Sample records for constant uniform temperature

  1. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  2. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, A.; Burke, K.

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  4. Analytical solution for heat transfer in three-dimensional porous media including variable fluid properties

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Goldstein, M. E.

    1972-01-01

    An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.

  5. Dose uniformity of budesonide Easyhaler® under simulated real-life conditions and with low inspiration flow rates.

    PubMed

    Haikarainen, Jussi; Rytilä, Paula; Roos, Sirkku; Metsärinne, Sirpa; Happonen, Anita

    2017-01-01

    Budesonide Easyhaler® multidose dry powder inhaler is approved for the treatment of asthma. Objectives were to determine the delivered dose (DD) uniformity of budesonide Easyhaler® in simulated real-world conditions and with different inspiration flow rates (IFRs). Three dose delivery studies were performed using 100, 200, and 400 µg/dose strengths of budesonide. Dose uniformity was assessed during in-use periods of 4-6 months after exposure to high temperature (30°C) and humidity (60% relative humidity) and after dropping and vibration testing. The influence of various IFRs (31, 43, and 54 L/min) on the DD was also investigated. Acceptable dose uniformity was declared when mean DD were within 80-120% of expected dose; all data reported descriptively. DD was constant (range: 93-109% of expected dose) at all in-use periods and after exposure to high temperature and humidity for a duration of up to 6 months. DD post-dropping and -vibration were unaffected (range 98-105% of expected dose). Similarly, DD was constant and within 10% of expected dose across all IFRs. Results indicate that budesonide Easyhaler® delivers consistently accurate doses in various real-life conditions. Budesonide Easyhaler® can be expected to consistently deliver a uniform dose and improve asthma control regardless of high temperature and humidity or varying IFR.

  6. Connection formulas for thermal density functional theory

    DOE PAGES

    Pribram-Jones, A.; Burke, K.

    2016-05-23

    We show that the adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upward from the system's physical temperature. We also show how to relate different correlation components to each other, either in terms of temperature or coupling-constant integrations. Lastly, we illustrate our results on the uniform electron gas.

  7. Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.

    PubMed

    Bevzenko, Dmytro; Lubchenko, Vassiliy

    2014-11-07

    We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.

  8. Efficient chemical potential evaluation with kinetic Monte Carlo method and non-uniform external potential: Lennard-Jones fluid, liquid, and solid

    NASA Astrophysics Data System (ADS)

    Ustinov, E. A.

    2017-07-01

    The aim of this paper is to present a method of a direct evaluation of the chemical potential of fluid, liquid, and solid with kinetic Monte Carlo simulation. The method is illustrated with the 12-6 Lennard-Jones (LJ) system over a wide range of density and temperature. A distinctive feature of the methodology used in the present study is imposing an external potential on the elongated simulation box to split the system into two equilibrium phases, one of which is substantially diluted. This technique provides a reliable direct evaluation of the chemical potential of the whole non-uniform system (including that of the uniformly distributed dense phase in the central zone of the box), which, for example, is impossible in simulation of the uniform crystalline phase. The parameters of the vapor-liquid, liquid-solid, and fluid-solid transitions have been reliably determined. The chemical potential and the pressure are defined as thermodynamically consistent functions of density and temperature separately for the liquid and the solid (FCC) phases. It has been shown that in two-phase systems separated by a flat interface, the crystal melting always occurs at equilibrium conditions. It is also proved that in the limit of zero temperature, the specific heat capacity of an LJ crystal at constant volume is exactly 3Rg (where Rg is the gas constant) without resorting to harmonic oscillators.

  9. Influence of free surface curvature on the Pearson instability in Marangoni convection

    NASA Astrophysics Data System (ADS)

    Hu, W. R.

    The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper

  10. Effect of Thermal Gradient on Vibration of Non-uniform Visco-elastic Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Khanna, Anupam; Kaur, Narinder

    2016-04-01

    Here, a theoretical model is presented to analyze the effect of bilinear temperature variations on vibration of non-homogeneous visco-elastic rectangular plate with non-uniform thickness. Non-uniformity in thickness of the plate is assumed linear in one direction. Since plate's material is considered as non-homogeneous, authors characterized non-homogeneity in poisson ratio and density of the plate's material exponentially in x-direction. Plate is supposed to be clamped at the ends. Deflection for first two modes of vibration is calculated by using Rayleigh-Ritz technique and tabulated for various values of plate's parameters i.e. taper constant, aspect ratio, non-homogeneity constants and thermal gradient. Comparison of present findings with existing literature is also provided in tabular and graphical manner.

  11. Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.

    1987-07-01

    A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.

  12. Uniform lateral etching of tungsten in deep trenches utilizing reaction-limited NF3 plasma process

    NASA Astrophysics Data System (ADS)

    Kofuji, Naoyuki; Mori, Masahito; Nishida, Toshiaki

    2017-06-01

    The reaction-limited etching of tungsten (W) with NF3 plasma was performed in an attempt to achieve the uniform lateral etching of W in a deep trench, a capability required by manufacturing processes for three-dimensional NAND flash memory. Reaction-limited etching was found to be possible at high pressures without ion irradiation. An almost constant etching rate that showed no dependence on NF3 pressure was obtained. The effect of varying the wafer temperature was also examined. A higher wafer temperature reduced the threshold pressure for reaction-limited etching and also increased the etching rate in the reaction-limited region. Therefore, the control of the wafer temperature is crucial to controlling the etching amount by this method. We found that the uniform lateral etching of W was possible even in a deep trench where the F radical concentration was low.

  13. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  14. Thermally enhanced signal strength and SNR improvement of photoacoustic radar module

    PubMed Central

    Wang, Wei; Mandelis, Andreas

    2014-01-01

    A thermally enhanced method for improving photoacoustic imaging depth and signal-to-noise (SNR) ratio is presented in this paper. Experimental results showed that the maximum imaging depth increased by 20% through raising the temperature of absorbing biotissues (ex-vivo beef muscle) uniformly from 37 to 43°C, and the SNR was increased by 8%. The parameters making up the Gruneisen constant were investigated experimentally and theoretically. The studies showed that the Gruneisen constant of biotissues increases with temperature, and the results were found to be consistent with the photoacousitc radar theory. PMID:25136501

  15. Conformational and orientational order and disorder in solid polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.

    The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.

  16. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  17. Theoretical and Experimental Investigation of Heat Conduction in Air, Including Effects of Oxygen Dissociation

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick; Early, Richard A.; Alzofon, Frederick E.; Witteborn, Fred C.

    1959-01-01

    Solutions are presented for the conduction of beat through a semi-infinite gas medium having a uniform initial temperature and a constant boundary temperature. The coefficients of thermal conductivity and diffusivity are treated as variables, and the solutions are extended to the case of air at temperatures where oxygen dissociation occurs. These solutions are used together with shock-tube measurements to evaluate the integral of thermal conductivity for air as a function of temperature.

  18. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    NASA Technical Reports Server (NTRS)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  19. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2002-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  20. Method and apparatus for thermal processing of semiconductor substrates

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Mattson, Brad S.; Savas, Stephen E.

    2000-01-01

    An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

  1. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    NASA Astrophysics Data System (ADS)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  2. Temperature uniformity in the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Dias, António; Ehrhart, Sebastian; Vogel, Alexander; Williamson, Christina; Almeida, João; Kirkby, Jasper; Mathot, Serge; Mumford, Samuel; Onnela, Antti

    2017-12-01

    The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN (European Council for Nuclear Research) investigates the nucleation and growth of aerosol particles under atmospheric conditions and their activation into cloud droplets. A key feature of the CLOUD experiment is precise control of the experimental parameters. Temperature uniformity and stability in the chamber are important since many of the processes under study are sensitive to temperature and also to contaminants that can be released from the stainless steel walls by upward temperature fluctuations. The air enclosed within the 26 m3 CLOUD chamber is equipped with several arrays (strings) of high precision, fast-response thermometers to measure its temperature. Here we present a study of the air temperature uniformity inside the CLOUD chamber under various experimental conditions. Measurements were performed under calibration conditions and run conditions, which are distinguished by the flow rate of fresh air and trace gases entering the chamber at 20 and up to 210 L min-1, respectively. During steady-state calibration runs between -70 and +20 °C, the air temperature uniformity is better than ±0.06 °C in the radial direction and ±0.1 °C in the vertical direction. Larger non-uniformities are present during experimental runs, depending on the temperature control of the make-up air and trace gases (since some trace gases require elevated temperatures until injection into the chamber). The temperature stability is ±0.04 °C over periods of several hours during either calibration or steady-state run conditions. During rapid adiabatic expansions to activate cloud droplets and ice particles, the chamber walls are up to 10 °C warmer than the enclosed air. This results in temperature differences of ±1.5 °C in the vertical direction and ±1 °C in the horizontal direction, while the air returns to its equilibrium temperature with a time constant of about 200 s.

  3. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  4. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites.

    PubMed

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D; Hill, Curtis W; Brewer, Jeffrey C; Tucker, Dennis S; Cheng, Z-Y

    2016-10-21

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu 3 Ti 4 O 12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10 -1 ). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  5. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-10-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10-1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  6. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    PubMed Central

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  7. Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.

    2017-03-01

    Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.

  8. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  9. Solidification processing of alloys using an applied electric field

    NASA Technical Reports Server (NTRS)

    Mckannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)

    1990-01-01

    A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.

  10. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    1991-01-01

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  11. A Thermal Paradox: Which Gets Warmer?

    ERIC Educational Resources Information Center

    Salazar, Agustin; Apinaniz, Estibaliz; Mendioroz, Arantza; Oleaga, Alberto

    2010-01-01

    In this paper we address a common misconception concerning the thermal behaviour of matter, namely that the front surface of a very thin plate, uniformly illuminated by a constant light beam, reaches a higher temperature than the front surface of a very thick slab made out of the same material. We present analytical solutions for the temperature…

  12. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets

    NASA Astrophysics Data System (ADS)

    Lin, Chunjing; Xu, Sichuan; Chang, Guofeng; Liu, Jinling

    2015-02-01

    A passive thermal management system (TMS) for LiFePO4 battery modules using phase change material (PCM) as the heat dissipation source to control battery temperature rise is developed. Expanded graphite matrix and graphite sheets are applied to compensate low thermal conductivity of PCM and improve temperature uniformity of the batteries. Constant current discharge and mixed charge-discharge duties were applied on battery modules with and without PCM on a battery thermal characteristics test platform. Experimental results show that PCM cooling significantly reduces the battery temperature rise during short-time intense use. It is also found that temperature uniformity across the module deteriorates with the increasing of both discharge time and current rates. The maximum temperature differences at the end of 1C and 2C-rate discharges are both less than 5 °C, indicating a good performance in battery thermal uniformity of the passive TMS. Experiments on warm-keeping performance show that the passive TMS can effectively keep the battery within its optimum operating temperature for a long time during cold weather uses. A three dimensional numerical model of the battery pack with the passive TMS was conducted using ANSYS Fluent. Temperature profiles with respect to discharging time reveal that simulation shows good agreement with experiment at 1C-discharge rate.

  13. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    NASA Astrophysics Data System (ADS)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  14. Directional solidification processing of alloys using an applied electric field

    NASA Technical Reports Server (NTRS)

    McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)

    1992-01-01

    A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.

  15. Experimental and Numerical Characterization of a Pulsed Supersonic Uniform Flow for Kinetics and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suas-David, Nicolas; Thawoos, Shameemah; Broderick, Bernadette M.; Suits, Arthur

    2017-06-01

    The current CPUF (Chirped Pulse Uniform Flow) and the new UF-CRDS (Uniform Flow Cavity Ring-Down Spectroscopy) setups relie mostly on the production of a good quality supersonic uniform flow. A supersonic uniform flow is produced by expanding a gas through a Laval nozzle - similar to the nozzles used in aeronautics - linked to a vacuum chamber. The expansion is characterized by an isentropic core where constant very low kinetic temperature (down to 20K) and constant density are observed. The relatively large diameter of the isentropic core associated with homogeneous thermodynamic conditions makes it a relevant tool for low temperature spectroscopy. On the other hand, the length along the axis of the flow of this core (could be longer than 50cm) allows kinetic studies which is one of the main interest of this setup (CRESU technique. The formation of a uniform flow requires an extreme accuracy in the design of the shape of the nozzle for a set of defined temperature/density. The design is based on a Matlab program which retrieves the shape of the isentropic core according to the method of characteristics prior to calculate the thickness of the boundary layer. Two different approaches are used to test the viability of a new nozzle derived from the program. First, a computational fluid dynamic software (OpenFOAM) models the distribution of the thermodynamic properties of the expansion. Then, fabricated nozzles using 3-D printing are tested based on Pitot measurements and spectroscopic analyses. I will present comparisons of simulation and measured performance for a range of nozzles. We will see how the high level of accuracy of numerical simulations provides a deeper knowledge of the experimental conditions. J. M. Oldham, C. Abeysekera, J. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. Barrat Park, R. W. Filed and A. G. Suits, J. Chem. Phys. 141, 154202, (2014). I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). D. B. Atkinson and M. A. Smith, Rev. Sci. Instrum. 66, 4434, (1995). N. Suas-David, V. Kulkarni, A. Benidar, S. Kassi and R. Georges, Chem. Phys. Lett. 659, 209-215, (2016)

  16. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff's law

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Kwok, R.

    1993-01-01

    In this paper the polarimetric emission parameters for anisotropic media are derived using the generalized Kirchhoff's law for media with a uniform temperature and the fluctuation-dissipation theory for media with a temperature profile. Both finite-size objects and half-space media are considered. When the object has a uniform temperature across its body, the Kirchhoff's law, based on the condition of energy conservation in thermal equilibrium is generalized to obtain the emission parameters of an anisotropic medium, which can be interpreted as the absorptivity or the absorption cross section of the complementary object with a permittivity that is the transpose of the original object. When the medium has a nonuniform temperature distribution, the fluctuation-dissipation theory is applied for deriving the covariances between vector components of the thermal currents and, consequently, the covariances of the polarizations of electric fields radiated by the thermal currents. To verify the formulas derived from the fluctuation-dissipation theory, we let the temperature of the object be a constant and show that the results reduce to those obtained from the generalized Kirchhoff's law.

  17. Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China

    NASA Astrophysics Data System (ADS)

    Gao, Z. Q.; Bian, L. G.; Chen, Z. G.; Sparrow, M.; Zhang, J. H.

    2006-05-01

    This paper describes the application of the variance method for flux estimation over a mixed agricultural region in China. Eddy covariance and flux variance measurements were conducted in a near-surface layer over a non-uniform land surface in the central plain of China from 7 June to 20 July 2002. During this period, the mean canopy height was about 0.50 m. The study site consisted of grass (10% of area), beans (15%), corn (15%) and rice (60%). Under unstable conditions, the standard deviations of temperature and water vapor density (normalized by appropriate scaling parameters), observed by a single instrument, followed the Monin-Obukhov similarity theory. The similarity constants for heat (C-T) and water vapor (C-q) were 1.09 and 1.49, respectively. In comparison with direct measurements using eddy covariance techniques, the flux variance method, on average, underestimated sensible heat flux by 21% and latent heat flux by 24%, which may be attributed to the fact that the observed slight deviations (20% or 30% at most) of the similarity "constants" may be within the expected range of variation of a single instrument from the generally-valid relations.

  18. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    PubMed

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes. © 2015 Institute of Food Technologists®

  19. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  20. Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum

    DOE PAGES

    Florando, J. N.; Margraf, J. D.; Reus, J. F.; ...

    2015-06-06

    The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. Here, in order to capture the response, amore » dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.« less

  1. Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection

    NASA Technical Reports Server (NTRS)

    Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.

    2016-01-01

    The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.

  2. Manual of design and installation of Forest Service water spray dry kiln

    Treesearch

    L.V. Teesdale

    1920-01-01

    The best thing that can be said of any dry kiln is that when it is run by a properly informed operator the temperature, humidity, and circulation are constant and uniform. In an endeavor to produce a kiln in which each of these could be regulated independently of the others, the Forest Products Laboratory designed and developed the "Forest Service Humidity...

  3. Analysis and calculation by integral methods of laminar compressible boundary-layer with heat transfer and with and without pressure gradient

    NASA Technical Reports Server (NTRS)

    Morduchow, Morris

    1955-01-01

    A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.

  4. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    PubMed Central

    Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457

  5. WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrell, G; Shvydka, D; Parsai, E I

    Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less

  6. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Reduction of across-wafer CDU via constrained optimization of a multichannel PEB plate controller based on in-situ measurements of thermal time constants

    NASA Astrophysics Data System (ADS)

    Tiffany, Jason E.; Cohen, Barney M.

    2004-05-01

    As line widths approach 90nm node in volume production, post exposure bake (PEB) uniformity becomes a much larger component of the across wafer critical dimension uniformity (CDU). In production, the need for PEB plate matching has led to novel solutions such as plate specific dose offsets. This type of correction does not help across wafer CDU. Due to unequal activation energies of the critical PEB processes, any thermal history difference can result in a corresponding CD variation. The rise time of the resist to the target temperature has been shown to affect CD, with the most critical time being the first 5-7 seconds. A typical PEB plate has multi-zone thermal control with one thermal sensor per zone. The current practice is to setup each plate to match the steady-state target temperature, ignoring any dynamic performance. Using an in-situ wireless RTD wafer, it is possible to characterize the dynamic performance, or time constant, of each RTD location on the sensing wafer. Constrained by the zone structure of the PEB plate, the proportional, integral and derivative (PID) settings of each controller channel could be optimized to reduce the variations in rise time across the RTD wafer, thereby reducing the PEB component of across wafer CDU.

  8. Influence of emissivity on behavior of metallic dust particles in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Y.; Smirnov, R. D.; Pigarov, A. Yu.

    Influence of thermal radiation emissivity on the lifetime of a dust particle in plasmas is investigated for different fusion relevant metals (Li, Be, Mo, and W). The thermal radiation is one of main cooling mechanisms of the dust in plasmas especially for dust with evaporation temperature higher than 2500 K. In this paper, the temperature- and radius-dependent emissivity of dust particles is calculated using Mie theory and temperature-dependent optical constants for the above metallic materials. The lifetime of a dust particle in uniform plasmas is estimated with the calculated emissivity using the dust transport code DUSTT[A. Pigarov et al., Physicsmore » of Plasmas 12, 122508 (2005)], considering other dust cooling and destruction processes such as physical and chemical sputtering, melting and evaporation, electron emission etc. The use of temperature-dependent emissivity calculated with Mie theory provides a longer lifetime of the refractory metal dust particle compared with that obtained using conventional emissivity constants in the literature. The dynamics of heavy metal dust particles are also presented using the calculated emissivity in a tokamak plasma.« less

  9. Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustafa, M., E-mail: meraj-mm@hotmail.com; Khan, Junaid Ahmad; Hayat, T.

    2015-02-15

    In this paper we address the flow of Maxwell fluid due to constantly moving flat radiative surface with convective condition. The flow is under the influence of non-uniform transverse magnetic field. The velocity and temperature distributions have been evaluated numerically by shooting approach. The solution depends on various interesting parameters including local Deborah number De, magnetic field parameter M, Prandtl number Pr and Biot number Bi. We found that variation in velocity with an increase in local Deborah number De is non-monotonic. However temperature is a decreasing function of local Deborah number De.

  10. Viscosity induced non-uniform flow in laminar flow heat exchangers

    NASA Astrophysics Data System (ADS)

    Putnam, G. R.; Rohsenow, W. M.

    1985-05-01

    Laminar flow heat exchangers which cool oil in noninterconnected parallel passages can experience nonuniform flows and a reduction in the effective heat exchanger coefficient in a range of Reynolds number which varies with tube length and diameter, tube wall temperature and fluid inlet temperature. The method of predicting the reduction in effective heat transfer coefficient and the range of Reynolds number over which these instabilities exist is presented for a particular oil, Mobil aviation oil 120. Included, also, is the prediction of the effect of radial viscosity variation on the constant property magnitudes of friction and heat transfer coefficient.

  11. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  12. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  13. Feedback mechanisms of shallow convective clouds in a warmer climate as demonstrated by changes in buoyancy

    NASA Astrophysics Data System (ADS)

    Dagan, G.; Koren, I.; Altaratz, O.; Feingold, G.

    2018-05-01

    Cloud feedbacks could influence significantly the overall response of the climate system to global warming. Here we study the response of warm convective clouds to a uniform temperature change under constant relative humidity (RH) conditions. We show that an increase in temperature drives competing effects at the cloud scale: a reduction in the thermal buoyancy term and an increase in the humidity buoyancy term. Both effects are driven by the increased contrast in the water vapor content between the cloud and its environment, under warming with constant RH. The increase in the moisture content contrast between the cloud and its environment enhances the evaporation at the cloud margins, increases the entrainment, and acts to cool the cloud. Hence, there is a reduction in the thermal buoyancy term, despite the fact that theoretically this term should increase.

  14. Solar panel acceptance testing using a pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Hershey, T. L.

    1977-01-01

    Utilizing specific parameters as area of an individual cell, number in series and parallel, and established coefficient of current and voltage temperature dependence, a solar array irradiated with one solar constant at AMO and at ambient temperature can be characterized by a current-voltage curve for different intensities, temperatures, and even different configurations. Calibration techniques include: uniformity in area, depth and time, absolute and transfer irradiance standards, dynamic and functional check out procedures. Typical data are given for individual cell (2x2 cm) to complete flat solar array (5x5 feet) with 2660 cells and on cylindrical test items with up to 10,000 cells. The time and energy saving of such testing techniques are emphasized.

  15. High-temperature/high-pressure x-ray diffraction: Recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Johnson, S.W.; Zinn, A.S.

    1989-01-01

    We have developed two Merrill-Bassett diamond-anvil cells for specialized high-temperature uses. The first is constructed largely of rhenium to provide uniform, constant P and T on the order of 20 GPa at 1200 K for extended periods. The second is for single-crystal x-ray diffraction, but can be heated to 630 K at 20 GPa to grow single-crystal samples which cannot be produced at room temperature. With this cell, the crystal structure of /var epsilon/-O/sub 2/ was shown to be monoclinic with a = 3.649 A, b = 5.493 A, c = 7.701 A, and /Beta/ = 116.11/degree/ at 19.7 GPa.more » 15 refs.« less

  16. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    NASA Astrophysics Data System (ADS)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  17. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

  18. High temperature behaviour of self-consolidating concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, Hanaa, E-mail: hanaafares@yahoo.f; Remond, Sebastien; Noumowe, Albert

    2010-03-15

    This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have alreadymore » been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.« less

  19. The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer

    Treesearch

    Anti Rohumaa; Christopher G. Hunt; Charles R. Frihart; Pekka Saranpää; Martin Ohlmeyer; Mark Hughes

    2014-01-01

    Most adhesive studies employing wood veneer as the substrate assume that it is a relatively uniform material if wood species and veneer thickness are constant. In the present study, veneers from rotary cut birch (Betula pendula Roth) were produced from logs harvested in spring, autumn and winter, and soaked at 20°C and 70°C prior to peeling. Firstly...

  20. An Investigation into Performance Modelling of a Small Gas Turbine Engine

    DTIC Science & Technology

    2012-10-01

    b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a

  1. Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF

    NASA Technical Reports Server (NTRS)

    Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.

    2014-01-01

    The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.

  2. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    NASA Astrophysics Data System (ADS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  3. Design data package and operating procedures for MSFC solar simulator test facility

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design and operational data for the solar simulator test facility are reviewed. The primary goal of the facility is to evaluate the performance capacibility and worst case failure modes of collectors, which utilize either air or liquid transport media. The facility simulates environmental parameters such as solar radiation intensity, solar spectrum, collimation, uniformity, and solar attitude. The facility also simulates wind conditions of velocity and direction, solar system conditions imposed on the collector, collector fluid inlet temperature, and geometric factors of collector tilt and azimuth angles. Testing the simulator provides collector efficiency data, collector time constant, incident angle modifier data, and stagnation temperature values.

  4. A model for microwave emission from vegetation-covered fields

    NASA Technical Reports Server (NTRS)

    Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.

    1982-01-01

    The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.

  5. Calculations of Laminar Heat Transfer Around Cylinders of Arbitrary Cross Section and Transpiration-Cooled Walls with Application to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Eckert, E.R.G.; Livingood, John N.B.

    1951-01-01

    An approximate method for development of flow and thermal boundary layers in laminar regime on cylinders with arbitrary cross section and transpiration-cooled walls is obtained by use of Karman's integrated momentum equation and an analogous heat-flow equation. Incompressible flow with constant property values throughout boundary layer is assumed. Shape parameters for approximated velocity and temperature profiles and functions necessary for solution of boundary-layer equations are presented as charts, reducing calculations to a minimum. The method is applied to determine local heat-transfer coefficients and surface temperature-cooled turbine blades for a given flow rate. Coolant flow distributions necessary for maintaining uniform blade temperatures are also determined.

  6. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  7. Computational Modeling and Simulation of Film-Condensation

    DTIC Science & Technology

    2013-01-18

    different cases considered in the present work. Table 2: Four different cases corresponding to various thermal boundary conditions ( CWT : constant wall...temperature; UHF: uniform heat flux; and CHT: convection heat transfer) on the channel walls. Cases (a) (b) (c) (d) Top wall BC CWT : Tw2>Tsat UHF: qw...CHT: h & T∞ >Tsat CHT Bottom Wall BC CWT : Tw1<Tsat CWT : Tw1<Tsat CWT : Tw1<Tsat UHF: qw   Page 12 of 18   In the above table, T y

  8. Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying.

    PubMed

    Cao, Xiaohuang; Zhang, Min; Qian, He; Mujumdar, Arun S

    2017-06-01

    An online temperature-detection-assisted control system of microwave-assisted pulse-spouted vacuum drying was newly developed. By using this system, temperature control can be automatically and continuously adjusted based on the detection of drying temperature and preset temperature. Various strategies for constant temperature control, linear temperature control and three-step temperature control were applied to drying carrot cubes. Drying kinetics and the quality of various temperature-controlled strategies online are evaluated for the new drying technology as well as its suitability as an alternative drying method. Drying time in 70 °C mode 1 had the shortest drying time and lowest energy consumption in all modes. A suitable colour, highest re-hydration ratio and fracture-hardness, and longest drying time occurred in 30-40-50 °C mode 3. The number of hot spots was reduced in 40-50-60 °C mode 3. Acceptable carrot snacks were obtained in 50-60-70 °C mode 3 and 70 °C mode 2. All temperature curves showed that the actual temperatures followed the preset temperatures appropriately. With this system, a linear temperature-controlled strategy and a three-step temperature-controlled strategy can improve product quality and heating non-uniformity compared to constant temperature control, but need greater energy consumption and longer drying time. A temperature-detection-assisted control system was developed for providing various drying strategies as a suitable alternative in making a snack product. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Bainitic stabilization of austenite in low alloy sheet steels

    NASA Astrophysics Data System (ADS)

    Brandt, Mitchell L.

    The stabilization of retained austenite in 'triple phase' ferrite/bainite/austenite sheet steels by isothermal bainite transformation after intercritical annealing has been studied in 0.27C-1.5Si steels with 0.8 to 2.4Mn. Dilatometric studies show that cooling rates comparable to CAPL processing result in approximately 30% conversion of austenite to epitaxial ferrite, but the reaction can be suppressed by the faster cooling rate of salt bath quenching. Measured isothermal transformation kinetics at 350 to 450sp°C shows a maximum overall rate near 400sp°C. X-ray diffraction shows that the amount of austenite retained from 400sp°C treatment peaks at 3 minutes but the carbon content increases monotonically to a saturation level. The stability of austenite in this type of steel has been quantified for the first time by direct measurement of the characteristic Msbsps{sigma} temperature. With variations in processing conditions and test temperatures, the tensile uniform ductility has been correlated with the amount and stability of retained austenite, while maintaining a constant 3% flow of 83 ksi. Consistent with previous transformations plasticity studies an optimal austenite stability is found at approximately 10 K above the Msbsps{sigma} temperature, demonstrating a maximum uniform ductility of 44% for an austenite content of 16%. Correlations indicate that desired uniform ductility levels of 20 to 25% could be achieved with only approximately 5% austenite if stability is optimized by placing Msbsps{sigma} 10 K below ambient temperature. Measured uniform ductility in plane strain tension shows similar trends with processing conditions, but models predict that stress state effects will shift the Msbsps{sigma} temperature approximately 5 K higher than that for uniaxial tension. The measured dependence of Msbsps{sigma} on austenite composition and particle size has been modeled via heterogeneous nucleation theory. The composition dependence is consistent with contributions from the transformation chemical driving force and the interfacial frictional work from solution hardening. An inverse dependence on the log of the particle volume is consistent with statistics of heterogeneous nucleation. The observed austenite carbon content at the end of bainitic transformation is consistent with paraequilibrium calculations adding a stored energy term to the bainitic ferrite. The model predicts that optimal austenite stability for maximum uniform ductility can be achieved at fixed particle size by lowering Mn and/or reducing the isothermal bainite transformation temperature.

  10. Study of thermocline development inside a dual-media storage tank at the beginning of dynamic processes

    NASA Astrophysics Data System (ADS)

    Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther

    2017-06-01

    This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.

  11. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    NASA Astrophysics Data System (ADS)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  12. To BG or not to BG: Background Subtraction for EIT Coronal Loops

    NASA Astrophysics Data System (ADS)

    Beene, J. E.; Schmelz, J. T.

    2003-05-01

    One of the few observational tests for various coronal heating models is to determine the temperature profile along coronal loops. Since loops are such an abundant coronal feature, this method originally seemed quite promising - that the coronal heating problem might actually be solved by determining the temperature as a function of arc length and comparing these observations with predictions made by different models. But there are many instruments currently available to study loops, as well as various techniques used to determine their temperature characteristics. Consequently, there are many different, mostly conflicting temperature results. We chose data for ten coronal loops observed with the Extreme ultraviolet Imaging Telescope (EIT), and chose specific pixels along each loop, as well as corresponding nearby background pixels where the loop emission was not present. Temperature analysis from the 171-to-195 and 195-to-284 angstrom image ratios was then performed on three forms of the data: the original data alone, the original data with a uniform background subtraction, and the original data with a pixel-by-pixel background subtraction. The original results show loops of constant temperature, as other authors have found before us, but the 171-to-195 and 195-to-284 results are significantly different. Background subtraction does not change the constant-temperature result or the value of the temperature itself. This does not mean that loops are isothermal, however, because the background pixels, which are not part of any contiguous structure, also produce a constant-temperature result with the same value as the loop pixels. These results indicate that EIT temperature analysis should not be trusted, and the isothermal loops that result from EIT (and TRACE) analysis may be an artifact of the analysis process. Solar physics research at the University of Memphis is supported by NASA grants NAG5-9783 and NAG5-12096.

  13. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  14. Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films

    NASA Astrophysics Data System (ADS)

    Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.

    2012-08-01

    Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.

  15. Impacts of environmental factors on the climbing behaviors of herbaceous stem-twiners.

    PubMed

    Hu, Liang; Chen, Youfang; Liu, Meicun

    2017-11-01

    The curvature of the helical trajectory formed by herbaceous stem-twiners has been hypothesized to be constant on uniformly sized cylindrical supports and remains constant on different supports varying in diameter. However, experimental studies on the constant curvature hypothesis have been very limited. Here, we tested the hypothesis in a series of experiments on five herbaceous stem-twiners ( Ipomoea triloba , Ipomoea nil , Phaseolus vulgaris , Vigna unguiculata, and Mikania micrantha ). We investigated how internode characteristics (curvature [β], diameter [ d ], and length [ L ]) and success rate (SR) of twining shoots would be affected by support thickness ( D ), temperature ( T ), illumination, and support inclination. The results showed that: (1) the SR of tested species decreased, but d increased with increasing support thickness. The β of the twining shoots on erect cylindrical poles was not constant, but it decreased with increasing d or support thickness. (2) The SR of tested species was not obviously reduced under low-temperature conditions, but their β was significantly higher and d significantly lower when temperature was more than 5°C lower. (3) The SR , d, and L of two tested Ipomoea species significantly declined, but β increased under 50% shading stress. (4) The curvatures of upper semicycles of I. triloba shoots on 45° inclined supports were not significantly different from curvatures of those shoots climb on erect supports, whereas the curvatures of lower semicycles were 40%-72% higher than curvatures of upper semicycles. Synthesis : Our study illustrates that stem curvatures of a certain herbaceous stem-twiners are not constant, but rather vary in response to external support, temperature, and illumination conditions. We speculate that herbaceous stem-twiners positively adapt to wide-diameter supports by thickening their stems and by reducing their twining curvatures. This insight helps us better understand climbing processes and dynamics of stem-twiners in forest communities and ecosystems.

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    PubMed Central

    Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-01-01

    Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue. PMID:15548324

  17. Diffusion of chemically reactive species in MHD oscillatory flow with thermal radiation in the presence of constant suction and injection

    NASA Astrophysics Data System (ADS)

    Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.

    2018-04-01

    In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.

  18. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  19. The evolution of impact basins - Viscous relaxation of topographic relief. [for lunar surface modeling

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Comer, R. P.; Head, J. W.

    1982-01-01

    A topographic profile of the young large lunar basin, Orientale, is presented in order to examine the effects of viscous relaxation on basin topography. Analytical models for viscous flow are considered, showing a wavelength-dependence of time constants for viscous decay on the decrease in viscosity with depth and on the extent of the isostatic compensation of the initial topography. Lunar rheological models which are developed include a half-space model for uniform Newtonian viscosity, density, and gravitational acceleration, a layer over inviscid half space model with material inviscid over geological time scales, and a layer with isostatic compensation where a uniformly viscous layer overlies an inviscid half space of higher density. Greater roughness is concluded, and has been observed, on the moon's dark side due to continued lower temperatures since the time of heavy bombardment.

  20. Thermocouple, multiple junction reference oven

    NASA Technical Reports Server (NTRS)

    Leblanc, L. P. (Inventor)

    1981-01-01

    An improved oven for maintaining the junctions of a plurality of reference thermocouples at a common and constant temperature is described. The oven is characterized by a cylindrical body defining a heat sink with axially extended-cylindrical cavity a singularized heating element which comprises a unitary cylindrical heating element consisting of a resistance heating coil wound about the surface of metallic spool with an axial bore defined and seated in the cavity. Other features of the oven include an annular array of radially extended bores defined in the cylindrical body and a plurality of reference thermocouple junctions seated in the bores in uniformly spaced relation with the heating element, and a temperature sensing device seated in the axial bore for detecting temperature changes as they occur in the spool and circuit to apply a voltage across the coil in response to detected drops in temperatures of the spool.

  1. Stratospheric aerosol geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates frommore » gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.« less

  2. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  3. Solutions of the equation of heat flow. [in and around sunspots

    NASA Technical Reports Server (NTRS)

    Margolis, S. H.; Knobloch, E.

    1980-01-01

    The geometry of sunspots has been used to suggest a problem in heat flow. The equation of heat transport is solved for the case of a cylinder with a given thermal conductivity imbedded in an otherwise uniform medium with different conductivity. The surface of this region radiates heat with flux proportional to temperature. At a lower surface, either in heat flux or temperature is held constant. The cylinder can have an anisotropic thermal conductivity. The variations in temperature along the radiating surface have been determined. A simple approximation is noted which has been found to give a general solution with acceptable accuracy. This method may be of some use in other situations requiring the solution of Laplace's equation with a free surface. The analysis is used to set limits on the ratio of diameter to depth for cases which preserve the sharp surface temperature transition across the cylinder.

  4. The relationship between surface topography, gravity anomalies, and temperature structure of convection

    NASA Technical Reports Server (NTRS)

    Parsons, B.; Daly, S.

    1983-01-01

    Consideration is given to the relationship between the temperature structure of mantle convection and the resulting surface topography and gravity anomalies, which are used in its investigation. Integral expressions relating the three variables as a function of wavelength are obtained with the use of Green's function solutions to the equations of motion for the case of constant-viscosity convection in a plane layer subject to a uniform gravitational field. The influence of the boundary conditions, particularly at large wavelengths, is pointed out, and surface topographies and gravity produced by convection are illustrated for a number of simple temperature distributions. It is shown that the upper thermal boundary layer plays an important role in determining the surface observables, while temperatures near the bottom of the layer affect mainly that boundary. This result is consistent with an explanation of geoid anomalies over mid-ocean swells in terms of convection beneath the lithosphere.

  5. Numerical investigation of the influence of electromagnetic treatment on calcium carbonate scaling rate in non-isothermal pipe flow

    NASA Astrophysics Data System (ADS)

    Kireev, Victor; Kovaleva, Liana; Isakov, Andrey; Alimbekova, Sofya

    2017-11-01

    In the present paper, an attempt to explain the mechanisms of the electromagnetic field influence on the process of formation and deposition of calcium carbonate from supersaturated brine solution has been made using numerical modeling. The one-dimensional mathematical model of the brine laminar flow through a cylindrical tube with non-uniform temperature field is written in the form of the system of transient convection-diffusion-reaction partial differential equations describing temperature field and chemical components concentrations (Ca2+, HCO3-, CaCO3). The influence of the temperature on the kinetics of formation of calcium carbonate is taken into account and it is described in accordance with the Arrhenius equation. The kinetics of the calcium carbonate precipitation on the wall of the pipe is given on the basis of the Henry isotherm. It has been established that the electromagnetic treatment of brine solution leads to a decrease of the adsorption rate constant and Henry's constant but it does not significantly influence on the chemical reaction rate of calcium carbonate formation. It also has been shown that treatment with electromagnetic field significantly reduces the amount of calcium carbonate deposits on the wall of the pipe.

  6. Growth Mechanism of Lipid-Based Nanodiscs -- a Model Membrane for Studying Kinetics of Particle Coalescence

    NASA Astrophysics Data System (ADS)

    Nieh, Mu-Ping; Dizon, Anthony; Li, Ming; Hu, Andrew; Fan, Tai-Hsi

    2012-02-01

    Lipid-based nanodiscs composed of long- and short- chain lipids [namely, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG) and dihexanoyl phosphatidylcholine (DHPC)] constantly form at high lipid concentrations and at low temperatures (i.e., below the melting transition temperature of DMPC, TM). The initial size of these nanodiscs (at high total lipid concentration, CL> 20 wt.%) is relatively uniform and of similar dimension (according to dynamic light scattering and small angle neutron scattering experiments), seemingly independent of thermal history. Upon dilution, the nanodiscs slowly coalesce and grow in size with time irreversibly. Our preliminary result shows that the growth rate strongly depends on several parameters such as charge density, CL and temperature. We have also found that the nanodisc coalescence is a reaction limit instead of diffusion limit process through a time-resolved study.

  7. Ultra Uniform Pb0.865La0.09(Zr0.65Ti0.35)O3 Thin Films with Tunable Optical Properties Fabricated via Pulsed Laser Deposition

    PubMed Central

    Jiang, Shenglin; Huang, Chi; Gu, Honggang; Liu, Shiyuan; Zhu, Shuai; Li, Ming-Yu; Yao, Lingmin; Wu, Yunyi; Zhang, Guangzu

    2018-01-01

    Ferroelectric thin films have been utilized in a wide range of electronic and optical applications, in which their morphologies and properties can be inherently tuned by a qualitative control during growth. In this work, we demonstrate the evolution of the Pb0.865La0.09(Zr0.65Ti0.35)O3 (PLZT) thin films on MgO (200) with high uniformity and optimized optical property via the controls of the deposition temperatures and oxygen pressures. The perovskite phase can only be obtained at the deposition temperature above 700 °C and oxygen pressure over 50 Pa due to the improved crystallinity. Meanwhile, the surface morphologies gradually become smooth and compact owing to spontaneously increased nucleation sites with the elevated temperatures, and the crystallization of PLZT thin films also sensitively respond to the oxygen vacancies with the variation of oxygen pressures. Correspondingly, the refractive indices gradually develop with variations of the deposition temperatures and oxygen pressures resulted from the various slight loss, and the extinction coefficient for each sample is similarly near to zero due to the relatively smooth morphology. The resulting PLZT thin films exhibit the ferroelectricity, and the dielectric constant sensitively varies as a function of electric filed, which can be potentially applied in the electronic and optical applications. PMID:29596398

  8. Studies of heat source driven natural convection. Ph.D. Thesis. Technical Report, Jul. 1974 - Aug. 1975

    NASA Technical Reports Server (NTRS)

    Kulacki, F. A.; Emara, A. A.

    1975-01-01

    Natural convection energy transport in a horizontal layer of internally heated fluid was measured for Rayleigh numbers from 1890 to 2.17 x 10 to the 12th power. The fluid layer is bounded below by a rigid zero-heat-flux surface and above by a rigid constant-temperature surface. Joule heating by an alternating current passing horizontally through the layer provides the uniform volumetric energy source. The overall steady-state heat transfer coefficient at the upper surface was determined by measuring the temperature difference across the layer and power input to the fluid. The correlation between the Nusselt and Rayleigh numbers for the data of the present study and the data of the Kulacki study is given.

  9. Ion collection from a plasma by a pinhole

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Herr, Joel L.

    1992-01-01

    Ion focusing by a biased pinhole is studied numerically. Laplace's equation is solved in 3-D for cylindrical symmetry on a constant grid to determine the potential field produced by a biased pinhole in a dielectric material. Focusing factors are studied for ions of uniform incident velocity with a 3-D Maxwellian distribution superimposed. Ion currents to the pinhole are found by particle tracking. The focusing factor of positive ions as a function of initial velocity, temperature, injection radius, and hole size is reported. For a typical Space Station Freedom environment (oxygen ions having a 4.5 eV ram energy, 0.1 eV temperature, and a -140 V biased pinhole), a focusing factor of 13.35 is found for a 1.5 mm radius pinhole.

  10. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Prise en compte d'un couplage fin neutronique-thermique dans les calculs d'assemblage pour les reacteurs a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Greiner, Nathan

    Core simulations for Pressurized Water Reactors (PWR) is insured by a set of computer codes which allows, under certain assumptions, to approximate the physical quantities of interest, such as the effective multiplication factor or the power or temperature distributions. The neutronics calculation scheme relies on three great steps : -- the production of an isotopic cross-sections library ; -- the production of a reactor database through the lattice calculation ; -- the full-core calculation. In the lattice calculation, in which Boltzmann's transport equation is solved over an assembly geometry, the temperature distribution is uniform and constant during irradiation. This represents a set of approximations since, on the one hand, the temperature distribution in the assembly is not uniform (strong temperature gradients in the fuel pins, discrepancies between the fuel pins) and on the other hand, irradiation causes the thermal properties of the pins to change, which modifies the temperature distribution. Our work aims at implementing and introducing a neutronics-thermomechanics coupling into the lattice calculation to finely discretize the temperature distribution and to study its effects. To perform the study, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) lattice code APOLLO2 was used for neutronics and EDF (Electricite De France) code C3THER was used for the thermal calculations. We show very small effects of the pin-scaled coupling when comparing the use of a temperature profile with the use of an uniform temperature over UOX-type and MOX-type fuels. We next investigate the thermal feedback using an assembly-scaled coupling taking into account the presence of large water gaps on an UOX-type assembly at burnup 0. We show the very small impact on the calculation of the hot spot factor. Finally, the coupling is introduced into the isotopic depletion calculation and we show that reactivity and isotopic number densities deviations remain small albeit not negligible for UOX-type and MOX-type assemblies. The specific behavior of gadolinium-stuffed fuel pins in an UO2Gd2O 3-type assembly is highlighted.

  12. Infrared thermography in newborns: the first hour after birth.

    PubMed

    Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold

    2003-01-01

    It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel

  13. Arrhenius Rate: constant volume burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less

  14. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates.

    PubMed

    Wang, Xueshen; Li, Qunqing; Xie, Jing; Jin, Zhong; Wang, Jinyong; Li, Yan; Jiang, Kaili; Fan, Shoushan

    2009-09-01

    We report the controlled growth of ultralong single-wall carbon nanotube (SWNT) arrays using an improved chemical vapor deposition strategy. Using ethanol or methane as the feed gas, monodispersed Fe-Mo as the catalyst, and a superaligned carbon nanotube (CNT) film as the catalyst supporting frame, ultralong CNTs over 18.5 cm long were grown on Si substrates. The growth rate of the CNTs was more than 40 mum/s. No catalyst-related residual material was found on the substrates due to the use of a CNT film as the catalyst supporting frame, facilitating any subsequent fabrication of SWNT-based devices. Electrical transport measurements indicated that the electrical characteristics along a single ultralong SWNT were uniform. We also found that maintaining a spatially homogeneous temperature during the growth process was a critical factor for obtaining constant electrical characteristics along the length of the ultralong SWNTs.

  15. Direct simulation of isothermal-wall supersonic channel flow

    NASA Technical Reports Server (NTRS)

    Coleman, Gary N.

    1993-01-01

    The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.

  16. Uniform Media Effects and Uniform Audience Responses.

    ERIC Educational Resources Information Center

    Perry, David K.

    The idea that mass communication effects may decrease diversity among people or societies exposed to it arises constantly. However, discussions of mass media effects do not highlight differences between mass communications that "affect" people uniformly and messages that members of audiences "respond to" in similar ways. A…

  17. Luminescent N-polar (In,Ga)N/GaN quantum wells achieved by plasma-assisted molecular beam epitaxy at temperatures exceeding 700 °C

    NASA Astrophysics Data System (ADS)

    Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.

    2018-01-01

    Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.

  18. Application of the two-film model to the volatilization of acetone and t-butyl alcohol from water as a function of temperature

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1988-01-01

    The two-film model is often used to describe the volatilization of organic substances from water. This model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the films, commonly called film coefficients, are related through the Henry's law constant and the model equation to the overall mass-transfer coefficient for volatilization. The films are modeled as two resistances in series, resulting in additive resistances. The two-film model and the concept of additivity of resistances were applied to experimental data for acetone and t-butyl alcohol. Overall mass-transfer coefficients for the volatilization of acetone and t-butyl alcohol from water were measured in the laboratory in a stirred constant-temperature bath. Measurements were completed for six water temperatures, each at three water mixing conditions. Wind-speed was constant at about 0.1 meter per second for all experiments. Oxygen absorption coefficients were measured simultaneously with the measurement of the acetone and t-butyl alcohol mass-transfer coefficients. Gas-film coefficients for acetone, t-butyl alcohol, and water were determined by measuring the volatilization fluxes of the pure substances over a range of temperatures. Henry's law constants were estimated from data from the literature. The combination of high resistance in the gas film for solutes with low values of the Henry's law constants has not been studied previously. Calculation of the liquid-film coefficients for acetone and t-butyl alcohol from measured overall mass-transfer and gas-film coefficients, estimated Henry's law constants, and the two-film model equation resulted in physically unrealistic, negative liquid-film coefficients for most of the experiments at the medium and high water mixing conditions. An analysis of the two-film model equation showed that when the percentage resistance in the gas film is large and the gas-film resistance approaches the overall resistance in value, the calculated liquid-film coefficient becomes extremely sensitive to errors in the Henry's law constant. The negative coefficients were attributed to this sensitivity and to errors in the estimated Henry's law constants. Liquid-film coefficients for the absorption of oxygen were correlated with the stirrer Reynolds number and the Schmidt number. Application of this correlation with the experimental conditions and a molecular-diffusion coefficient adjustment resulted in values of the liquid-film coefficients for both acetone and t-butyl alcohol within the range expected for all three mixing conditions. Comparison of Henry's law constants calculated from these film coefficients and the experimental data with the constants calculated from literature data showed that the differences were small relative to the errors reported in the literature as typical for the measurement or estimation of Henry's law constants for hydrophilic compounds such as ketones and alcohols. Temperature dependence of the mass-transfer coefficients was expressed in two forms. The first, based on thermodynamics, assumed the coefficients varied as the exponential of the reciprocal absolute temperature. The second empirical approach assumed the coefficients varied as the exponential of the absolute temperature. Both of these forms predicted the temperature dependence of the experimental mass-transfer coefficients with little error for most of the water temperature range likely to be found in streams and rivers. Liquid-film and gas-film coefficients for acetone and t-butyl alcohol were similar in value. However, depending on water mixing conditions, overall mass-transfer coefficients for acetone were from two to four times larger than the coefficients for t-butyl alcohol. This difference in behavior of the coefficients resulted because the Henry's law constant for acetone was about three times larger than that of

  19. A Velocity Distribution Model for Steady State Heat Transfer

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1996-01-01

    Consider a box that is filled with an ideal gas and that is aligned along Cartesian coordinates (x, y, z) having until length in the 'y' direction and unspecified length in the 'x' and 'z' directions. Heat is applied uniformly over the 'hot' end of the box (y = 1) and is removed uniformly over the 'cold' end (y = O) at a constant rate such that the ends of the box are maintained at temperatures T(sub 0) at y = O and T(sub 1) at y = 1. Let U, V, and W denote the respective velocity components of a molecule inside the box selected at some random time and at some location (x, y, z). If T(sub 0) = T(sub 1), then U, Y, and W are mutually independent and Gaussian, each with mean zero and variance RT(sub 0), where R is the gas constant. When T(sub 0) does not equal T(sub 1) the velocity components are not independent and are not Gaussian. Our objective is to characterize the joint distribution of the velocity components U, Y, and W as a function of y, and, in particular, to characterize the distribution of V given y. It is hoped that this research will lead to an increased physical understanding of the nature of turbulence.

  20. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  1. Do initial conditions matter? A comparison of model climatologies generated from different initial states

    NASA Technical Reports Server (NTRS)

    Spar, J.; Cohen, C.; Wu, P.

    1981-01-01

    A coarse mesh (8 by 10) 7 layer global climate model was used to compute 15 months of meteorological history in two perpetual January experiments on a water planet (without continents) with a zonally symmetric climatological January sea surface temperature field. In the first of the two water planet experiments the initial atmospheric state was a set of zonal mean values of specific humidity, temperature, and wind at each latitude. In the second experiment the model was initialized with globally uniform mean values of specific humidity and temperature on each sigma level surface, constant surface pressure (1010 mb), and zero wind everywhere. A comparison was made of the mean January climatic states generated by the two water planet experiments. The first two months of each 15 January run were discarded, and 13 month averages were computed from months 3 through 15.

  2. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  3. METHOD OF MAKING METAL BONDED CARBON BODIES

    DOEpatents

    Goeddel, W.V.; Simnad, M.T.

    1961-09-26

    A method of producing carbon bodies having high structural strength and low permeability is described. The method comprises mixing less than 10 wt.% of a diffusional bonding material selected from the group consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, silicon, and decomposable compounds thereof with finely divided particles of carbon or graphite. While being maintained at a mechanical pressure over 3,000 psi, the mixture is then heated uniformly to a temperature of 1500 deg C or higher, usually for less than one hour. The resulting carbon bodies have a low diffusion constant, high dimensional stability, and high mechanical strength.

  4. Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.

    2014-01-01

    Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.

  5. On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N. G. Chebotarev

    NASA Astrophysics Data System (ADS)

    Marinov, Anatolii V.

    2011-06-01

    In the problem of the best uniform approximation of a continuous real-valued function f\\in C(Q) in a finite-dimensional Chebyshev subspace M\\subset C(Q), where Q is a compactum, one studies the positivity of the uniform strong uniqueness constant \\gamma(N)=\\inf\\{\\gamma(f)\\colon f\\in N\\}. Here \\gamma(f) stands for the strong uniqueness constant of an element f_M\\in M of best approximation of f, that is, the largest constant \\gamma>0 such that the strong uniqueness inequality \\Vert f-\\varphi\\Vert\\ge\\Vert f-f_M\\Vert+\\gamma\\Vert f_M-\\varphi\\Vert holds for any \\varphi\\in M. We obtain a characterization of the subsets N\\subset C(Q) for which there is a neighbourhood O(N) of N satisfying the condition \\gamma(O(N))>0. The pioneering results of N. G. Chebotarev were published in 1943 and concerned the sharpness of the minimum in minimax problems and the strong uniqueness of algebraic polynomials of best approximation. They seem to have been neglected by the specialists, and we discuss them in detail.

  6. Poloidal asymmetries in edge transport barriersa)

    NASA Astrophysics Data System (ADS)

    Churchill, R. M.; Theiler, C.; Lipschultz, B.; Hutchinson, I. H.; Reinke, M. L.; Whyte, D.; Hughes, J. W.; Catto, P.; Landreman, M.; Ernst, D.; Chang, C. S.; Hager, R.; Hubbard, A.; Ennever, P.; Walk, J. R.

    2015-05-01

    Measurements of impurities in Alcator C-Mod indicate that in the pedestal region, significant poloidal asymmetries can exist in the impurity density, ion temperature, and main ion density. In light of the observation that ion temperature and electrostatic potential are not constant on a flux surface [Theiler et al., Nucl. Fusion 54, 083017 (2014)], a technique based on total pressure conservation to align profiles measured at separate poloidal locations is presented and applied. Gyrokinetic neoclassical simulations with XGCa support the observed large poloidal variations in ion temperature and density, and that the total pressure is approximately constant on a flux surface. With the updated alignment technique, the observed in-out asymmetry in impurity density is reduced from previous publishing [Churchill et al., Nucl. Fusion 53, 122002 (2013)], but remains substantial ( n z , H / n z , L ˜ 6 ). Candidate asymmetry drivers are explored, showing that neither non-uniform impurity sources nor localized fluctuation-driven transport are able to explain satisfactorily the impurity density asymmetry. Since impurity density asymmetries are only present in plasmas with strong electron density gradients, and radial transport timescales become comparable to parallel transport timescales in the pedestal region, it is suggested that global transport effects relating to the strong electron density gradients in the pedestal are the main driver for the pedestal in-out impurity density asymmetry.

  7. Synthesis and characterization of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parida, B.N., E-mail: bichitra_mama@rediffmail.com; Das, Piyush R., E-mail: prdas63@gmail.com; Padhee, R.

    2015-01-15

    Graphical abstract: Temperature variation of (a) dielectric constant (b) dielectric loss of the sample. - Highlights: • The high values of dielectric permittivity and low value of tangent loss. • It used for microwave applications. • The impedance and dielectric relaxation in the material is non exponential and non Debye-type. • Its ac conductivity obeys Jonscher universal power law. - Abstract: The polycrystalline sample of (Bi{sub 0.5}Ba{sub 0.5}) (Fe{sub 0.5}Ti{sub 0.5}) O{sub 3} (BF–BT) was prepared by a standard mixed oxide method. Analysis of room temperature XRD pattern and Raman/FTIR spectra of the compound does not exhibit any change inmore » its crystal structure of BaTiO{sub 3} on addition of BiFeO{sub 3} in equal ratio. The surface morphology of the gold-plated sintered pellet sample recorded by SEM (scanning electron microscope) exhibits a uniform distribution of grains with less porosity. Detailed studies of nature and quantity of variation of dielectric constant, tangent loss, and polarization with temperature and frequency indicate the existence of ferroelectric phase transition at high-temperature. There is a low-temperature anti-ferromagnetic phase transition below 375 °C in the material. Detailed studies of electrical properties (impedance, modulus, etc.) of the material confirmed a strong correlation between micro-structure and properties.« less

  8. Multi-layer thermoelectric-temperature-mapping microbial incubator designed for geo-biochemistry applications.

    PubMed

    Wu, Jin-Gen; Liu, Man-Chi; Tsai, Ming-Fei; Yu, Wei-Shun; Chen, Jian-Zhang; Cheng, I-Chun; Lin, Pei-Chun

    2012-04-01

    We demonstrate a novel, vertical temperature-mapping incubator utilizing eight layers of thermoelectric (TE) modules mounted around a test tube. The temperature at each layer of the TE module is individually controlled to simulate the vertical temperature profile of geo-temperature variations with depth. Owing to the constraint of non-intrusion to the filled geo-samples, the temperature on the tube wall is adopted for measurement feedback. The design considerations for the incubator include spatial arrangement of the energy transfer mechanism, heating capacity of the TE modules, minimum required sample amount for follow-up instrumental or chemical analysis, and the constraint of non-intrusion to the geo-samples during incubation. The performance of the incubator is experimentally evaluated with two tube conditions and under four preset temperature profiles. Test tubes are either empty or filled with quartz sand, which has comparable thermal properties to the materials in the geo-environment. The applied temperature profiles include uniform, constant temperature gradient, monotonic-increasing parabolic, and parabolic. The temperature on the tube wall can be controlled between 20 °C and 90 °C with an averaged root mean squared error of 1 °C. © 2012 American Institute of Physics

  9. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  10. Time-dependent deformation of titanium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.; Bahei-El-din, Y. A.; Mirdamadi, M.

    1995-01-01

    A three-dimensional finite element program called VISCOPAC was developed and used to conduct a micromechanics analysis of titanium metal matrix composites. The VISCOPAC program uses a modified Eisenberg-Yen thermo-viscoplastic constitutive model to predict matrix behavior under thermomechanical fatigue loading. The analysis incorporated temperature-dependent elastic properties in the fiber and temperature-dependent viscoplastic properties in the matrix. The material model was described and the necessary material constants were determined experimentally. Fiber-matrix interfacial behavior was analyzed using a discrete fiber-matrix model. The thermal residual stresses due to the fabrication cycle were predicted with a failed interface, The failed interface resulted in lower thermal residual stresses in the matrix and fiber. Stresses due to a uniform transverse load were calculated at two temperatures, room temperature and an elevated temperature of 650 C. At both temperatures, a large stress concentration was calculated when the interface had failed. The results indicate the importance of accuracy accounting for fiber-matrix interface failure and the need for a micromechanics-based analytical technique to understand and predict the behavior of titanium metal matrix composites.

  11. Networks with fourfold connectivity in two dimensions.

    PubMed

    Tessier, Frédéric; Boal, David H; Discher, Dennis E

    2003-01-01

    The elastic properties of planar, C4-symmetric networks under stress and at nonzero temperature are determined by simulation and mean field approximations. Attached at fourfold coordinated junction vertices, the networks are self-avoiding in that their elements (or bonds) may not intersect each other. Two different models are considered for the potential energy of the elements: either Hooke's law springs or flexible tethers (square well potential). For certain ranges of stress and temperature, the properties of the networks are captured by one of several models: at large tensions, the networks behave like a uniform system of square plaquettes, while at large compressions or high temperatures, they display many characteristics of an ideal gas. Under less severe conditions, mean field models with more general shapes (parallelograms) reproduce many essential features of both networks. Lastly, the spring network expands without limit at a two-dimensional tension equal to the force constant of the spring; however, it does not appear to collapse under compression, except at zero temperature.

  12. A rotational Raman study under non-thermal conditions in a pulsed CO2 glow discharge

    NASA Astrophysics Data System (ADS)

    Klarenaar, B. L. M.; Grofulović, M.; Morillo-Candas, A. S.; van den Bekerom, D. C. M.; Damen, M. A.; van de Sanden, M. C. M.; Guaitella, O.; Engeln, R.

    2018-04-01

    The implementation of in situ rotational Raman spectroscopy is realized for a pulsed glow discharge in CO2 in the mbar range and is used to study the rotational temperature and molecular number densities of CO2, CO, and O2. The polarizability anisotropy of these molecules is required for extracting number densities from the recorded spectra and is determined for incident photons of 532 nm. The spatiotemporally-resolved measurements are performed in the same reactor and at equal discharge conditions (5–10 ms on–off cycle, 50 mA plasma current, 6.7 mbar pressure) as in recently published work employing in situ Fourier transform infrared (FTIR) spectroscopy. The rotational temperature ranges from 394 to 809 K from start to end of the discharge pulse and is constant over the length of the reactor. The discharge is demonstrated to be spatially uniform in gas composition, with a CO2 conversion factor of 0.15 ± 0.02. Rotational temperatures and molecular composition agree well with the FTIR results, while the spatial uniformity confirms the assumption made for the FTIR analysis of a homogeneous medium over the line-of-sight of absorption. Furthermore, the rotational Raman spectra of CO2 are related to vibrational temperatures through the vibrationally averaged nuclear spin degeneracy, which is expressed in the intensity ratio between even and odd numbered Raman peaks. The elevation of the odd averaged degeneracy above thermal conditions agrees well with the elevation of vibrational temperatures of CO2, acquired in the FTIR study.

  13. The Faint Young Sun Paradox in the Context of Modern Cosmology

    NASA Astrophysics Data System (ADS)

    Dumin, Yu. V.

    2015-09-01

    The Faint Young Sun Paradox comes from the fact that solar luminosity (2-4)x10^9 years ago was insufficient to support the Earth's temperature necessary for the efficient development of geological and biological evolution (particularly, for the existence of considerable volumes of liquid water). It remains unclear by now if the so-called greenhouse effect on the Earth can resolve this problem. An interesting alternative explanation was put forward recently by M.Krizek (New Astron. 2012, 17, 1), who suggested that planetary orbits expand with time due to the local Hubble effect, caused by the uniformly-distributed Dark Energy. Then, under a reasonable value of the local Hubble constant, it is easy to explain why the Earth was receiving an approximately constant amount of solar irradiation for a long period in the past and will continue to do so for a quite long time in future.

  14. Design criterion for the heat-transfer coefficient in opposing flow, mixed convention heat transfer in a vertical tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joye, D.D.

    1996-07-01

    Mixed convection heat transfer in a vertical tube with opposing flow (downflow heating) was studied experimentally for Reynolds numbers ranging from about 1,000 to 30,000 at constant Grashof numbers ranging about 1{1/2} orders of magnitude under constant wall temperature (CWT) conditions. Three correlations developed for opposing mixed convection flows in vertical conduits predicted the data reasonably well, except near and into the asymptote region for which these equations were not designed. A critical Reynolds number is developed here, above which these equations can be used for design purposes regardless of the boundary condition. Below Re{sub crit}, the correlations, the asymptotemore » equation should be used for the CWT boundary condition, which is more prevalent in process situations than the uniform heat flux (UHF) boundary condition.« less

  15. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species.

    PubMed

    Kuntz, Steven G; Eisen, Michael B

    2014-04-01

    Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5 °C and 32.5 °C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes [Formula: see text]33 hours at 17.5 °C, and accelerates with increasing temperature to a low of 16 hours at 27.5 °C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5 °C and have drastically slowed development by 30 °C. Despite ranging from 13 hours for D. erecta at 30 °C to 46 hours for D. virilis at 17.5 °C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges.

  16. Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

    NASA Astrophysics Data System (ADS)

    Kamali, M.; Shamsi, M.; Saidi, A. R.

    2018-03-01

    As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

  17. Wide-temperature integrated operational amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)

    2009-01-01

    The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.

  18. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  19. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  20. Determination of necking time in tensile test specimens, under high-temperature creep conditions, subjected to distribution of stresses over the cross-section

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, A.; Teraud, W.

    2018-04-01

    The work describes an experimental research of creep of cylindrical tensile test specimens made of aluminum alloy D16T at a constant temperature of 400°C. The issue to be examined was the necking at different values of initial tensile stresses. The use of a developed noncontacting measuring system allowed us to see variations in the specimen shape and to estimate the true stress in various times. Based on the obtained experimental data, several criteria were proposed for describing the point of time at which the necking occurs (necking point). Calculations were carried out at various values of the parameters in these criteria. The relative interval of deformation time in which the test specimen is uniformly stretched was also determined.

  1. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition.

    PubMed

    Shin, Sangwoo; Kong, Bo Hyun; Kim, Beom Seok; Kim, Kyung Min; Cho, Hyung Koun; Cho, Hyung Hee

    2011-07-23

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.

  2. Self-adjusting threshold mechanism for pixel detectors

    NASA Astrophysics Data System (ADS)

    Heim, Timon; Garcia-Sciveres, Maurice

    2017-09-01

    Readout chips of hybrid pixel detectors use a low power amplifier and threshold discrimination to process charge deposited in semiconductor sensors. Due to transistor mismatch each pixel circuit needs to be calibrated individually to achieve response uniformity. Traditionally this is addressed by programmable threshold trimming in each pixel, but requires robustness against radiation effects, temperature, and time. In this paper a self-adjusting threshold mechanism is presented, which corrects the threshold for both spatial inequality and time variation and maintains a constant response. It exploits the electrical noise as relative measure for the threshold and automatically adjust the threshold of each pixel to always achieve a uniform frequency of noise hits. A digital implementation of the method in the form of an up/down counter and combinatorial logic filter is presented. The behavior of this circuit has been simulated to evaluate its performance and compare it to traditional calibration results. The simulation results show that this mechanism can perform equally well, but eliminates instability over time and is immune to single event upsets.

  3. Non-Hookean Mechanics of Crystalline Membranes

    NASA Astrophysics Data System (ADS)

    Nicholl, Ryan J. T.

    The goal of the thesis is to explore the effect of crumpling on the mechanics of graphene--the ultimate thin membrane. The effect due to crumpling on the mechanical response of 2D materials is almost universally ignored in prior experiments. This is because the most widely used measurement schemes require high and non-uniform applied stress that suppresses crumpling. Experiments that do probe the interplay between crumpling and graphene mechanics remain highly challenging. To measure the mechanical effects of crumpling we need to develop a new measurement scheme which can apply low and uniform stress, allow non-invasive topography measurements, and be applicable at cryogenic temperatures. The motivating questions of this thesis are the following: • How does out-of plane crumpling affect the mechanical constants of 2D materials? • How do we implement measurement techniques sensitive to crumpling? • Can we identify sources of crumpling and distinguish between static and dynamic crumpling? • Can we tune the mechanical properties of 2D materials by controlling crumpling?

  4. Mass transfer equation for proteins in very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-04-01

    The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.

  5. Numerical simulation of temperature at drilling micro-hole on moving CO2 laser irradiated sticking plaster

    NASA Astrophysics Data System (ADS)

    Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao

    2012-03-01

    This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.

  6. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  7. Process optimization of helium cryo plant operation for SST-1 superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Panchal, P.; Panchal, R.; Patel, R.; Mahesuriya, G.; Sonara, D.; Srikanth G, L. N.; Garg, A.; Christian, D.; Bairagi, N.; Sharma, R.; Patel, K.; Shah, P.; Nimavat, H.; Purwar, G.; Patel, J.; Tanna, V.; Pradhan, S.

    2017-02-01

    Several plasma discharge campaigns have been carried out in steady state superconducting tokamak (SST-1). SST-1 has toroidal field (TF) and poloidal field (PF) superconducting magnet system (SCMS). The TF coils system is cooled to 4.5 - 4.8 K at 1.5 - 1.7 bar(a) under two phase flow condition using 1.3 kW helium cryo plant. Experience revealed that the PF coils demand higher pressure heads even at lower temperatures in comparison to TF coils because of its longer hydraulic path lengths. Thermal run away are observed within PF coils because of single common control valve for all PF coils in distribution system having non-uniform lengths. Thus it is routine practice to stop the cooling of PF path and continue only TF cooling at SCMS inlet temperature of ˜ 14 K. In order to achieve uniform cool down, different control logic is adopted to make cryo stable system. In adopted control logic, the SCMS are cooled down to 80 K at constant inlet pressure of 9 bar(a). After authorization of turbine A/B, the SCMS inlet pressure is gradually controlled by refrigeration J-T valve to achieve stable operation window for cryo system. This paper presents process optimization for cryo plant operation for SST-1 SCMS.

  8. Silver chlorobromide nanocubes with significantly improved uniformity: synthesis and assembly into photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Okasinski, John S.; Gosztola, David J.

    2015-01-01

    Silver chlorobromide (AgClxBr1-x, 0 < x < 1) nanocubes with a highly uniform size, morphology, and crystallinity have been successfully synthesized through a co-precipitation of Ag+ ions with both Cl- and Br- ions in ethylene glycol containing polyvinyl pyrrolidone at mild temperatures. Compositions of the synthesized nanocubes can be easily tuned by controlling the molar ratio of Cl- to Br- ions in the reaction solutions. The size of the nanocubes is determined by varying a number of parameters including the molar ratio of Cl- to Br- ions, injection rate of Ag+ ions, and reaction temperature. The real-time formation of colloidalmore » AgClxBr1-x nanocubes has been monitored, for the first time, by in situ highenergy synchrotron X-ray diffraction. The time-resolved results reveal that a fast injection rate of Ag+ ions is critical for the formation of AgClxBr1-x nanocubes with a highly pure face-centered cubic crystalline phase. The improved uniformity of the AgClxBr1-x nanocubes is beneficial for assembling them into order superlattices (e.g., photonic crystals) even by simply applying centrifugation forces. The stop band of the resulting photonic crystals can be easily tuned from the ultraviolet to the infrared region by using AgClxBr1-x nanocubes with different sizes. The variation of the dielectric constant of AgClxBr1-x associated with the change of the relative concentration of halide ions provides an additional knob to tune the optical properties of photonic crystals.« less

  9. Effect of electron-beam deposition process variables on the film characteristics of the CrOx films

    NASA Astrophysics Data System (ADS)

    Chiu, Po-kai; Liao, Yi-Ting; Tsai, Hung-Yin; Chiang, Donyau

    2018-02-01

    The film characteristics and optical properties of the chromium oxide films on the glass substrates prepared by electron-beam deposition with different process variables were investigated. The process variables included are the various oxygen flow rates, the different applied substrate temperatures, and the preparation process in Ar or O2 surrounding environment with and without ion-assisted deposition. The optical constants of the deposited films are determined from the reflectance and transmittance measurements obtained using a spectrophotometer with wavelengths ranging from 350 nm to 2000 nm. The microstructures of the films were examined by the XRD, SEM, and XPS. The electrical conductivity was measured by a four-point probe instrument. The resulting microstructures of all the prepared films are amorphous and the features of the films are dense, uniform and no pillar structure is observed. The refractive index of deposited films decrease with oxygen flow rate increase within studied wavelengths and the extinction coefficients have the same trend in wavelengths of UV/Vis ranges. Increasing substrate temperature to 200 oC results in increase of both refractive index and extinction coefficient, but substrate temperatures below 150 oC show negligible effect on optical constants. The optical and electrical properties in the prepared CrOx films are illustrated by the analyzed XPS results, which decompose the enveloped curve of chromium electron energy status into the constituents of metal Cr, oxides CrO2 and Cr2O3. The relative occupied area contributed from metal Cr and area contributed from the other oxides can express the concentration ratio of free electron to covalent bonds in deposited films and the ratio is applied to explain the film characteristics, including the optical constants and sheet resistance.

  10. An investigation of the self-heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for prestress

    NASA Astrophysics Data System (ADS)

    de Lima, A. M. G.; Rade, D. A.; Lacerda, H. B.; Araújo, C. A.

    2015-06-01

    It has been demonstrated by many authors that the internal damping mechanism of the viscoelastic materials offers many possibilities for practical engineering applications. However, in traditional procedures of analysis and design of viscoelastic dampers subjected to cyclic loadings, uniform, constant temperature is generally assumed and do not take into account the self-heating phenomenon. Moreover, for viscoelastic materials subjected to dynamic loadings superimposed on static preloads, such as engine mounts, these procedures can lead to poor designs or even severe failures since the energy dissipated within the volume of the material leads to temperature rises. In this paper, a hybrid numerical-experimental investigation of effects of the static preloads on the self-heating phenomenon in viscoelastic dampers subjected to harmonic loadings is reported. After presenting the theoretical foundations, the numerical and experimental results obtained in terms of the temperature evolutions at different points within the volume of the viscoelastic material for various static preloads are compared, and the main features of the methodology are discussed.

  11. Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method

    NASA Astrophysics Data System (ADS)

    Sun, Li; Zhang, Ru; Wang, Zhenduo; Ju, Lin; Cao, Ensi; Zhang, Yongjia

    2017-01-01

    Nickelferrite (NiFe2O4)powders were synthesized via sol-gel auto-combustion method and the corresponding temperature dependence of microstructure, dielectric and magnetic properties have been investigated. Results of XRD and SEM indicate that the NiFe2O4 samples exhibit a typical single phase spinel structure and a uniform particle distribution. The dielectric constant and dielectric loss measurements show strong frequency dependence of all the samples. The peak observed in frequency dependence of dielectric loss measurements shifts to higher frequency with the increasing sintering temperature, indicating a Debye-like dielectric relaxation. The remanent magnetization increases with the increasing grain size while the coercivity is just the opposite. The saturation magnetization can achieve 50 emu/g when the sintering temperature is more than 1000 °C, and the lowest coercivity (159.49 Oe) was observed in the NFO sample sintered at 1300 °C for 2 h.

  12. Interaction of transient radiation in nongray gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    A general formulation is presented to investigate the transient radiative interaction in nongray absorbing-emitting species between two parallel plates. Depending on the desired sophistication and accuracy, any nongray absorption model from line-by-line models to the wide band model correlations can be employed in the formulation to investigate the radiative interaction. Special attention is directed to investigate the radiative interaction in a system initially at a uniform reference temperature and suddenly the temperature of the bottom plate is reduced to a lower but constant temperature. The interaction is considered for the case of radiative equilibrium as well as for combined radiation and conduction. General as well as limiting forms of the governing equations are presented and solutions are obtained numerically by employing the method of variation of parameters. Specific results are obtained for CO, CO2, H2O, and OH. The information on species H2O and OH is of special interest for the proposed scramjet engine application. The results demonstrate the relative ability of different species for radiative interactions.

  13. Preparation of fine single crystals of magnetic superconductor RuSr2GdCu2O8-δ by partial melting

    NASA Astrophysics Data System (ADS)

    Yamaki, Kazuhiro; Bamba, Yoshihiro; Irie, Akinobu

    2018-03-01

    In this study, fine uniform RuSr2GdCu2O8-δ (RuGd-1212) single crystals have been successfully prepared by partial melting. Synthesis temperature could be lowered to a value not exceeding the decomposition temperature of RuGd-1212 using the Sr-Gd-Cu-O flux. The crystals grown by alumina boats are cubic, which coincides with the result of a previous study of RuGd-1212 single crystals using platinum crucibles. The single crystals were up to 15 × 15 × 15 µm3 in size and their lattice constants were consistent with those of polycrystalline samples reported previously. Although the present size of single crystals is not sufficient for measurements, the partial melting technique will be beneficial for future progress of research using RuGd-1212 single crystals. Appropriate nominal composition, sintering atmosphere, and temperature are essential factors for growing RuGd-1212 single crystals.

  14. Optical properties and surface topography of CdCl2 activated CdTe thin films

    NASA Astrophysics Data System (ADS)

    Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-05-01

    The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.

  15. Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition

    PubMed Central

    2011-01-01

    In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled. PMID:21781335

  16. Temperature uniformity in hyperthermal tumor therapy

    NASA Technical Reports Server (NTRS)

    Harrison, G. H.; Robinson, J. E.; Samaras, G. M.

    1978-01-01

    Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.

  17. Novel burn device for rapid, reproducible burn wound generation.

    PubMed

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  18. Novel burn device for rapid, reproducible burn wound generation

    PubMed Central

    Kim, J.Y.; Dunham, D.M.; Supp, D.M.; Sen, C.K.; Powell, H.M.

    2016-01-01

    Introduction Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. Methods A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200 ± 5 °C) and pressed into the skin for 40 s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40 s at a constant pressure and at pressures of 1 or 3 lbs with a constant contact time of 40 s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). Results The custom burn device maintained both its internal temperature and the skin surface temperature near target temperature throughout contact time. In contrast, the standard burner required more than 20 s of contact time to raise the skin surface temperature to target due to its quickly decreasing internal temperature. The custom burner was able to create four consecutive burns in less than half the time of the standard burner. Average burn depth scaled positively with time and pressure in both burn units. However, the distribution of burn depth within each time-pressure combination in the custom device was significantly smaller than with the standard device and independent of user. Conclusions The custom burn device's ability to continually heat the burn stylus and actively control pressure and temperature allowed for more rapid and reproducible burn wounds. Burns of tailored and repeatable depths, independent of user, provide a platform for the study of anti-scar and other wound healing therapies without the added variable of non-uniform starting injury. PMID:26803369

  19. Monte Carlo grain growth modeling with local temperature gradients

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.

    2017-09-01

    This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.

  20. Heating of tissues by microwaves: a model analysis.

    PubMed

    Foster, K R; Lozano-Nieto, A; Riu, P J; Ely, T S

    1998-01-01

    We consider the thermal response times for heating of tissue subject to nonionizing (microwave or infrared) radiation. The analysis is based on a dimensionless form of the bioheat equation. The thermal response is governed by two time constants: one (tau1) pertains to heat convection by blood flow, and is of the order of 20-30 min for physiologically normal perfusion rates; the second (tau2) characterizes heat conduction and varies as the square of a distance that characterizes the spatial extent of the heating. Two idealized cases are examined. The first is a tissue block with an insulated surface, subject to irradiation with an exponentially decreasing specific absorption rate, which models a large surface area of tissue exposed to microwaves. The second is a hemispherical region of tissue exposed at a spatially uniform specific absorption rate, which models localized exposure. In both cases, the steady-state temperature increase can be written as the product of the incident power density and an effective time constant tau(eff), which is defined for each geometry as an appropriate function of tau1 and tau2. In appropriate limits of the ratio of these time constants, the local temperature rise is dominated by conductive or convective heat transport. Predictions of the block model agree well with recent data for the thresholds for perception of warmth or pain from exposure to microwave energy. Using these concepts, we developed a thermal averaging time that might be used in standards for human exposure to microwave radiation, to limit the temperature rise in tissue from radiation by pulsed sources. We compare the ANSI exposure standards for microwaves and infrared laser radiation with respect to the maximal increase in tissue temperature that would be allowed at the maximal permissible exposures. A historical appendix presents the origin of the 6-min averaging time used in the microwave standard.

  1. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Astrophysics Data System (ADS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  2. A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Liu, Na; Gao, Xuguang; Tian, Xiaohui; Zhu, Yanbin; Zhou, Yingke; Zhu, Qingyou

    2018-03-01

    The LiFePO4/C composites have been successfully synthesized by a hydrothermal process, with the combined carbon sources of fructose and calcium lignosulfonate. The morphology and microstructure of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The electrochemical properties were evaluated by the constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The uniform carbon coating layer derived from calcium lignosulfonate can effectively improve the electronic conductivity, lithium-ion diffusivity and surface stability of the LiFePO4/C composites and prevent the side reactions between the LiFePO4 particles and electrolytes. The LiFePO4/C composites display excellent rate capability, superior cycle life and outstanding low temperature performance, which are promising for lithium-ion battery applications in electrical vehicles and electrical energy storage systems.

  3. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Gokoglu, S. A.; Kohl, F. J.; Stearns, C. A.; Rosner, D. E.

    1984-01-01

    The mechanism of deposition of Na2SO4 was studied under controlled laboratory conditions and the results have been compared to a recently developed comprehensive theory of vapor deposition. Thus Na2SO4, NaCl, NaNO3 and simulated sea salt solutions were injected into the combustor of a nominal Mach 0.3 burner rig burning jet fuel at constant fuel/air ratios. The deposits formed on inert collectors, rotation in the cross flow of the combustion gases, were weighed and analyzed. Collector temperature was uniform and could be varied over a large range by internal air cooling. Deposition rates and dew point temperatures were determined. Supplemental testing included droplet size measurements of the atomized salt solutions. These tests along with thermodynamic and transport calculations were utilized in the interpretation of the deposition results.

  4. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Sinha, Nidhi; Goel, Neeti; Singh, B. K.; Gupta, M. K.; Kumar, Binay

    2012-06-01

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (Tc) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications.

  5. Dielectric and electrical characteristics of Sr modified Ca1Cu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Sahu, M.; Choudhary, R. N. P.; Roul, B. K.

    2018-05-01

    This paper mainly reports on the effect of Sr substitution on dielectric and electrical properties of CaCu3Ti4O12 at different temperature and frequency. Preliminary analysis of X-ray diffraction data of sintered samples confirms the reported cubic structure. Study of surface morphology shows that the surface of the samples contains well-defined and uniformly distributed grains. Some electrical parameters (permittivity, tangent loss and impedance) of the materials were measured and analyzed over a wide range of temperature (25 to 315 °C) and frequency (50 to 2x106 Hz). The ultra high dielectric constant and low energy dissipation have been observed in the said experimental conditions of phase-pure prepared compounds. It is expected that the addition of nano-size compounds or oxide will help to enhance the above properties useful for fabrication of super-capacitor.

  6. Gas analyses from the Pu'u O'o eruption in 1985, Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Greenland, L.P.

    1986-01-01

    Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process. ?? 1986 Springer-Verlag.

  7. Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals.

    PubMed

    Raghavan, Chinnambedu Murugesan; Chen, Tzu-Pei; Li, Shao-Sian; Chen, Wei-Liang; Lo, Chao-Yuan; Liao, Yu-Ming; Haider, Golam; Lin, Cheng-Chieh; Chen, Chia-Chun; Sankar, Raman; Chang, Yu-Ming; Chou, Fang-Cheng; Chen, Chun-Wei

    2018-05-09

    Organic-inorganic hybrid two-dimensional (2D) perovskites have recently attracted great attention in optical and optoelectronic applications due to their inherent natural quantum-well structure. We report the growth of high-quality millimeter-sized single crystals belonging to homologous two-dimensional (2D) hybrid organic-inorganic Ruddelsden-Popper perovskites (RPPs) of (BA) 2 (MA) n-1 Pb n I 3 n+1 ( n = 1, 2, and 3) by a slow evaporation at a constant-temperature (SECT) solution-growth strategy. The as-grown 2D hybrid perovskite single crystals exhibit excellent crystallinity, phase purity, and spectral uniformity. Low-threshold lasing behaviors with different emission wavelengths at room temperature have been observed from the homologous 2D hybrid RPP single crystals. Our result demonstrates that solution-growth homologous organic-inorganic hybrid 2D perovskite single crystals open up a new window as a promising candidate for optical gain media.

  8. Mechanism of room temperature oxygen sensor based on nanocrystalline TiO2 film

    NASA Astrophysics Data System (ADS)

    Bakri, A. S.; Sahdan, M. Z.; Nafarizal, N.; Abdullah, S. A.; Said, N. D. M.; Raship, N. A.; Sari, Y.

    2018-04-01

    A titanium dioxide (TiO2) thin film is proposed as the active layer for the detection of oxygen gas. The sensor is fabricated on silicon wafer using sol-gel dip coating technique with a constant withdrawal speed. The field emission scanning electron microscope image reveals that the film has a uniform structure while the x-ray diffraction analysis indicates that the film is anatase phase with tetragonal lattice structure. The film exhibit the highest intensity peak at (101) plane. The surface roughness measurement shows that the film has low surface roughness with small grain size. The electrical studies revealed that the resistivity is about 4.02 x 10-3 Ω.cm and the thickness of TiO2 film is 127.44 nm. The gas sensor measurement showed that the sensor response of the film is about 4.21% at room temperature.

  9. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less

  10. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  11. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen

    Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less

  12. Colossal dielectric response in all-ceramic percolative composite 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-Pb2Ru2O6.5

    NASA Astrophysics Data System (ADS)

    Bobnar, V.; Hrovat, M.; Holc, J.; Filipič, C.; Levstik, A.; Kosec, M.

    2009-02-01

    An exceptionally high dielectric constant was obtained by making use of the conductive percolative phenomenon in all-ceramic composite, comprising of Pb2Ru2O6.5 with high electrical conductivity denoted as the conductive phase and ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) perovskite systems. Structural analysis revealed a uniform distribution of conductive ceramic grains within the PMN-PT matrix. Consequently, the dielectric response in the PMN-PT-Pb2Ru2O6.5 composite follows the predictions of the percolation theory. Thus, close to the percolation point exceptionally high values of the dielectric constant were obtained—values higher than 105 were detected at room temperature at 1 kHz. Fit of the data, obtained for samples of different compositions, revealed critical exponent and percolation point, which reasonably agree with the theoretically predicted values.

  13. Computation and visualization of the MacAdam limits for any lightness, hue angle, and light source

    NASA Astrophysics Data System (ADS)

    Martínez-Verdú, Francisco; Perales, Esther; Chorro, Elisabet; de Fez, Dolores; Viqueira, Valentín; Gilabert, Eduardo

    2007-06-01

    We present a systematic algorithm capable of searching for optimal colors for any lightness L* (between 0 and 100), any illuminant (D65, F2, F7, F11, etc.), and any light source reported by CIE. Color solids are graphed in some color spaces (CIELAB, SVF, DIN99d, and CIECAM02) by horizontal (constant lightness) and transversal (constant hue angle) sections. Color solids plotted in DIN99d and CIECAM02 color spaces look more spherical or homogeneous than the ones plotted in CIELAB and SVF color spaces. Depending on the spectrum of the light source or illuminant, the shape of its color solid and its content (variety of distinguishable colors, with or without color correspondence) change drastically, particularly with sources whose spectrum is discontinuous and/or very peaked, with correlated color temperature lower than 5500 K. This could be used to propose an absolute colorimetric quality index for light sources comparing the volumes of their gamuts, in a uniform color space.

  14. Regional Myocardial Blood Flow*

    PubMed Central

    Sullivan, Jay M.; Taylor, Warren J.; Elliott, William C.; Gorlin, Richard

    1967-01-01

    A method is described which measures the local effectiveness of the myocardial circulation, expressed as a clearance constant. Uniform clearance constants have been demonstrated in the normal canine and human myocardium. A distinct difference in clearance constants has been demonstrated between the normal canine myocardium and areas of naturally occurring disease. Heterogeneous clearance constants have been found in a majority of human subjects with coronary artery disease—the lowest rates being noted in areas of fibrous aneurysm. PMID:6036537

  15. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  16. Highlighting non-uniform temperatures close to liquid/solid surfaces

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Baroni, P.; Bardeau, J. F.

    2017-05-01

    The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.

  17. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  18. Theoretical analysis of nonnuniform skin effects on drawdown variation

    NASA Astrophysics Data System (ADS)

    Chen, C.-S.; Chang, C. C.; Lee, M. S.

    2003-04-01

    Under field conditions, the skin zone surrounding the well screen is rarely uniformly distributed in the vertical direction. To understand such non-uniform skin effects on drawdown variation, we assume the skin factor to be an arbitrary, continuous or piece-wise continuous function S_k(z), and incorporate it into a well hydraulics model for constant rate pumping in a homogeneous, vertically anisotropic, confined aquifer. Solutions of depth-specific drawdown and vertical average drawdown are determined by using the Gram-Schmidt method. The non-uniform effects of S_k(z) in vertical average drawdown are averaged out, and can be represented by a constant skin factor S_k. As a result, drawdown of fully penetrating observation wells can be analyzed by appropriate well hydraulics theories assuming a constant skin factor. The S_k is the vertical average value of S_k(z) weighted by the well bore flux q_w(z). In depth-specific drawdown, however, the non-uniform effects of S_k(z) vary with radial and vertical distances, which are under the influence of the vertical profile of S_k(z) and the vertical anisotropy ratio, K_r/K_z. Therefore, drawdown of partially penetrating observation wells may reflect the vertical anisotropy as well as the non-uniformity of the skin zone. The method of determining S_k(z) developed herein involves the use of q_w(z) as can be measured with the borehole flowmeter, and K_r/K_z and S_k as can be determined by the conventional pumping test.

  19. Pulsed Electrodeposition of Ni with Uniform Co-Deposition of Micron Sized Diamond Particles on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Mahato, Neelima

    Nanocrystalline nickel was deposited on annealed copper substrate of unit surface area (1 cm2) via pulsed electrodeposition technique using potentiostat (model 263A, Princeton Applied Research, USA) from Watts bath containing nickel sulfate, nickel chloride ,boric acid and sodium citrate. Diamond particles of three different dimensions, viz., 1, 3, and 6 micron were added separately (5 g/L) to the watts bath and co-deposited along with nanocrystalline nickel. The temperature was kept constant at 55 °C. The solution was ultrasonicated for 45-60 minutes prior to deposition to disperse the diamond particles uniformly in the bath. Depositions were carried out at different current densities, viz., 50, 100,150 and 200 mA/ cm2 for different durations, i.e.7, 14 and 21 minutes and best results are optimized for 200mA/cm2 so it is used for all process here .Scanning electron micrographs (SEM) show uniform deposition of microstructure of micron diamond on the surface of copper embedded in the nickel matrix. Elemental mapping confirmed uniform deposition of nickel and diamond with almost no cracks or pits. Mechanical properties of the sample such as, Vicker's hardness increased abruptly after the electrodeposition. Improved microstructural and mechanical properties were found in the case of electrodeposited surfaces containing followed by 3 and 6 micron diamond. The properties were also found better than those processed via stirring the solution during deposition.

  20. Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging

    NASA Astrophysics Data System (ADS)

    Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.

    2018-01-01

    An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.

  1. Thermal response of large area high temperature superconducting YBaCuO infrared bolometers

    NASA Technical Reports Server (NTRS)

    Khalil, Ali E.

    1991-01-01

    Thermal analysis of large area high temperature superconducting infrared detector operating in the equilibrium mode (bolometer) was performed. An expression for the temperature coefficient beta = 1/R(dR/dT) in terms of the thermal conductance and the thermal time constant of the detector were derived. A superconducting transition edge bolometer is a thermistor consisting of a thin film superconducting YBaCuO evaporated into a suitable thermally isolated substrate. The operating temperature of the bolometer is maintained close to the midpoint of the superconducting transition region where the resistance R has a maximum dynamic range. A detector with a strip configuration was analyzed and an expression for the temperature rise (delta T) above the ambient due to a uniform illumination with a source of power density was calculated. An expression for the thermal responsibility depends upon the spatial modulation frequency and the angular frequency of the incoming radiation. The problem of the thermal cross talk between different detector elements was addressed. In the case of monolithic HTS detector array with a row of square elements of dimensions 2a and CCD or CID readout electronics the thermal spread function was derived for different spacing between elements.

  2. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    USDA-ARS?s Scientific Manuscript database

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  3. An in situ thermo-mechanical rig for lattice strain measurement during creep using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Kabra, S.; Zhang, S. Y.; Truman, C. E.; Smith, D. J.

    2018-05-01

    A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.

  4. An in situ thermo-mechanical rig for lattice strain measurement during creep using neutron diffraction.

    PubMed

    Wang, Y Q; Kabra, S; Zhang, S Y; Truman, C E; Smith, D J

    2018-05-01

    A long-term high-temperature testing stress rig has been designed and fabricated for performing in situ neutron diffraction tests at the ENGIN-X beamline, ISIS facility in the UK. It is capable of subjecting metals to high temperatures up to 800 °C and uniaxial loading under different boundary conditions including constant load, constant strain, and elastic follow-up, each with minimum of external control. Samples are held horizontally between grips and connected to a rigid rig frame, a soft aluminium bar, and a stepper motor with forces up to 20 kN. A new three zone split electrical resistance furnace which generates a stable and uniform heat atmosphere over 200 mm length was used to heat the samples. An 8 mm diameter port at 45° to the centre of the furnace was made in order to allow the neutron beam through the furnace to illuminate the sample. The entire instrument is mounted on the positioner at ENGIN-X and has the potential ability to operate continuously while being moved in and out of the neutron diffraction beam. The performance of the rig has been demonstrated by tracking the evolution of lattice strains in type 316H stainless steel under elastic follow-up control at 550 °C.

  5. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.

  6. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.

    PubMed

    Sane, Pooja; Varma, Nikhil; Ganguly, Arnab; Pikal, Michael; Alexeenko, Alina; Bogner, Robin H

    2017-02-01

    Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h -1 ·m -2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h -1 ·m -2 , an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.

  7. GAS EXCHANGE OF ALGAE. I. EFFECTS OF TIME, LIGHT INTENSITY, AND SPECTRAL-ENERGY DISTRIBUTION ON THE PHOTOSYNTHETIC QUOTIENT OF CHLORELLA PYRENOIDOSA.

    PubMed

    AMMANN, E C; LYNCH, V H

    1965-07-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO(2)/O(2)) and O(2) values during 6 months of observations. The PQ for the entire study was 0.90 +/- 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O(2) production (0.90 +/- 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 +/- 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O(2) values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use.

  8. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    PubMed

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  9. Differences between wafer and bake plate temperature uniformity in proximity bake: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ramanan, Natarajan; Kozman, Austin; Sims, James B.

    2000-06-01

    As the lithography industry moves toward finer features, specifications on temperature uniformity of the bake plates are expected to become more stringent. Consequently, aggressive improvements are needed to conventional bake station designs to make them perform significantly better than current market requirements. To this end, we have conducted a rigorous study that combines state-of-the-art simulation tools and experimental methods to predict the impact of the parameters that influence the uniformity of the wafer in proximity bake. The key observation from this detailed study is that the temperature uniformity of the wafer in proximity mode depends on a number of parameters in addition to the uniformity of the bake plate itself. These parameters include the lid design, the air flow distribution around the bake chamber, bake plate design and flatness of the bake plate and wafer. By performing careful experimental studies that were guided by extensive numerical simulations, we were able to understand the relative importance of each of these parameters. In an orderly fashion, we made appropriate design changes to curtail or eliminate the nonuniformity caused by each of these parameters. After implementing all these changes, we have now been able to match or improve the temperature uniformity of the wafer in proximity with that of a contact measurement on the bake plate. The wafer temperature uniformity is also very close to the theoretically predicted uniformity of the wafer.

  10. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    NASA Astrophysics Data System (ADS)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  11. A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900°C.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2013-04-01

    A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.

  12. Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam.

    PubMed

    Li, Yingli; Meguid, S A; Fu, Yiming; Xu, Daolin

    2014-02-08

    In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.

  13. Characteristics and production of tantalum powders for solid-electrolyte capacitors

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Sik; Kim, Byung Il

    The effects of using K 2TaF 7 as the raw material and sodium as the reducing agent on the characteristics of tantalum powder are investigated. Batch-type metallothermic reduction (BTMR) is used to charge the reactor with the raw material and the reducing agent, and external continuous supply metallothermic reduction (ESMR) is used to supply the raw material and the reducing agent at a constant rate at the temperature of the reduction reaction. In the case of ESMR, the yield increases by several tens of percent because of the uniform reaction between the raw material and the reducing agent. It is possible to obtain a powder of over 99.5% purity. The powder particles obtained with BTMR are relatively large (4-6 μm) and have a coarse lamellar shape, while those prepared via ESMR are of uniform 1-2 μm size with a coral-like shape. Measurements of the electric properties show that the leakage current and the dielectric dissipation are low with higher reliability in ESMR than in BTMR, and the capacitance is 26,000 and 8400 CV for ESMR and in BTMR, respectively.

  14. Combined Thermochromic And Plasmonic: Optical Responses In Novel Nanocomposite Au-VO2 Films Prepared By RF Inverted Cylindrical Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kana, J. B. Kana; Ndjaka, J. M.; Manyala, N.; Nemraoui, O.; Beye, A. C.; Maaza, M.

    2008-09-01

    We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO2) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 °C to 600 °C. The X-ray diffraction results demonstrated that the Au and VO2 were well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 °C to 100 °C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at ˜57 nm for substrate temperature higher than 500 °C.

  15. Microstructural and mechanical properties of Al2O3/ZrO2 nanomultilayer thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il

    2018-02-01

    Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.

  16. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    NASA Astrophysics Data System (ADS)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".

  17. An investigation on rapeseed oil as potential insulating liquid

    NASA Astrophysics Data System (ADS)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  18. Uniform color space is not homogeneous

    NASA Astrophysics Data System (ADS)

    Kuehni, Rolf G.

    2002-06-01

    Historical data of chroma scaling and hue scaling are compared and evidence is shown that we do not have a reliable basis in either case. Several data sets indicate explicitly or implicitly that the number of constant sized hue differences between unique hues as well as in the quadrants of the a*, b* diagram differs making what is commonly regarded as uniform color space inhomogeneous. This problem is also shown to affect the OSA-UCS space. A Euclidean uniform psychological or psychophysical color space appears to be impossible.

  19. Room temperature structural and dielectric studies of Pb(Fe0.585Nb0.25W0.165)O3 solid solution

    NASA Astrophysics Data System (ADS)

    Nagaraja, T.; Dadami, Sunanda T.; Angadi, Basavaraj

    2018-05-01

    The perovskite A(B'B''B''')O3 structure Pb(Fe0.585Nb0.25W0.165)O3 (PFNW) multiferroic material was synthesized by single step solid state reaction method. The single phase was achieved at low temperature with optimized synthesis parameters as calcination (700°C/2hr) and sintering (800 °C /3hr). Single phase was confirmed by room temperature (RT) X-ray diffraction (XRD). The scanning electron microscopy (SEM) shows the uniform distribution of grains throughout the surface of PFNW and the energy dispersive X-ray spectroscopy (EDX) confirms the exact elemental composition as that of the experimental. Fourier transform infrared spectroscopy (FTIR) exhibits two absorption bands at 602 cm-1 and 1385 cm-1 corresponds to the bending and stretching vibrations of metal oxides. RT dielectric studies (dielectric constant, tanδ, AC conductivity) exhibits maximum values at lower frequency region and decreases as the frequency increases. Thesingle semicircular arc in RT impedance spectra (Nyquist plot)indicatesthe contribution to the conductivity is from grains only. Hence PFNW is a potential candidate for near room temperature applications.

  20. Physiologic reactions during five weeks of continuous residence in an artificial humid and hot climate

    NASA Technical Reports Server (NTRS)

    Laaser, U.

    1979-01-01

    During 5 weeks in a climatic room, total sweat during work almost doubled. Initial hour differences increasingly equalized. There was a displacement of sweat secretion from trunk to extremities till the end of week 3, occurring earlier and more clearly for the arm than for the leg. Work temperatures dropped rapidly and evenly to a constant level by day 11. Circulation behavior matched that of temperature. Pulse rate during work dropped like rectal temperature and pulse rate during rest was phasically like the pattern of corresponding temperatures. Except for the first days urine output was adequate and even, Na decreasing in the urine until week 3, then returning to initial values. Na and K in sweat declined but with opposite patterns for hours 1-4. Total salt elimination decreased. The conclusive phenomena of redistribution occurred within the first 3 weeks. A few functions changed later also. Relatively trivial changes in an otherwise uniform reaction pattern indicated that after 3 or even 5 weeks of acclimatization the process is not over or at least not completely so. The tempo of the process appears to be a function of the degree of loading.

  1. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization Through Dark Current Measurement

    NASA Astrophysics Data System (ADS)

    Amaudruz, Pierre-Andre; Bishop, Daryl; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retiere, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D.; Thompson, Christopher J.

    2014-06-01

    PIXELATED geiger-mode avalanche photodiodes (PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that at room temperature, the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.

  2. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  3. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy.

    PubMed

    Cui, J; Lv, Y; Yang, X J; Fan, Y L; Zhong, Z; Jiang, Z M

    2011-03-25

    The size uniformity of self-assembled SiGe quantum rings, which are formed by capping SiGe quantum dots with a thin Si layer, is found to be greatly influenced by the growth temperature and the areal density of SiGe quantum dots. Higher growth temperature benefits the size uniformity of quantum dots, but results in low Ge concentration as well as asymmetric Ge distribution in the dots, which induces the subsequently formed quantum rings to be asymmetric in shape or even broken somewhere in the ridge of rings. Low growth temperature degrades the size uniformity of quantum dots, and thus that of quantum rings. A high areal density results in the expansion and coalescence of neighboring quantum dots to form a chain, rather than quantum rings. Uniform quantum rings with a size dispersion of 4.6% and an areal density of 7.8×10(8) cm(-2) are obtained at the optimized growth temperature of 640°C.

  4. Buoyancy-assisted mixed convective flow over backward-facing step in a vertical duct using nanofluids

    NASA Astrophysics Data System (ADS)

    Mohammed, H. A.; Al-aswadi, A. A.; Yusoff, M. Z.; Saidur, R.

    2012-03-01

    Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ≤ Δ T≤ 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ≤ Re ≤ 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.

  5. Effect of distributor on performance of a continuous fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Yogendrasasidhar, D.; Srinivas, G.; Pydi Setty, Y.

    2018-03-01

    Proper gas distribution is very important in fluidized bed drying in industrial practice. Improper distribution of gas may lead to non-idealities like channeling, short circuiting and accumulation which gives rise to non-uniform quality of dried product. Gas distribution depends on the distributor plate used. Gas distribution mainly depends on orifice diameter, number of orifices and opening area of the distributor plate. Small orifice diameter leads to clogging, and a large orifice diameter gives uneven distribution of gas. The present work involves experimental studies using different distributor plates and simulation studies using ASPEN PLUS steady state simulator. The effect of various parameters such as orifice diameter, number of orifices and the opening area of the distributor plate on the performance of fluidized bed dryer have been studied through simulation and experimentation. Simulations were carried out (i) with increasing air inlet temperature to study the characteristics of solid temperature and moisture in outlet (ii) with increasing orifice diameter and (iii) with increase in number orifices to study the solid outlet temperature profiles. It can be observed from the simulation that, an increase in orifice diameter and number orifices increases solid outlet temperature upto certain condition and then after there is no effect with further increase. Experiments were carried out with increasing opening area (3.4 to 42%) in the form of increasing orifice diameter keeping the number of orifices constant and increasing number of orifices of the distributor plate keeping the orifice diameter constant. It can be seen that the drying rate and solid outlet temperature increase upto certain condition and then after with further increase in the orifice diameter and number of orifices, the change in the drying rate and solid outlet temperature observed is little. The optimum values of orifice diameter and number of orifices from experimentation are found to be 5 mm and 60 (22% opening area).

  6. Impact of Uniform Methods on Interlaboratory Antibody Titration Variability: Antibody Titration and Uniform Methods.

    PubMed

    Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H

    2017-01-01

    -Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.

  7. Shutterless non-uniformity correction for the long-term stability of an uncooled long-wave infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao; Gu, Guohua; Chen, Qian

    2018-02-01

    For the uncooled long-wave infrared (LWIR) camera, the infrared (IR) irradiation the focal plane array (FPA) receives is a crucial factor that affects the image quality. Ambient temperature fluctuation as well as system power consumption can result in changes of FPA temperature and radiation characteristics inside the IR camera; these will further degrade the imaging performance. In this paper, we present a novel shutterless non-uniformity correction method to compensate for non-uniformity derived from the variation of ambient temperature. Our method combines a calibration-based method and the properties of a scene-based method to obtain correction parameters at different ambient temperature conditions, so that the IR camera performance can be less influenced by ambient temperature fluctuation or system power consumption. The calibration process is carried out in a temperature chamber with slowly changing ambient temperature and a black body as uniform radiation source. Enough uniform images are captured and the gain coefficients are calculated during this period. Then in practical application, the offset parameters are calculated via the least squares method based on the gain coefficients, the captured uniform images and the actual scene. Thus we can get a corrected output through the gain coefficients and offset parameters. The performance of our proposed method is evaluated on realistic IR images and compared with two existing methods. The images we used in experiments are obtained by a 384× 288 pixels uncooled LWIR camera. Results show that our proposed method can adaptively update correction parameters as the actual target scene changes and is more stable to temperature fluctuation than the other two methods.

  8. 40 CFR 1066.105 - Ambient controls and vehicle cooling fans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... range of ambient temperature and humidity. Use good engineering judgment to maintain relatively uniform temperatures throughout the test cell before testing. You are generally not required to maintain uniform temperatures throughout the test cell while the vehicle is running due to the heat generated by the vehicle...

  9. High temperature coefficient of resistance achieved by ion beam assisted sputtering with no heat treatment in V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vardi, Naor; Sharoni, Amos, E-mail: amos.sharoni@biu.ac.il

    2015-11-15

    Thermal imaging based on room temperature bolometer sensors is a growing market, constantly searching for improved sensitivity. One important factor is the temperature coefficient of resistance (TCR), i.e., the sensitivity of the active material. Herein, the authors report the improved TCR properties attainable by the “ion beam assisted deposition” method for room temperature deposition. V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf) thin-film alloys were fabricated on 1 μm thermal SiO{sub 2} atop Si (100) substrates by reactive magnetron cosputtering at room temperature using a low energy ion source, aimed at the film, to insert dissociated oxygen species and increase film density. Themore » authors studied the influence of deposition parameters such as oxygen partial pressure, V to M ratio, and power of the plasma source, on resistance and TCR. The authors show high TCR (up to −3.7% K{sup −1}) at 300 K, and excellent uniformity, but also an increase in resistance. The authors emphasize that samples were prepared at room temperature with no heat treatment, much simpler than common processes that require annealing at high temperatures. So, this is a promising fabrication route for uncooled microbolometers.« less

  10. Temperature-independent ferroelectric property and characterization of high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Linxing; Chen, Jun; Zhao, Hanqing; Fan, Longlong; Rong, Yangchun; Deng, Jinxia; Yu, Ranbo; Xing, Xianran

    2013-08-01

    Ferroelectric property stability against elevated temperature is significant for ferroelectric film applications, such as non-volatile ferroelectric random access memories. The high-TC 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films show the temperature-independent ferroelectric properties, which were fabricated on Pt(111)/Ti/SiO2/Si substrates via sol-gel method. The present thin films were well crystallized in a phase-pure perovskite structure with a high (100) orientation and uniform texture. A remanent polarization (2Pr) of 77 μC cm-2 and a local effective piezoelectric coefficient d33* of 60 pm/V were observed in the 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films. It is interesting to observe a behavior of temperature-independent ferroelectric property in the temperature range of room temperature to 125 °C. The remanent polarization, coercive field, and polarization at the maximum field are almost constant in the investigated temperature range. Furthermore, the dielectric loss and fatigue properties of 0.2Bi(Mg1/2Ti1/2)O3-0.8PbTiO3 thin films have been effectively improved by the Mn-doping.

  11. Verification of the Multi-Axial, Temperature and Time Dependent (MATT) Failure Criterion

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Macon, David J.

    2005-01-01

    An extensive test and analytical effort has been completed by the Space Shuttle's Reusable Solid Rocket Motor (KSKM) nozzle program to characterize the failure behavior of two epoxy adhesives (TIGA 321 and EA946). As part of this effort, a general failure model, the "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. In the initial development of this failure criterion, tests were conducted to provide validation of the theory under a wide range of test conditions. The purpose of this paper is to present additional verification of the MATT failure criterion, under new loading conditions for the adhesives TIGA 321 and EA946. In many cases, the loading conditions involve an extrapolation from the conditions under which the material models were originally developed. Testing was conducted using three loading conditions: multi-axial tension, torsional shear, and non-uniform tension in a bondline condition. Tests were conducted at constant and cyclic loading rates ranging over four orders of magnitude. Tests were conducted under environmental conditions of primary interest to the RSRM program. The temperature range was not extreme, but the loading ranges were extreme (varying by four orders of magnitude). It should be noted that the testing was conducted at temperatures below the glass transition temperature of the TIGA 321 adhesive. However for the EA946, the testing was conducted at temperatures that bracketed the glass transition temperature.

  12. Temperature Dependence Of Elastic Constants Of Polymers

    NASA Technical Reports Server (NTRS)

    Simha, Robert; Papazoglou, Elisabeth

    1989-01-01

    Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.

  13. Expanding Taylor bubble under constant heat flux

    NASA Astrophysics Data System (ADS)

    Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves

    2016-09-01

    Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.

  14. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  15. Carrier transport performance of Cd0.9Zn0.1Te detector by direct current photoconductive technology

    NASA Astrophysics Data System (ADS)

    Ling, Yunpeng; Min, Jiahua; Liang, Xiaoyan; Zhang, Jijun; Yang, Liuqing; Zhang, Ying; Li, Ming; Liu, Zhaoxin; Wang, Linjun

    2017-01-01

    In this paper, based on the derivation of the Hecht model and Many model, we establish a new theoretical model and deduce its mathematical equation by considering an even-distributed charged center of certain concentration under constant illumination. This model helps us deeply understand the carrier transport performance of Cd0.9Zn0.1Te (CZT) under various illuminations and non-uniform distribution of the internal electric field in CZT. In our research, direct current photoconductive technology (DCPT) is applied to assess the electrical transport properties of carriers in CZT crystals, which is verified by room temperature Am-241 alpha-particle responses and charge collection efficiency test. The mobility-lifetime product ( μτ ) for carriers is extracted from fitting the Hecht model by DCPT for CZT radiated from the cathode and anode by a constant laser, respectively. Moreover, the carrier transport properties of CZT under various light intensities and during a wide range of temperatures are also taken and analyzed in detail, which enable us to develop the best performance of CZT. In addition, we figure out a method for estimating μeτe and μhτh on different positions of CZT wafer on the basis of the pixel detector that collects single polarity charge, and several corrective actions have improved the accuracy of the measurement.

  16. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    NASA Astrophysics Data System (ADS)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  17. Comparison of Turbulent Heat-Transfer Results for Uniform Wall Heat Flux and Uniform Wall Temperature

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Sparrow, E. M.

    1960-01-01

    The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.

  18. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid

    NASA Astrophysics Data System (ADS)

    Gibanov, Nikita S.; Sheremet, Mikhail A.; Oztop, Hakan F.; Al-Salem, Khaled

    2018-04-01

    In this study, natural convection combined with entropy generation of Fe3O4-water nanofluid within a square open cavity filled with two different porous blocks under the influence of uniform horizontal magnetic field is numerically studied. Porous blocks of different thermal properties, permeability and porosity are located on the bottom wall. The bottom wall of the cavity is kept at hot temperature Th, while upper open boundary is at constant cold temperature Tc and other walls of the cavity are supposed to be adiabatic. Governing equations with corresponding boundary conditions formulated in dimensionless stream function and vorticity using Brinkman-extended Darcy model for porous blocks have been solved numerically using finite difference method. Numerical analysis has been carried out for wide ranges of Hartmann number, nanoparticles volume fraction and length of the porous blocks. It has been found that an addition of spherical ferric oxide nanoparticles can order the flow structures inside the cavity.

  19. Ferroelectric and optical properties of `Ba-doped' new double perovskites

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Panda, Niranjan; Padhee, R.; Parida, R. K.

    2018-06-01

    Solid solution of Pb1.5Ba0.5BiNbO6 ceramic is explored here to obtain its ferroelectric and optical properties. The polycrystalline sample was prepared by a standard solid state reaction route. Room temperature XRD and FTIR spectra of the compound exhibit an appreciable change in its crystal structure of Pb2BiNbO6 on addition of 'Ba' in A site. The surface morphology of the gold-plated sintered pellet sample recorded by SEM exhibits a uniform distribution of small grains with well-defined grain boundaries. Detailed studies on the nature of polarization and variation of dielectric constant, tangent loss with temperature as well as frequency indicate the existence of Ferro-electricity in the sample. Using UV-Vis spectroscopy, the optical band gap of the studied sample has been estimated as 2.1 eV, which is useful for photo catalytic devices. Photoluminescence analysis of the powder sample shows a strong red photoluminescence with blue excitation, which is basically useful for LED.

  20. Ni-MH battery charger with a compensator for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.W.; Han, C.S.; Kim, C.S.

    1996-09-01

    The development of a high-performance battery and safe and reliable charging methods are two important factors for commercialization of the Electric Vehicles (EV). Hyundai and Ovonic together spent many years in the research on optimum charging method for Ni-MH battery. This paper presents in detail the results of intensive experimental analysis, performed by Hyundai in collaboration with Ovonic. An on-board Ni-MH battery charger and its controller which are designed to use as a standard home electricity supply are described. In addition, a 3 step constant current recharger with the temperature and the battery aging compensator is proposed. This has amore » multi-loop algorithm function to detect its 80% and fully charged state, and carry out equalization charging control. The algorithm is focused on safety, reliability, efficiency, charging speed and thermal management (maintaining uniform temperatures within a battery pack). It is also designed to minimize the necessity for user input.« less

  1. Colombia: A Country Under Constant Threat of Disasters

    DTIC Science & Technology

    2014-05-22

    disasters strike every nation in the world , and although these events do not occur with uniformity of distribution, developing nations suffer the greatest...strike every nation in the world , and although these events do not occur with uniformity of distribution, developing nations suffer the greatest...have been victims 4IHS Janes, “Jane’s World Insurgency and Terrorism.” Fuerzas Armadas

  2. Streamline similarity method for flow distributions and shock losses at the impeller inlet of the centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, Zh.

    2018-02-01

    An analytical method is presented, which enables the non-uniform velocity and pressure distributions at the impeller inlet of a pump to be accurately computed. The analyses are based on the potential flow theory and the geometrical similarity of the streamline distribution along the leading edge of the impeller blades. The method is thus called streamline similarity method (SSM). The obtained geometrical form of the flow distribution is then simply described by the geometrical variable G( s) and the first structural constant G I . As clearly demonstrated and also validated by experiments, both the flow velocity and the pressure distributions at the impeller inlet are usually highly non-uniform. This knowledge is indispensible for impeller blade designs to fulfill the shockless inlet flow condition. By introducing the second structural constant G II , the paper also presents the simple and accurate computation of the shock loss, which occurs at the impeller inlet. The introduction of two structural constants contributes immensely to the enhancement of the computational accuracies. As further indicated, all computations presented in this paper can also be well applied to the non-uniform exit flow out of an impeller of the Francis turbine for accurately computing the related mean values.

  3. Reflectance Speckle of Retinal Nerve Fiber Layer Reveals Axonal Activity

    PubMed Central

    Huang, Xiang-Run; Knighton, Robert W.; Zhou, Ye; Zhao, Xiao-Peng

    2013-01-01

    Purpose. This study investigated the retinal nerve fiber layer (RNFL) reflectance speckle and tested the hypothesis that temporal change of RNFL speckle reveals axonal dynamic activity. Methods. RNFL reflectance speckle of isolated rat retinas was studied with monochromatic illumination. A series of reflectance images was collected every 5 seconds for approximately 15 minutes. Correlation coefficients (CC) of selected areas between a reference and subsequent images were calculated and plotted as a function of the time intervals between images. An exponential function fit to the time course was used to evaluate temporal change of speckle pattern. To relate temporal change of speckle to axonal activity, in vitro living retina perfused at a normal (34°C) and a lower (24°C) temperature, paraformaldehyde-fixed retina, and retina treated with microtubule depolymerization were used. Results. RNFL reflectance was not uniform; rather nerve fiber bundles had a speckled texture that changed with time. In normally perfused retina, the time constant of the CC change was 0.56 ± 0.26 minutes. In retinas treated with lower temperature and microtubule depolymerization, the time constants increased by two to four times, indicating that the speckle pattern changed more slowly. The speckled texture in fixed retina was stationary. Conclusions. Fixation stops axonal activity; treatments with either lower temperature or microtubule depolymerization are known to decrease axonal transport. The results obtained in this study suggest that temporal change of RNFL speckle reveals structural change due to axonal activity. Assessment of RNFL reflectance speckle may offer a new means of evaluating axonal function. PMID:23532525

  4. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  5. High-temperature langatate elastic constants and experimental validation up to 900 degrees C.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2010-01-01

    This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.

  6. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    NASA Astrophysics Data System (ADS)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.

  7. An evaluation of benthic macroinvertebrate biomass methodology : Part 1. Laboratory analytical methods.

    PubMed

    Mason, W T; Lewis, P A; Weber, C I

    1983-03-01

    Evaluation of analytical methods employed for wet weight (live or preserved samples) of benthic macroinvertebrates reveals that centrifugation at 140 x gravity for one minute yields constant biomass estimates. Less relative centrifugal force increases chance of incomplete removal of body moisture and results in weighing error, while greater force may rupture fragile macroinvertebrates, such as mayflies. Duration of specimen exposure in ethanol, formalin, and formol (formaling-ethanol combinations) causes significant body weight loss with within 48 hr formalin and formol cause less body weight loss than ethanol. However, as all preservatives tested cause body weight loss, preservation time of samples collected for comparative purposes should be treated uniformly. Dry weight estimates of macroinvertebrates are not significantly affected by kind of preservative or duration of exposure. Constant dry weights are attained by oven drying at 103 °C at a minimum of four hours or vacuum oven drying (15 inches of mercury pressure) at 103 °C for a minimum of one hour. Although requiring more time in preparation than oven drying and inalterably changing specimen body shape, freeze drying (10 microns pressure, -55 °C, 24 hr) provides constant dry weights and is advantageous for long term sample storage by minimizing curatorial attention. Constant ash-free dry weights of macroinvertebrate samples are attained by igniting samples at 500-550 °C for a minimum of one hour with slow cooling to room temperature in desiccators before weighing.

  8. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    NASA Astrophysics Data System (ADS)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  9. A novel polyimide based micro heater with high temperature uniformity

    DOE PAGES

    Yu, Shifeng; Wang, Shuyu; Lu, Ming; ...

    2017-02-06

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  10. A novel polyimide based micro heater with high temperature uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shifeng; Wang, Shuyu; Lu, Ming

    MEMS based micro heaters are a key component in micro bio-calorimetry, nondispersive infrared gas sensors, semiconductor gas sensors and microfluidic actuators. A micro heater with a uniform temperature distribution in the heating area and short response time is desirable in ultrasensitive temperature-dependent measurements. In this study, we propose a novel micro heater design to reach a uniform temperature in a large heating area by optimizing the heating power density distribution in the heating area. A polyimide membrane is utilized as the substrate to reduce the thermal mass and heat loss which allows for fast thermal response as well as amore » simplified fabrication process. A gold and titanium heating element is fabricated on the flexible polyimide substrate using the standard MEMS technique. The temperature distribution in the heating area for a certain power input is measured by an IR camera, and is consistent with FEA simulation results. Finally, this design can achieve fast response and uniform temperature distribution, which is quite suitable for the programmable heating such as impulse and step driving.« less

  11. Determination of the Maximum Temperature in a Non-Uniform Hot Zone by Line-of-Site Absorption Spectroscopy with a Single Diode Laser.

    PubMed

    Liger, Vladimir V; Mironenko, Vladimir R; Kuritsyn, Yurii A; Bolshov, Mikhail A

    2018-05-17

    A new algorithm for the estimation of the maximum temperature in a non-uniform hot zone by a sensor based on absorption spectrometry with a diode laser is developed. The algorithm is based on the fitting of the absorption spectrum with a test molecule in a non-uniform zone by linear combination of two single temperature spectra simulated using spectroscopic databases. The proposed algorithm allows one to better estimate the maximum temperature of a non-uniform zone and can be useful if only the maximum temperature rather than a precise temperature profile is of primary interest. The efficiency and specificity of the algorithm are demonstrated in numerical experiments and experimentally proven using an optical cell with two sections. Temperatures and water vapor concentrations could be independently regulated in both sections. The best fitting was found using a correlation technique. A distributed feedback (DFB) diode laser in the spectral range around 1.343 µm was used in the experiments. Because of the significant differences between the temperature dependences of the experimental and theoretical absorption spectra in the temperature range 300⁻1200 K, a database was constructed using experimentally detected single temperature spectra. Using the developed algorithm the maximum temperature in the two-section cell was estimated with accuracy better than 30 K.

  12. Harmonic elastic inclusions in the presence of point moment

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Schiavone, Peter

    2017-12-01

    We employ conformal mapping techniques to design harmonic elastic inclusions when the surrounding matrix is simultaneously subjected to remote uniform stresses and a point moment located at an arbitrary position in the matrix. Our analysis indicates that the uniform and hydrostatic stress field inside the inclusion as well as the constant hoop stress along the entire inclusion-matrix interface (on the matrix side) are independent of the action of the point moment. In contrast, the non-elliptical shape of the harmonic inclusion depends on both the remote uniform stresses and the point moment.

  13. Heat Transfer to Longitudinal Laminar Flow Between Cylinders

    NASA Technical Reports Server (NTRS)

    Sparrow, Ephraim M.; Loeffler, Albert L. Jr.; Hubbard, H. A.

    1960-01-01

    Consideration is given to the fully developed heat transfer characteristics for longitudinal laminar flow between cylinders arranged in an equilateral triangular array. The analysis is carried out for the condition of uniform heat transfer per unit length. Solutions are obtained for the temperature distribution, and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter ratios. It is found that as the spacing ratio increases, so also does the wall-to-bulk temperature difference for a fixed heat transfer per unit length. Corresponding to a uniform surface temperature around the circumference of a cylinder, the circumferential variation of the local heat flux is computed. For spacing ratios of 1.5 - 2.0 and greater, uniform peripheral wall temperature and uniform peripheral heat flux are simultaneously achieved. A simplified analysis which neglects circumferential variations is also carried out, and the results are compared with those from the more exact formulation.

  14. Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations.

    PubMed

    Kulkarni, Ashish; Singh, Trilok; Jena, Ajay K; Pinpithak, Peerathat; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-03-21

    Low stability of organic-inorganic lead halide perovskite and toxicity of lead (Pb) still remain a concern. Therefore, there is a constant quest for alternative nontoxic and stable light-absorbing materials with promising optoelectronic properties. Herein, we report about nontoxic bismuth triiodide (BiI 3 ) photovoltaic device prepared using TiO 2 mesoporous film and spiro-OMeTAD as electron- and hole-transporting materials, respectively. Effect of annealing methods (e.g., thermal annealing (TA), solvent vapor annealing (SVA), and Petri dish covered recycled vapor annealing (PR-VA)) and different annealing temperatures (90, 120, 150, and 180 °C for PR-VA) on BiI 3 film morphology have been investigated. As found in the study, grain size increased and film uniformity improved as temperature was raised from 90 to 150 °C. The photovoltaic devices based on BiI 3 films processed at 150 °C with PR-VA treatment showed power conversion efficiency (PCE) of 0.5% with high reproducibility, which is, so far, the best PCE reported for BiI 3 photovoltaic device employing organic hole-transporting material (HTM), owing to the increase in grain size and uniform morphology of BiI 3 film. These devices showed stable performance even after 30 days of exposure to 50% relative humidity, and after 100 °C heat stress and 20 min light soaking test. More importantly, the study reveals many challenges and room (discussed in the details) for further development of the BiI 3 photovoltaic devices.

  15. Combined Thermochromic And Plasmonic: Optical Responses In Novel Nanocomposite Au-VO{sub 2} Films Prepared By RF Inverted Cylindrical Magnetron Sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kana, J. B. Kana; Department of physics, University of Yaounde I, P.O. Box 812 Yaounde; Ndjaka, J. M.

    2008-09-23

    We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO{sub 2}) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 deg. C to 600 deg. C. The X-ray diffraction results demonstrated that the Au and VO{sub 2} weremore » well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 deg. C to 100 deg. C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at {approx}57 nm for substrate temperature higher than 500 deg. C.« less

  16. Effect of wall heat transfer on shock-tube test temperature at long times

    NASA Astrophysics Data System (ADS)

    Frazier, C.; Lamnaouer, M.; Divo, E.; Kassab, A.; Petersen, E.

    2011-02-01

    When performing chemical kinetics experiments behind reflected shock waves at conditions of lower temperature (<1,000 K), longer test times on the order of 10-20 ms may be required. The integrity of the test temperature during such experiments may be in question, because heat loss to the tube walls may play a larger role than is generally seen in shock-tube kinetics experiments that are over within a millisecond or two. A series of detailed calculations was performed to estimate the effect of longer test times on the temperature uniformity of the post-shock test gas. Assuming the main mode of heat transfer is conduction between the high-temperature gas and the colder shock-tube walls, a comprehensive set of calculations covering a range of conditions including test temperatures between 800 and 1,800 K, pressures between 1 and 50 atm, driven-tube inner diameters between 3 and 16.2 cm, and test gases of N2 and Ar was performed. Based on the results, heat loss to the tube walls does not significantly reduce the area-averaged temperature behind the reflected shock wave for test conditions that are likely to be used in shock-tube studies for test times up to 20 ms (and higher), provided the shock-tube inner diameter is sufficiently large (>8cm). Smaller diameters on the order of 3 cm or less can experience significant temperature loss near the reflected-shock region. Although the area-averaged gas temperature decreases due to the heat loss, the main core region remains spatially uniform so that the zone of temperature change is limited to only the thermal layer adjacent to the walls. Although the heat conduction model assumes the gas and wall to behave as solid bodies, resulting in a core gas temperature that remains constant at the initial temperature, a two-zone gas model that accounts for density loss from the core to the colder thermal layer indicates that the core temperature and gas pressure both decrease slightly with time. A full CFD solution of the shock-tube flow field and heat transfer at long test times was also performed for one typical condition (800 K, 1 atm, Ar), the results of which indicate that the simpler analytical conduction model is realistic but somewhat conservative in that it over predicts the mean temperature loss by a few Kelvins. This paper presents the first comprehensive study on the effects of long test times on the average test gas temperature behind the reflected shock wave for conditions representative of chemical kinetics experiments.

  17. Visualization of self-heating of an all climate battery by infrared thermography

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Tian, Hua; Ge, Shanhai; Marple, Dan; Sun, Fengchun; Wang, Chao-Yang

    2018-02-01

    Self-heating Li-ion battery (SHLB), a.k.a. all climate battery, has provided a novel and practical solution to the low temperature power loss challenge. During its rapid self-heating, it is critical to keep the heating process and temperature distributions uniform for superior battery performance, durability and safety. Through infrared thermography of an experimental SHLB cell activated from various low ambient temperatures, we find that temperature distribution is uniform over the active electrode area, suggesting uniform heating. We also find that a hot spot exists at the activation terminal during self-heating, which provides diagnostics for improvement of next generation SHLB cells without the hot spot.

  18. Traceable low and ultra-low temperatures in The Netherlands

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bosch, W. A.

    2009-02-01

    The basis for worldwide uniformity of low and ultra-low temperature measurements is provided by two international temperature scales, the International Temperature Scale of 1990 (ITS-90) for temperatures above 0.65 K and the Provisional Low Temperature Scale of 2000 (PLTS-2000) for temperatures in the range 0.9 mK to 1 K. Over the past 10 years, the thermometry research in the Netherlands provided substantial contributions to the definition, realization and dissemination of these scales. We first give an overview of the Dutch contributions to the ITS-90 realization: a) 3He and 4He vapour pressure thermometer range of the ITS-90, 0.65 K to 4 K (1997), b) 4He interpolating constant volume gas thermometry for the ITS-90 range 3 K to 24.5 K (2007) and c) cryogenic fixed points for the ITS-90 range 13.8 K to 273.16 K (2005). Then we highlight our work on 3He melting pressure thermometry from 10 mK to 1 K (2003) to support the dissemination of the PLTS-2000. Finally we present the current status of the Dutch calibration facilities and dissemination devices providing for traceable low and ultra-low temperatures for use in science and industry: a) the NMi-VSL cryogenic calibration facility for the range 0.65 K to 273.16 K and b) the SRD1000 superconductive reference devices for the range 10 mK to 1 K.

  19. Pulse echo and combined resonance techniques: a full set of LGT acoustic wave constants and temperature coefficients.

    PubMed

    Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira

    2009-04-01

    This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.

  20. Continuous flow, explosives vapor generator and sensor chamber.

    PubMed

    Collins, Greg E; Giordano, Braden C; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D; Tucker, John E; Malito, Michael; Eversole, Jay D; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  1. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  2. Coulomb crystals in neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2014-03-01

    It is well known that neutron star crust in a wide range of mass densities and temperatures is in a crystal state. At a given density, the crystal is made of fully ionized atomic nuclei of a single species immersed in a nearly incompressible (i.e., constant and uniform) charge compensating background of electrons. This model is known as the Coulomb crystal model. In this talk we analyze thermodynamic and elastic properties of the Coulomb crystals and discuss various deviations from the ideal model. In particular, we study the Coulomb crystal behavior in the presence of a strong magnetic field, consider the effect of the electron gas polarizability, outline the main properties of binary Coulomb crystals, and touch the subject of quasi-free neutrons permeating the Coulomb crystal of ions in deeper layers of neutron star crust.

  3. Life History Characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in Constant and Fluctuating Temperatures.

    PubMed

    Ullah, Mohammad Shaef; Lim, Un Taek

    2015-06-01

    Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    NASA Astrophysics Data System (ADS)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  5. A new variable interval schedule with constant hazard rate and finite time range.

    PubMed

    Bugallo, Mehdi; Machado, Armando; Vasconcelos, Marco

    2018-05-27

    We propose a new variable interval (VI) schedule that achieves constant probability of reinforcement in time while using a bounded range of intervals. By sampling each trial duration from a uniform distribution ranging from 0 to 2 T seconds, and then applying a reinforcement rule that depends linearly on trial duration, the schedule alternates reinforced and unreinforced trials, each less than 2 T seconds, while preserving a constant hazard function. © 2018 Society for the Experimental Analysis of Behavior.

  6. Radii effect on the translation spring constant of force transducer beams

    NASA Technical Reports Server (NTRS)

    Scott, C. E.

    1992-01-01

    Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.

  7. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  8. Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.

    PubMed

    Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian

    2008-02-01

    All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.

  9. Instanton rate constant calculations close to and above the crossover temperature.

    PubMed

    McConnell, Sean; Kästner, Johannes

    2017-11-15

    Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2  + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae).

    PubMed

    Chen, Z-Z; Xu, L-X; Li, L-L; Wu, H-B; Xu, Y-Y

    2018-06-21

    The oriental fruit moth, Grapholita molesta, is an important pest in many commercial orchards including apple, pear and peach orchards, and responsible for substantial economic losses every year. To help in attaining a comprehensive and thorough understanding of the ecological tolerances of G. molesta, we collected life history data of individuals reared on apples under different constant temperature regimes and compared the data with moths reared under a variable outdoor temperature environment. Because G. molesta individuals reared at a constant 25°C had the heaviest pupal weight, the highest survival rate from egg to adult, highest finite rate of increase, and greatest fecundity, 25°C was considered as the optimum developmental temperature. The G. molesta population reared at a constant 31°C had the shortest development time, lowest survival rate and fecundity, resulting in population parameters of r < 0, λ < 1, lead to negative population growth. The population parameters r and λ reared under fluctuating temperature were higher than that reared under constant temperatures, the mean generation time (T) was shorter than it was in all of the constant temperatures treatments. This would imply that the outdoor G. molesta population would have a higher population growth potential and faster growth rate than indoor populations raised at constant temperatures. G. molesta moths reared under fluctuating temperature also had a higher fertility than moths reared under constant temperatures (except at 25°C). Our findings indicated that the population raised under outdoor fluctuating temperature conditions had strong environment adaptiveness.

  11. Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers† †Electronic supplementary information (ESI) available: Synthesis and characterisation of all new compounds. See DOI: 10.1039/c4sc03944k Click here for additional data file.

    PubMed Central

    Le Bailly, Bryden A. F.; Byrne, Liam; Diemer, Vincent; Foroozandeh, Mohammadali; Morris, Gareth A.

    2015-01-01

    Although foldamers, by definition, are extended molecular structures with a well-defined conformation, minor conformers must be populated at least to some extent in solution. We present a quantitative analysis of these minor conformers for a series of helical oligomers built from achiral but helicogenic α-amino acids. By measuring the chain length dependence or chain position dependence of NMR or CD quantities that measure screw-sense preference in a helical oligomer, we quantify values for the decay constant of a conformational signal as it passes through the molecular structure. This conformational signal is a perturbation of the racemic mixture of M and P helices that such oligomers typically adopt by the inclusion of an N or C terminal chiral inducer. We show that decay constants may be very low (<1% signal loss per residue) in non-polar solvents, and we evaluate the increase in decay constant that results in polar solvents, at higher temperatures, and with more conformationally flexible residues such as Gly. Decay constants are independent of whether the signal originates from the N or the C terminus. By interpreting the decay constant in terms of the probability with which conformations containing a screw-sense reversal are populated, we quantify the populations of these alternative minor conformers within the overall ensemble of secondary structures adopted by the foldamer. We deduce helical persistence lengths for Aib polymers that allow us to show that in a non-polar solvent a peptide helix, even in the absence of chiral residues, may continue with the same screw sense for approximately 200 residues. PMID:29308146

  12. Human thermal sensation and comfort in a non-uniform environment with personalized heating.

    PubMed

    Deng, Qihong; Wang, Runhuai; Li, Yuguo; Miao, Yufeng; Zhao, Jinping

    2017-02-01

    Thermal comfort in traditionally uniform environment is apparent and can be improved by increasing energy expenses. To save energy, non-uniform environment implemented by personalized conditioning system attracts considerable attention, but human response in such environment is unclear. To investigate regional- and whole-body thermal sensation and comfort in a cool environment with personalized heating. In total 36 subjects (17 males and 19 females) including children, adults and the elderly, were involved in our experiment. Each subject was first asked to sit on a seat in an 18°C chamber (uniform environment) for 40min and then sit on a heating seat in a 16°C chamber (non-uniform environment) for another 40min after 10min break. Subjects' regional- and whole-body thermal sensation and comfort were surveyed by questionnaire and their skin temperatures were measured by wireless sensors. We statistically analyzed subjects' thermal sensation and comfort and their skin temperatures in different age and gender groups and compared them between the uniform and non-uniform environments. Overall thermal sensation and comfort votes were respectively neutral and just comfortable in 16°C chamber with personalized heating, which were significantly higher than those in 18°C chamber without heating (p<0.01). The effect of personalized heating on improving thermal sensation and comfort was consistent in subjects of different age and gender. However, adults and the females were more sensitive to the effect of personalized heating and felt cooler and less comfort than children/elderly and the males respectively. Variations of the regional thermal sensation/comfort across human body were consistent with those of skin temperature. Personalized heating significantly improved human thermal sensation and comfort in non-uniform cooler environment, probably due to the fact that it increased skin temperature. However, the link between thermal sensation/comfort and variations of skin temperature is rather complex and warrant further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. TEMperature Pressure ESTimation of a homogeneous boiling fuel-steel mixture in an LMFBR core. [TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyun, J.J.; Majumdar, D.

    The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less

  14. Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Shakeel; Husain, Shahid; Khan, Wasi

    2018-03-01

    This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers-Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell-Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

  15. Shear modulus of neutron star crust

    NASA Astrophysics Data System (ADS)

    Baiko, D. A.

    2011-09-01

    The shear modulus of solid neutron star crust is calculated by the thermodynamic perturbation theory, taking into account ion motion. At a given density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of one type with a uniform charge-compensating electron background. Classic and quantum regimes of ion motion are considered. The calculations in the classic temperature range agree well with previous Monte Carlo simulations. At these temperatures, the shear modulus is given by the sum of a positive contribution due to the static lattice and a negative ∝ T contribution due to the ion motion. The quantum calculations are performed for the first time. The main result is that at low temperatures the contribution to the shear modulus due to the ion motion saturates at a constant value, associated with zero-point ion vibrations. Such behaviour is qualitatively similar to the zero-point ion motion contribution to the crystal energy. The quantum effects may be important for lighter elements at higher densities, where the ion plasma temperature is not entirely negligible compared to the typical Coulomb ion interaction energy. The results of numerical calculations are approximated by convenient fitting formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.

  16. Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

    PubMed

    Lin, Mei; Huang, Junxing; Sha, Min

    2014-01-01

    This paper reviews the recent research and development of nanosized manganese zinc (Mn-Zn) ferrite magnetic fluid hyperthermia (MFH) for cancer treatment. Mn-Zn ferrite MFH, which has a targeted positioning function that only the temperature of tumor tissue with magnetic nanoparticles can rise, while normal tissue without magnetic nanoparticles is not subject to thermal damage, is a promising therapy for cancer. We introduce briefly the composition and properties of magnetic fluid, the concept of MFH, and features of Mn-Zn ferrite magnetic nanoparticles for MFH such as thermal bystander effect, universality, high specific absorption rate, the targeting effect of small size, uniformity of hyperthermia temperature, and automatic temperature control and constant temperature effect. Next, preparation methods of Mn-Zn ferrite magnetic fluid are discussed, and biocompatibility and biosecurity of Mn-Zn ferrite magnetic fluid are analyzed. Then the applications of nanosized Mn-Zn ferrite MFH in cancer are highlighted, including nanosized Mn-Zn ferrite MFH alone, nanosized Mn-Zn ferrite MFH combined with As2O3 chemotherapy, and nanosized Mn-Zn ferrite MFH combined with radiotherapy. Finally, the combination application of nanosized Mn-Zn ferrite MFH and gene-therapy is conceived, and the challenges and perspectives for the future of nanosized Mn-Zn ferrite MFH for oncotherapy are discussed.

  17. Characterization and Performance of a Kilo-TES Sub-Array for ACTPol

    NASA Technical Reports Server (NTRS)

    Grace, E. A.; Beall, J.; Cho, H. M.; Devlin, M. J.; Fox, A.; Hilton, G.; Hubmayr, J.; Irwin, K.; Klein, J.; Li, D.; hide

    2014-01-01

    ACTPol is a polarization-sensitive receiver upgrade to the Atacama CosmologyTelescope (ACT) which will make millimeterwavelength measurements of the small-scale polarization anisotropies of the cosmic microwave background to investigate the properties of inflation, dark energy, dark matter, and neutrinos in the early Universe. ACTPol will employ three arrays of transition edge sensor (TES) bolometer detectors. The detectors, with a target transition temperature of 150 mK, will be operated at a bath temperature of 100 mK provided by a dilution refrigerator. One array operating at a central frequency of 150 GHz and consisting of 1024 TESes achieved first light at the ACT site in July 2013. We anticipate fielding the remainder of the focal plane, consisting of a second 150 GHz array and a multi-chroic array sensitive to 90 and 150 GHz, at the end of the 2013 observing season. In these proceedings, we present characterization of key detector parameters from measurements performed on the first array both in the lab and during initial field testing. We comment on the design goals, measurements, and uniformity of the detector transition temperatures, saturation powers, and thermal conductivities while detailing measurement methods and results for the detector optical efficiencies and time constants.

  18. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  19. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles

    NASA Astrophysics Data System (ADS)

    Saw, L. H.; Somasundaram, K.; Ye, Y.; Tay, A. A. O.

    2014-03-01

    Lithium ion batteries offer an attractive solution for powering electric vehicles due to their relatively high specific energy and specific power, however, the temperature of the batteries greatly affects their performance as well as cycle life. In this work, an empirical equation characterizing the battery's electrical behavior is coupled with a lumped thermal model to analyze the electrical and thermal behavior of the 18650 Lithium Iron Phosphate cell. Under constant current discharging mode, the cell temperature increases with increasing charge/discharge rates. The dynamic behavior of the battery is also analyzed under a Simplified Federal Urban Driving Schedule and it is found that heat generated from the battery during this cycle is negligible. Simulation results are validated with experimental data. The validated single cell model is then extended to study the dynamic behavior of an electric vehicle battery pack. The modeling results predict that more heat is generated on an aggressive US06 driving cycle as compared to UDDS and HWFET cycle. An extensive thermal management system is needed for the electric vehicle battery pack especially during aggressive driving conditions to ensure that the cells are maintained within the desirable operating limits and temperature uniformity is achieved between the cells.

  20. Strain Gradient Solution for the Eshelby-Type Polyhedral Inclusion Problem

    DTIC Science & Technology

    2012-01-01

    2011 Available online 6 November 2011 Keywords: Eshelby tensor Polyhedral inclusion Size effect Eigenstrain Strain gradient a b s t r a c t The Eshelby...material containing an ellipsoidal inclusion prescribed with a uniform eigenstrain is a milestone in micromechanics. The solution for the dynamic Eshelby...strain to the prescribed uniform eigenstrain , is constant inside the inclusion. However, this property is true only for ellipsoidal inclusions (and when

  1. Air Bag Applies Uniform Bonding Pressure

    NASA Technical Reports Server (NTRS)

    Gillespie, C. A.

    1982-01-01

    Air-bag box applies constant uniform pressure to tiles and other objects undergoing adhesive bonding. Box is basically a compliant clamp with adjustable force and position. Can be used on irregular surfaces as well as on flat ones. Pressurized air is fed to bag through a tube so that it expands, filling the box and pressing against work. Bag adopts a contour that accommodates surface under open side of box.

  2. The rotating heat pipe - Implementation as a uniform-temperature heat source

    NASA Astrophysics Data System (ADS)

    Limoges, R. F.

    1981-11-01

    A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.

  3. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  4. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology.

  5. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  6. Kynol/Nomex Fabrics for Fire Retardant Shipboard Utility Uniforms

    DTIC Science & Technology

    1988-06-01

    changes shade permanentlj" from grey to black. The activation temperature of each set ranged from 220 F to 2800F in increments of 100F. The response of the...temperature value. When a tape reaches its activation temperature it changes shade permanent l from grey to black. The activation temperature of each...are normally only available in their natural gold color, to a suitable blue shade . g. Potential cost of Kynol/Nomex uniforms versus the FRT cotton

  7. Design study of an advanced gas generator. [which can be ignited during start-up period of turbine engines

    NASA Technical Reports Server (NTRS)

    Kim, S.; Trinh, H. P.

    1993-01-01

    A gas generator which can be ignited reliably during the initial start-up period and offers fairly uniform gas temperature at the exit was studied numerically. Various sizes and shapes of the mixing enhancement devices and their positions were examined to evaluate the uniformity of the exit gas temperature and the change of internal pressure drop incurred by introducing the mixing enhancement devices. By introducing a turbulence ring and a splash plate with an appropriate size and position, it was possible to obtain fairly uniform gas temperature distributions and a maximum gas temperature that is within the design limit temperature of 1600 R at the generator exit. However, with the geometry studied, the pressure drop across the generator was great, approximately 1150 psi, to satisfy the assigned design limit temperature. If the design limit temperature is increased to 1650 R, the pressure drop across the generator could be lowered by as much as 350 psi.

  8. Convergence of the Full Compressible Navier-Stokes-Maxwell System to the Incompressible Magnetohydrodynamic Equations in a Bounded Domain II: Global Existence Case

    NASA Astrophysics Data System (ADS)

    Fan, Jishan; Li, Fucai; Nakamura, Gen

    2018-06-01

    In this paper we continue our study on the establishment of uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain Ω \\subset R^3. In Fan et al. (Kinet Relat Models 9:443-453, 2016), the uniform estimates have been obtained for large initial data in a short time interval. Here we shall show that the uniform estimates exist globally if the initial data are small. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared initial data.

  9. Feasibility of Applying Ohmic Heating and Split-Phase Aseptic Processing for Ration Entree Preservation

    DTIC Science & Technology

    1994-08-01

    study demonstrated that either of these reduced- temperature sterilization processes will produce an acceptable product that is an alternative to thermal...and uniform heating of liquids and solids simultaneously, even of large particles, up to sterilization temperatures . Uniform heating means shorter...potential cost reduction by substitution of continuous processing of a high- temperature /short-time ( HTST ) nature for traditional batch retort

  10. On the accurate long-time solution of the wave equation in exterior domains: Asymptotic expansions and corrected boundary conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas; Hariharan, S. I.; Maccamy, R. C.

    1993-01-01

    We consider the solution of scattering problems for the wave equation using approximate boundary conditions at artificial boundaries. These conditions are explicitly viewed as approximations to an exact boundary condition satisfied by the solution on the unbounded domain. We study the short and long term behavior of the error. It is provided that, in two space dimensions, no local in time, constant coefficient boundary operator can lead to accurate results uniformly in time for the class of problems we consider. A variable coefficient operator is developed which attains better accuracy (uniformly in time) than is possible with constant coefficient approximations. The theory is illustrated by numerical examples. We also analyze the proposed boundary conditions using energy methods, leading to asymptotically correct error bounds.

  11. The evolution of temperature and bolometric luminosity in Type II supernovae

    NASA Astrophysics Data System (ADS)

    Faran, T.; Nakar, E.; Poznanski, D.

    2018-01-01

    In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.

  12. High-performance linear arrays of YBa2Cu3O7 superconducting infrared microbolometers on silicon

    NASA Astrophysics Data System (ADS)

    Johnson, Burgess R.; Foote, Marc C.; Marsh, Holly A.

    1995-06-01

    Single detectors and linear arrays of microbolometers utilizing the superconducting transition edge of YBa(subscript 2)Cu(subscript 3)O(subscript 7) have been fabricated by micromachining on silicon wafers. A D* of 8 +/- 2 X 10(superscript 9) cm Hz(superscript 1/2)/watt has been measured on a single detector. This is the highest D* reported on any superconducting microbolometer operating at temperatures higher than about 70 K. The NEP of this device was 1.5 X 10(superscript -12) watts/Hz(superscript HLF) at 2 Hz, at a temperature of 80.7 K. The thermal time constant was 105 msec, and the detector area was 140 micrometers X 105 micrometers . The use of batch silicon processing makes fabrication of linear arrays of these detectors relatively straightforward. The measured responsivity of detectors in one such array varied by less than 20% over the 6 mm length of the 64-element linear array. This measurement shows that good uniformity can be achieved at a single operating temperature in a superconductor microbolometer array, even when the superconducting resistive transition is a sharp function of temperature. The thermal detection mechanism of these devices gives them broadband response. This makes them especially useful at long wavelengths (e.g. (lambda) > 20 micrometers ), where they provide very high sensitivity at relatively high operating temperatures.

  13. ArF scanner performance improvement by using track integrated CD optimization

    NASA Astrophysics Data System (ADS)

    Huang, Jacky; Yu, Shinn-Sheng; Ke, Chih-Ming; Wu, Timothy; Wang, Yu-Hsi; Gau, Tsai-Sheng; Wang, Dennis; Li, Allen; Yang, Wenge; Kaoru, Araki

    2006-03-01

    In advanced semiconductor processing, shrinking CD is one of the main objectives when moving to the next generation technology. Improving CD uniformity (CDU) with shrinking CD is one of the biggest challenges. From ArF lithography CD error budget analysis, PEB (post exposure bake) contributes more than 40% CD variations. It turns out that hot plate performance such as CD matching and within-plate temperature control play key roles in litho cell wafer per hour (WPH). Traditionally wired or wireless thermal sensor wafers were used to match and optimize hot plates. However, sensor-to-sensor matching and sensor data quality vs. sensor lifetime or sensor thermal history are still unknown. These concerns make sensor wafers more suitable for coarse mean-temperature adjustment. For precise temperature adjustment, especially within-hot-plate temperature uniformity, using CD instead of sensor wafer temperature is a better and more straightforward metrology to calibrate hot plates. In this study, we evaluated TEL clean track integrated optical CD metrology (IM) combined with TEL CD Optimizer (CDO) software to improve 193-nm resist within-wafer and wafer-to-wafer CD uniformity. Within-wafer CD uniformity is mainly affected by the temperature non-uniformity on the PEB hot plate. Based on CD and PEB sensitivity of photo resists, a physical model has been established to control the CD uniformity through fine-tuning PEB temperature settings. CD data collected by track integrated CD metrology was fed into this model, and the adjustment of PEB setting was calculated and executed through track internal APC system. This auto measurement, auto feed forward, auto calibration and auto adjustment system can reduce the engineer key-in error and improve the hot plate calibration cycle time. And this PEB auto calibration system can easily bring hot-plate-to-hot-plate CD matching to within 0.5nm and within-wafer CDU (3σ) to less than 1.5nm.

  14. Fate of inflation and the natural reduction of vacuum energy

    NASA Astrophysics Data System (ADS)

    Nakamichi, Akika; Morikawa, Masahiro

    2014-04-01

    In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.

  15. Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stipcich, M.; Manosa, L.; Planes, A.

    2004-01-01

    We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structuralmore » transitions.« less

  16. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    NASA Astrophysics Data System (ADS)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyam, Amit; Lara-Curzio, Edgar

    This paper reports on the langatate (LGT) elastic constants measured from room temperature (25 C) to 1100 C using resonant ultrasound spectroscopy (RUS). The constants were extracted by fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the piezoelectric constants in the 25 C to 120 C temperature range. This work also publishes a set of temperature coefficients for the elastic constants up to 1100 C. For the measurements, six parallelepiped LGT samples were aligned, cut, ground, and polished at themore » University of Maine. The samples were aligned to two different crystal orientations, to increase the reliability of the constant fitting. The extraction of LGT elastic constants up to 1100 C presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for high temperature and harsh environment applications.« less

  18. Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.

    PubMed

    Guo, Yuwei; Wan, Rongzheng

    2018-05-03

    The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.

  19. The effects of increased constant incubation temperature and cumulative acute heat shock exposures on morphology and survival of Lake Whitefish (Coregonus clupeaformis) embryos.

    PubMed

    Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y

    2016-04-01

    Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experimental and numerical modeling research of rubber material during microwave heating process

    NASA Astrophysics Data System (ADS)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  1. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick

    2017-10-01

    A significant number of ultracool (<600K) extrasolar objects have been discovered in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a gray cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  2. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    PubMed

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  3. The jump-off velocity of an impulsively loaded spherical shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabaud, Brandon M.; Brock, Jerry S.

    2012-04-13

    We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less

  4. Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.

    2004-01-01

    A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.

  5. Fiber gasket and method of making same

    DOEpatents

    Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.

    2003-01-01

    A gasket (1) is made by repetitively spirally winding a fiber (3) back on itself in a closed path. The gasket (1) so made has a multi-layer spiral winding (1) formed in a loop (5). The fiber (3) can be wound at a constant wrap rate to form a gasket with a uniform cross-section around the loop. Alternatively, the wrap rate can be varied, increased to increase cross-sectional bulk, and decreased to reduce cross-section bulk around the loop (5). Also, the spiral winding (7) can be applied over a core (13) of either strands of the fiber (3) or a dissimilar material providing a desired property such as resiliency, stiffness or others. For high temperature applications, a ceramic fiber (3) can be used. The gasket (1) can have any of various geometric configurations with or without a core (13).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films,more » which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.« less

  7. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Treesearch

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  8. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  9. Modulus spectroscopy of grain-grain boundary binary system

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-Fei; Song, Jiang; Li, Sheng-Tao; Wang, Hui

    2015-02-01

    Understanding various polarization mechanisms in complex dielectric systems and specifying their physical origins are key issues in dielectric physics. In this paper, four different methods for representing dielectric properties were analyzed and compared. Depending on the details of the system under study, i.e., uniform or non-uniform, it was suggested that different representing approaches should be used to obtain more valuable information. Especially, for the grain-grain boundary binary non-uniform system, its dielectric response was analyzed in detail in terms of modulus spectroscopy (MS). Furthermore, it was found that through MS, the dielectric responses between uniform and non-uniform systems, grain and grain boundary, Maxwell-Wagner polarization and intrinsic polarization can be distinguished. Finally, with the proposed model, the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics were studied. The colossal dielectric constant of CCTO at low frequency was attributed to the pseudo relaxation process of grain.

  10. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming

    2018-05-01

    An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

  11. FEM numerical model study of heating in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew

    2011-03-01

    Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.

  12. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures.

    PubMed

    Fernández, A S; Larsen, M; Wolstrup, J; Grønvold, J; Nansen, P; Bjørn, H

    1999-08-01

    The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar and then incubated for 14 days under three different constant and fluctuating temperature regimes. The radial growth was similar on the two substrates at each temperature regime. All fungal isolates showed a higher growth rate at a constant 20 degrees C. At 10 degrees and 15 degrees C, all D. flagrans isolates showed very similar patterns of radial growth at both constant and fluctuating temperatures. At 20 degrees C, they grew significantly faster at constant than at fluctuating temperatures. A. oligospora grew significantly faster than all D. flagrans isolates except when incubated at a fluctuating 20 degrees C. Spores of each fungal isolate were added to faecal cultures containing eggs of Cooperia oncophora at a concentration of 6250 spores/g faeces. The cultures were incubated for 14 days at the same temperature regimes described above. Control faeces (without fungal material) were also cultured. More larvae were recovered from the fungus-treated cultures incubated at a constant 10 degrees or 15 degrees C than from those incubated at the respective fluctuating temperatures, except for one D. flagrans isolate. Incubation at 20 degrees C showed the opposite effect. The general reduction observed in the number of nematode larvae due to fungal trapping was 18-25% and 48-80% for a constant and fluctuating 10 degrees C, 70-96% and 93-95% for a constant and fluctuating 15 degrees C, and 63-98% and 0-25% for a constant and fluctuating 20 degrees C, respectively.

  13. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  14. Determination of Henry’s Law Constants Using Internal Standards with Benchmark Values

    EPA Science Inventory

    It is shown that Henry’s law constants can be experimentally determined by comparing headspace content of compounds with known constants to interpolate the constants of other compounds. Studies were conducted over a range of water temperatures to identify temperature dependence....

  15. THE INTRARENAL DISTRIBUTION OF TRITIATED PARA-AMINOHIPPURIC ACID DETERMINED BY A MODIFIED TECHNIQUE OF SECTION FREEZE-DRY RADIOAUTOGRAPHY

    PubMed Central

    Bordier, Betrand; Ornstein, Leonard; Wedeen, Richard P.

    1970-01-01

    Section freeze-dry radioautography has been used to examine the intrarenal distribution of a water-soluble organic acid (para-aminohippuric acid (PAH-3H)) under constant-infusion, steady-state conditions in mouse and rat kidney in vivo. The technique described here has the following advantages: (a) Sectioning and freeze-drying are accomplished in a closed cryostat at temperatures below -40°C; (b) Handling of the section is facilitated by mounting of the section-to-be on adhesive-coated Saran Wrap prior to cutting; (c) Unembedded freeze-dried sections are attached to photographic film at ambient temperature in the dark room; (d) Fixation follows completion of radioautographic exposure and precedes photographic development; (e) Permanent close contact is maintained between tissue and film. Morphologic preservation compared favorably with that obtained by optimal fixation techniques, which, however, permit diffusion. Cellular accumulation of PAH-3H during secretion was demonstrated in the proximal tubule under steady-state conditions in vivo. The cellular concentration of PAH-3H was uniform throughout the length of the proximal tubule in mouse and rat kidney. PMID:4349130

  16. Thermal Analysis of a Structural Solution for Sustainable, Modular and Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Isopescu, D. N.; Maxineasa, S. G.; Neculai, O.

    2017-06-01

    In the construction field, the design principles for an efficient and operational use of buildings and a minimal impact on the environment are essential aspects of sustainable development. In this regard, several aspects must be taken into consideration, such as: durability, easy maintenance, flexibility in interior design, and reduced energy consumption. Decreasing energy consumption in buildings during the service life (heating / cooling / drinking water / electricity) can mean lower costs, but also a lower impact on the environment. The paper presents the thermal analysis for a GF+1F height structure, consisting of several identical, adjacent and / or overlapped metallic cubic modules. The spaces inside this cubes ensemble solve the functionality of a family home building. The good carrying capacity, the rapidity of execution, the superior degree of thermal insulation and the minimum losses of material in execution were the main advantages provided by this structural solution. Regarding the thermal comfort for the users of this constructive system, the thermal analysis showed that the internal temperatures are constant and uniform, without cold surfaces or temperature fluctuations. In addition, humidity is controlled and there is no risk of condensation.

  17. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  18. Structural, thermal, spectroscopic, and spectral dispersion studies of nanocrystalline methyl red thin films

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mohamed M.; El-Denglawey, Adel

    2018-04-01

    Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.

  19. THE AXISYMMETRIC FREE-CONVECTION HEAT TRANSFER ALONG A VERTICAL THIN CYLINDER WITH CONSTANT SURFACE TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viskanta, R.

    1963-01-01

    Laminar free-convection flow produced by a heated, vertical, circular cylinder for which the temperature at the outer surface of the cylinder is assumed to be uniform is analyzed. The solution of the boundary-layer equations was obtained by the perturbation method of Sparrow and Gregg, which is valid only for small values of the axial distance parameter xi ; and the integral method of Hama et al., for large values of the parameter xi . Heat-transfer results were calculated for Prandtl numbers (Pr) of 100, the Nusselt numbers (Nu) for the cylinder were higher than those for the flat plate, andmore » this difference increased as Pr decreased. It was also found that the perturbation method of solution of the free-convection boundary-layer equations becomes useless for small values of Pr because of the slow convergence of the series. The results obtained by the integral method were in good agreement with those calculated by the perturbation method for Pr approximately 1 and 0.1 < xi < 1 only; they deviated considerably for smaller values of xi . (auth)« less

  20. Gas Near a Wall: Shortened Mean Free Path, Reduced Viscosity, and the Manifestation of the Knudsen Layer in the Navier-Stokes Solution of a Shear Flow

    NASA Astrophysics Data System (ADS)

    Abramov, Rafail V.

    2018-06-01

    For the gas near a solid planar wall, we propose a scaling formula for the mean free path of a molecule as a function of the distance from the wall, under the assumption of a uniform distribution of the incident directions of the molecular free flight. We subsequently impose the same scaling onto the viscosity of the gas near the wall and compute the Navier-Stokes solution of the velocity of a shear flow parallel to the wall. Under the simplifying assumption of constant temperature of the gas, the velocity profile becomes an explicit nonlinear function of the distance from the wall and exhibits a Knudsen boundary layer near the wall. To verify the validity of the obtained formula, we perform the Direct Simulation Monte Carlo computations for the shear flow of argon and nitrogen at normal density and temperature. We find excellent agreement between our velocity approximation and the computed DSMC velocity profiles both within the Knudsen boundary layer and away from it.

  1. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    USGS Publications Warehouse

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  2. Dielectric studies on PEG-LTMS based polymer composites

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-02-01

    PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.

  3. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  4. Temperature measurement in a gas turbine engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSilva, Upul

    A method and system for determining a temperature of a working gas passing through a passage to a turbine section of a gas turbine engine. The method includes identifying an acoustic frequency at a first location in the engine upstream from the turbine section, and using the acoustic frequency for determining a first temperature value at the first location that is directly proportional to the acoustic frequency and a calculated constant value. A second temperature of the working gas is determined at a second location in the engine and, using the second temperature, a back calculation is performed to determinemore » a temperature value for the working gas at the first location. The first temperature value is compared to the back calculated temperature value to change the calculated constant value to a recalculated constant value. Subsequent first temperature values at the first location may be determined based on the recalculated constant value.« less

  5. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  6. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    PubMed

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®

  7. Effect of jet-to-mainstream momentum flux ratio on mixing process

    NASA Astrophysics Data System (ADS)

    Gupta, Alka; Ibrahim, Mohamed Saeed; Amano, R. S.

    2016-03-01

    Temperature uniformity after a mixing process plays a very important role in many applications. Non-uniform temperature at the entrance of the turbine in gas turbine systems has an adverse effect on the life of the blades. These temperature non-uniformities cause thermal stresses in the blades leading to higher maintenance costs. This paper presents experimental and numerical results for mixing process in coaxial ducts. The effect of increased jet-to-mainstream momentum flux ratio on the temperature uniformity of the exit flow was analyzed. It was found that better mixing of primary (or hot) stream and dilution (or cold) stream was achieved at higher flux ratio. Almost 85 % of the equilibrium mixture fraction was achieved at flux ratio of 0.85 after which no significant improvement was achieved while the exergy destruction kept on increasing. A new parameter, `Cooling Rate Number', was defined to identify the potential sites for presence of cold zones within the mixing section. Parametric study reveals that the cooling rate numbers were higher near the dilution holes which may result in rapid cooling of the gases.

  8. Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Stone, P. H.

    1979-01-01

    The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.

  9. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    PubMed

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  10. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; hide

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  11. Optimization of the thermogauge furnace for realizing high temperature fixed points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T.; Dong, W.; Liu, F.

    2013-09-11

    The thermogauge furnace was commonly used in many NMIs as a blackbody source for calibration of the radiation thermometer. It can also be used for realizing the high temperature fixed point(HTFP). According to our experience, when realizing HTFP we need the furnace provide relative good temperature uniformity to avoid the possible damage to the HTFP. To improve temperature uniformity in the furnace, the furnace tube was machined near the tube ends with a help of a simulation analysis by 'ansys workbench'. Temperature distributions before and after optimization were measured and compared at 1300 °C, 1700°C, 2500 °C, which roughly correspondmore » to Co-C(1324 °C), Pt-C(1738 °C) and Re-C(2474 °C), respectively. The results clearly indicate that through machining the tube the temperature uniformity of the Thermogage furnace can be remarkably improved. A Pt-C high temperature fixed point was realized in the modified Thermogauge furnace subsequently, the plateaus were compared with what obtained using old heater, and the results were presented in this paper.« less

  12. Temperature and ice layer trends in the summer middle atmosphere

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  13. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Compilation of Henry's law constants (version 4.0) for water as solvent

    NASA Astrophysics Data System (ADS)

    Sander, R.

    2015-04-01

    Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 17 350 values of Henry's law constants for 4632 species, collected from 689 references. It is also available at http://www.henrys-law.org.

  15. Formulas for the elastic constants of plates with integral waffle-like stiffening

    NASA Technical Reports Server (NTRS)

    Dow, Norris R; Libove, Charles; Hubka, Ralph E

    1954-01-01

    Formulas are derived for the fifteen elastic constants associated with bending, stretching, twisting, and shearing of plates with closely spaced integral ribbing in a variety of configurations and proportions. In the derivation the plates are considered, conceptually, as more uniform orthotropic plates somewhat on the order of plywood. The constants, which include the effectiveness of the ribs for resisting deformations other than bending and stretching in their longitudinal directions, are defined in terms of four coefficients, and theoretical and experimental methods for the evaluation of these coefficients are discussed. Four of the more important elastic constants are predicted by these formulas and are compared with test results. Good correlation is obtained. (author)

  16. Compilation of Henry's law constants, version 3.99

    NASA Astrophysics Data System (ADS)

    Sander, R.

    2014-11-01

    Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 14775 values of Henry's law constants for 3214 species, collected from 639 references. It is also available on the internet at http://www.henrys-law.org.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyam, Amit; Lara-Curzio, Edgar

    This paper reports on the langatate (LGT) elastic constants and their temperature coefficients measured from room temperature (25degC) to 1100degC using resonant ultrasound spectroscopy (RUS). The constants were extracted by iteratively fitting the resonant peaks with those calculated by Lagrangian mechanics at each temperature where the RUS measurements were taken. In addition, the RUS technique was used to extract the elastic and piezoelectric constants in the 25degC to 120degC temperature range. The extraction of LGT elastic constants up to 1100degC presented in this paper represents a critical step towards the design and fabrication of LGT acoustic wave devices for highmore » temperature and harsh environment applications.« less

  18. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    NASA Astrophysics Data System (ADS)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  19. Frustration in protein elastic network models

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy; Bahar, Ivet

    2010-03-01

    Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.

  20. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick

    2018-01-01

    A significant number of ultracool (<600K) extrasolar objects have been unearthed in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a self-consistent Mie scattering cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  1. Compartment Venting Analyses of Ares I First Stage Systems Tunnel

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Arner, Stephen

    2009-01-01

    Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.

  2. Numerical calculations of temperature dependence of dielectric constant for an ordered assembly of BaTiO3 nanocubes with small tilt angles

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi

    2018-03-01

    The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.

  3. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  4. Daily and seasonal changes in heat exposure and the Hsp70 level of individuals from a field population of Xeropicta derbentina (Krynicki 1836) (Pulmonata, Hygromiidae) in Southern France.

    PubMed

    Dieterich, A; Fischbach, U; Ludwig, M; Di Lellis, M A; Troschinski, S; Gärtner, U; Triebskorn, R; Köhler, H-R

    2013-07-01

    The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.

  5. Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.

    2008-10-01

    98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.

  6. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  7. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  8. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  9. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  10. 21 CFR 1250.85 - Drinking fountains and coolers; ice; constant temperature bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drinking fountains and coolers; ice; constant... Drinking fountains and coolers; ice; constant temperature bottles. (a) Drinking fountains and coolers shall... prevent backflow. (b) Ice shall not be permitted to come in contact with water in coolers or constant...

  11. Efficiency of True-Green Light Emitting Diodes: Non-Uniformity and Temperature Effects

    PubMed Central

    Titkov, Ilya E.; Karpov, Sergey Yu.; Yadav, Amit; Mamedov, Denis; Zerova, Vera L.

    2017-01-01

    External quantum efficiency of industrial-grade green InGaN light-emitting diodes (LEDs) has been measured in a wide range of operating currents at various temperatures from 13 K to 300 K. Unlike blue LEDs, the efficiency as a function of current is found to have a multi-peak character, which could not be fitted by a simple ABC-model. This observation correlated with splitting of LED emission spectra into two peaks at certain currents. The characterization data are interpreted in terms of non-uniformity of the LED active region, which is tentatively attributed to extended defects like V-pits. We suggest a new approach to evaluation of temperature-dependent light extraction and internal quantum efficiencies taking into account the active region non-uniformity. As a result, the temperature dependence of light extraction and internal quantum efficiencies have been evaluated in the temperature range mentioned above and compared with those of blue LEDs. PMID:29156543

  12. Optimization of Heat Exchangers with Dimpled Surfaces to Improve the Performance in Thermoelectric Generators Using a Kriging Model

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Wang, Yiping; Wang, Tao; Yang, Xue; Deng, Yadong; Su, Chuqi

    2017-05-01

    Thermoelectric generators (TEGs) have become a topic of interest for vehicle exhaust energy recovery. Electrical power generation is deeply influenced by temperature differences, temperature uniformity and topological structures of TEGs. When the dimpled surfaces are adopted in heat exchangers, the heat transfer rates can be augmented with a minimal pressure drop. However, the temperature distribution shows a large gradient along the flow direction which has adverse effects on the power generation. In the current study, the heat exchanger performance was studied in a computational fluid dynamics (CFD) model. The dimple depth, dimple print diameter, and channel height were chosen as design variables. The objective function was defined as a combination of average temperature, temperature uniformity and pressure loss. The optimal Latin hypercube method was used to determine the experiment points as a method of design of the experiment in order to analyze the sensitivity of the design variables. A Kriging surrogate model was built and verified according to the database resulting from the CFD simulation. A multi-island genetic algorithm was used to optimize the structure in the heat exchanger based on the surrogate model. The results showed that the average temperature of the heat exchanger was most sensitive to the dimple depth. The pressure loss and temperature uniformity were most sensitive to the parameter of channel rear height, h 2. With an optimal design of channel structure, the temperature uniformity can be greatly improved compared with the initial exchanger, and the additional pressure loss also increased.

  13. [Study of the electrical properties of retinal horizontal cell syncytia by the technic of uniform polarization].

    PubMed

    Shura-Bura, T M; Trifonov, Iu A

    1980-01-01

    For uniform polarization of syncytial or cable structures at a large area with current passed via extracellular electrodes the extracellular longitudinal gradient of potential must be proportional to distance from the edge of preparation. In this paper the profile of conducting plate was found analytically which allows to obtain such a distribution of potentials. The profile is formed by hyperbola and its orthogonal asymptotes. Two polarizing electrodes are applied to places where the hyperbola is near to asymptotes. On the surfaces formed by asymptotes the gradient of potential is proportional to distance from intersection of these surfaces. Such a conducting plate was made as cavity in plexiglas filled by Ringer solution in agar. The plate was used for obtaining the voltage-current curves of horizontal cell membrane in gold fish retina. The area of uniform polarization was 4-5 mm long. Measurements inside this area allowed to determine the space constant of horizontal cell layer. The space constant measured in bright light (when resistance of subsynaptic membrane is high) depends on the membrane potential, being high (approximately 1,5 mm) during depolarization and low (0,2-0,4 mm) during hyperpolarization.

  14. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  15. Influence of environmental factors on activity patterns of Incisitermes minor (Isoptera: Kalotermitidae) in naturally infested logs.

    PubMed

    Lewis, Vernard R; Leighton, Shawn; Tabuchi, Robin; Baldwin, James A; Haverty, Michael I

    2013-02-01

    Acoustic emission (AE) activity patterns were measured from seven loquat [Eriobotrya japonica (Thunb.) Lindl.] logs, five containing live western drywood termite [Incisitermes minor (Hagen)] infestations, and two without an active drywood termite infestation. AE activity, as well as temperature, were monitored every 3 min under unrestricted ambient conditions in a small wooden building, under unrestricted ambient conditions but in constant darkness, or in a temperature-controlled cabined under constant darkness. Logs with active drywood termite infestations displayed similar diurnal cycles of AE activity that closely followed temperature with a peak of AE activity late in the afternoon (1700-1800 hours). When light was excluded from the building, a circadian pattern continued and apparently was driven by temperature. When the seven logs were kept at a relatively constant temperature (approximately 23 +/- 0.9 degrees C) and constant darkness, the pattern of activity was closely correlated with temperature, even with minimal changes in temperature. Temperature is the primary driver of activity of these drywood termites, but the effects are different when temperature is increasing or decreasing. At constant temperature, AE activity was highly correlated with the number of termites in the logs. The possible implications of these findings on our understanding of drywood termite biology and how this information may affect inspections and posttreatment evaluations are discussed.

  16. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae)

    PubMed Central

    Westby, K. M.

    2015-01-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  17. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  18. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which ismore » usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.« less

  19. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    NASA Astrophysics Data System (ADS)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  20. Measurements of near-IR water vapor absorption at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Liu, X.; Li, H.; Jeffries, J. B.; Hanson, R. K.

    2007-03-01

    Tunable diode lasers (TDLs) are used to measure high resolution (0.1 cm-1), near-infrared (NIR) water vapor absorption spectra at 700 K and pressures up to 30 atm within a high-pressure and -temperature optical cell in a high-uniformity tube furnace. Both direct absorption and wavelength modulation with second harmonic detection (WMS-2f) spectra are obtained for 6 cm-1 regions near 7204 cm-1 and 7435 cm-1. Direct absorption measurements at 700 K and 10 atm are compared with simulations using spectral parameters from HITRAN and a hybrid database combining HITRAN with measured spectral constants for transitions in the two target spectral regions. The hybrid database reduces RMS error between the simulation and the measurements by 45% for the 7204 cm-1 region and 28% for the 7435 cm-1 region. At pressures above 10 atm, the breakdown of the impact approximation inherent to the Lorentzian line shape model becomes apparent in the direct absorption spectra, and measured results are in agreement with model results and trends at elevated temperatures reported in the literature. The wavelength-modulation spectra are shown to be less affected by the breakdown of the impact approximation and measurements agree well with the hybrid database predictions to higher pressures (30 atm).

  1. Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber.

    PubMed

    Ju, Seongmin; Kim, Jihun; Linganna, Kadathala; Watekar, Pramod R; Kang, Seong Gu; Kim, Bok Hyeon; Boo, Seongjae; Lee, Youjin; An, Yong Ho; Kim, Cheol Jin; Han, Won-Taek

    2018-03-27

    All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10 -4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.

  2. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laatar, F., E-mail: fakher8laatar@gmail.com; Harizi, A.; Smida, A.

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphologymore » and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.« less

  3. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  4. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE PAGES

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    2015-11-04

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  5. Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David

    We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less

  6. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  7. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  8. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  9. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform tomore » a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less

  10. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    DOE PAGES

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; ...

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a moremore » uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less

  11. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    PubMed Central

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  12. A Design Study of the Inflated Sphere Landing Vehicle, Including the Landing Performance and the Effects of Deviations from Design Conditions

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    The impact motion of the inflated sphere landing vehicle with a payload centrally supported from the spherical skin by numerous cords has been determined on the assumption of uniform isentropic gas compression during impact. The landing capabilities are determined for a system containing suspension cords of constant cross section. The effects of deviations in impact velocity and initial gas temperature from the design conditions are studied. Also discussed are the effects of errors in the time at which the skin is ruptured. These studies indicate how the design parameters should be chosen to insure reliability of the landing system. Calculations have been made and results are presented for a sphere inflated with hydrogen, landing on the moon in the absence of an atmosphere. The results are presented for one value of the skin-strength parameter.

  13. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.

    PubMed

    Shizgal, Bernie D

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988)JSTPBS0022-471510.1007/BF01016429].

  14. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.

    2018-05-01

    This paper considers two nonequilibrium model systems described by linear Fokker-Planck equations for the time-dependent velocity distribution functions that yield steady state Kappa distributions for specific system parameters. The first system describes the time evolution of a charged test particle in a constant temperature heat bath of a second charged particle. The time dependence of the distribution function of the test particle is given by a Fokker-Planck equation with drift and diffusion coefficients for Coulomb collisions as well as a diffusion coefficient for wave-particle interactions. A second system involves the Fokker-Planck equation for electrons dilutely dispersed in a constant temperature heat bath of atoms or ions and subject to an external time-independent uniform electric field. The momentum transfer cross section for collisions between the two components is assumed to be a power law in reduced speed. The time-dependent Fokker-Planck equations for both model systems are solved with a numerical finite difference method and the approach to equilibrium is rationalized with the Kullback-Leibler relative entropy. For particular choices of the system parameters for both models, the steady distribution is found to be a Kappa distribution. Kappa distributions were introduced as an empirical fitting function that well describe the nonequilibrium features of the distribution functions of electrons and ions in space science as measured by satellite instruments. The calculation of the Kappa distribution from the Fokker-Planck equations provides a direct physically based dynamical approach in contrast to the nonextensive entropy formalism by Tsallis [J. Stat. Phys. 53, 479 (1988), 10.1007/BF01016429].

  15. Influence of thermal boundary conditions on heat transfer from a cylinder in cross flow

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1981-01-01

    Local heat transfer data over the leading surface of a cylinder in crossflow were obtained for a Reynolds number range of 50,000. The cylinder was operated at both uniform-wall-temperature and uniform-heat-flux thermal ance of 80 deg from the front stagnation point, the uniform-wall-temperature heat transfer coefficients were as much as 66 percent lower than the uniform-heat-flux data. Between the stagnation point and 60 deg around the cylinder, there were no significant differences in the data. This region of the cylinder is within the cylindrical curvature region of the front end of a real turbine so it was concluded that either thermal boundary condition could be used to model turbine flow over that region of the blade. Results of evaluating the exponent x in the fundamental relationship Nu=f(Re) sup x, which is used in data correlation show the exponent varies as a function of local position on the cylinder even in the laminar flow region. The value of x increases linearly from 0.50 at the stagnation point to 0.59 at 60 deg around the cylinder. This linear trend continued into the separation region at 80 deg for the uniform-wall-temperature data, but x increased markedly in the separation region for the uniform-heat-flux data.

  16. Influence of thermal boundary conditions on heat transfer from a cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    1981-08-01

    Local heat transfer data over the leading surface of a cylinder in crossflow were obtained for a Reynolds number range of 50,000. The cylinder was operated at both uniform-wall-temperature and uniform-heat-flux thermal ance of 80 deg from the front stagnation point, the uniform-wall-temperature heat transfer coefficients were as much as 66 percent lower than the uniform-heat-flux data. Between the stagnation point and 60 deg around the cylinder, there were no significant differences in the data. This region of the cylinder is within the cylindrical curvature region of the front end of a real turbine so it was concluded that either thermal boundary condition could be used to model turbine flow over that region of the blade. Results of evaluating the exponent x in the fundamental relationship Nu=f(Re) sup x, which is used in data correlation show the exponent varies as a function of local position on the cylinder even in the laminar flow region. The value of x increases linearly from 0.50 at the stagnation point to 0.59 at 60 deg around the cylinder. This linear trend continued into the separation region at 80 deg for the uniform-wall-temperature data, but x increased markedly in the separation region for the uniform-heat-flux data.

  17. Disparate effects of constant and annually-cycling daylength and water temperature on reproductive maturation of striped bass (Morone saxatilis)

    USGS Publications Warehouse

    Clark, R.W.; Henderson-Arzapalo, A.; Sullivan, C.V.

    2005-01-01

    Adult striped bass (Morone saxatilis) were exposed to various combinations of constant or anually-cycling daylength and water temperature. Constant conditions (15 h days, 18??C) were those normally experienced at spawning and cycling conditions simulated natural changes at Chesapeake Bay latitude. Females exposed to constant long (15 h) days and cycling water temperature (TEMPERATURE group) had blood plasma levels of sex steroids (testosterone [T] and estradiol-17?? [E2]) and vitellogenin (Vg), and profiles of oocyte growth, that were nearly identical to those of females held under a natural photothermal cycle (CONTROL group). Several fish from these two groups were induced to spawn fertile eggs. Females constantly exposed to warm water (18??C), with or without a natural photoperiod cycle (PHOTOPERIOD and STATIC groups, respectively), had diminished circulating levels of gonadal steroid hormones and Vg, impaired deposition of yolk granules in their ooplasm, and decreased oocyte growth, and they underwent premature ovarian atresia. Males exposed to cycling water temperature (CONTROL and TEMPERATURE groups) spermiated synchronously during the natural breeding season, at which time they also had had high plasma androgen (T and 11-ketotestosterone [11-KT]) levels. The timing of spermiation was highly asynchronous among males in groups of fish held constantly at 18??C (STATIC and PHOTOPERIOD groups) and this asynchrony was associated with diminished plasma androgen levels. Termination of spermiation by males exposed to cycling water temperature coincided with a sharp decline in levels of plasma androgens about a month after water temperature rose above 18??C. In contrast, most males held constantly at 18??C sustained intermediate levels of plasma androgens and spermiated until the end of the study in late July. The annual cycle of water temperature clearly plays a prominent role in the initiation, maintenance, and termination of the striped bass reproductive cycle. In females, a decrease in water temperature below values experienced at spawning appears to be required for vitellogenesis and oocyte growth to proceed normally. Constant exposure of males to spawning temperature disrupts synchronous spermiation but also delays testicular regression, which may be useful for spawning fish after the natural reproductive season.

  18. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    NASA Astrophysics Data System (ADS)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  19. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms.

    PubMed

    Miller, Kevin C; Swartz, Erik E; Long, Blaine C

    2015-08-01

    Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Crossover study. Laboratory. A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m(2)). Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Time to cool from 39.5°C to 38.0°C and Trec. The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = -2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min(-1) ± 0.12°C·min(-1) in full uniform and 0.23°C·min(-1) ± 0.11°C·min(-1) in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling.

  20. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    PubMed Central

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-01

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883

  1. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures.

    PubMed

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-13

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  2. The slowly reacting mode of combustion of gaseous mixtures in spherical vessels. Part 1: Transient analysis and explosion limits

    NASA Astrophysics Data System (ADS)

    Liñán, Amable; Moreno-Boza, Daniel; Iglesias, Immaculada; Sánchez, Antonio L.; Williams, Forman A.

    2016-11-01

    Frank-Kamenetskii's analysis of thermal explosions is revisited, using also a single-reaction model with an Arrhenius rate having a large activation energy, to describe the transient combustion of initially cold gaseous mixtures enclosed in a spherical vessel with a constant wall temperature. The analysis shows two modes of combustion. There is a flameless slowly reacting mode for low wall temperatures or small vessel sizes, when the temperature rise resulting from the heat released by the reaction is kept small by the heat-conduction losses to the wall, so as not to change significantly the order of magnitude of the reaction rate. In the other mode, the slow reaction rates occur only in an initial ignition stage, which ends abruptly when very large reaction rates cause a temperature runaway, or thermal explosion, at a well-defined ignition time and location, thereby triggering a flame that propagates across the vessel to consume the reactant rapidly. Explosion limits are defined, in agreement with Frank-Kamenetskii's analysis, by the limiting conditions for existence of the slowly reacting mode of combustion. In this mode, a quasi-steady temperature distribution is established after a transient reaction stage with small reactant consumption. Most of the reactant is burnt, with nearly uniform mass fraction, in a subsequent long stage during which the temperature follows a quasi-steady balance between the rates of heat conduction to the wall and of chemical heat release. The changes in the explosion limits caused by the enhanced heat-transfer rates associated with buoyant motion are described in an accompanying paper.

  3. Design of laser diode driver with constant current and temperature control system

    NASA Astrophysics Data System (ADS)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  4. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition.

    PubMed

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-01-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  5. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  6. Uniform function constants of motion and their first-order perturbation

    NASA Astrophysics Data System (ADS)

    Prato, Domingo; Hamity, Victor H.

    2005-05-01

    The main purpose of this work is to present some uniform function constants of motion rather than the well-known quantities arising from spacetime symmetries. These constants are usually associated with the intrinsic characteristics of the trajectories of a particle in a central potential field. We treat two cases. The first is the Lenz vector which sometimes is found in the literature [1, 2]; the other is associated with the isotropic harmonic oscillator, of relative importance in some simple models of the classical molecular interaction. The first example is applied to describe the perturbation of the trajectories in the Rutherford scattering and the precession of the Keplerian orbit of a planet. In the other case the conserved quantity is a symmetric tensor. We find the eigenvectors and eigenvalues of that tensor while at the same time we obtain the solution to the problem of calculating the rotation rate of the orbits in first order of a perturbation parameter in the potential energy, by performing a simple coordinate transformation in the Cartesian plane. We think that the present work addresses many aspects of mechanics with a didactical interest in other physics or mathematics courses.

  7. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  8. Temperature and size-dependent Hamaker constants for metal nanoparticles.

    PubMed

    Jiang, K; Pinchuk, P

    2016-08-26

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  9. Coupling Meteorological, Land Surface and Water Temperature Models in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Tang, C.; Cooter, E. J.

    2017-12-01

    Water temperature is a significant factor influencing of the stream ecosystem and water management especially under climate change. In this study, we demonstrate a physically based semi-Lagrangian water temperature model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrology model and Weather Research & Forecasting Model (WRF) in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data at river gages throughout the MRB. Further sensitivity analysis shows that mean water temperatures increase by 1.3°C, 1.5°C, and 1.8°C in northern, central and southern MRB zones, respectively, under a hypothetical uniform air temperature increase of 3°C. If air temperatures increase uniformly by 6°C in this scenario, then water temperatures are projected to increase by 3.3°C, 3.5°C and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1°C to 8°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. The increased water temperature accelerates harmful algal blooming which results in a larger dead zone in the Gulf of Mexico.

  10. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  11. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  12. Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample.

    PubMed

    Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu

    2017-08-15

    Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.

  13. Research on H500-Type High-Precision Vacuum Blackbody as a Calibration Standard for Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hao, X. P.; Sun, J. P.; Gong, L. Y.; Song, J.; Gu, J. M.; Ding, L.

    2018-04-01

    Based on the calibration requirements of vacuum low background aerospace infrared remote sensing radiance temperature, a high-precision vacuum blackbody (H500 type) is developed for the temperature range from - 93 °C to + 220 °C at the National Institute of Metrology, China. In this paper, the structure and the temperature control system of H500 are introduced, and its performance, such as heating rate and stabilization of temperature control, is tested under the vacuum and low-background condition (liquid-nitrogen-cooled shroud). At room temperature and atmospheric environment, the major technical parameters of this blackbody, such as emissivity and uniformity, are measured. The measurement principle of blackbody emissivity is based on the control of surrounding radiation. Temperature uniformity at the cavity bottom is measured using a standard infrared radiation thermometer. When the heating rate is 1 °C min-1, the time required for the temperature to stabilize is less than 50 min, and within 10 min, the variation in temperature is less than 0.01 °C. The emissivity value of the blackbody is higher than 0.996. Temperature uniformity at the bottom of the blackbody cavity is less than 0.03 °C. The uncertainty is less than 0.1 °C ( k = 2) over the temperature range from - 93 °C to + 67 °C.

  14. Process for reproducibly preparing titanium subhydride

    DOEpatents

    Carlson, Richard S.

    1982-01-01

    Titanium subhydride is produced in a reactor by heating a selected amount of finely divided titanium compound at a selected temperature for a selected period of time under dynamic vacuum conditions. Hydrogen is removed substantially uniformly from each powder grain and there is produced a subhydride of substantially uniform titanium-hydrogen composition. Selection of the amount, temperature and time produces a subhydride of selected titanium-hydrogen composition.

  15. Effects of stratification and temperature on seed germination speed and uniformity in central Oregon ponderosa pine (Pinus ponderosa Dougl. ex Laws.).

    Treesearch

    John C. Weber; Frank C. Sorensen

    1990-01-01

    Effects of stratification period and incubation temperature on seed germination speed and uniformity were investigated in a bulked seed lot of 200 ponderosa pine trees (Pinus ponderosa Dougl. ex Laws.) sampled from 149 locations in central Oregon. Mean rate of embryo development towards germination (l/days to 50 percent germination) and standard...

  16. Temperature-dependent inotropic and lusitropic indices based on half-logistic time constants for four segmental phases in isovolumic left ventricular pressure-time curve in excised, cross-circulated canine heart.

    PubMed

    Mizuno, Ju; Mohri, Satoshi; Yokoyama, Takeshi; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo

    2017-02-01

    Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.

  17. Finite-Temperature Behavior of PdH x Elastic Constants Computed by Direct Molecular Dynamics

    DOE PAGES

    Zhou, X. W.; Heo, T. W.; Wood, B. C.; ...

    2017-05-30

    In this paper, robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH 0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH 0.6 only match well with ultrasonic data at 10 K; whereas, atmore » 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH 0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Finally, literature mechanical testing experiments seem to support this hypothesis.« less

  18. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  19. Quasi-Classical Asymptotics for the Pauli Operator

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander V.

    We study the behaviour of the sums of the eigenvalues of the Pauli operator in , in a magnetic field and electric field V(x) as the Planck constant ħ tends to zero and the magnetic field strength μ tends to infinity. We show that for the sum obeys the natural Weyl type formula where σ = (d- 2)/2 + γ, with an explicit constant Cγ, d. If the field B has a constant direction, then this formula is uniform in μ>= 0. The method is based on Colin de Verdiere's approach proposed in his work on ``magnetic bottles'' (Commun. Math Phys, 105 , 327-335 (1986)).

  20. Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.

    1985-01-01

    Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.

  1. How two types of fluctuating temperature affect the growth of Fusarium solani

    Treesearch

    Keith F. Jensen; Phillip E. Reynolds

    1969-01-01

    Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...

  2. On the Henry constant and isosteric heat at zero loading in gas phase adsorption.

    PubMed

    Do, D D; Nicholson, D; Do, H D

    2008-08-01

    The Henry constant and the isosteric heat of adsorption at zero loading are commonly used as indicators of the strength of the affinity of an adsorbate for a solid adsorbent. It is assumed that (i) they are observable in practice, (ii) the Van Hoff's plot of the logarithm of the Henry constant versus the inverse of temperature is always linear and the slope is equal to the heat of adsorption, and (iii) the isosteric heat of adsorption at zero loading is either constant or weakly dependent on temperature. We show in this paper that none of these three points is necessarily correct, first because these variables might not be observable since they are outside the range of measurability; second that the linearity of the Van Hoff plot breaks down at very high temperature, and third that the isosteric heat versus loading is a strong function of temperature. We demonstrate these points using Monte Carlo integration and Monte Carlo simulation of adsorption of various gases on a graphite surface. Another issue concerning the Henry constant is related to the way the adsorption excess is defined. The most commonly used equation is the one that assumes that the void volume is the volume extended all the way to a boundary passing through the centres of the outermost solid atoms. With this definition the Henry constant can become negative at high temperatures. Although adsorption at these temperatures may not be practical because of the very low value of the Henry constant, it is more useful to define the Henry constant in such a way that it is always positive at all temperatures. Here we propose the use of the accessible volume; the volume probed by the adsorbate when it is in nonpositive regions of the potential, to calculate the Henry constant.

  3. Pellicle transmission uniformity requirements

    NASA Astrophysics Data System (ADS)

    Brown, Thomas L.; Ito, Kunihiro

    1998-12-01

    Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.

  4. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  5. Intensity Biased PSP Measurement

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.

    2000-01-01

    The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.

  6. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    PubMed

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  7. In-situ diagnostics for metalorganic chemical vapor deposition of yttrium barium copper oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashok Burton

    A new stagnation flow MOCVD research reactor is described that is designed to serve as a testbed to develop tools for "intelligent" thin film deposition, such as in-situ sensors and diagnostics, control algorithms, and thin film growth models. The reactor is designed in particular for the deposition of epitaxial YBa2Cu3O 7-delta on MgO, although with minor modifications it would be suitable for deposition of any metal-oxide thin films. The reactor is specifically designed to permit closed-loop thermal and stoichiometric control of the film growth process. Closed-loop control of precursor flow rates is accomplished by using ultraviolet absorption spectroscopy on each precursor line. Also integrated into the design is a Fourier Transform Infrared (FTIR) spectroscopy system which collects real-time, in-situ infrared polarized reflectance spectra of the film as it grows. Numerical simulation was used extensively to optimize the fluid dynamics and heat transfer to provide uniform fluxes to the substrate. As a result, thickness uniformity across the substrate is typically within 3% from the center to the edge of the substrate. Experimental studies of thin films grown in the Y/Ba/Cu/O system have been carried out. The films have been characterized by Rutherford Backscattering Spectrometry and X-ray Diffraction. Results indicate c-axis oriented grains with pure 1:2:3 phase YBCO, good spatial uniformity, and a low degree of c-axis wobble. Experimental growth data is used in a gas phase and surface chemistry model to calculate sticking coefficients for yttrium oxide, barium oxide, and copper oxide on YBCO. In-situ FTIR and Coherent Gradient Sensing (CGS) analysis of growing films has been performed, yielding accurate substrate temperature, film thickness monitoring, and full-field, real-time curvature maps of the films. In addition, we have implemented CGS to obtain full-field in-situ images of local curvature during oxygenation and deoxygenation of YBCO films. An analysis of the oxygen diffusion is performed, and diffusivity constants are presented for a variety of temperature and film conditions.

  8. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently

    NASA Technical Reports Server (NTRS)

    Lemieux, Patrick; Murray, William; Cooke, Terry; Gerhardt, James

    2012-01-01

    A gas containment vessel that is not in thermal equilibrium with the bulk gas can affect its temperature measurement. The physical nature of many gas dynamics experiments often makes the accurate measurement of temperature a challenge. The environment itself typically requires that the thermocouple be sheathed, both to protect the wires and hot junction of the instrument from their environment, and to provide a smooth, rigid surface for pressure sealing of the enclosure. However, that enclosure may also be much colder than the gas to be sensed, or vice-versa. Either way, the effect of such gradients is to potentially skew the temperature measurements themselves, since heat may then be conducted by the instrument. Thermocouple designers traditionally address this problem by insulating the sheath from the thermocouple leads and hot junction as much as possible. The thermocouple leads are typically packed in a ceramic powder inside the sheath, protecting them somewhat from temperature gradients along the sheath, but there is no effective mechanism to shield the sheath from the enclosure body itself. Standard practice dictates that thermocouples be used in installations that do not present large thermal gradients along the probe. If this conduction dominates heat transfer near the tip of the probe, then temperature measurements may be expected to be skewed. While the same problem may be experienced in the measurement of temperature at various points within a solid in a gradient, it tends to be aggravated in the measurements of gas temperature, since heat transfer dependent on convection is often less efficient than conduction along the thermocouple. The proposed solution is an inefficient fin thermocouple probe. Conventional wisdom suggests that in many experiments where gas flows through an enclosure (e.g., flow in pipe, manifold, nozzle, etc.), the thermocouple be introduced flush to the surface, so as not to interfere with the flow. In practice, however, many such experiments take place where the flow is already turbulent, so that a protruding thermocouple probe has a negligible effect on the flow characteristics. The key question then becomes just how far into the flow should a thermocouple protrude in order to properly sense the gas temperature at that point. Modeling the thermocouple as an "inefficient fin" directly addresses this question. The appropriate assumptions in this case are: one-dimensional conduction along the fin; steady-state, constant, and homogeneous thermal conductivity; negligible radiation; and a uniform, constant heat transfer coefficient over the probe surface. It is noted that the nature of the ceramic-filled probe makes the key assumption of homogeneous thermal conductivity that much more conservative.

  10. The p- T phase diagram of KNbO 3 by a dielectric constant measurement

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.

    2001-11-01

    A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.

  11. Tensile properties of AZ11A-0 magnesium-alloy sheet under rapid-heating and constant temperature

    NASA Technical Reports Server (NTRS)

    Kurg, Ivo M

    1956-01-01

    Specimens of AZ31A-0 magnesium alloy sheet were heated to rupture at nominal rates of 0.2 F to 100 F per second under constant tensile load conditions. The data are presented and compared with the results of conventional tensile stress-strain tests at elevated temperatures after 1.2-hour exposure. A temperature-rate parameter was used to construct master curves from which stresses and temperatures for yield and rupture can be predicted under rapid-heating conditions. A comparison of the elevated-temperature tensile properties of AZ31A-0 and HK31XA-H24 magnesium-alloy sheet under both constant-temperature and rapid-heating conditions is included.

  12. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 2: Analysis of the ERBE integrating sphere ground calibration

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1987-01-01

    An explicit solution of the spectral radiance leaving an arbitrary point on the wall of a spherical cavity with diffuse reflectivity is obtained. The solution is applicable to spheres with an arbitrary number of openings of any size and shape, an arbitrary number of light sources with possible non-diffuse characteristics, a non-uniform sphere wall temperature distribution, non-uniform and non-diffuse sphere wall emissivity and non-uniform but diffuse sphere wall spectral reflectivity. A general measurement equation describing the output of a sensor with a given field of view, angular and spectral response measuring the sphere output is obtained. The results are applied to the Earth Radiation Budget Experiment (ERBE) integrating sphere. The sphere wall radiance uniformity, loading effects and non-uniform wall temperature effects are investigated. It is shown that using appropriate interpretation and processing, a high-accuracy short-wave calibration of the ERBE sensors can be achieved.

  13. Mathematical model of the metal mould surface temperature optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz; Srb, Radek, E-mail: radek.srb@tul.cz

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensitymore » is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.« less

  14. Density and temperature characterization of long-scale length, near-critical density controlled plasma produced from ultra-low density plastic foam

    PubMed Central

    Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.

    2016-01-01

    The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471

  15. Burning Graphene Layer-by-Layer

    PubMed Central

    Ermakov, Victor A.; Alaferdov, Andrei V.; Vaz, Alfredo R.; Perim, Eric; Autreto, Pedro A. S.; Paupitz, Ricardo; Galvao, Douglas S.; Moshkalev, Stanislav A.

    2015-01-01

    Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in “cold-wall” reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material. PMID:26100466

  16. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere.

    PubMed

    Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; Huang, Jian-Guo; Jyske, Tuula; Kašpar, Jakub; King, Gregory; Krause, Cornelia; Liang, Eryuan; Mäkinen, Harri; Morin, Hubert; Nöjd, Pekka; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K; Saracino, Antonio; Swidrak, Irene; Treml, Václav

    2016-11-01

    The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C -1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere. © 2016 John Wiley & Sons Ltd.

  17. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  18. Heat Balance Limits in Football Uniforms: How Different Uniform Ensembles Alter the Equation.

    ERIC Educational Resources Information Center

    Kulka, Hasha J.; Kenney, W. Larry

    2002-01-01

    Because football season becomes dangerous when warm weather collides with the need for protective gear, researchers investigated critical heat balance limits in non-heat- acclimatized men who wore various football uniform ensembles and exercised at 35 percent VO2 max in a programmable environmental chamber. The air temperature and humidity limits…

  19. A new design of indirectly heated cathode based strip type electron gun.

    PubMed

    Maiti, Namita; Lijeesh, K; Barve, U D; Quadri, Nishad; Tembhare, G U; Mukherjee, S; Thakur, K B; Das, A K

    2013-08-01

    A new design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The design issue addressed is the uniformity of temperature on the solid cathode using (a) a multi-segmented filament with variable height as the primary heat source and (b) trapezoidal shaped single long filament as the primary heat source. The proposed design in this paper is based on computer simulation and validated by extensive experimentations. The design emphasis is on maintaining uniform temperature on the solid cathode. The designed multi-segment filament and the single long filament provide a temperature uniformity on the solid cathode of about 250 K and 110 K, respectively. The better temperature uniformity inspite of the thermal expansion, in case of a single long filament tightly clamped at two ends, has been possible due to shaping of the single filament with a number of constituent sections such that the thermal expansion of different sections forming the actual filament takes care of not only the mechanical stability but also does not affect the emitting surface of the filament. Experiments show that the modified design achieves a one to one correspondence of the solid cathode length and the electron beam length emitted from the solid cathode.

  20. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  1. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.

  2. Spin Waves and Transport Properties in Ferromagnetic Co-Al-O and Fe-Al-O Granular Films: A Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Yoshihara, Akira; Ohnuma, Shigehiro; Fujimori, Hiroyasu; Nakamura, Shintaro; Nojima, Tsutomu

    2008-09-01

    A systematic Brillouin light scattering (BLS) study on long-wavelength spin waves (SWs) in ferromagnetic TM-Al-O (TM=Co, Fe) nano-granular films with thickness of >1 μm was performed under magnetic fields of up to 4 kOe at room temperature. BLS spectra consist of a pair of bulk SW peaks on both frequency sides and a surface localized SW peak only on the positive frequency side in this study. These SW frequencies as a function of the magnetic field can be fully reproduced by the magnetostatic frequency formula developed for a semi-infinite uniform ferromagnetic medium with an exchange coupling and an in-plane uniaxial magnetic anisotropy. We determined a set of the magnetic constants including the exchange field HE for each film. Combining the exchange field HE with the electrical resistivity ρ for each film at room temperature, we found an inverse-square law given by ρ=a(HE)-2 for both the Co and Fe granular films with aFe=30.3 μΩ\\cdotcm\\cdot(kOe)2 and aCo=22.1 μΩ\\cdotcm\\cdot(kOe)2, respectively.

  3. Experimental investigation of a Mach 6 fixed-geometry inlet featuring a swept external-internal compression flow field

    NASA Technical Reports Server (NTRS)

    Torrence, M. G.

    1975-01-01

    An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart.

  4. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    NASA Astrophysics Data System (ADS)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  5. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    NASA Astrophysics Data System (ADS)

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  6. An investigation of matched index of refraction technique and its application in optical measurements of fluid flow

    NASA Astrophysics Data System (ADS)

    Amini, Noushin; Hassan, Yassin A.

    2012-12-01

    Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2·2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids.

  7. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grosav, A. D.; Konopko, L. A.; Leporda, N. I.

    1991-01-01

    Long lengths of metal superconductor composites were prepared by passing a copper wire through the bismuth based molten oxide system at a constant speed. The key to successful composite preparation is the high pulling speed involved, which permits minimization of the severe interaction between the unbuffered metal surface and the oxide melt. Depending on the temperature of the melt and the pulling speed, a coating with different thickness and microstructure appeared. The nonannealed thick coatings contained a Bi2(Sr,Ca)2Cu1O6 phase as a major component. After relatively short time annealing at 800 C, both resistivity and initial magnetization versus temperature measurements show superconducting transitions beginning in the 110 to 115 K region. The effects of annealing and composition on obtained results are discussed. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  8. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  9. Effect of Nd Doping on Dielectric and Impedance Properties of PZT Nanoceramics

    NASA Astrophysics Data System (ADS)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2018-02-01

    Neodymium-doped lead zirconate tianate, i.e. Pb1-x Nd x Zr0.52Ti0.48O3 (PNZT) ceramics, with x = 0-10 mol.% has been prepared by the sol-gel process. X-ray diffraction pattern at room temperature shows the pyrochlore free phase for all samples. The structural analysis suggests the coexistence of both rhombohedral (R3m space group) and tetragonal (P4 mm space group) crystal symmetries. Scanning electron micrographs of the samples show uniform distribution of grain and grain boundaries. Dielectric constant increases with the increase in neodymium concentration in the crystal lattice. Degree of diffuse phase transition increases with the increase in Nd3+ concentration in the sample. Nd3+ incorporation into the lead zirconatetitanate (PZT) lattice enhances the spreading factor. Interaction between neighbouring dipoles decreases with the increase of Nd3+ in PZT lattice. The conduction mechanism of the sample can be attributed to the overlapping large polar tunnelling. Second-order dielectric phase transition has been observed at the Curie temperature. The electrical properties of the sample can be explained by considering grain and grain boundaries contributions. All the samples show the poly-dispersive non-Debye type relaxation.

  10. Impact of crystalline defects and size on X-ray line broadening: A phenomenological approach for tetragonal SnO{sub 2} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammed Shafi, P.; Chandra Bose, A., E-mail: acbose@nitt.edu

    2015-05-15

    Nanocrystalline tin oxide (SnO{sub 2}) powders with different grain size were prepared by chemical precipitation method. The reaction was carried out by varying the period of hydrolysis and the as-prepared samples were annealed at different temperatures. The samples were characterized using X-ray powder diffractometer and transmission electron microscopy. The microstrain and crystallite size were calculated for all the samples by using Williamson-Hall (W-H) models namely, isotropic strain model (ISM), anisotropic strain model (ASM) and uniform deformation energy density model (UDEDM). The morphology and particle size were determined using TEM micrographs. The directional dependant young’s modulus was modified as an equationmore » relating elastic compliances (s{sub ij}) and Miller indices of the lattice plane (hkl) for tetragonal crystal system and also the equation for elastic compliance in terms of stiffness constants was derived. The changes in crystallite size and microstrain due to lattice defects were observed while varying the hydrolysis time and the annealing temperature. The dependence of crystallite size on lattice strain was studied. The results were correlated with the available studies on electrical properties using impedance spectroscopy.« less

  11. Unification of the negative electrocaloric effect in Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-BaTiO{sub 3} solid solutions by Ba{sub 1/2}Sr{sub 1/2}TiO{sub 3} doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Sarir; Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120; Zheng, Guang-Ping, E-mail: mmzheng@polyu.edu.hk

    2013-12-07

    The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperaturemore » changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.« less

  12. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  13. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  14. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.

    2013-10-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.

  15. CFD simulation of the gas flow in a pulse tube cryocooler with two pulse tubes

    NASA Astrophysics Data System (ADS)

    Yin, C. L.

    2015-12-01

    In this paper, in order to instruct the next optimization work, a two-dimension Computational Fluid Dynamics (CFD) model is developed to simulate temperature distribution and velocity distribution of oscillating fluid in the DPTC by individual phase-shifting. It is found that the axial temperature distribution of regenerator is generally uniform and the temperatures near the center at the same cross setion of two pulse tubes are obviously higher than their near wall temperatures. The wall temperature difference about 0-7 K exists between the two pulse tubes. The velocity distribution near the center of the regenerator is uniform and there is obvious injection stream coming at the center of the pulse tubes from the hot end. The formation reason of temperature distribution and velocity distribution is explained.

  16. A finite element method based microwave heat transfer modeling of frozen multi-component foods

    NASA Astrophysics Data System (ADS)

    Pitchai, Krishnamoorthy

    Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.

  17. Galvanometer scanning technology for laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  18. Cold-Water Immersion for Hyperthermic Humans Wearing American Football Uniforms

    PubMed Central

    Miller, Kevin C.; Swartz, Erik E.; Long, Blaine C.

    2015-01-01

    Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling. PMID:26090706

  19. A numerical study of thermal stratification due to transient natural convection in densified liquid propellant tanks

    NASA Astrophysics Data System (ADS)

    Manalo, Lawrence B.

    A comprehensive, non-equilibrium, two-domain (liquid and vapor), physics based, mathematical model is developed to investigate the onset and growth of the natural circulation and thermal stratification inside cryogenic propellant storage tanks due to heat transfer from the surroundings. A two-dimensional (planar) model is incorporated for the liquid domain while a lumped, thermodynamic model is utilized for the vapor domain. The mathematical model in the liquid domain consists of the conservation of mass, momentum, and energy equations and incorporates the Boussinesq approximation (constant fluid density except in the buoyancy term of the momentum equation). In addition, the vapor is assumed to behave like an ideal gas with uniform thermodynamic properties. Furthermore, the time-dependent nature of the heat leaks from the surroundings to the propellant (due to imperfect tank insulation) is considered. Also, heterogeneous nucleation, although not significant in the temperature range of study, has been included. The transport of mass and energy between the liquid and vapor domains leads to transient ullage vapor temperatures and pressures. (The latter of which affects the saturation temperature of the liquid at the liquid-vapor interface.) This coupling between the two domains is accomplished through an energy balance (based on a micro-layer concept) at the interface. The resulting governing, non-linear, partial differential equations (which include a Poisson's equation for determining the pressure distribution) in the liquid domain are solved by an implicit, finite-differencing technique utilizing a non-uniform (stretched) mesh (in both directions) for predicting the velocity and temperature fields. (The accuracy of the numerical scheme is validated by comparing the model's results to a benchmark numerical case as well as to available experimental data.) The mass, temperature, and pressure of the vapor is determined by using a simple explicit finite-differencing technique. With the model at hand, the effects of variable fluid transport/thermo-physical properties, levels of initial sub-cooling, operating pressure, and initial liquid aspect ratio on the natural circulation patterns and thermal stratification are numerically investigated. Liquid oxygen (LOx) is the primary working fluid in the study. However, a simulation with liquid nitrogen (LN2) as the propellant is also carried out for comparison purposes.

  20. Surface Tension Driven Convection Experiment-2 (STDCE-2)

    NASA Technical Reports Server (NTRS)

    Masud, J.; Kamotani, Y.; Ostrach, S.

    1999-01-01

    Thermocapillary flows are known to become oscillatory (time-periodic), but how and when they become oscillatory in containers of unit-order aspect ratio are not yet fully understood. The present work is a part of our continuous effort to obtain a better understanding of the phenomenon. Thermocapillary flow experiments in normal gravity are limited to a narrow parametric range in order to minimize gravity and buoyancy effects, which is an important reason for our lack of full understanding of the oscillation phenomenon. One important unanswered question is what role, if any, free surface deformation plays in the oscillation mechanism. For that reason we performed thermocapillary flow experiments, called the Surface Tension Driven Convection Experiment-2 (STDCE-2), aboard the USML-2 Spacelab in 1995. The main objectives of the experiments were to investigate oscillatory thermocapillary flows in microgravity and to clarify the importance of free surface deformation in such flows. Steady and oscillatory thermocapillary flows were generated in cylindrical containers by employing two heating modes. A CO2 laser with adjustable power and beam diameter was used in the Constant Flux (CF) configuration to heat the free surface. The other configuration investigated in STDCE-2 was the Constant Temperature (CT) configuration in which a submerged cylindrical cartridge heater placed at the symmetry (axial) axis of the test container heated the fluid. Both heating modes cause non-uniform temperature distributions on the free surface, which generates thermocapillary flow. The flow field was investigated by flow visualization, and the temperature field was measured by thermistors and an infrared imager. The free surface shape and motion were measured by a Ronchi system. The hardware performed well and we were able to conduct more tests than originally planned. From the successful experiments a large amount of data was acquired. The analysis of the data is now nearly complete. Some important results are presented and discussed herein.

  1. The Effect of a Pre-Lens Aperture on the Temperature Range and Image Uniformity of Microbolometer Infrared Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Parris, Larkin S.; Lindal, John M.

    This paper explores the temperature range extension of long-wavelength infrared (LWIR) cameras by placing an aperture in front of the lens. An aperture smaller than the lens will reduce the radiance to the sensor, allowing the camera to image targets much hotter than typically allowable. These higher temperatures were accurately determined after developing a correction factor which was applied to the built-in temperature calibration. The relationship between aperture diameter and temperature range is linear. The effect of pre-lens apertures on the image uniformity is a form of anti-vignetting, meaning the corners appear brighter (hotter) than the rest of the image.more » An example of using this technique to measure temperatures of high melting point polymers during 3D printing provide valuable information of the time required for the weld-line temperature to fall below the glass transition temperature.« less

  2. Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1993-05-01

    The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.

  3. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Czeisler, C. A.

    1992-01-01

    Accurate estimation of the phases and amplitude of the endogenous circadian pacemaker from constant-routine core-temperature series is crucial for making inferences about the properties of the human biological clock from data collected under this protocol. This paper presents a set of statistical methods based on a harmonic-regression-plus-correlated-noise model for estimating the phases and the amplitude of the endogenous circadian pacemaker from constant-routine core-temperature data. The methods include a Bayesian Monte Carlo procedure for computing the uncertainty in these circadian functions. We illustrate the techniques with a detailed study of a single subject's core-temperature series and describe their relationship to other statistical methods for circadian data analysis. In our laboratory, these methods have been successfully used to analyze more than 300 constant routines and provide a highly reliable means of extracting phase and amplitude information from core-temperature data.

  4. Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liu Hao; Lau, Lok Yin; Ren, Wei

    2017-03-01

    We report in situ measurements of non-uniform temperature, H2O and CO2 concentration distributions in a premixed methane-air laminar flame using tunable diode laser absorption spectroscopy (TDLAS). A mid-infrared, continuous-wave, room-temperature interband cascade laser (ICL) at 4183 nm was used for the sensitive detection of CO2 at high temperature.The H2O absorption lines were exploited by one distributed feedback (DFB) diode laser at 1343 nm and one ICL at 2482 nm to achieve multi-band absorption measurements with high species concentration sensitivity, high temperature sensitivity, and immunity to variations in ambient conditions. A novel profile-fitting function was proposed to characterize the non-uniform temperature and species concentrations along the line-of-sight in the flame by detecting six absorption lines of CO2 and H2O simultaneously. The flame temperature distribution was measured at different heights above the burner (5-20 mm), and compared with the thermocouple measurement with heat-transfer correction. Our TDLAS measured temperature of the central flame was in excellent agreement (<1.5% difference) with the thermocouple data.The TDLAS results were also compared with the CFD simulations using a detailed chemical kinetics mechanism (GRI 3.0) and considering the heat loss to the surroundings.The current CFD simulation overpredicted the flame temperature in the gradient region, but was in excellent agreement with the measured temperature and species concentration in the core of the flame.

  5. An integral formulation for wave propagation on weakly non-uniform potential flows

    NASA Astrophysics Data System (ADS)

    Mancini, Simone; Astley, R. Jeremy; Sinayoko, Samuel; Gabard, Gwénaël; Tournour, Michel

    2016-12-01

    An integral formulation for acoustic radiation in moving flows is presented. It is based on a potential formulation for acoustic radiation on weakly non-uniform subsonic mean flows. This work is motivated by the absence of suitable kernels for wave propagation on non-uniform flow. The integral solution is formulated using a Green's function obtained by combining the Taylor and Lorentz transformations. Although most conventional approaches based on either transform solve the Helmholtz problem in a transformed domain, the current Green's function and associated integral equation are derived in the physical space. A dimensional error analysis is developed to identify the limitations of the current formulation. Numerical applications are performed to assess the accuracy of the integral solution. It is tested as a means of extrapolating a numerical solution available on the outer boundary of a domain to the far field, and as a means of solving scattering problems by rigid surfaces in non-uniform flows. The results show that the error associated with the physical model deteriorates with increasing frequency and mean flow Mach number. However, the error is generated only in the domain where mean flow non-uniformities are significant and is constant in regions where the flow is uniform.

  6. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  7. Response of Fusarium solani to Fluctuating Temperatures

    Treesearch

    Keith F. Jensen; Phillip E. Reynolds; Phillip E. Reynolds

    1971-01-01

    The purpose of this study was to measure growth under a range of constant temperatures and under a series of fluctuating temperature regimes, and to determine if growth in the fluctuating temperiture regimes could be predicted satisfactorily from the growth data collected in the constant temperature experiments. Growth was measured on both agar and liquid culture to...

  8. The Radial Temperature Gradient in the Gleeble® Hot-Torsion Test and Its Effect on the Interpretation of Plastic-Flow Behavior

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Mahaffey, D. W.; Levkulich, N. C.; Senkov, O. N.

    2017-11-01

    The radial temperature gradient developed via direct-resistance heating of round-bar hot-torsion specimens in a Gleeble® machine and its effect on the interpretation of plastic-flow behavior were established using a suite of experimental, analytical, and numerical-simulation tools. Observations of the microstructure variation developed within a γ'-strengthened nickel-base superalloy were used to infer the temperature gradient as well as differences between the temperature at the outer diameter and that indicated by thermocouples welded to the surface. At temperatures of the order of 1375 K (1102 °C), the radial variation of temperature was typically 20 K ( 20 °C). Such variations were in agreement with an analytical heat-conduction model based on the balance of input thermal energy and radiation heat loss at the free surface. Using a constitutive model for LSHR, the effect of the radial temperature gradient on plastic flow during hot torsion was assessed via numerical integration of the torque as a function of radial position for such cases as well as that corresponding to a uniformly-heated sample. These calculations revealed that the torque generated in the non-uniform case is almost identical to that developed in a sample uniformly preheated to a temperature corresponding to that experienced at a fractional radial location of 0.8 in the former case.

  9. Magnetic heat pumping

    NASA Technical Reports Server (NTRS)

    Brown, G. V. (Inventor)

    1978-01-01

    A ferromagnetic or ferrimagnetic element is used to control the temperature and applied magnetic field of the element to cause the state of the element as represented on a temperature-magnetic entropy diagram to repeatedly traverse a loop. The loop may have a first portion of concurrent substantially isothermal or constant temperature and increasing applied magnetic field, a second portion of lowering temperature and constant applied magnetic field, a third portion of isothermal and decreasing applied magnetic field, and a fourth portion of increasing temperature and constant applied magnetic field. Other loops may be four-sided, with two isotherms and two adiabats. Preferably, a regenerator is used to enhance desired cooling or heating effects, with varied magnetic fields, or varying temperatures including three-sided figures traversed by the representative point.

  10. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    PubMed

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

  11. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  12. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    NASA Astrophysics Data System (ADS)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.

  13. Defect-induced change of temperature-dependent elastic constants in BCC iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, N.; Setyawan, W.; Zhang, S. H.

    2017-07-01

    The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.

  14. A kinetic theory treatment of heat transfer in plane Poiseuille flow with uniform pressure

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1992-01-01

    Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary boundaries) is revisited where the Lees two-steam method with the Enskog equation of change is applied. Single particle velocity distribution functions are chosen, which preserve the essential physical features of this flow with arbitrary but uniform plate temperatures and gas pressure. Lower moments are shown to lead to expressions for the parameter functions, molecular number densities, and temperatures which are entirely in agreement with those obtained in the analysis of Lees for compressible plane Couette flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifications result, which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat flux, as well as density, are completely determined for the whole range of Knudson numbers from free molecular flow to the continuum regime, when the pressure level is specified.

  15. Method of preparing an electrode material of lithium-aluminum alloy

    DOEpatents

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  16. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  17. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-10-23

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29more » $$+0.05\\atop{-0.04}$$) % in the barrel and (0.54$$+0.06\\atop{-0.04}$$)% in the endcaps. Lastly, the same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 ± 0.07 mm/μs at 88.5 K and 1 kV/mm.« less

  18. Study of VTOL in ground-effect flow field including temperature effect

    NASA Technical Reports Server (NTRS)

    Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.

    1982-01-01

    Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.

  19. Exhaust temperature analysis of four stroke diesel engine by using MWCNT/Water nanofluids as coolant

    NASA Astrophysics Data System (ADS)

    Muruganandam, M.; Mukesh Kumar, P. C.

    2017-10-01

    There has been a continuous improvement in designing of cooling system and in quality of internal combustion engine coolants. The liquid engine coolant used in early days faced many difficulties such as low boiling, freezing points and inherently poor thermal conductivity. Moreover, the conventional coolants have reached their limitations of heat dissipating capacity. New heat transfer fluids have been developed and named as nanofluids to try to replace traditional coolants. Moreover, many works are going on the application of nanofluids to avail the benefits of them. In this experimental investigation, 0.1, 0.3 and 0.5% volume concentrations of multi walled carbon nanotube (MWCNT)/water nanofluids have been prepared by two step method with surfactant and is used as a coolant in four stroke single cylinder diesel engine to assess the exhaust temperature of the engine. The nanofluid prepared is characterized with scanning electron microscope (SEM) to confirm uniform dispersion and stability of nanotube with zeta potential analyzer. Experimental tests are performed by various mass flow rate such as 270 300 330 LPH (litre per hour) of coolant nanofluids and by changing the load in the range of 0 to 2000 W and by keeping the engine speed constant. It is found that the exhaust temperature decreases by 10-20% when compared to water as coolant at the same condition.

  20. Pulsed Power Discharges in Water

    NASA Astrophysics Data System (ADS)

    Kratel, Axel Wolf Hendrik

    An Electrohydraulic Discharge Process (EHD) for the treatment of hazardous chemical wastes in water has been developed. Liquid waste in a 4 L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (> 14,000 K) plasma channel created by an EHD discharge emits ultraviolet radiation, and produces an intense shock wave as it expands against the surrounding water. A simulation of the EHD process is presented along with experimental results. The simulation assumes a uniform plasma channel with a plasma that obeys the ideal gas law and the Spitzer conductivity law. The results agree with previously published data. The simulation is used to predict the total energy efficiency, energy partitioning, maximum plasma channel temperature and pressure for the Caltech Pulsed Power Facility (CPPF). The simulation shows that capacitance, initial voltage and gap length can be used to control the efficiency of the discharge. The oxidative degradation of 4-chlorophenol (4 -CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6 trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by a first-order rate equation, where k_{ it 0/} is the zero-order rate constant that accounts for direct photolysis; and k_ {it 1/} is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4.0 L reactor, the values of these two rate constants are k_{it 0/} = 0.73 +/- 0.08 mu M, and k_{ it 1/} =(9.4 +/- 1.4) times 10^{-4}. For a 200 mu M 4-CP solution this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^{it -1/} , and a G-value of 4.45 times 10^{-3}. Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 mu M TNT solution resulted in the complete degradation of TNT, and a 34% reduction of the total organic carbon (TOC). The intrinsic initial rate constant of TNT degradation was 0.024 M s^{it -1/} . The results of these experiments demonstrate the potential application of the EHD process for the treatment of hazardous wastes.

  1. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  2. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  3. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    ERIC Educational Resources Information Center

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  4. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Frech, Roger

    2012-05-17

    The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.

  5. Modeling and optimization of an enhanced battery thermal management system in electric vehicles

    NASA Astrophysics Data System (ADS)

    Li, Mao; Liu, Yuanzhi; Wang, Xiaobang; Zhang, Jie

    2018-06-01

    This paper models and optimizes an air-based battery thermal management system (BTMS) in a battery module with 36 battery lithium-ion cells. A design of experiments is performed to study the effects of three key parameters (i.e., mass flow rate of cooling air, heat flux from the battery cell to the cooling air, and passage spacing size) on the battery thermal performance. Three metrics are used to evaluate the BTMS thermal performance, including (i) the maximum temperature in the battery module, (ii) the temperature uniformity in the battery module, and (iii) the pressure drop. It is found that (i) increasing the total mass flow rate may result in a more non-uniform distribution of the passage mass flow rate among passages, and (ii) a large passage spacing size may worsen the temperature uniformity on the battery walls. Optimization is also performed to optimize the passage spacing size. Results show that the maximum temperature difference of the cooling air in passages is reduced from 23.9 to 2.1 K by 91.2%, and the maximum temperature difference among the battery cells is reduced from 25.7 to 6.4 K by 75.1%.

  6. Solar Cell Nanotechnology Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arraysmore » of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.« less

  7. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.

    PubMed

    Dammeier, J; Colberg, M; Friedrichs, G

    2007-08-21

    The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K < T < 1305 K behind reflected shock waves and, for the purpose of a consistency check, in a slow flow reactor at room temperature. HCO radicals were generated by 193 nm excimer laser photolysis of diluted gas mixtures containing glyoxal, (CHO)(2), and NO or NO(2) in argon and were monitored using frequency modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).

  8. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  9. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  10. Effects of melamine formaldehyde resin and CaCO3 diffuser-loaded encapsulation on correlated color temperature uniformity of phosphor-converted LEDs.

    PubMed

    Yang, Liang; Lv, Zhicheng; Jiaojiao, Yuan; Liu, Sheng

    2013-08-01

    Phosphor-free dispensing is the most widely used LED packaging method, but this method results in poor quality in angular CCT uniformity. This study proposes a diffuser-loaded encapsulation to solve the problem; the effects of melamine formaldehyde (MF) resin and CaCO3 loaded encapsulation on correlated color temperature (CCT) uniformity and luminous efficiency reduction of the phosphor-converted LEDs are investigated. Results reveal that MF resin loaded encapsulation has better light diffusion performance compared to MF resin loaded encapsulation at the same diffuser concentration, but CaCO3 loaded encapsulation has better luminous efficiency maintenance. The improvements in angular color uniformity for the LEDs emitting with MF resin and CaCO3 loaded encapsulation can be explained by the increase in photon scattering. The utility of this low cost and controllable mineral diffuser packaging method provides a practical approach for enhancing the angular color uniformity of LEDs. The diffuser mass ratio of 1% MF resin or 10% CaCO3 is the optimum condition to obtain low angular CCT variance and high luminous efficiency.

  11. ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES FOR IRON PRIOR TO FILLING MOBILE LADLES. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. The electromagnetic pendulum in quickly changing magnetic field of constant intensity

    NASA Astrophysics Data System (ADS)

    Rodyukov, F. F.; Shepeljavyi, A. I.

    2018-05-01

    The Lagrange-Maxwell equations for the pendulum in the form of a conductive frame, which is suspended in a uniform sinusoidal electromagnetic field of constant intensity, are obtained. The procedure for obtaining simplified mathematical models by a traditional method of separating fast and slow motions with subsiquent averaging a fast time is used. It is shown that this traditional approach may lead to inappropriate mathematical models. Suggested ways on how this can be avoided for the case are considered. The main statements by numerical experiments are illustrated.

  13. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    NASA Astrophysics Data System (ADS)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  14. A life cycle cost economics model for automation projects with uniformly varying operating costs. [applied to Deep Space Network and Air Force Systems Command

    NASA Technical Reports Server (NTRS)

    Remer, D. S.

    1977-01-01

    The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.

  15. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters

    NASA Astrophysics Data System (ADS)

    Dokumaci, E.

    1995-05-01

    The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.

  16. Adsorption and wetting characterization of hydrophobic SBA-15 silicas.

    PubMed

    Bernardoni, Frank; Fadeev, Alexander Y

    2011-04-15

    This work describes adsorption and wetting characterization of hydrophobic ordered mesoporous silicas (OMSs) with the SBA-15 motif. Three synthetic approaches to prepare hydrophobic SBA-15 silicas were explored: grafting with (1) covalently-attached monolayers (CAMs) of C(n)H(2)(n+1)Si(CH(3))(2)N(CH(3))(2), (2) self-assembled monolayers (SAMs) of C(n)H(2)(n+1)Si(OEt)(3), and (3) direct ("one-pot") co-condensation of TEOS with C(n)H(2)(n+1)Si(OEt)(3) in presence of P123 (n=1-18). The materials prepared were characterized by nitrogen adsorption, TEM, and chemical analysis. The surface properties of the materials were assessed by water contact angles (CAs) and by BET C constants. The results showed that, while loadings of the alkyl groups (%C) were comparable, the surface properties and pore ordering of the materials prepared through different methods were quite different. The best quality hydrophobic surfaces were prepared for SBA-15 grafted with CAMs of alkylsilanes. For these materials, the water CAs were above ∼120°/100° (adv/rec) and BET C constants were in the range of ∼15-25, indicating uniform low-energy surfaces of closely packed alkyl groups on external and internal surfaces of the pores respectively. Moreover, surfaces grafted with the long-chained (C(12)-C(18)) silanes showed super-hydrophobic behavior (CAs∼150-180°) and extremely low adhesion for water. The pore uniformity of parental SBA-15 was largely preserved and the pore volume and pore diameter were consistent with the formation of a single layer of alkylsilyl groups inside the pores. Post-synthesis grafting of SBA-15 with SAMs worked not as well as CAMs: the surfaces prepared demonstrated lower water CAs and higher BET C constants, thereby indicating a small amount of accessible polar groups (Si-OH) related to packing constrains for SAMs supported on highly curved surfaces of mesopores. The co-condensation method produced substantially more disordered materials and less hydrophobic surfaces than any of the grafting methods. The surfaces of these materials showed low water CAs and high BET C constants (∼100-200) thereby demonstrating a non-uniform surface coverage and presence of unmodified silica. It is concluded that CAMs chemistry is the most efficient approach in preparation of the functionalized OMS materials with uniform surfaces and pores. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Electrochemical characterization and control of triple-layer muscles

    NASA Astrophysics Data System (ADS)

    Otero, Toribio F.; Cortes, Maria T.

    2000-06-01

    The electrochemical characterization of triple-layers formed by a EPA (Electroactive Polymer)/double-sided tape/EPA, like artificial muscles is described. Those muscles were characterized working under constant potential or under constant current. Due to the electrochemical nature of the electrochemomechanical property, muscles working under constant current produce constant movements, consuming increasing energies at decreasing temperatures, decreasing concentrations of electrolytes or trailing increasing masses. Muscles working at constant potential response with a faster movement if the temperature or the concentration of the electrolyte increase, or if the trailed weight decreases. Specific charges and specific energies were determined for every experimental condition.

  18. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    PubMed

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  19. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    NASA Technical Reports Server (NTRS)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  20. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  1. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  2. Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

    DOE PAGES

    Youchison, Dennis L.

    2015-07-30

    In this study, due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimble and a micro-jet array with 116 jets. Both have pure tungsten armor and a total mass flow rate of 10 g/s at a 600 °C inlet temperature. We investigated flowmore » perturbations caused by a 30 MW/m 2 off-normal heat flux applied over a 25 mm 2 area in addition to the nominal 5 MW/m 2 applied over a 75 mm 2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assembly using the nominal heat flux and a 274 mm 2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280 °C and a fluid/solid interface temperature of 801 °C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411 °C and a fluid/solid interface temperature of 844 °C. For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flow and thermal stresses at the armor joint.« less

  3. Numerical modelling of heat and mass transfer in adsorption solar reactor of ammonia on active carbon

    NASA Astrophysics Data System (ADS)

    Aroudam, El. H.

    In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.

  4. Solid state temperature-dependent NUC (non-uniformity correction) in uncooled LWIR (long-wave infrared) imaging system

    NASA Astrophysics Data System (ADS)

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-06-01

    In uncooled LWIR microbolometer imaging systems, temperature fluctuations of FPA (Focal Plane Array) as well as lens and mechanical components placed along the optical path result in thermal drift and spatial non-uniformity. These non-idealities generate undesirable FPN (Fixed-Pattern-Noise) that is difficult to remove using traditional, individual shutterless and TEC-less (Thermo-Electric Cooling) techniques. In this paper we introduce a novel single-image based processing approach that marries the benefits of both statistical scene-based and calibration-based NUC algorithms, without relying neither on extra temperature reference nor accurate motion estimation, to compensate the resulting temperature-dependent non-uniformities. Our method includes two subsequent image processing steps. Firstly, an empirical behavioral model is derived by calibrations to characterize the spatio-temporal response of the microbolometric FPA to environmental and scene temperature fluctuations. Secondly, we experimentally establish that the FPN component caused by the optics creates a spatio-temporally continuous, low frequency, low-magnitude variation of the image intensity. We propose to make use of this property and learn a prior on the spatial distribution of natural image gradients to infer the correction function for the entire image. The performance and robustness of the proposed temperature-adaptive NUC method are demonstrated by showing results obtained from a 640×512 pixels uncooled LWIR microbolometer imaging system operating over a broad range of temperature and with rapid environmental temperature changes (i.e. from -5°C to 65°C within 10 minutes).

  5. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges

    2014-01-10

    Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, M.; Shibata, A.

    1997-06-01

    We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less

  7. Enhanced retained dose uniformity in NiTi spinal correction rod treated by three-dimensional mesh-assisted nitrogen plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Hu, T.; Kwok, Dixon T. K.

    2010-05-15

    Owing to the nonconformal plasma sheath in plasma immersion ion implantation of a rod sample, the retained dose can vary significantly. The authors propose to improve the implant uniformity by introducing a metal mesh. The depth profiles obtained with and without the mesh are compared and the implantation temperature at various locations is evaluated indirectly by differential scanning calorimeter. Our results reveal that by using the metal mesh, the retained dose uniformity along the length is greatly improved and the effects of the implantation temperature on the localized mechanical properties of the implanted NiTi shape memory alloy rod are nearlymore » negligible.« less

  8. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  9. Control of continuous irradiation injury on potatoes with daily temperature cycling

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bennett, S. M.; Cao, W.

    1990-01-01

    Two controlled-environment experiments were conducted to determine the effects of temperature fluctuations under continuous irradiation on growth and tuberization of two potato (Solanum tuberosum L.) cultivars, Kennebec and Superior. These cultivars had exhibited chlorotic and stunted growth under continuous irradiation and constant temperatures. The plants were grown for 4 weeks in the first experiment and for 6 weeks in the second experiment. Each experiment was conducted under continuous irradiation of 400 micromoles per square meter per second of photosynthetic photon flux and included two temperature treatments: constant 18 degrees C and fluctuating 22 degrees C/14 degrees C on a 12-hour cycle. A common vapor pressure deficit of 0.62 kilopascal was maintained at all temperatures. Plants under constant 18 degrees C were stunted and had chlorotic and abscised leaves and essentially no tuber formation. Plants grown under the fluctuating temperature treatment developed normally, were developing tubers, and had a fivefold or greater total dry weight as compared with those under the constant temperature. These results suggest that a thermoperiod can allow normal plant growth and tuberization in potato cultivars that are unable to develop effectively under continuous irradiation.

  10. Numerical simulation of temperature distribution in cylindrical ilmenite (FeTiO3) due to microwave heating

    NASA Astrophysics Data System (ADS)

    Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal

    2018-04-01

    Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.

  11. Treelike networks accelerating capillary flow.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007)]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  12. Two dimensional simulations of triode VHF SiH4 plasma

    NASA Astrophysics Data System (ADS)

    Su, Li-Wen; Chen, Weiting; Uchino, Kiichiro; Kawai, Yoshinobu

    2018-06-01

    Two-dimensional simulations of a triode VHF SiH4 plasma (60 MHz) were performed using a fluid model, where the plasma was realized using multirod electrodes. Higher-order silanes that are responsible for the quality of amorphous silicon were included in the simulations. A typical VHF plasma with an electron density higher than 1016 m‑3 and an electron temperature lower than 3 eV was predicted between discharge electrodes while the electron density near the substrate was very low. The SiH3 density was fairly uniform between discharge electrodes and did not decrease rapidly near the substrate, suggesting a high-speed deposition. Higher-order molecules and radicals that play an important role in dust formation had similar spatial profiles and their densities were five to 6 orders of magnitude lower than the SiH3 density. We discussed the effect of the rate constant of reaction, SiH3 + SiH3 → SiH2 + SiH4, on the SiH3 density.

  13. Shaft kilns for firing of refractory raw material on a model of operation of a firing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utenkov, A.F.; Strekalova, L.V.

    1986-09-01

    This paper attempts to develop a design of gas burner for providing uniform high-temperature firing of refractory material in shaft kilns. On the model the influence of the following factors on the processes of mass exchange and the character of the gasdynamics was studied: the ratio of the diamters of the gas and air orifices of tube-in-tube type burners and their absolute values with a constant gas consumption; the depth of the gas orifice in relation to the tip of the burner; the form of the initial profile of the velocity of the gasair jet at the outlet from themore » burner; the angle of slope of the burners to the shaft housing; the ratio of the consumption of gas supplied under the shaft and to the gas burners; and the static pressure in the working space at the level of the gas burners.« less

  14. Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel

    NASA Astrophysics Data System (ADS)

    Liu, Xiuliang; Hu, Chen; Li, Huafeng; Yu, Fei; Kong, Xiaming

    2018-03-01

    In this paper, heat transfer enhancement in an evaporating thin film along the wall of a microchannel under an imposed inhomogenous electrostatic field is analyzed. The mathematical model, based on the augmented Young-Laplace equation with the inhomogenous electrostatic field taken into consideration, is developed. The 2D inhomogenous electric field with the curved liquid-vapor interface is solved by the lattice Boltzmann method. Numerical solutions for the thin film characteristics are obtained for both constant wall temperature and uniform wall heat flux boundary conditions. The numerical results show that the liquid film becomes thinner and the heat transfer coefficient increases under an imposed electric field. Both of octane and water are chosen as the working mediums, and similar result about the enhancement of heat transfer on evaporating thin film by imposing electric field is obtained. It is found that applying an electric field on the evaporating thin film can enhance evaporative heat transfer in a microchannel.

  15. High degree of polymerization in a fullerene-containing supramolecular polymer.

    PubMed

    Isla, Helena; Pérez, Emilio M; Martín, Nazario

    2014-05-26

    Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal-ligand coordination. We present the synthesis and self-assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF-based macrocycle, that interact mainly through π-π, charge-transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log K(a)=5.1±0.5 in CHCl3 at room temperature is determined for the host-guest couple. In accordance with the large binding constant, the monomer self-assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  17. Effect of ripples on the finite temperature elastic properties of hexagonal boron nitride using strain-fluctuation method

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-11-01

    This work intents to put forth the results of a classical molecular dynamics study to investigate the temperature dependent elastic constants of monolayer hexagonal boron nitride (h-BN) between 100 and 1000 K for the first time using strain fluctuation method. The temperature dependence of out-of-plane fluctuations (ripples) is quantified and is explained using continuum theory of membranes. At low temperatures, negative in-plane thermal expansion is observed and at high temperatures, a transition to positive thermal expansion has been observed due to the presence of thermally excited ripples. The decrease of Young's modulus, bulk modulus, shear modulus and Poisson's ratio with increase in temperature has been analyzed. The thermal rippling in h-BN leads to strong anharmonic behaviour that causes large deviation from the isotropic elasticity. A detailed study shows that the strong thermal rippling in large systems is also responsible for the softening of elastic constants in h-BN. From the determined values of elastic constants and elastic moduli, it has been elucidated that 2D h-BN sheets meet the Born's mechanical stability criterion in the investigated temperature range. The variation of longitudinal and shear velocities with temperature is also calculated from the computed values of elastic constants and elastic moduli.

  18. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes

    PubMed Central

    Buis, Arjan

    2016-01-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626

  19. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes.

    PubMed

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-06-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

  20. Impact of cool versus warm temperatures on gestation in the aspic viper (Vipera aspis).

    PubMed

    Michel, Catherine Louise; Pastore, Jean-Henri; Bonnet, Xavier

    2013-07-01

    Previous experimental data suggested that digestion and growth rates are not impaired under cool constant temperature (23°C) in a viviparous snake (Vipera aspis). These results challenged the widespread notion that both elevated temperatures (e.g. 30°C) and temperature fluctuations are required for digestion and growth in temperate climate reptiles. Here, we investigated the impact of constant cool temperatures on another physiological performance that is crucial to population persistence: gestation. At the time when reproductive females were midway through vitellogenesis, we placed ten reproductive and two non-reproductive female aspic vipers at each of two contrasted constant temperature conditions: cool (23°C) versus warm (28°C). Sixty percent of the females placed at 28°C gave birth to healthy offspring, suggesting that constant warm body temperatures were compatible with normal offspring production. Conversely, none of the cool females gave birth to healthy offspring. A blister disease affected exclusively cool pregnant females. Apparently, the combination of cool temperatures plus gestation was too challenging for such females. Our results suggest that reproduction is more thermally sensitive than digestion or growth, indeed gestation faltered under moderately cool thermal constraints. This sensitivity could be a crucial factor determining the capacity of this species to colonize different habitats. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  2. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q  < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  3. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  4. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    PubMed

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  5. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  6. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments.

    PubMed

    Xu, Xiaoming; Al-Ghabeish, Manar; Rahman, Ziyaur; Krishnaiah, Yellela S R; Yerlikaya, Firat; Yang, Yang; Manda, Prashanth; Hunt, Robert L; Khan, Mansoor A

    2015-09-30

    Owing to its unique anatomical and physiological functions, ocular surface presents special challenges for both design and performance evaluation of the ophthalmic ointment drug products formulated with a variety of bases. The current investigation was carried out to understand and identify the appropriate in vitro methods suitable for quality and performance evaluation of ophthalmic ointment, and to study the effect of formulation and process variables on its critical quality attributes (CQA). The evaluated critical formulation variables include API initial size, drug percentage, and mineral oil percentage while the critical process parameters include mixing rate, temperature, time and cooling rate. The investigated quality and performance attributes include drug assay, content uniformity, API particle size in ointment, rheological characteristics, in vitro drug release and in vitro transcorneal drug permeation. Using design of experiments (DoE) as well as a novel principle component analysis approach, five of the quality and performance attributes (API particle size, storage modulus of ointment, high shear viscosity of ointment, in vitro drug release constant and in vitro transcorneal drug permeation rate constant) were found to be highly influenced by the formulation, in particular the strength of API, and to a lesser degree by processing variables. Correlating the ocular physiology with the physicochemical characteristics of acyclovir ophthalmic ointment suggested that in vitro quality metrics could be a valuable predictor of its in vivo performance. Published by Elsevier B.V.

  7. A novel percussion type droplet-on-demand generator

    NASA Astrophysics Data System (ADS)

    Hussain, Taaha; Patel, Priyesh; Balachandran, Ramanarayanan; Ladommatos, Nicos

    2015-01-01

    Numerous engineering applications require generation of droplets on demand which are of high uniformity and constant size. The common method to produce droplets is to drive liquid at high pressure through a small orifice/nozzle. The liquid stream disintegrates into small droplets. However this method normally requires large volumes of liquid and is not suitable for applications where single droplets of constant size is required. Such applications require droplet-on-demand generators which commonly employ piezoelectric or pneumatic actuation. It is well known that piezoelectric generators are hard to employ at high pressure and, high temperature applications, and the pneumatic generators often produce satellite (secondary) droplets. This paper describes the development of a novel percussion type droplet-on-demand generator, which overcomes some of the above difficulties and is capable of producing single droplets on demand. The generator consists of a cylindrical liquid filled chamber with a small orifice at the bottom. The top of the chamber is covered with a thin flexible metal disc. A small metal pin is employed to hammer/impact the top metal surface to generate a pressure pulse inside the liquid chamber. The movement and the momentum of the metal pin are controlled using a solenoid device. The pressure pulse generated overcomes the surface tension of the liquid meniscus at the exit of the orifice and ejects a single droplet. The work presented in this paper will demonstrate the capabilities of the droplet generator.

  8. Effect of Cold Temperature on the Dielectric Constant of Soil

    DTIC Science & Technology

    2012-04-01

    explosive device (IED) threats is ground-penetrating radar ( GPR ). Proper development of GPR technology for this application requires a unique...success or failure of GPR as a detection technique. One soil property of interest to radar engineers is the dielectric constant. Previous...results to temperatures, moisture levels, and frequencies relevant to GPR systems. 2. Dielectric Constant and the Ring-resonator Concept The two

  9. Best uniform approximation to a class of rational functions

    NASA Astrophysics Data System (ADS)

    Zheng, Zhitong; Yong, Jun-Hai

    2007-10-01

    We explicitly determine the best uniform polynomial approximation to a class of rational functions of the form 1/(x-c)2+K(a,b,c,n)/(x-c) on [a,b] represented by their Chebyshev expansion, where a, b, and c are real numbers, n-1 denotes the degree of the best approximating polynomial, and K is a constant determined by a, b, c, and n. Our result is based on the explicit determination of a phase angle [eta] in the representation of the approximation error by a trigonometric function. Moreover, we formulate an ansatz which offers a heuristic strategies to determine the best approximating polynomial to a function represented by its Chebyshev expansion. Combined with the phase angle method, this ansatz can be used to find the best uniform approximation to some more functions.

  10. A New Formulation of Time Domain Boundary Integral Equation for Acoustic Wave Scattering in the Presence of a Uniform Mean Flow

    NASA Technical Reports Server (NTRS)

    Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.

    2017-01-01

    It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.

  11. Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes.

    PubMed

    Wang, Hua; Fang, Yan; Wang, Lipeng; Zhu, Wenjuan; Ji, Haipeng; Wang, Haiying; Xu, Shiqing; Sima, Yanghu

    2014-09-01

    Ambient temperature plays a large role in insect growth, development and even their distribution. The elucidation of the associated molecular mechanism that underlies the effect of constant high temperature will enables us to further understand the stress responses. We constructed four digital gene expression libraries from the fat body of female and male Bombyx mori. Differential gene expression was analyzed after constant high temperature treatment. The results showed that there were significant changes to the gene expression in the fat body after heat treatment, especially in binding, catalytic, cellular and metabolic processes. Constant high temperature may induce more traditional cryoprotectants, such as glycerol, glycogen, sorbitol and lipids, to protect cells from damage, and induce heat oxidative stress in conjunction with the heat shock proteins. The data also indicated a difference between males and females. The heat shock protein-related genes were up-regulated in both sexes but the expression of Hsp25.4 and DnaJ5 were down-regulated in the male fat body of B. mori. This is the first report of such a result. Constant high temperature also affected the expression of other functional genes and differences were observed between male and female fat bodies in the expression of RPS2, RPL37A and MREL. These findings provide abundant data on the effect of high temperature on insects at the molecular level. The data will also be beneficial to the study of differences between the sexes, manifested in variations in gene expression under high temperature.

  12. Note: design and development of improved indirectly heated cathode based strip electron gun.

    PubMed

    Maiti, Namita; Bade, Abhijeet; Tembhare, G U; Patil, D S; Dasgupta, K

    2015-02-01

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  13. Heat Transfer on a Flat Plate with Uniform and Step Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    2005-01-01

    Heat transfer associated with turbulent flow on a step-heated or cooled section of a flat plate at zero angle of attack with an insulated starting section was computationally modeled using the GASP Navier-Stokes code. The algebraic eddy viscosity model of Baldwin-Lomax and the turbulent two-equation models, the K- model and the Shear Stress Turbulent model (SST), were employed. The variations from uniformity of the imposed experimental temperature profile were incorporated in the computations. The computations yielded satisfactory agreement with the experimental results for all three models. The Baldwin- Lomax model showed the closest agreement in heat transfer, whereas the SST model was higher and the K-omega model was yet higher than the experiments. In addition to the step temperature distribution case, computations were also carried out for a uniformly heated or cooled plate. The SST model showed the closest agreement with the Von Karman analogy, whereas the K-omega model was higher and the Baldwin-Lomax was lower.

  14. Note: Design and development of improved indirectly heated cathode based strip electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, Namita; Patil, D. S.; Dasgupta, K.

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor themore » non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.« less

  15. Anomalous heat transport and condensation in convection of cryogenic helium

    PubMed Central

    Urban, Pavel; Schmoranzer, David; Hanzelka, Pavel; Sreenivasan, Katepalli R.; Skrbek, Ladislav

    2013-01-01

    When a hot body A is thermally connected to a cold body B, the textbook knowledge is that heat flows from A to B. Here, we describe the opposite case in which heat flows from a colder but constantly heated body B to a hotter but constantly cooled body A through a two-phase liquid–vapor system. Specifically, we provide experimental evidence that heat flows through liquid and vapor phases of cryogenic helium from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. The bottom plate is heated uniformly, and the top plate is cooled by heat exchange with liquid helium maintained at 4.2 K. Additionally, for certain experimental conditions, a rain of helium droplets is detected by small sensors placed in the cell at about one-half of its height. PMID:23576759

  16. High-Temperature Electromechanical Characterization of AlN Single Crystals.

    PubMed

    Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning

    2015-10-01

    Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.

  17. Performance characteristics of an electric vehicle lead-acid battery pack at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Chapman, P.

    1982-01-01

    Discharge testing data electric car battery pack over initial electrolyte temperature variations between 27 and 55 C are presented. The tests were conducted under laboratory conditions and then compared to detailed electric vehicle simulation models. Battery discharge capacity increased with temperature for constant current discharges, and battery energy capacity increased with temperature for constant power discharges. Dynamometer tests of the electric test vehicle showed an increase in range of 25% for the higher electrolyte temperature.

  18. Measurements of small-scale statistics and probability density functions in passively heated shear flow

    NASA Astrophysics Data System (ADS)

    Ferchichi, Mohsen

    This study is an experimental investigation consisting of two parts. In the first part, the fine structure of uniformly sheared turbulence was investigated within the framework of Kolmogorov's (1941) similarity hypotheses. The second part, consisted of the study of the scalar mixing in uniformly sheared turbulence with an imposed mean scalar gradient, with the emphasis on measurements relevant to the probability density function formulation and on scalar derivative statistics. The velocity fine structure was invoked from statistics of the streamwise and transverse derivatives of the streamwise velocity as well as velocity differences and structure functions, measured with hot wire anemometry for turbulence Reynolds numbers, Relambda, in the range between 140 and 660. The streamwise derivative skewness and flatness agreed with previously reported results in that they increased with increasing Relambda with the flatness increasing at a higher rate. The skewness of the transverse derivative decreased with increasing Relambda, and the flatness of this derivative increased with Relambda but a lower rate than the streamwise derivative flatness. The high order (up to sixth) transverse structure functions of the streamwise velocity showed the same trends as the corresponding streamwise structure functions. In the second pan of tins experimental study, an army of heated ribbons was introduced into the flow to produce a constant mean temperature gradient, such that the temperature acted as a passive scalar. The Re lambda in this study varied from 184 to 253. Cold wire thermometry and hot wire anemometry were used for simultaneous measurements of temperature and velocity. The scalar pdf was found to be nearly Gaussian. Various tests of joint statistics of the scalar and its rate of destruction revealed that the scalar dissipation rate was essentially independent of the scalar value. The measured joint statistics of the scalar and the velocity suggested that they were nearly jointly normal and that the normalized conditioned expectations varied linearly with the scalar with slopes corresponding to the scalar-velocity correlation coefficients. Finally, the measured streamwise and transverse scalar derivatives and differences revealed that the scalar fine structure was intermittent not only in the dissipative range, but in the inertial range as well.

  19. Comparison of heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion.

    PubMed

    Zhao, Yijie; Yi, Wen; Chan, Albert P C; Chan, Daniel W M

    2017-10-01

    A hot environment combined with physically demanding tasks can subject workers to a higher risk of heat stress. A series of regulations and guidelines have been proposed to design appropriate anti-heat stress work uniform to reduce body heat strain. The present study aimed to examine heat strain recovery in different anti-heat stress clothing ensembles after work to exhaustion in the heat. 10 healthy males performed intermittent treadmill running/walking to exhaustion, followed by 30min passive recovery sitting in a climatic chamber, which simulated the hot and humid outdoor environment (34°C temperature, 60% relative humidity, 0.3m/s air velocity, and 450W/m 2 solar radiation). The participants took part in five wear trials in counter-balanced order, including Sportswear, CIC Uniform, NEW Uniform, ICEBANK Cooling Vest, and NEW Cooling Vest, which have different levels of cooling capacity. Core temperature, skin temperature, heart rate, sweat loss, ratings of perceived exertion, and thermal sensations were measured throughout the entire heat exposure period. Physiological heat strain indices, including the physiological strain index (PhSI) and the perceptual strain index (PeSI), were used as a yardstick to quantify and compare the rate of recovery. Significantly lower physiological strain was observed in the newly developed NEW Uniform and NEW Cooling Vest groups compared with the commonly worn CIC Uniform group during recovery. At the end of the recovery period, participants in NEW Cooling Vest achieved the highest recovery (42.18% in PhSI and 81.08% in PeSI), followed by ICEBANK Cooling Vest, Sportswear, NEW Uniform, and CIC Uniform. The cooling capacity of anti-heat stress clothing ensembles and the recovery time significantly affect the rate of recovery in PhSI and PeSI, which may benefit the industry by formulating the appropriate work-rest schedule by considering the clothing effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The role of β-effect and a uniform current on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Duan, Yihong; Wu, Rongsheng; Yu, Hui; Liang, Xudong; Chan, Johnny C. L.

    2004-02-01

    A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.

  1. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  2. Post exposure bake unit equipped with wafer-shape compensation technology

    NASA Astrophysics Data System (ADS)

    Goto, Shigehiro; Morita, Akihiko; Oyama, Kenichi; Hori, Shimpei; Matsuchika, Keiji; Taniguchi, Hideyuki

    2007-03-01

    In 193nm lithography, it is well known that Critical Dimension Uniformity (CDU) within wafer is especially influenced by temperature variation during Post Exposure Bake (PEB) process. This temperature variation has been considered to be caused by the hot plate unit, and improvement of temperature uniformity within hot plate itself has been focused to achieve higher CDU. However, we have found that the impact of the wafer shape on temperature uniformity within wafer can not be ignored when the conventional PEB processing system is applied to an advanced resist technology. There are two factors concerned with the wafer shape. First, gravity force of the wafer itself generates wafer shape bending because wafer is simply supported by a few proximity gaps on the conventional hot plate. Next, through the semiconductor manufacturing process, wafer is gradually warped due to the difference of the surface stress between silicon and deposited film layers (Ex. Si-Oxide, Si-Nitride). Therefore, the variation of the clearance between wafer backside and hot plate surface leads to non-uniform thermal conductivity within wafer during PEB processing, and eventually impacts on the CDU within wafer. To overcome this problem concerned with wafer shape during PEB processing, we have developed the new hot plate equipped with the wafer shape compensation technology. As a result of evaluation, we have confirmed that this new PEB system has an advantage not only for warped wafer but also for flat (bare) wafer.

  3. High-performance coaxial EPR cavity for investigations at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Goldberg, Ira B.; McKinney, Ted M.

    1984-07-01

    A microwave cavity suitable for heating a sample to temperatures above 800 °C within 15 s at gas pressures above 17.5 MPa is reported. The cavity is coaxial and operates in the TE011 mode at frequencies between 9 and 10 GHz. The heating element is constructed of nickel-chromium (i.e., Chromel) wire. It consists of two concentric helices wound in opposite senses (directions) and connected in series so as to minimize the magnetic field generated by the heater current. The heater is potted in magnesium oxide-phosphate ceramic and placed inside of a cylinder made from 50-μm copper foil which provides uniform temperature distribution and shields the heater from the microwave field. This assembly then serves as the heating element and the coaxial conductor of the cavity. The diameter of the coaxial heater assembly is approximately 7 mm. The sample is confined by a cylindrical quartz cuvette which surrounds the coaxial conductor. Sample thicknesses of 0.2 to 1.0 mm can be used. Heating from room temperature to 800 °C requires between 15 and 20 s. Operating pressures up to 17 MPa have been used, although the structural design limit of the brass or beryllium copper walls is greater than 22 MPa. Modulation coils are placed in recessed areas of the cavity walls and covered with a thin layer of copper. Cooling water flows through channels cut into the walls to maintain constant microwave parameters. Q factors of 8000 -12 000 can be obtained depending on the sample.

  4. On the Meaning of Feedback Parameter, Transient Climate Response, and the Greenhouse Effect: Basic Considerations and the Discussion of Uncertainties

    NASA Astrophysics Data System (ADS)

    Kramm, Gerhard

    2010-07-01

    In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.

  5. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    PubMed Central

    Li, Hui-Ying; Liu, Yun-Fei; Duan, Yu; Yang, Yong-Qiang; Lu, Yi-Nan

    2015-01-01

    Preparation of dense alumina (Al2O3) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED. PMID:28787960

  6. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  7. Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents.

    PubMed

    Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel

    2012-05-07

    We present an automated microfluidic (MF) approach for the systematic and rapid investigation of carbon dioxide (CO(2)) mass transfer and solubility in physical solvents. Uniformly sized bubbles of CO(2) with lengths exceeding the width of the microchannel (plugs) were isothermally generated in a co-flowing physical solvent within a gas-impermeable, silicon-based MF platform that is compatible with a wide range of solvents, temperatures and pressures. We dynamically determined the volume reduction of the plugs from images that were accommodated within a single field of view, six different downstream locations of the microchannel at any given flow condition. Evaluating plug sizes in real time allowed our automated strategy to suitably select inlet pressures and solvent flow rates such that otherwise dynamically self-selecting parameters (e.g., the plug size, the solvent segment size, and the plug velocity) could be either kept constant or systematically altered. Specifically, if a constant slug length was imposed, the volumetric dissolution rate of CO(2) could be deduced from the measured rate of plug shrinkage. The solubility of CO(2) in the physical solvent was obtained from a comparison between the terminal and the initial plug sizes. Solubility data were acquired every 5 min and were within 2-5% accuracy as compared to literature data. A parameter space consisting of the plug length, solvent slug length and plug velocity at the microchannel inlet was established for different CO(2)-solvent pairs with high and low gas solubilities. In a case study, we selected the gas-liquid pair CO(2)-dimethyl carbonate (DMC) and volumetric mass transfer coefficients 4-30 s(-1) (translating into mass transfer times between 0.25 s and 0.03 s), and Henry's constants, within the range of 6-12 MPa.

  8. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  9. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  10. Blind system identification of two-thermocouple sensor based on cross-relation method.

    PubMed

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  11. Gas identification by dynamic measurements of SnO2 sensors

    NASA Astrophysics Data System (ADS)

    Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos

    2011-09-01

    It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.

  12. Blind system identification of two-thermocouple sensor based on cross-relation method

    NASA Astrophysics Data System (ADS)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  13. Design of modular control system for grain dryers

    NASA Astrophysics Data System (ADS)

    He, Gaoqing; Liu, Yanhua; Zu, Yuan

    In order to effectively control the temperature of grain drying bin, grain ,air outlet as well as the grain moisture, it designed the control system of 5HCY-35 which is based on MCU to adapt to all grains drying conditions, high drying efficiency, long life usage and less manually. The system includes: the control module of the constant temperature and the temperature difference control in drying bin, the constant temperature control of heating furnace, on-line testing of moisture, variety of grain-circulation speed control and human-computer interaction interface. Spatial curve simulation, which takes moisture as control objectives, controls the constant temperature and the temperature difference in drying bin according to preset parameter by the user or a list to reduce the grains explosive to ensure the seed germination percentage. The system can realize the intelligent control of high efficiency and various drying, the good scalability and the high quality.

  14. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system.

    PubMed

    Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N

    2005-03-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.

  15. Development of Pasteuria penetrans in Meloidogyne javanica females as affected by constantly high vs fluctuating temperature in an in-vivo system

    PubMed Central

    Darban, D.A.; Gowen, S.R.; Pembroke, B.; Mahar, A.N.

    2005-01-01

    Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26–29 °C and in glasshouse at 20–32 °C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 °C/d, accumulating each day above a base temperature of 10 °C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures. PMID:15682497

  16. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  17. Scale/Analytical Analyses of Freezing and Convective Melting with Internal Heat Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali S. Siahpush; John Crepeau; Piyush Sabharwall

    2013-07-01

    Using a scale/analytical analysis approach, we model phase change (melting) for pure materials which generate constant internal heat generation for small Stefan numbers (approximately one). The analysis considers conduction in the solid phase and natural convection, driven by internal heat generation, in the liquid regime. The model is applied for a constant surface temperature boundary condition where the melting temperature is greater than the surface temperature in a cylindrical geometry. The analysis also consider constant heat flux (in a cylindrical geometry).We show the time scales in which conduction and convection heat transfer dominate.

  18. Washing uniforms at home: adherence to hospital policy.

    PubMed

    Riley, Kate; Laird, Katie; Williams, John

    2015-02-20

    Infection control is a priority for all hospitals to reduce the spread of healthcare-associated infections (HCAIs). Textiles especially uniforms, are a possible route of HCAI transmission. There are protocols to ensure hospital laundry services meet accepted standards, however healthcare uniforms are laundered by staff at home and variations in practice occur. A questionnaire was used to conduct a service evaluation at four hospitals in different NHS trusts to determine how closely healthcare staff followed hospital guidelines on laundering and aftercare of uniforms at home. Responses showed that not all staff followed these guidelines; 44% of staff washed their uniforms below the recommended temperature of 60°C, which presents a potential route for cross-contamination and infection.

  19. Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.

    PubMed

    Fuentes-Azcatl, Raúl; Alejandre, José

    2014-02-06

    The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.

  20. Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Yue, HUA; Jian, SONG; Zeyu, HAO; Chunsheng, REN

    2018-06-01

    Experimental results of a direct current enhanced inductively coupled plasma (DCE-ICP) source which consists of a typical cylindrical ICP source and a plate-to-grid DC electrode are reported. With the use of this new source, the plasma characteristic parameters, namely, electron density, electron temperature and plasma uniformity, are measured by Langmuir floating double probe. It is found that DC discharge enhances the electron density and decreases the electron temperature, dramatically. Moreover, the plasma uniformity is obviously improved with the operation of DC and radio frequency (RF) hybrid discharge. Furthermore, the nonlinear enhancement effect of electron density with DC + RF hybrid discharge is confirmed. The presented observation indicates that the DCE-ICP source provides an effective method to obtain high-density uniform plasma, which is desirable for practical industrial applications.

Top