typical size of atomic rearrangements is smaller, which correlates with larger γ*. Finally, we connect atomic- and macro-scale reversibility by determining the number of and correlations between the atomic rearrangements that occur as the system reaches the yield strain.
Smetana, Ofira; Eylan, Emanuel; Weinberg, Miriam
1977-01-01
Fifty strains of herpes simplex virus, isolated from patients with herpetic keratitis, were examined in vitro for susceptibility to polyinosinic acid-polycytidylic acid [poly(I:C)] in the presence of a constant concentration of diethylaminoethyl-dextran. The minimal inhibitory concentration of poly(I:C) for 44 of these strains ranged from 0.0001 to 0.1 μg/ml; for the remaining six strains, the minimal inhibitory concentration stood at 1 to 2 μg/ml. Fifteen isolates from primary infections were more susceptible to poly(I:C) than 35 isolates from recurrent infections. Isolates acquired at different points of a given clinical episode showed similar susceptibilities to poly(I:C). In two patients, isolates from consecutive recurrences of infection exhibited reduced susceptibilities. The implications of the above observations for the therapeutic use of poly(I:C) are discussed. PMID:195515
Compressive behavior of fine sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley E.; Kabir, Md. E.; Song, Bo
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less
Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Lifshitz, J. M.
1981-01-01
Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Noebe, R. D.; Bowman, R.
1989-01-01
The effect of a zirconium addition (0.05 at. pct) to a stoichiometric NiAl alloy on the brittle-to-ductile transition temperature (BDTT) of this alloy was investigated. Constant velocity tensile tests were conducted to fracture between 300 and 1100 K under initial strain rate 0.00014/sec, and the true stress and true strain values were determined from plots of load vs time after subtracting the elastic strain. The inelastic strain was measured under a traveling microscope. Microstructural characterization of as-extruded and fractured specimens was carried out by SEM and TEM. It was found that, while the addition of 0.05 at. pct Zr strengthened the NiAl alloy, it increased its BDTT; this shift in the BDTT could not be attributed either to variations in grain size or to impurity contents. Little or no room-temperature ductility was observed for either alloy.
Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel
NASA Astrophysics Data System (ADS)
Li, Hong-Bin; Feng, Yun-Li
2016-04-01
The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.
A NEW STRAIN OF TRANSMISSIBLE LEUCEMIA IN FOWLS (STRAIN H).
Ellermann, V
1921-03-31
1. A new strain of fowl leucosis has been transmitted through twelve generations of fowls. 2. An increase in virulence was observed during its passage. This was shown in a shortening of the interval between inoculation and death. The increase in virulence does not affect the number of successful inoculations, which remains approximately constant in from 20 to 40 per cent of the birds employed. 3. As with former strains, the disease manifests itself in various forms; i.e., myeloid and intravascular lymphoid types. A single lymphatic case was observed. 4. In several intravascular cases a diminution in the hemolytic power of the serum was established. This phenomenon was absent in a number of myeloid cases. 5. Active immunization cannot be produced by means of the subcutaneous injection of virulent material. 6. The finding of previous experiments that the virus is filterable has been confirmed. 7. The inoculation of human leucemic material into fowls gave negative results.
NASA Astrophysics Data System (ADS)
Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun
2017-10-01
Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.
NASA Astrophysics Data System (ADS)
Ji, Dongmei; Ren, Jianxing; Zhang, Lai-Chang
2016-11-01
A novel creep-fatigue life prediction model was deduced based on an expression of the strain energy density in this study. In order to obtain the expression of the strain energy density, the load-controlled creep-fatigue (CF) tests of P92 steel at 873 K were carried out. Cyclic strain of P92 steel under CF load was divided into elastic strain, applying and unloading plastic strain, creep strain, and anelastic strain. Analysis of cyclic strain indicates that the damage process of P92 steel under CF load consists of three stages, similar to pure creep. According to the characteristics of the strains above, an expression was defined to describe the strain energy density for each cycle. The strain energy density at stable stage is inversely proportional to the total strain energy density dissipated by P92 steel. However, the total strain energy densities under different test conditions are proportional to the fatigue life. Therefore, the expression of the strain energy density at stable stage was chosen to predict the fatigue life. The CF experimental data on P92 steel were employed to verify the rationality of the novel model. The model obtained from the load-controlled CF test of P92 steel with short holding time could predict the fatigue life of P92 steel with long holding time.
NASA Astrophysics Data System (ADS)
Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.
2013-04-01
Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.
Fernández-Pérez, Rocío; Torres, Carmen; Sanz, Susana; Ruiz-Larrea, Fernanda
2010-12-01
Strain typing of 103 acetic acid bacteria isolates from vinegars elaborated by the submerged method from ciders, wines and spirit ethanol, was carried on in this study. Two different molecular methods were utilised: pulsed field gel electrophoresis (PFGE) of total DNA digests with a number of restriction enzymes, and enterobacterial repetitive intergenic consensus (ERIC) - PCR analysis. The comparative study of both methods showed that restriction fragment PFGE of SpeI digests of total DNA was a suitable method for strain typing and for determining which strains were present in vinegar fermentations. Results showed that strains of the species Gluconacetobacter europaeus were the most frequent leader strains of fermentations by the submerged method in the studied vinegars, and among them strain R1 was the predominant one. Results showed as well that mixed populations (at least two different strains) occurred in vinegars from cider and wine, whereas unique strains were found in spirit vinegars, which offered the most stressing conditions for bacterial growth. Copyright © 2010 Elsevier Ltd. All rights reserved.
A new paradigm for the molecular basis of rubber elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, David E.; Barber, John L.
The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There aremore » serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief review of previous elasticity theories and their deficiencies, and present a new paradigm with an emphasis on experimental comparisons.« less
A new paradigm for the molecular basis of rubber elasticity
Hanson, David E.; Barber, John L.
2015-02-19
The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There aremore » serious philosophical objections to this assumption and others, such as the assumption that all network nodes undergo affine motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, quantum chemistry, and molecular dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model. When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high strain. Here we provide a brief review of previous elasticity theories and their deficiencies, and present a new paradigm with an emphasis on experimental comparisons.« less
NASA Astrophysics Data System (ADS)
Karmakar, Anish; Sivaprasad, S.; Nath, S. K.; Misra, R. D. K.; Chakrabarti, Debalay
2014-05-01
A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite-martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain ( ɛ = 1) and strain rate ( = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical deformation, warm-deformation followed by annealing is a simpler process to control in the rolling mill; however, the need for high-power rolling mill and controlled annealing facility imposes industrial challenges.
Garza-Gonzalez, Maria Teresa; Gonzalez Garza, Maria Teresa; Barboza Perez, Daniel; Vazquez Rodriguez, Augusto; Garcia-Gutierrez, Domingo Ixcoatl; Zarate, Xristo; Cantú Cardenas, Maria Elena; Urraca-Botello, Ludwing Ilytch; Lopez-Chuken, Ulrico Javier; Trevino-Torres, Alberto Ludovico; Cerino-Córdoba, Felipe de Jesus; Medina-Ruiz, Pavel; Villarreal-Chiu, Juan Francisco; Morones-Ramirez, Jose Ruben
2016-01-01
There is a current need to develop low-cost strategies to degrade and eliminate industrially used colorants discharged into the environment. Colorants discharged into natural water streams pose various threats, including: toxicity, degradation of aesthetics and inhibiting sunlight penetration into aquatic ecosystems. Dyes and colorants usually have complex aromatic molecular structures, which make them very stable and difficult to degrade and eliminate by conventional water treatment systems. The results in this work demonstrated that heavy metal-resistant Rhodotorula mucilaginosa strain UANL-001L isolated from the northeast region of Mexico produce an exopolysaccharide (EPS), during growth, which has colorant adsorption potential. The EPS produced was purified by precipitation and dialysis and was then physically and chemically characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and chemical elemental analysis. Here, the ability of the purified EPS produced to adsorb methylene blue (MB), which served as a model colorant, is studied. MB adsorption by the EPS is found to follow Langmuir Adsorption Isotherm kinetics at 25°C. Further, by calculating the Langmuir constant the adsorption capabilities of the EPS produced by the Rhodotorula mucilaginosa strain UANL-001L is compared to that of other adsorbents, both, microbially produced and from agroindustrial waste. The total adsorption capacity of the EPS, from the Rhodotorula mucilaginosa strain UANL-001L, was found to be two-fold greater than the best bioadsorbents reported in the literature. Finally, apart from determining which heavy metals stimulated EPS production in the strain, the optimal conditions of pH, heavy metal concentration, and rate of agitation of the growing culture for EPS production, was determined. The EPS reported here has the potential of aiding in the efficient removal of colorants both in water treatment plants and in situ in natural water streams.
Vazquez Rodriguez, Augusto; Garcia-Gutierrez, Domingo Ixcoatl; Zarate, Xristo; Cantú Cardenas, Maria Elena; Urraca-Botello, Ludwing Ilytch; Lopez-Chuken, Ulrico Javier; Trevino-Torres, Alberto Ludovico; Cerino-Córdoba, Felipe de Jesus; Medina-Ruiz, Pavel; Villarreal-Chiu, Juan Francisco; Morones-Ramirez, Jose Ruben
2016-01-01
There is a current need to develop low-cost strategies to degrade and eliminate industrially used colorants discharged into the environment. Colorants discharged into natural water streams pose various threats, including: toxicity, degradation of aesthetics and inhibiting sunlight penetration into aquatic ecosystems. Dyes and colorants usually have complex aromatic molecular structures, which make them very stable and difficult to degrade and eliminate by conventional water treatment systems. The results in this work demonstrated that heavy metal-resistant Rhodotorula mucilaginosa strain UANL-001L isolated from the northeast region of Mexico produce an exopolysaccharide (EPS), during growth, which has colorant adsorption potential. The EPS produced was purified by precipitation and dialysis and was then physically and chemically characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and chemical elemental analysis. Here, the ability of the purified EPS produced to adsorb methylene blue (MB), which served as a model colorant, is studied. MB adsorption by the EPS is found to follow Langmuir Adsorption Isotherm kinetics at 25°C. Further, by calculating the Langmuir constant the adsorption capabilities of the EPS produced by the Rhodotorula mucilaginosa strain UANL-001L is compared to that of other adsorbents, both, microbially produced and from agroindustrial waste. The total adsorption capacity of the EPS, from the Rhodotorula mucilaginosa strain UANL-001L, was found to be two-fold greater than the best bioadsorbents reported in the literature. Finally, apart from determining which heavy metals stimulated EPS production in the strain, the optimal conditions of pH, heavy metal concentration, and rate of agitation of the growing culture for EPS production, was determined. The EPS reported here has the potential of aiding in the efficient removal of colorants both in water treatment plants and in situ in natural water streams. PMID:26828867
Ihlebæk, Camilla; Ellingsen-Dalskau, Lina H; Berget, Bente
2015-01-01
Care farming is an increasing part of multifunctional agriculture. Still there are few studies on how the farmers experience their working situation. To describe care farmers' relevant education, motivation, perceived support, involvement with participants, and perceived strain. We also wanted to investigate the possible relationship between different variables and level of perceived strain. A total of 98 (67%) Norwegian care farmers answered a postal questionnaire in 2011 on demography, motivation, relevant education, involvement in participants, and 11 statements describing perceived strain of care farming. A sum-score of the 11 statements was constructed, and a linear regression model was used to explore the relationships between total perceived strain and the other variables. Of the farmers 40% had relevant education. Their main motivation was economical (53%) or "idealistic" (47%). 80% reported that care farming had increased their quality of life. Still the majority experienced it to be socially demanding, and 26% did not receive support from professionals. Higher total perceived strain was found for men, low education, no perceived support, high degree of involvement, and less perceived functionality of participants. The model explained 40% of the variance in total perceived strain. More systematic cooperation and supervision from the social and health care system might be needed, in order to ensure a health promoting work situation for these care farmers.
Algal Biofuels | Bioenergy | NREL
growth conditions in a laboratory setting, particularly when strains are maintained under constant other products during phototrophic growth. NREL bioethylene research received a 2015 R&D 100 Award and winter crops, growth on either salt water or fresh water, and genetic tractability. For more
Increased effectiveness of competitive rhizobium strains upon inoculation of Cajanus cajan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, B.S.; Poth, M.; Focht, D.D.
A field study was conducted in lysimeters containing /sup 15/N-enriched soil to determine the effects of four competitive rhizobium strains upon yield parameters of pigeon peas (Cajanus cajan). The greatest differences observed were in seed yields; strain P132 effected the highest seed yield (121 +/- 20 g per plant), and the control strain (indigenous rhizobia) effected the lowest yield (43.9 +/- 8 g per plant). With the exception of seeds and pods, the dry matter weights were not different. Although there appeared to be no effect by inoculum strains on the fractional content of N derived from biological nitrogen fixationmore » when the total plant biomass was considered, strains P132 and 401 partitioned more of the N derived from fixation into seeds and leaves than did the other strains. Because the seeds comprised the major portion of plant N, more total N and more N derived from biological nitrogen fixation (about half of total N) were found in plants inoculated with P132, whereas the smallest amount was found in the uninoculated controls. P132 was also the best competitor with respect to indigenous rhizobia and accounted for all of the nodules found on the plants in which it was inoculated.« less
NASA Astrophysics Data System (ADS)
Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.
2003-11-01
We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.
Bazant, Zdenek P; Caner, Ferhun C
2013-11-26
Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.
Constitutive modeling for isotropic materials (HOST)
NASA Technical Reports Server (NTRS)
Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.
1986-01-01
The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined. The use of a unified constitutive model for hot section component analyses was demonstrated by applying the Walker model and the MARC finite-element code to a B1900+Hf airfoil problem.
NASA Astrophysics Data System (ADS)
Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.
2017-12-01
At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the model, Young's modulus is decreased if deviatoric stress locally reaches the Mohr-Coulomb plastic threshold. For a compressive horizontal stress, the result shows a complex strain localization pattern, showing reverse and normal faulting very similar to what is obtained from analog modelling and observed at volcanic resurgent domes.
Lee, Won-Heong; Jin, Yong-Su
2017-03-10
Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher V MAX than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (K S ) for cellobiose than K S of the parental strain for glucose but also 5-times lower K S than Michaelis-Menten constant (K M ) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose. Copyright © 2017 Elsevier B.V. All rights reserved.
Fujimoto, Junji
2013-01-01
We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719
Progress Report on Alloy 617 Time Dependent Allowables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Julie Knibloe
2015-06-01
Time dependent allowable stresses are required in the ASME Boiler and Pressure Vessel Code for design of components in the temperature range where time dependent deformation (i.e., creep) is expected to become significant. There are time dependent allowable stresses in Section IID of the Code for use in the non-nuclear construction codes, however, there are additional criteria that must be considered in developing time dependent allowables for nuclear components. These criteria are specified in Section III NH. St is defined as the lesser of three quantities: 100% of the average stress required to obtain a total (elastic, plastic, primary andmore » secondary creep) strain of 1%; 67% of the minimum stress to cause rupture; and 80% of the minimum stress to cause the initiation of tertiary creep. The values are reported for a range of temperatures and for time increments up to 100,000 hours. These values are determined from uniaxial creep tests, which involve the elevated temperature application of a constant load which is relatively small, resulting in deformation over a long time period prior to rupture. The stress which is the minimum resulting from these criteria is the time dependent allowable stress St. In this report data from a large number of creep and creep-rupture tests on Alloy 617 are analyzed using the ASME Section III NH criteria. Data which are used in the analysis are from the ongoing DOE sponsored high temperature materials program, form Korea Atomic Energy Institute through the Generation IV VHTR Materials Program and historical data from previous HTR research and vendor data generated in developing the alloy. It is found that the tertiary creep criterion determines St at highest temperatures, while the stress to cause 1% total strain controls at low temperatures. The ASME Section III Working Group on Allowable Stress Criteria has recommended that the uncertainties associated with determining the onset of tertiary creep and the lack of significant cavitation associated with early tertiary creep strain suggest that the tertiary creep criteria is not appropriate for this material. If the tertiary creep criterion is dropped from consideration, the stress to rupture criteria determines St at all but the lowest temperatures.« less
Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.
Berry, Gearóid P; Bamber, Jeffrey C; Miller, Naomi R; Barbone, Paul E; Bush, Nigel L; Armstrong, Cecil G
2006-12-01
Soft biological tissue contains mobile fluid. The volume fraction of this fluid and the ease with which it may be displaced through the tissue could be of diagnostic significance and may also have consequences for the validity with which strain images can be interpreted according to the traditional idealizations of elastography. In a previous paper, under the assumption of frictionless boundary conditions, the spatio-temporal behavior of the strain field inside a compressed cylindrical poroelastic sample was predicted (Berry et al. 2006). In this current paper, experimental evidence is provided to confirm these predictions. Finite element modeling was first used to extend the previous predictions to allow for the existence of contact friction between the sample and the compressor plates. Elastographic techniques were then applied to image the time-evolution of the strain inside cylindrical samples of tofu (a suitable poroelastic material) during sustained unconfined compression. The observed experimental strain behavior was found to be consistent with the theoretical predictions. In particular, every sample studied confirmed that reduced values of radial strain advance with time from the curved cylindrical surface inwards towards the axis of symmetry. Furthermore, by fitting the predictions of an analytical model to a time sequence of strain images, parametric images of two quantities, each related to one or more of three poroelastic material constants were produced. The two parametric images depicted the Poisson's ratio (nu(s)) of the solid matrix and the product of the aggregate modulus (H(A)) of the solid matrix with the permeability (k) of the solid matrix to the pore fluid. The means of the pixel values in these images, nu(s) = 0.088 (standard deviation 0.023) and H(A)k = 1.449 (standard deviation 0.269) x 10(-7) m(2) s(-1), were in agreement with values derived from previously published data for tofu (Righetti et al. 2005). The results provide the first experimental detection of the fluid-flow-induced characteristic diffusion-like behavior of the strain in a compressed poroelastic material and allow parameters related to the above material constants to be determined. We conclude that it may eventually be possible to use strain data to detect and measure characteristics of diffusely distributed mobile fluid in tissue spaces that are too small to be imaged directly.
Ignition Delay Associated with a Strained Strip
NASA Technical Reports Server (NTRS)
Gerk, T. J.; Karagozian, A. R.
1996-01-01
Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.
NASA Astrophysics Data System (ADS)
Liu, Qun; Jiang, Daqing; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed
2017-03-01
In this paper, we develop a mathematical model for a tuberculosis model with constant recruitment and varying total population size by incorporating stochastic perturbations. By constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of an ergodic stationary distribution as well as extinction of the disease to the stochastic system.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.
Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M
2017-01-01
Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty
Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M.
2017-01-01
Summary Introduction Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. Methods A new analytical wear model, based upon Archard’s law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. Results The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. Conclusions It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise. PMID:29721453
Qu, Jianmin; Jacobs, Laurence J; Nagy, Peter B
2011-06-01
This letter demonstrates that an eigenstrain is induced when a wave propagates through an elastic solid with quadratic nonlinearity. It is shown that this eigenstrain is intrinsic to the material, but the mean stress and the total mean strain are not. Instead, the mean stress and total means strain also depend on the boundary conditions, so care must be taken when using the static deformation to measure the acoustic nonlinearity parameter of a solid. © 2011 Acoustical Society of America
Wein, L M; D'Amato, R M; Perelson, A S
1998-05-07
Motivated by the ability of combinations of antiretroviral agents to sustain viral suppression in HIV-1-infected individuals, we analyse the transient and steady-state behavior of a mathematical model of HIV-1 dynamics in vivo in order to predict whether these drug regimens can eradicate HIV-1 or maintain viral loads at low levels. The model incorporates two cell types (CD4+ T cells and a long-lived pool of cells), two strains of virus (drug-sensitive wild type and drug-resistant mutant) and two types of antiretroviral agents (reverse transcriptase and protease inhibitors). The transient behavior of the cells and virus and the eventual eradication of the virus are determined primarily by the strength of the combination therapy against the mutant strain and the maximum achievable increase in the uninfected CD4+ T cell concentration. We also predict, if the parameters of the model remain constant during therapy, that less intensive maintenance regimens will be unable to maintain low viral loads for extensive periods of time. However, if the reduction in viral load produced by therapy reduces the state of activation of the immune system, the number of cells susceptible for HIV-1 infection may decrease even though total CD4+ T cells increase. Our model predicts that if this occurs strong inductive therapy that reduces viral load followed by weaker maintenance regimes may succeed.
NASA Astrophysics Data System (ADS)
Wang, Jia-Xing; Chen, Z. B.; Gao, Y. C.
2018-05-01
In this manuscript, we have studied the electronic, magnetic, half-metallic and mechanical properties of a new Zr-based equiatomic quaternary Heusler (EQH) compound, ZrRhTiIn using first-principles calculations. The generalized gradient approximation (GGA) calculation results imply that at its equilibrium lattice constant of 6.70 Å, ZrRhTiIn is a half-metallic material (HMM) with a considerable band gap (Ebg) of 0.530 eV and a spin-filter/half-metallic band-gap (EHM) of 0.080 eV in the minority-spin channel. For ZrRhTiIn, the formation energy of -2.738 eV and the cohesive energy of 21.38 eV indicate that it is a thermodynamically stable material according to theory. The minority-spin EHM arises from the hybridization among Zr-4d, Ti-3d and Rh-4d electrons. The calculated total magnetic moment of ZrRhTiIn is 2 μB, meeting the well-known Slater-Pauling rule Mt = Zt -18. Furthermore, uniform strain and tetragonal strain were applied in this work to examine the magneto-electronic and half-metallic behaviors of the ZrRhTiIn system. Finally, we show that ZrRhTiIn is mechanically stable, ductile and anisotropic.
Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A
2017-11-14
Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.
Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo
2016-10-01
The in-vivo progression of creep and wear in ultra-high molecular weight polyethylene (UHMWPE) acetabular liners has been clinically evaluated by measuring radiographic penetration of femoral heads. In such clinical assessments, however, viscoelastic strain relaxation has been rarely considered after a removal of hip joint loading, potentially leading to an underestimation of the penetrated thickness. The objective of this study was to investigate shape-recovery behavior of pre-compressed, radiation crosslinked and antioxidant vitamin E-diffused UHMWPE acetabular liners, and also to characterize the effects of varying their internal diameter (ID) and wall thickness (WT). We applied uniaxial compression to the UHMWPE specimens of various ID (28, 32, 36mm) and WT (4.8, 6.8, 8.9mm) for 4320min under the constant load of 3000N, and subsequently monitored the strain-relaxation behavior as a function of time after unloading. It was observed that there was a considerable shape recovery of the components after removal of the external static load. Reducing ID and WT significantly accelerated the rate of creep strain recovery, and varying WT was more sensitive to the recovery behavior than ID. Creep deformation of the tested liners recovered mostly within the first 300min after unloading. Note that approximately half of the total recovery amount proceeded just within 5min after unloading. These results suggest a remarkably high capability of shape recovery of vitamin E-diffused highly crosslinked UHMWPE. In conclusion, the time-dependent shape recovering and the diameter-thickness effect on its behavior should be carefully considered when the postoperative penetration is quantified in highly crosslinked UHMWPE acetabular liners (especially on the non-weight bearing radiographs). Copyright © 2016 Elsevier Ltd. All rights reserved.
Nomura, Kazuki; Kuwabara, Yuki; Kuwabara, Wataru; Takahashi, Hiroyuki; Nakajima, Kanako; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru
2017-12-01
We previously obtained a pressure-tolerant (piezotolerant) and a pressure sensitive (piezosensitive) mutant strain, under ambient temperature, from Saccharomyces cerevisiae strain KA31a. The inactivation kinetics of these mutants were analyzed at 150 to 250MPa with 4 to 40°C. By a multiple regression analysis, the pressure and temperature dependency of the inactivation rate constants k values of both mutants, as well as the parent strain KA31a, were well approximated with high correlation coefficients (0.92 to 0.95). For both mutants, as well as strain KA31a, the lowest k value was shown at a low pressure levels with around ambient temperature. The k value approximately increased with increase in pressure level, and with increase and decrease in temperature. The piezosensitive mutant strain a924E1 showed piezosensitivity at all pressure and temperature levels, compared with the parent strain KA31a. In contrast, the piezotolerant mutant strain a2568D8 showed piezotolerance at 4 to 20°C, but did not show significant piezotolerance at 40°C. These results of the variable influence of temperature on pressure inactivation of these strains would be important for better understanding of piezosensitive and piezotolerant mechanisms, as well as the pressure inactivation mechanism of S. cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rosdahl Brems, Mathias; Paaske, Jens; Lunde, Anders Mathias; Willatzen, Morten
2018-05-01
Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3. For the most experimentally relevant surface termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-momentum locking of strained Bi2Se3 is shown to be modified. Hence, strain control can be used to manipulate the spin degree of freedom via the spin–orbit coupling. We show that for a thin film of Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field.
Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading
NASA Astrophysics Data System (ADS)
Pandey, Akash; Arockiarajan, A.
2016-04-01
Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.
The total and spectral solar irradiance and its possible variations
NASA Technical Reports Server (NTRS)
Thekaekara, M. P.
1975-01-01
The present status of knowledge of the total and spectral irradiance of the sun is briefly reviewed. Currently accepted values of the solar constant and the extraterrestrial solar spectral irradiance are presented along with a discussion of how they were derived. Data on the variability of the solar constant are shown to be conflicting and inconclusive. Some of the alleged sun-weather relationships are cited in support of the need of knowing more precisely the variations in total and spectral solar irradiance. An overview of a solar monitoring program is discussed, with special emphasis on the Solar Energy Monitor in Space experiment which was proposed for several spacecraft missions. It is a combination of a solar constant detector and a prism monochromator. The determination of absolute values and the possible variations of the total and spectral solar irradiance, from measurements outside of the atmosphere is discussed.
NASA Astrophysics Data System (ADS)
Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.
2014-12-01
GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes will persist relative to the recurrence interval of large Salton Trough earthquakes. Understanding the influence of far-field postseismic deformation on the southern Arizona strain rate field could have implications for other regions of diffuse intracontinental deformation in proximity to frequently rupturing large magnitude plate boundary faults.
Numerical modeling of the strain of elastic rubber elements
NASA Astrophysics Data System (ADS)
Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.
2017-11-01
A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.
[Survival elongation of Pseudomonas aeruginosa improves power output of microbial fuel cells].
You, Ting; Liu, Jihua; Liang, Rubing; Liu, Jianhua
2017-04-25
The secondary metabolites, phenazine products, produced by Pseudomonas aeruginosa can mediate the electrons transfer in microbial fuel cells (MFCs). How increase the total electricity production in MFCs by improving the characteristics of Pseudomonas aeruginosa is one of research hot spots and problems. In this study, P. aeruginosa strain SJTD-1 and its knockout mutant strain SJTD-1 (ΔmvaT) were used to construct MFCs, and the discharge processes of the two MFCs were analyzed to determine the key factors to electricity yields. Results indicated that not only phenazine but also the viable cells in the fermentation broth were essential for the discharge of MFCs. The mutant strain SJTD-1 (ΔmvaT) could produce more phenazine products and continue discharging over 160 hours in MFCs, more than that of the wild-type SJTD-1 strain (90 hours discharging time). The total electricity generated by SJTD-1 (ΔmvaT) strain could achieve 2.32 J in the fermentation process, much higher than the total 1.30 J electricity of the wild-type SJTD-1 strain. Further cell growth analysis showed that the mutant strain SJTD-1 (ΔmvaT) could keep a longer stationary period, survive much longer in MFCs and therefore, discharge more electron than those of the wild-type SJTD-1 strain. Therefore, the cell survival elongation of P. aeruginosa in MFCs could enhance its discharging time and improve the overall energy yield. This work could give a clue to improve the characteristics of MFCs using genetic engineering strain, and could promote related application studies on MFCs.
Comparison of the passivity between cast alloy and laser-welded titanium overdenture bars.
Paiva, Jose; Givan, Daniel A; Broome, James C; Lemons, Jack E; McCracken, Michael S
2009-12-01
The purpose of this study was to investigate the fit of cast alloy overdenture and laser-welded titanium-alloy bars by measuring induced strain upon tightening of the bars on a master cast as well as a function of screw tightening sequence. Four implant analogs were secured into Type IV dental stone to simulate a mandibular edentulous patient cast, and two groups of four overdenture bars were fabricated. Group I was four cast alloy bars and Group II was four laser-welded titanium bars. The cast alloy bars included Au-Ag-Pd, Pd-Ag-Au, Au-Ag-Cu-Pd, and Ag-Pd-Cu-Au, while the laser-welded bars were all Ti-Al-V alloy. Bars were made from the same master cast, were torqued into place, and the total strain in the bars was measured through five strain gauges bonded to the bar between the implants. Each bar was placed and torqued 27 times to 30 Ncm per screw using three tightening sequences. Data were processed through a strain amplifier and analyzed by computer using StrainSmart software. Data were analyzed by ANOVA and Tukey's post hoc test. Significant differences were found between alloy types. Laser-welded titanium bars tended to have lower strains than corresponding cast bars, although the Au-Ag-Pd bar was not significantly different. The magnitudes of total strain were the least when first tightening the ends of the bar. The passivity of implant overdenture bars was evaluated using total strain of the bar when tightening. Selecting a high modulus of elasticity cast alloy or use of laser-welded bar design resulted in the lowest average strain magnitudes. While the effect of screw tightening sequence was minimal, tightening the distal ends first demonstrated the lowest strain, and hence the best passivity.
An Inverse Square Law Variation for Hubble's Constant
NASA Astrophysics Data System (ADS)
Day, Orville W., Jr.
1999-11-01
The solution to Einstein's gravitational field equations is examined, using a Robertson-Walker metric with positive curvature, when Hubble's parameter, H_0, is taken to be a constant divided by R^2. R is the cosmic scale factor for the universe treated as a three-dimensional hypersphere in a four-dimensional Euclidean space. This solution produces a self-energy of the universe, W^(0)_self, proportional to the square of the total mass, times the universal gravitational constant divided by the cosmic scale factor, R. This result is totally analogous to the self-energy of the electromagnetic field of a charged particle, W^(0)_self = ke^2/2r, where the total charge e is squared, k is the universal electric constant and r is the scale factor, usually identified as the radius of the particle. It is shown that this choice for H0 leads to physically meaningful results for the average mass density and pressure, and a deacceleration parameter q_0=1.
Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy
Zhang, Peng; Zhu, Qiang; Chen, Gang; Qin, Heyong; Wang, Chuanjie
2015-01-01
The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates. PMID:28793559
Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K
2012-11-01
Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.
2016-11-01
Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staehle, R.W.; Agrawal, A.K.
1978-01-01
The straining electrode technique was used to evaluate the stress corrosion cracking (SCC) susceptibility of AISI 304 stainless steel in 20N NaOH solution, and of Inconel 600 Alloy and Incoloy 800 Alloy in boiling 17.5N NaOH solution. The crack propagation rate estimated from the straining experiments correlated well with the previous constant load experiments. It was found that the straining electrode technique is a useful method for estimating, through short term experiments, parameters like crack propagation rate, crack morphology, and repassivation rate, as a function of the electrode potential. The role of alloying elements on the crack propagation rate inmore » the above alloys are also discussed.« less
Phase shift of TE and TM modes in an optical fiber due to axial strain (exact solution)
NASA Technical Reports Server (NTRS)
Egalon, Claudio O.; Rogowski, Robert S.
1992-01-01
Axial strain may be determined by monitoring the phase shift of modes of a variety of optical fiber sensors. In this paper, the exact solution of a circular optical fiber is used to calculate the phase shift of the TE and TM modes. Whenever an optical fiber is stressed, the optical path length, the index of refraction, and the propagation constants of each fiber mode change. In consequence, the modal phase term, beta(ln)z, of the fields is shifted by an amount Delta phi. In certain cases, it is desirable to control the phase shift term in order to make the fiber either more or less sensitive to certain kinds of strain. It is shown that it can be accomplished by choosing appropriate fiber parameters.
NASA Astrophysics Data System (ADS)
Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.
2017-05-01
During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.
Active Piezoelectric Diaphragms
NASA Technical Reports Server (NTRS)
Bryant, Robert G.; Effinger, Robert T., IV; Aranda, Isaiah, Jr.; Copeland, Ben M.; Covington, Ed W., III
2002-01-01
Several active piezoelectric diaphragms were fabricated by placing unelectroded piezoelectric disks between copper clad films patterned with Inter-Circulating Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is radially distributed electric field that mechanically strains the piezo-ceramic along the Z-axis (perpendicular to the applied electric field), rather than the expected in-plane (XY-axis) direction. Unlike other out of plane piezoelectric actuators, which are benders, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements while maintaining a constant circumference. This paper covers the fabrication and characterization of these diaphragms as a function of poling field strength, ceramic diameter and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage ranging from DC to 10 Hz.
Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain
NASA Astrophysics Data System (ADS)
Xie, Saien; Tu, Lijie; Han, Yimo; Huang, Lujie; Kang, Kibum; Lao, Ka Un; Poddar, Preeti; Park, Chibeom; Muller, David A.; DiStasio, Robert A.; Park, Jiwoong
2018-03-01
Epitaxy forms the basis of modern electronics and optoelectronics. We report coherent atomically thin superlattices in which different transition metal dichalcogenide monolayers—despite large lattice mismatches—are repeated and laterally integrated without dislocations within the monolayer plane. Grown by an omnidirectional epitaxy, these superlattices display fully matched lattice constants across heterointerfaces while maintaining an isotropic lattice structure and triangular symmetry. This strong epitaxial strain is precisely engineered via the nanoscale supercell dimensions, thereby enabling broad tuning of the optical properties and producing photoluminescence peak shifts as large as 250 millielectron volts. We present theoretical models to explain this coherent growth and the energetic interplay governing the ripple formation in these strained monolayers. Such coherent superlattices provide building blocks with targeted functionalities at the atomically thin limit.
Rodrigues, André L; Göcke, Yvonne; Bolten, Christoph; Brock, Nelson L; Dickschat, Jeroen S; Wittmann, Christoph
2012-04-01
Violacein and deoxyviolacein display a broad range of interesting biological properties but their production is rarely distinguished due to the lack of suitable analytical methods. An HPLC method has been developed for the separation and quantification of violacein and deoxyviolacein and can determine the content of both molecules in microbial cultures. A comparison of different production microorganisms, including recombinant Escherichia coli and the natural producer Janthinobacterium lividum, revealed that the formation of violacein and deoxyviolacein is strain-specific but showed significant variation during growth although the ratio between the two compounds remained constant.
Hencky's model for elastomer forming process
NASA Astrophysics Data System (ADS)
Oleinikov, A. A.; Oleinikov, A. I.
2016-08-01
In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.