Continuous-waveform constant-current isolated physiological stimulator
NASA Astrophysics Data System (ADS)
Holcomb, Mark R.; Devine, Jack M.; Harder, Rene; Sidorov, Veniamin Y.
2012-04-01
We have developed an isolated continuous-waveform constant-current physiological stimulator that is powered and controlled by universal serial bus (USB) interface. The stimulator is composed of a custom printed circuit board (PCB), 16-MHz MSP430F2618 microcontroller with two integrated 12-bit digital to analog converters (DAC0, DAC1), high-speed H-Bridge, voltage-controlled current source (VCCS), isolated USB communication and power circuitry, two isolated transistor-transistor logic (TTL) inputs, and a serial 16 × 2 character liquid crystal display. The stimulators are designed to produce current stimuli in the range of ±15 mA indefinitely using a 20V source and to be used in ex vivo cardiac experiments, but they are suitable for use in a wide variety of research or student experiments that require precision control of continuous waveforms or synchronization with external events. The device was designed with customization in mind and has features that allow it to be integrated into current and future experimental setups. Dual TTL inputs allow replacement by two or more traditional stimulators in common experimental configurations. The MSP430 software is written in C++ and compiled with IAR Embedded Workbench 5.20.2. A control program written in C++ runs on a Windows personal computer and has a graphical user interface that allows the user to control all aspects of the device.
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.
Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars
2017-07-01
Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.
Cervera-Ferri, Ana; Teruel-Martí, Vicent; Barceló-Molina, Moises; Martínez-Ricós, Joana; Luque-García, Aina; Martínez-Bellver, Sergio; Adell, Albert
2016-07-01
Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 μA of constant current intensity and biphasic pulse width of 80 μsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
NASA Astrophysics Data System (ADS)
Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.
2016-03-01
Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.
Liu, L; Krinsky, V I; Grant, A O; Starmer, C F
1996-01-01
Recent voltage-clamp studies of isolated myocytes have demonstrated widespread occurrence of a transient outward current (I(to)) carried by potassium ions. In the canine ventricle, this current is well developed in epicardial cells but not in endocardial cells. The resultant spatial dispersion of refractoriness is potentially proarrhythmic and may be amplified by channel blockade. The inactivation and recovery time constants of this channel are in excess of several hundred milliseconds, and consequently channel availability is frequency dependent at physiological stimulation rates. When the time constants associated with transitions between different channel conformations are rapid relative to drug binding kinetics, the interactions between drugs and an ion channel can be approximated by a sequence of first-order reactions, in which binding occurs in pulses in response to pulse train stimulation (pulse chemistry). When channel conformation transition time constants do not meet this constraint, analytical characterizations of the drug-channel interaction must then be modified to reflect the channel time-dependent properties. Here we report that the rate and steady-state amount of frequency-dependent inactivation of I(to) are consistent with a generalization of the channel blockade model: channel availability is reduced in a pulsatile exponential pattern as the stimulation frequency is increased, and the rate of reduction is a linear function of the pulse train depolarizing and recovery intervals. I(to) was reduced in the presence of quinidine. After accounting for the use-dependent availability of I(to) channels, we found little evidence of an additional use-dependent component of block after exposure to quinidine, suggesting that quinidine reacts with both open and closed I(to) channels as though the binding site is continuously accessible. The model provides a useful tool for assessing drug-channel interactions when the reaction cannot be continuously monitored.
Thielscher, Axel; Kammer, Thomas
2002-11-01
A fundamental problem of transcranial magnetic stimulation (TMS) is determining the site and size of the stimulated cortical area. In the motor system, the most common procedure for this is motor mapping. The obtained two-dimensional distribution of coil positions with associated muscle responses is used to calculate a center of gravity on the skull. However, even in motor mapping the exact stimulation site on the cortex is not known and only rough estimates of its size are possible. We report a new method which combines physiological measurements with a physical model used to predict the electric field induced by the TMS coil. In four subjects motor responses in a small hand muscle were mapped with 9-13 stimulation sites at the head perpendicular to the central sulcus in order to keep the induced current direction constant in a given cortical region of interest. Input-output functions from these head locations were used to determine stimulator intensities that elicit half-maximal muscle responses. Based on these stimulator intensities the field distribution on the individual cortical surface was calculated as rendered from anatomical MR data. The region on the cortical surface in which the different stimulation sites produced the same electric field strength (minimal variance, 4.2 +/- 0.8%.) was determined as the most likely stimulation site on the cortex. In all subjects, it was located at the lateral part of the hand knob in the motor cortex. Comparisons of model calculations with the solutions obtained in this manner reveal that the stimulated cortex area innervating the target muscle is substantially smaller than the size of the electric field induced by the coil. Our results help to resolve fundamental questions raised by motor mapping studies as well as motor threshold measurements.
ON THE RELATION OF DIRECT CURRENTS TO CONDENSER DISCHARGES AS STIMULI
Blair, H. A.
1935-01-01
Data on the electrical stimulation of sciatic-gastrocnemius preparations of the frog by both direct currents and condenser discharges at the same time are discussed in relation to the validity of the differential equation See PDF for Equation where p is the local excitatory process, V the stimulating current or voltage, and K and k are constants. It is concluded that the constant k is the same whether it is derived from the data of the one stimulus or the other when the same fibres are being stimulated. PMID:19872885
An Incubatable Direct Current Stimulation System for In Vitro Studies of Mammalian Cells
Panitch, Alyssa; Caplan, Michael; Sweeney, James D.
2012-01-01
Abstract The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring. PMID:23514694
A Portable, Arbitrary Waveform, Multichannel Constant Current Electrotactile Stimulator
Cornman, Jesse; Akhtar, Aadeel; Bretl, Timothy
2017-01-01
In this paper, we present the design and performance of a portable, arbitrary waveform, multichannel constant current electrotactile stimulator that costs less than $30 in components. The stimulator consists of a stimulation controller and power supply that are less than half the size of a credit card and can produce ±15 mA at ±150 V. The design is easily extensible to multiple independent channels that can receive an arbitrary waveform input from a digital-to-analog converter, drawing only 0.9 W/channel (lasting 4–5 hours upon continuous stimulation using a 9 V battery). Finally, we compare the performance of our stimulator to similar stimulators both commercially available and developed in research. PMID:29250302
Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2012-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2011-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630
Channon, H A; Walker, P J; Kerr, M G; Baud, S R
2003-12-01
This study examined the effectiveness of a constant current, low voltage electrical stimulation system on improving pork quality when applied to pigs at 2 min post-exsanguination. A total of 48 female Duroc×Large White/Landrace pigs of 85-90 kg liveweight were randomly allocated immediately prior to slaughter to one of four constant current electrical stimulation treatments: control (no electrical stimulation), 50, 200 and 400 mA. Stimulation was applied to pig carcasses at 2 min post-exsanguination for 30 s. No differences (P>0.05) in WB shear force values, muscle lightness or PSE incidence of pork M. longissimus lumborum (LL) was found due to electrical stimulation treatment. Muscle pH of the LL muscle was lower (P<0.001) in carcasses in the 200 and 400 mA treatments compared to those from carcasses in both the 50 mA and control treatment groups, when measured at the various time points from 40 min to 8 h post-slaughter. Although carcasses stimulated with 200 and 400 mA had higher percentage drip loss (P<0.05) and purge (P<0.001), this was not found to impact WB shear force values, muscle lightness or PSE incidence.
Long-term high-intensity sound stimulation inhibits h current (Ih ) in CA1 pyramidal neurons.
Cunha, A O S; Ceballos, C C; de Deus, J L; Leão, R M
2018-05-19
Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization activated cationic current (I h ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here we investigated if a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that I h is depressed by long-term high intensity sound exposure (1 minute of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; However, this effect was not caused by a decreased I h . Interestingly, a single episode (1 minute) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect I h and firing in pyramidal neurons, suggesting that effects on I h are long-term responses to high intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of I h . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction.
Yavari, Fatemeh; Jamil, Asif; Mosayebi Samani, Mohsen; Vidor, Liliane Pinto; Nitsche, Michael A
2018-02-01
Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools. Copyright © 2017 Elsevier Ltd. All rights reserved.
A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.
Chang, Gwo-Ching
2013-01-01
Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.
Noury, Nima; Hipp, Joerg F; Siegel, Markus
2016-10-15
Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods. Copyright © 2016 Elsevier Inc. All rights reserved.
Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F
2014-01-01
Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.
Valdés-Tovar, Marcela; Escobar, Carolina; Solís-Chagoyán, Héctor; Asai, Miguel; Benítez-King, Gloria
2015-03-01
The light-dark cycle is an environmental factor that influences immune physiology, and so, variations of the photoperiod length result in altered immune responsivity. Macrophage physiology comprises a spectrum of functions that goes from host defense to immune down-regulation, in addition to their homeostatic activities. Macrophages also play a key role in the transition from innate to adaptive immune responses. Met-enkephalin (MEnk) has been recognized as a modulator of macrophage physiology acting in an autocrine or paracrine fashion to influence macrophage activation, phenotype polarization and production of cytokines that would enhance lymphocyte activation at early stages of an immune response. Previously it was shown that splenic MEnk tissue content is reduced in rats exposed to constant light. In this work, we explored whether production of Met-enkephalin-containing peptides (MECPs) in cultured splenic macrophages is affected by exposure of rats to a constant light regime. In addition, we explored whether primary immune response was impaired under this condition. We found that in rats, 15 days in constant light was sufficient to disrupt their general activity rhythm. Splenic MEnk content oscillations and levels were also blunted throughout a 24-h period in animals subjected to constant light. In agreement, de novo synthesis of MECPs evaluated through incorporation of (35)S-methionine was reduced in splenic macrophages from rats exposed to constant light. Moreover, MECPs immunocytochemistry showed a decrease in the intracellular content and lack of granule-like deposits in this condition. Furthermore, we found that primary T-dependent antibody response was compromised in rats exposed to constant light. In those animals, pharmacologic treatment with MEnk increased IFN-γ-secreting cells. Also, IL-2 secretion from antigen-stimulated splenocytes was reduced after incubation with naloxone, suggesting that immune-derived opioid peptides and stimulation of opioid receptors are involved in this process. Thus, the immune impairment observed from early stages of the response in constant light-subjected rats, could be associated with reduced production of macrophage-derived enkephalins, leading to a sub-optimal interaction between macrophages and lymphocytes in the spleen and the subsequent deficiency in antibody production.
Crothers, James M; Forte, John G; Machen, Terry E
2016-05-01
A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.
Transcranial electric and magnetic stimulation: technique and paradigms.
Paulus, Walter; Peterchev, Angel V; Ridding, Michael
2013-01-01
Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, Alice; Ratliff, Charles; Sampath, Alapakkam; Weiland, James
2016-04-01
Objective. Here we investigate ganglion cell physiology in healthy and degenerating retina to test its influence on threshold to electrical stimulation. Approach. Age-related Macular Degeneration and Retinitis Pigmentosa cause blindness via outer retinal degeneration. Inner retinal pathways that transmit visual information to the central brain remain intact, so direct electrical stimulation from prosthetic devices offers the possibility for visual restoration. Since inner retinal physiology changes during degeneration, we characterize physiological properties and responses to electrical stimulation in retinal ganglion cells (RGCs) of both wild type mice and the rd10 mouse model of retinal degeneration. Main results. Our aggregate results support previous observations that elevated thresholds characterize diseased retinas. However, a physiology-driven classification scheme reveals distinct sub-populations of ganglion cells with thresholds either normal or strongly elevated compared to wild-type. When these populations are combined, only a weakly elevated threshold with large variance is observed. The cells with normal threshold are more depolarized at rest and exhibit periodic oscillations. Significance. During degeneration, physiological changes in RGCs affect the threshold stimulation currents required to evoke action potentials.
Optimal design of neural stimulation current waveforms.
Halpern, Mark
2009-01-01
This paper contains results on the design of electrical signals for delivering charge through electrodes to achieve neural stimulation. A generalization of the usual constant current stimulation phase to a stepped current waveform is presented. The electrode current design is then formulated as the calculation of the current step sizes to minimize the peak electrode voltage while delivering a specified charge in a given number of time steps. This design problem can be formulated as a finite linear program, or alternatively by using techniques for discrete-time linear system design.
The Use of Brain Stimulation in Dysphagia Management.
Simons, Andre; Hamdy, Shaheen
2017-04-01
Dysphagia is common sequela of brain injury with as many as 50% of patients suffering from dysphagia following stroke. Currently, the majority of guidelines for clinical practice in the management of dysphagia focus on the prevention of complications while any natural recovery takes place. Recently, however, non-invasive brain stimulation (NIBS) techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have started to attract attention and are applied to investigate both the physiology of swallowing and influences on dysphagia. TMS allows for painless stimulation of the brain through an intact skull-an effect which would normally be impossible with electrical currents due to the high resistance of the skull. By comparison, tDCS involves passing a small electric current (usually under 2 mA) produced by a current generator over the scalp and cranium external to the brain. Initial studies used these techniques to better understand the physiological mechanisms of swallowing in healthy subjects. More recently, a number of studies have investigated the efficacy of these techniques in the management of neurogenic dysphagia with mixed results. Controversy still exists as to which site, strength and duration of stimulation yields the greatest improvement in dysphagia. And while multiple studies have suggested promising effects of NIBS, more randomised control trials with larger sample sizes are needed to investigate the short- and long-term effects of NIBS in neurogenic dysphagia.
Low-Cost Computer-Controlled Current Stimulator for the Student Laboratory
ERIC Educational Resources Information Center
Guclu, Burak
2007-01-01
Electrical stimulation of nerve and muscle tissues is frequently used for teaching core concepts in physiology. It is usually expensive to provide every student group in the laboratory with an individual stimulator. This article presents the design and application of a low-cost [about $100 (U.S.)] isolated stimulator that can be controlled by two…
Use of tripolar electrodes for minimization of current spread in uncut peripheral nerve stimulation.
Ohsawa, Ichiro; Inui, Koji
2009-05-01
The electrical stimulation of an uncut peripheral nerve requires a countermeasure to avoid the spread of current through a loop pathway formed outside the electrode array. Here the use of tripolar electrodes (TE) is proposed. By binding the two end poles, current spread through the loop pathway can theoretically be eliminated since both end poles are held equipotential. Experimentally, we tested the validity of this approach. In chloralose-urethane anesthetized rats, the left cervical vagus (LCV) was placed on TE which could function as such or as bipolar electrodes (BE) by the use of a selector switch. The spread of current to the adjacent tissues (rectus capitis muscle underlying the LCV, and the right cervical vagus (RCV) incised and translocated beside the target, LCV) was compared between TE and BE. When the stimulus intensity was increased, contraction occurred in the capitis muscle with BE, but not TE. Compound spike potentials of A fiber origin were evoked in the non-target RCV on high-intensity stimulation with BE, but not TE. Constant voltage stimulation of the LCV with TE produced bradycardia of the same magnitude as that with BE. In conclusion, constant voltage stimulation using TE can minimize current spread without changing the stimulus's effects.
NASA Astrophysics Data System (ADS)
Samba, R.; Herrmann, T.; Zeck, G.
2015-02-01
Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.
Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid
2009-01-01
We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (<30V), and a two time-constant model best describes skin electrical properties at higher amplitude applied voltages (>30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.
van Dongen, Marijn N.; Hoebeek, Freek E.; Koekkoek, S. K. E.; De Zeeuw, Chris I.; Serdijn, Wouter A.
2015-01-01
This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency. PMID:25798105
Kasten, Florian H.; Herrmann, Christoph S.
2017-01-01
Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile
2018-02-01
The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).
Bortoletto, M; Rodella, C; Salvador, R; Miranda, P C; Miniussi, C
2016-01-01
We propose the use of a new montage for transcranial direct current stimulation (tDCS), called concentric electrodes tDCS (CE-tDCS), involving two concentric round electrodes that may improve stimulation focality. To test efficacy and focality of CE-tDCS, we modelled the current distribution and tested physiological effects on cortical excitability. Motor evoked potentials (MEPs) from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) were recorded before and after the delivery of anodal, cathodal and sham stimulation on the FDI hotspot for 10 minutes. MEP amplitude of FDI increased after anodal-tDCS and decreased after cathodal-tDCS, supporting the efficacy of CE-tDCS in modulating cortical excitability. Moreover, modelled current distribution and no significant effects of stimulation on MEP amplitude of ADM suggest high focality of CE-tDCS. CE-tDCS may allow a better control of current distribution and may represent a novel tool for applying tDCS and other transcranial current stimulation approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven
2016-01-01
Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.
Ma, Jie; Kanwal, Jagmeet S.
2014-01-01
The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem. PMID:24624089
Ma, Jie; Kanwal, Jagmeet S
2014-01-01
The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem.
Gilad, Ori; Ghosh, Anthony; Oh, Dongin; Holder, David S
2009-05-30
Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. The principle is that current remains in the extracellular space at rest but passes into the intracellular space during depolarization through open ion channels. As current passes into the intracellular space across the capacitance of cell membranes at higher frequencies, applied current needs to be below 100 Hz. A method is presented for its measurement with subtraction of the contemporaneous evoked potentials which occur in the same frequency band. Neuronal activity is evoked by stimulation and resistance is recorded from the potentials resulting from injection of a constant current square wave at 1 Hz with amplitude less than 25% of the threshold for stimulating neuronal activity. Potentials due to the evoked activity and the injected square wave are removed by subtraction. The method was validated with compound action potentials in crab walking leg nerve. Resistance changes of -0.85+/-0.4% (mean+/-SD) occurred which decreased from -0.97+/-0.43% to -0.46+/-0.16% with spacing of impedance current application electrodes from 2 to 8 mm but did not vary significantly with applied currents of 1-10 microA. These tallied with biophysical modelling, and so were consistent with a genuine physiological origin. This method appears to provide a reproducible and artefact free means for recording resistance changes during neuronal activity which could lead to the long-term goal of imaging of fast neural activity in the brain.
Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas
2015-05-01
To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.
Electrical stimulation on joint contracture: an experiment in rat model with direct current.
Akai, M; Shirasaki, Y; Tateishi, T
1997-04-01
To examine whether electrical stimulation could decrease the degree of joint stiffness in a rat lower extremity model. Rat knee joints were surgically immobilized in a flexed position for 3 weeks. Two groups of rats were stimulated with 20 microA and 50 microA constant direct current. Another group had surgical intervention and sham electrodes without electricity. The hind leg was extirpated and prepared for a sample with the femur-knee joint-tibia unit. Recording the knee flexion angle with extension torque, the degree of joint contracture was assessed biomechanically by measuring the bone-joint-bone sample as a cantilever. Measurement was performed with (1) spectral analysis of transfer function measurement using random mechanical noise with frequency range from 1 to 50Hz, and (2) dynamic stiffness and loss tangent with steady-state sinusoidal excitation (11 and 35Hz). The results showed that no significant difference or trend was found in vibration analysis among three groups. However, spectral analysis of transfer function measurement revealed more deformation against load, and more viscous nature in the stimulation groups, especially in low frequency band, than in the sham group. Electrical stimulation with constant direct current has a possibility of reducing the degree of joint contracture.
Two-way communication for programming and measurement in a miniature implantable stimulator.
Thil, M A; Gérard, B; Jarvis, J C; Delbeke, J
2005-07-01
Implantable stimulators are needed for chronic electrical stimulation of nerves and muscles in experimental studies. The device described exploits the versatility of current microcontrollers for stimulation and communication in a miniature implant. Their standard outputs can provide the required selectable constant-current sources. In this device, pre-programmed stimulation paradigms were selected by transcutaneous light pulses. The potential of a programmable integrated circuit (PIC) was thus exploited. Implantable devices must be biocompatible. A novel encapsulation method that require no specialised equipment and that used two classical encapsulants, silicone and Teflon was developed. It was tested for implantation periods of up to four weeks. A novel way to estimate electrode impedance in awake animals is also presented. It was thus possible to follow the evolution of the nerve-electrode interface and, if necessary, to adjust the stimulation parameters. In practice, the electrode voltage at the end of a known constant-current pulse was measured by the PIC. The binary coded value was then indicated to the user as a series of muscle twitches that represented the binary value of the impedance measurement. This neurostimulator has been successfully tested in vitro and in vivo. Thresholds and impedance values were chronically monitored following implantation of a self-sizing spiral cuff electrode. Impedance variations in the first weeks could reflect morphological changes usually observed after the implantation of such electrodes.
Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.
Buhl, E H; Han, Z S; Lörinczi, Z; Stezhka, V V; Karnup, S V; Somogyi, P
1994-04-01
1. The properties of a well-defined type of GABAergic local circuit neuron, the axo-axonic cell (n = 17), were investigated in rat hippocampal slice preparations. During intracellular recording we injected axo-axonic cells with biocytin and subsequently identified them with correlated light and electron microscopy. Employing an immunogold-silver intensification technique we showed that one of the physiologically characterized cells was immunoreactive for gamma-aminobutyric acid (GABA). 2. Axo-axonic cells were encountered in the dentate gyrus (n = 5) as well as subfields CA3 (n = 2) and CA1 (n = 10). They generally had smooth, beaded dendrites that extended throughout all hippocampal layers. Their axons ramified densely in the cell body layers and in the subjacent stratum oriens or hilus, respectively. Tested with electron microscopy, labeled terminals (n = 53) established synapses exclusively with the axon initial segment of principal cells in strata oriens and pyramidale and rarely in lower radiatum. Within a 400-microns slice a single CA1 axo-axonic cell was estimated to be in synaptic contact with 686 pyramidal cells. 3. Axo-axonic cells (n = 14) had a mean resting membrane potential of -65.1 mV, an average input resistance of 73.9 M omega, and a mean time constant of 7.7 ms. Action potentials were of short duration (389-microseconds width at half-amplitude) and had a mean amplitude of 64.1 mV. 4. Nine of 10 tested cells showed a varying degree of spike frequency adaptation in response to depolarizing current injection. Current-evoked action potentials were usually curtailed by a deep (10.2 mV) short-latency afterhyperpolarization (AHP) with a mean duration of 28.1 ms. 5. Cells with strong spike frequency accommodation (n = 5) had a characteristic firing pattern with numerous spike doublets. These appeared to be triggered by an underlying depolarizing afterpotential. In the same cells, prolonged bursts of action potentials were followed by a prominent long-duration AHP with a mean time constant of 1.15 s. 6. Axo-axonic cells responded to the stimulation of afferent pathways with short-latency excitatory postsynaptic potentials (EPSPs) or at higher stimulation intensity with up to three action potentials. Axo-axonic cells in the dentate gyrus could be activated by stimulating the CA3 area as well as the perforant path, whereas in the CA1 area responses were elicited after shocks to the perforant path, Schaffer collaterals, and the stratum oriens-alveus border. 7. In the CA1 area the EPSP amplitude increased in response to membrane hyperpolarization.(ABSTRACT TRUNCATED AT 400 WORDS)
Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario
2015-02-01
Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.
1993-01-01
1. The effects of constant anodal currents (100 microA) delivered bilaterally to both labyrinths on the horizontal vestibuloocular response (VOR) were studied in squirrel monkeys during steps of angular velocity in the dark. We report that bilateral anodal currents decreased eye velocity approximately 30-50% during the period of galvanic stimulation without a change in the time constant of VOR. The decrease in eye velocity, present during steps of angular velocity, was not observed during sinusoidal head rotation at 0.2, 0.5, and 1 Hz. The results suggest that responses from irregular vestibular afferents influence VOR amplitude during constant velocity rotation.
Ramirez de Noriega, Fernando; Eitan, Renana; Marmor, Odeya; Lavi, Adi; Linetzky, Eduard; Bergman, Hagai; Israel, Zvi
2015-02-18
Background: Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for advanced Parkinson's disease (PD). Motor efficacy and safety have been established for constant voltage (CV) devices and more recently for constant current (CC) devices. CC devices adjust output voltage to provide CC stimulation irrespective of impedance fluctuation, while the current applied by CV stimulation depends on the impedance that may change over time. No study has directly compared the clinical effects of these two stimulation modalities. Objective: To compare the safety and clinical impact of CC STN DBS to CV STN DBS in patients with advanced PD 2 years after surgery. Methods: Patients were eligible for inclusion if they had undergone STN DBS surgery for idiopathic PD, had been implanted with a Medtronic Activa PC and if their stimulation program and medication had been stable for at least 1 year. This single-center trial was designed as a double-blind, randomized, prospective study with crossover after 2 weeks. Motor equivalence of the 2 modalities was confirmed utilizing part III of the Unified Parkinson's Disease Rating Scale (UPDRS). PD diaries and multiple subjective and objective evaluations of quality of life, depression, cognition and emotional processing were evaluated on both CV and on CC stimulation. Analysis using the paired t test with Bonferroni correction for multiple comparisons was performed to identify any significant difference between the stimulation modalities. Results: 8 patients were recruited (6 men, 2 women); 1 patient did not complete the study. The average age at surgery was 56.7 years (range 47-63). Disease duration at the time of surgery was 7.5 years (range 3-12). Patients were recruited 23.8 months (range 22.5-24) after surgery. At the postoperative study baseline, this patient group showed an average motor improvement of 69% (range 51-97) as measured by the change in UPDRS part III with stimulation alone. Levodopa equivalent medication was reduced on average by 67% (range 15-88). Patients were poorly compliant with PD diaries, and these did not yield useful information. The minor deterioration in quality-of-life scores (Parkinson's Disease Questionnaire-39, Quality of Life Enjoyment and Satisfaction Questionnaire) with CC stimulation were not statistically significant. Two measures of depression (Hamilton Rating Scale D17, Quick Inventory of Depressive Symptomatology - Self-Report) showed a nonsignificant lower score (less depression) with CC stimulation, but a third (Beck Depression Inventory) showed equivalence. Cognitive testing (Mini Mental State Examination) and emotional processing (Montreal Affective Voices) were equivalent for CC and CV. Conclusion: CC STN DBS is safe. For equivalent motor efficacy, no significant difference could be identified between CC and CV stimulation for nonmotor evaluations in PD patients 2 years after surgery. © 2015 S. Karger AG, Basel.
Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel
2016-10-01
Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława
2018-04-01
The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants
Thalamic DBS with a constant-current device in essential tremor: A controlled clinical trial.
Wharen, Robert E; Okun, Michael S; Guthrie, Barton L; Uitti, Ryan J; Larson, Paul; Foote, Kelly; Walker, Harrison; Marshall, Frederick J; Schwalb, Jason; Ford, Blair; Jankovic, Joseph; Simpson, Richard; Dashtipour, Khashayar; Phibbs, Fenna; Neimat, Joseph S; Stewart, R Malcolm; Peichel, DeLea; Pahwa, Rajesh; Ostrem, Jill L
2017-07-01
This study of thalamic deep brain stimulation (DBS) investigated whether a novel constant-current device improves tremor and activities of daily living (ADL) in patients with essential tremor (ET). A prospective, controlled, multicenter study was conducted at 12 academic centers. We investigated the safety and efficacy of unilateral and bilateral constant-current DBS of the ventralis intermedius (VIM) nucleus of the thalamus in patients with essential tremor whose tremor was inadequately controlled by medications. The primary outcome measure was a rater-blinded assessment of the change in the target limb tremor score in the stimulation-on versus stimulation-off state six months following surgery. Multiple secondary outcomes were assessed at one-year follow-up, including motor, mood, and quality-of-life measures. 127 patients were implanted with VIM DBS. The blinded, primary outcome variable (n = 76) revealed a mean improvement of 1.25 ± 1.26 points in the target limb tremor rating scale (TRS) score in the arm contralateral to DBS (p < 0.001). Secondary outcome variables at one year revealed significant improvements (p ≤ 0.001) in quality of life, depression symptoms, and ADL scores. Forty-seven patients had a second contralateral VIM-DBS, and this group demonstrated reduction in second-sided tremor at 180 days (p < 0.001). Serious adverse events related to the surgery included infection (n = 3), intracranial hemorrhage (n = 3), and device explantation (n = 3). Unilateral and bilateral constant-current VIM DBS significantly improves upper extremity tremor, ADL, quality of life, and depression in patients with severe ET. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance in physiology evaluation: possible improvement by active learning strategies.
Montrezor, Luís H
2016-12-01
The evaluation process is complex and extremely important in the teaching/learning process. Evaluations are constantly employed in the classroom to assist students in the learning process and to help teachers improve the teaching process. The use of active methodologies encourages students to participate in the learning process, encourages interaction with their peers, and stimulates thinking about physiological mechanisms. This study examined the performance of medical students on physiology over four semesters with and without active engagement methodologies. Four activities were used: a puzzle, a board game, a debate, and a video. The results show that engaging in activities with active methodologies before a physiology cognitive monitoring test significantly improved student performance compared with not performing the activities. We integrate the use of these methodologies with classic lectures, and this integration appears to improve the teaching/learning process in the discipline of physiology and improves the integration of physiology with cardiology and neurology. In addition, students enjoy the activities and perform better on their evaluations when they use them. Copyright © 2016 The American Physiological Society.
Endepols, H; Jungnickel, J; Braun, K
2001-01-01
Cocultures of the learning-relevant forebrain region mediorostral neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were light- and electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic synapses on MNH neurons were symmetric and located on dendritic shafts, but no correlation between Gray-type ultrastructure and dendritic localization was found. Using intracellular current clamp recordings, we found that the electrophysiological properties, such as input resistance, time constant, action potential threshold, amplitude, and duration of MNH neurons, remain stable for over 30 days in vitro. Pharmacological blockade experiments revealed glutamate as the main neurotransmitter of thalamic synapses on MNH neurons, which were also found on inhibitory neurons. High frequency stimulation of thalamic inputs evoked synaptic potentiation in 22% of MNH neurons. The results indicate that DMA/DMP-MNH cocultures, which can be maintained under stable conditions for at least 4 weeks, provide an attractive in vitro model for investigating synaptic plasticity in the avian brain.
Endepols, Heike; Jungnickel, Julia; Braun, Katharina
2001-01-01
Cocultures of the learning-relevant forebrain region mediorostrai neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were lightand electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic synapses on MNH neurons were symmetric and located on dendritic shafts, but no correlation between Gray-type ultrastructure and dendritic localization was found. Using intraceilular current clamp recordings, we found that the electrophysiological properties, such as input resistance, time constant, action potential threshold, amplitude, and duration of MNH neurons, remain stable for over 30 days in vitro. Pharmacological blockade experiments revealed glutamate as the main neurotransmitter of thalamic synapses on MNH neurons, which were also found on inhibitory neurons. High frequency stimulation of thalamic inputs evoked synaptic potentiation in 22% of MNH neurons. The results indicate that DMA/DMP-MNH cocultures, which can be maintained under stable conditions for at least 4 weeks, provide an attractive in vitro model for investigating synaptic plasticity in the avian brain. PMID:12018771
Hartmann, C J; Wojtecki, L; Vesper, J; Volkmann, J; Groiss, S J; Schnitzler, A; Südmeyer, M
2015-10-01
This study was conducted to better understand the development of clinical efficacy and impedance levels in the long-term course of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD). In this retrospective study of twenty PD patients, the motor part of the Unified Parkinson's Disease Rating Scale was periodically assessed i) after withdrawal of medication and inactivated stimulation, ii) after withdrawal of medication with activated stimulation and iii) after challenge with l-Dopa during activated stimulation up to 13 years after surgery. STN-DBS with or without medication significantly improved motor function up to 13 years after surgery. The contribution of axial symptoms increased over time. While the stimulation parameters were kept constant, the therapeutic impedances progressively declined. STN-DBS in PD remains effective in the long-term course of the disease. Constant current stimulation might be preferable over voltage-controlled stimulation, as it would alleviate the impact of impedance changes on the volume of tissue activated. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mang, Ou-Yang; Ko, Mei Lan; Tsai, Yi-Chun; Chiou, Jin-Chern; Huang, Ting-Wei
2016-03-01
The pupil response to light can reflect various kinds of diseases which are related to physiological health. Pupillary abnormalities may be influenced on people by autonomic neuropathy, glaucoma, diabetes, genetic diseases, and high myopia. In the early stage of neuropathy, it is often asymptomatic and difficulty detectable by ophthalmologists. In addition, the position of injured nerve can lead to unsynchronized pupil response for human eyes. In our study, we design the pupilometer to measure the binocular pupil response simultaneously. It uses the different wavelength of LEDs such as white, red, green and blue light to stimulate the pupil and record the process. Therefore, the pupilometer mainly contains two systems. One is the image acquisition system, it use the two cameras modules with the same external triggered signal to capture the images of the pupil simultaneously. The other one is the illumination system. It use the boost converter ICs and LED driver ICs to supply the constant current for LED to maintain the consistent luminance in each experiments for reduced experimental error. Furthermore, the four infrared LEDs are arranged nearby the stimulating LEDs to illuminate eyes and increase contrast of image for image processing. In our design, we success to implement the function of synchronized image acquisition with the sample speed in 30 fps and the stable illumination system for precise measurement of experiment.
A Microfluidic Interface for the Culture and Sampling of Adiponectin from Primary Adipocytes
Godwin, Leah A.; Brooks, Jessica C.; Hoepfner, Lauren D.; Wanders, Desiree; Judd, Robert L.; Easley, Christopher J.
2014-01-01
Secreted from adipose tissue, adiponectin is a vital endocrine hormone that acts in glucose metabolism, thereby establishing its crucial role in diabetes, obesity, and other metabolic disease states. Insulin exposure to primary adipocytes cultured in static conditions has been shown to stimulate adiponectin secretion. However, conventional, static methodology for culturing and stimulating adipocytes falls short of truly mimicking physiological environments. Along with decreases in experimental costs and sample volume, and increased temporal resolution, microfluidic platforms permit small-volume flowing cell culture systems, which more accurately represent the constant flow conditions through vasculature in vivo. Here, we have integrated a customized primary tissue culture reservoir into a passively operated microfluidic device made of polydimethylsiloxane (PDMS). Fabrication of the reservoir was accomplished through unique PDMS “landscaping” above sampling channels, with a design strategy targeted to primary adipocytes to overcome issues of positive cell buoyancy. This reservoir allowed three-dimensional culture of primary murine adipocytes, accurate control over stimulants via constant perfusion, and sampling of adipokine secretion during various treatments. As the first report of primary adipocyte culture and sampling within microfluidic systems, this work sets the stage for future studies in adipokine secretion dynamics. PMID:25423362
Mangia, Anna L.; Pirini, Marco; Cappello, Angelo
2014-01-01
Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions. PMID:25147519
A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.
Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard
2012-06-01
A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.
Dearworth, James R; Brenner, J E; Blaum, J F; Littlefield, T E; Fink, D A; Romano, J M; Jones, M S
2009-01-01
The pond turtle (Trachemys scripta elegans) exhibits a notably sluggish pupillary light reflex (PLR), with pupil constriction developing over several minutes following light onset. In the present study, we examined the dynamics of the efferent branch of the reflex in vitro using preparations consisting of either the isolated head or the enucleated eye. Stimulation of the oculomotor nerve (nIII) using 100-Hz current trains resulted in a maximal pupil constriction of 17.4% compared to 27.1% observed in the intact animal in response to light. When current amplitude was systematically increased from 1 to 400 microA, mean response latency decreased from 64 to 45 ms, but this change was not statistically significant. Hill equations fitted to these responses indicated a current threshold of 3.8 microA. Stimulation using single pulses evoked a smaller constriction (3.8%) with response latencies and threshold similar to that obtained using train stimulation. The response evoked by postganglionic stimulation of the ciliary nerve using 100-Hz trains was largely indistinguishable from that of train stimulation of nIII. However, application of single-pulse stimulation postganglionically resulted in smaller pupil constriction at all current levels relative to that of nIII stimulation, suggesting that there is amplification of efferent drive at the ganglion. Time constants for constrictions ranged from 88 to 154 ms with relaxations occurring more slowly at 174-361 ms. These values for timing from in vitro are much faster than the time constant 1.66 min obtained for the light response in the intact animal. The rapid dynamics of pupil constriction observed here suggest that the slow PLR of the turtle observed in vivo is not due to limitations of the efferent pathway. Rather, the sluggish response probably results from photoreceptive mechanisms or central processing.
A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.
van Bolhuis, A I; Holsheimer, J; Savelberg, H H
2001-05-30
Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.
Dean, Jesse C.; Clair-Auger, Joanna M.; Lagerquist, Olle; Collins, David F.
2014-01-01
Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10–100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with “time-locked” discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in “physiological” recruitment which adheres to Henneman’s size principle and results in relatively low discharge rates and asynchronous firing. PMID:25566025
Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A
2015-07-01
Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V
2015-06-01
Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.
Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing
2015-01-01
Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956
1978-06-01
responses (AER) with a photo-optico-electronic method. Habituation was obtained by binaural stimulation with monotonously repeated clicki of a constant...Bonsper, D. E. The effect of increased information processing on sinus arrhythmia and heart beat Monti-y,7UalTfrniaITNaval Postgraduate School...September 1970. (NTIS No. ’’A’’A f śS4) This experiment investigated the eflt of increased information processing on heart beat and sinus arrhythmia. A
Bourdois, P.S.; Mitchell, J.F.; Somogyi, G.T.; Szerb, J.C.
1974-01-01
1 The release of endogenous acetylcholine (ACh) from cerebral cortical slices stimulated at 0.25, 1, 4, 16 and 64 Hz was measured in the presence either of physostigmine or of physostigmine and atropine. 2 Atropine potentiated the evoked release of endogenous ACh especially at low frequencies resulting in an output per stimulus which sharply declined with increasing frequency of stimulation, while in the absence of atropine the output of ACh per stimulus was low and fairly constant. 3 The evoked release of [3H]-ACh per stimulus following the incubation of the slices with [3H]-choline, as estimated by means of rate constants of the evoked release of total radioactivity, showed a frequency dependence similar to endogenous ACh when the two were tested under identical conditions. 4 In the absence of an anticholinesterase the evoked release of [3H]-ACh per stimulus was dependent on frequency of stimulation in a similar way to that in the presence of physostigmine and atropine. 5 Results suggest that under physiological conditions, i.e. in the absence of an anti-cholinesterase, the release of ACh per stimulus decreases with increasing frequency of stimulation and that this decrease is due to a lag in the mobilization of stored ACh rather than in the synthesis of new ACh. PMID:4455327
Pelletier, Simon J.
2015-01-01
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system. PMID:25522391
Electrical brain stimulation (tES) improves learning more than performance: A meta-analysis.
Simonsmeier, Bianca A; Grabner, Roland H; Hein, Julia; Krenz, Ugne; Schneider, Michael
2018-01-01
Researchers have recently started evaluating whether stimulating the brain noninvasively with a weak and painless electrical current (transcranial Electrical Stimulation, tES) enhances physiological and cognitive processes. Some studies found that tES has weak but positive effects on brain physiology, cognition, or assessment performance, which has attracted massive public interest. We present the first meta-analytic test of the hypothesis that tES in a learning phase is more effective than tES in an assessment phase. The meta-analysis included 246 effect sizes from studies on language or mathematical competence. The effect of tES was stronger when stimulation was administered during a learning phase (d=0.712) as compared to stimulation administered during test performance (d=0.207). The overall effect was stimulation-dosage specific and, as found in a previous meta-analysis, significant only for anodal stimulation and not for cathodal. The results provide evidence for the modulation of long-term synaptic plasticity by tES in the context of practically relevant learning tasks and highlight the need for more systematic evaluations of tES in educational settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.
Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L
2009-09-01
Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.
Effects of tumor promoters on sodium ion transport across frog skin.
Civan, M M; Rubenstein, D; Mauro, T; O'Brien, T G
1985-05-01
Phorbol esters are tumor promoters and mitogens whose effects may be mediated by changes in ion transport across membranes. Clarification of the transport effects of these agents should be facilitated by using a well-characterized model epithelial system whose intracellular and transmural parameters are readily measurable. The current results constitute a preliminary study of the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBU), and phorbol on the short-circuit current (Isc) across frog skin. TPA produced two effects: a stimulation of Isc of variable magnitude and a far more constant inhibition of the natriferic action of vasopressin. These effects appear related to the action of TPA as a tumor promoter insofar as PDBU (an active ester) also inhibited the natriferic response to vasopressin, whereas phorbol (inactive as a tumor promoter) had no significant effect. TPA is largely active from the mucosal medium, inhibits the natriferic response to adenosine 3',5'-cyclic monophosphate (cAMP) as well as that to vasopressin, and does not stimulate Isc in the presence of 10(-4) M mucosal amiloride. Inhibition of prostaglandin E1 production by indomethacin had no effect on the actions of TPA. The results indicate that frog skin is a promising model for studying the transport effects of the phorbol esters. The data further suggest that TPA acts on frog skin by activating the physiological amiloride- and cAMP-sensitive channels gating apical Na+ entry from the mucosal medium into the epithelial cells.
Physiological studies of the brain: Implications for science teaching
NASA Astrophysics Data System (ADS)
Esler, William K.
Physiological changes resulting from repeated, long-term stimulation have been observed in the brains of both humans and laboratory animals. It may be speculated that these changes are related to short-term and long-term memory processes. A physiologically based model for memory processing (PBMMP) can serve to explain the interrelations of various areas of the brain as they process new stimuli and recall past events. The model can also serve to explain many current principles of learning theory and serve as a foundation for developing new theories of learning based upon the physiology of the brain.
Jamil, Asif; Batsikadze, Giorgi; Kuo, Hsiao-I; Labruna, Ludovica; Hasan, Alkomiet; Paulus, Walter; Nitsche, Michael A
2017-02-15
Applications of transcranial direct current stimulation to modulate human neuroplasticity have increased in research and clinical settings. However, the need for longer-lasting effects, combined with marked inter-individual variability, necessitates a deeper understanding of the relationship between stimulation parameters and physiological effects. We systematically investigated the full DC intensity range (0.5-2.0 mA) for both anodal and cathodal tDCS in a sham-controlled repeated measures design, monitoring changes in motor-cortical excitability via transcranial magnetic stimulation up to 2 h after stimulation. For both tDCS polarities, the excitability after-effects did not linearly correlate with increasing DC intensity; effects of lower intensities (0.5, 1.0 mA) showed equal, if not greater effects in motor-cortical excitability. Further, while intra-individual responses showed good reliability, inter-individual sensitivity to TMS accounted for a modest percentage of the variance in the early after-effects of 1.0 mA anodal tDCS, which may be of practical relevance for future optimizations. Contemporary non-invasive neuromodulatory techniques, such as transcranial direct current stimulation (tDCS), have shown promising potential in both restituting impairments in cortical physiology in clinical settings, as well as modulating cognitive abilities in the healthy population. However, neuroplastic after-effects of tDCS are highly dependent on stimulation parameters, relatively short lasting, and not expectedly uniform between individuals. The present study systematically investigates the full range of current intensity between 0.5 and 2.0 mA on left primary motor cortex (M1) plasticity, as well as the impact of individual-level covariates on explaining inter-individual variability. Thirty-eight healthy subjects were divided into groups of anodal and cathodal tDCS. Five DC intensities (sham, 0.5, 1.0, 1.5 and 2.0 mA) were investigated in separate sessions. Using transcranial magnetic stimulation (TMS), 25 motor-evoked potentials (MEPs) were recorded before, and 10 time points up to 2 h following 15 min of tDCS. Repeated-measures ANOVAs indicated a main effect of intensity for both anodal and cathodal tDCS. With anodal tDCS, all active intensities resulted in equivalent facilitatory effects relative to sham while for cathodal tDCS, only 1.0 mA resulted in sustained excitability diminution. An additional experiment conducted to assess intra-individual variability revealed generally good reliability of 1.0 mA anodal tDCS (ICC(2,1) = 0.74 over the first 30 min). A post hoc analysis to discern sources of inter-individual variability confirmed a previous finding in which individual TMS SI 1mV (stimulus intensity for 1 mV MEP amplitude) sensitivity correlated negatively with 1.0 mA anodal tDCS effects on excitability. Our study thus provides further insights on the extent of non-linear intensity-dependent neuroplastic after-effects of anodal and cathodal tDCS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels
Itsuki, Kyohei; Imai, Yuko; Hase, Hideharu; Okamura, Yasushi; Inoue, Ryuji
2014-01-01
Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C–insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of total current. In conclusion, our studies demonstrate a fundamental role for PI(4,5)P2 in regulating TRPC6 and TRPC7 activity triggered by PLC-coupled receptor stimulation. PMID:24470487
Durfee, William K; Young, Joseph R; Ginz, Hans F
2014-05-01
ICU patients typically are given large amounts of fluid and often develop oedema. The purpose of this study was to evaluate whether the oedema would change inter-electrode resistance and, thus, require a different approach to using non-invasive electrical stimulation of nerves to assess muscle force. Inter-electrode tissue resistance in the lower leg was measured by applying a 300 µs constant current pulse and measuring the current through and voltage across the stimulating electrodes. The protocol was administered to nine ICU patients with oedema, eight surgical patients without oedema and eight healthy controls. No significant difference in inter-electrode resistance was found between the three groups. For all groups, resistance decreased as stimulation current increased. In conclusion, inter-electrode resistance in ICU patients with severe oedema is the same as the resistance in regular surgical patients and healthy controls. This means that non-invasive nerve stimulation devices do not need to be designed to accommodate different resistances when used with oedema patients; however, surface stimulation does require higher current levels with oedema patients because of the increased distance between the skin surface and the targeted nerve or muscle.
Hussain, Sara J; Thirugnanasambandam, Nivethida
2017-06-01
Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.
A voltage-controlled capacitive discharge method for electrical activation of peripheral nerves.
Rosellini, Will M; Yoo, Paul B; Engineer, Navzer; Armstrong, Scott; Weiner, Richard L; Burress, Chester; Cauller, Larry
2011-01-01
A voltage-controlled capacitive discharge (VCCD) method was investigated as an alternative to rectangular stimulus pulses currently used in peripheral nerve stimulation therapies. In two anesthetized Gottingen mini pigs, the threshold (total charge per phase) for evoking a compound nerve action potential (CNAP) was compared between constant current (CC) and VCCD methods. Electrical pulses were applied to the tibial and posterior cutaneous femoralis nerves using standard and modified versions of the Medtronic 3778 Octad. In contrast to CC stimulation, the combined application of VCCD pulses with a modified Octad resulted in a marked decrease (-73 ± 7.4%) in the stimulation threshold for evoking a CNAP. This was consistent for different myelinated fiber types and locations of stimulation. The VCCD method provides a highly charge-efficient means of activating myelinated fibers that could potentially be used within a wireless peripheral nerve stimulator system. © 2011 International Neuromodulation Society.
Berretin-Felix, Giédre; Sia, Isaac; Barikroo, Ali; Carnaby, Giselle D; Crary, Michael A
2016-09-01
This study compared the immediate impact of different transcutaneous electrical stimulation (TES) amplitudes on physiological swallowing effort in healthy older adults versus young adults. Swallowing physiology changes with age. Reduced physiological swallowing effort in older adults including lower lingua-palatal and pharyngeal pressures may increase risk for swallowing dysfunction (i.e. dysphagia). Transcutaneous electrical stimulation (TES) has been advocated as an adjunctive modality to enhance outcomes in exercise-based therapy for individuals with dysphagia. However, significant variation in how TES is applied during therapy remains and the physiological swallowing response to TES is poorly studied, especially in older adults. Physiological change in swallowing associated with no stimulation, sensory stimulation and motor stimulation was compared in 20 young adults versus 14 older adults. Lingua-palatal and pharyngeal manometric pressures assessed physiological swallowing effort. Multivariate analyses identified interactions between age and stimulation amplitude on lingual and pharyngeal functions. Motor stimulation reduced anterior tongue pressure in both age groups but selectively reduced posterior lingua-palatal pressures in young adults only. Sensory stimulation increased base of tongue (BOT) pressures in older adults but decreased BOT pressures in young adults. Motor stimulation increased hypopharyngeal pressures in both groups. Age and TES level interact in determining immediate physiological responses on swallow performance. A one-size-fit-all approach to TES in dysphagia rehabilitation may be misdirected. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Pulsed direct and constant direct currents in the pilocarpine iontophoresis sweat chloride test.
Gomez, Carla Cristina Souza; Servidoni, Maria de Fatima; Marson, Fernando Augusto de Lima; Canavezi, Paulo Jose Coelho; Vinagre, Adriana Mendes; Costa, Eduardo Tavares; Ribeiro, Antonio Fernando; Ribeiro, Maria Angela Gonçalves de Oliveira; Toro, Adyleia Aparecida Dalbo Contrera; Pavan, Celia Regina; Rondon, Michelle Vivine Sá Dos Santos; Lorena, Sonia Leticia Silva; Vieria, Francisco Ubaldi; Ribeiro, Jose Dirceu
2014-12-13
The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal stimulation time and sweat collection were, respectively, 10 and 30 min.
Designing optimal stimuli to control neuronal spike timing
Packer, Adam M.; Yuste, Rafael; Paninski, Liam
2011-01-01
Recent advances in experimental stimulation methods have raised the following important computational question: how can we choose a stimulus that will drive a neuron to output a target spike train with optimal precision, given physiological constraints? Here we adopt an approach based on models that describe how a stimulating agent (such as an injected electrical current or a laser light interacting with caged neurotransmitters or photosensitive ion channels) affects the spiking activity of neurons. Based on these models, we solve the reverse problem of finding the best time-dependent modulation of the input, subject to hardware limitations as well as physiologically inspired safety measures, that causes the neuron to emit a spike train that with highest probability will be close to a target spike train. We adopt fast convex constrained optimization methods to solve this problem. Our methods can potentially be implemented in real time and may also be generalized to the case of many cells, suitable for neural prosthesis applications. With the use of biologically sensible parameters and constraints, our method finds stimulation patterns that generate very precise spike trains in simulated experiments. We also tested the intracellular current injection method on pyramidal cells in mouse cortical slices, quantifying the dependence of spiking reliability and timing precision on constraints imposed on the applied currents. PMID:21511704
Hsu, Wen-Yang; Schmid, Alexandre
2017-08-01
Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.
Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad
2016-11-01
This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.
A technical guide to tDCS, and related non-invasive brain stimulation tools
Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA
2015-01-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115
Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
NEURAL ORGANIZATION OF SENSORY INFORMATIONS FOR TASTE,
TASTE , ELECTROPHYSIOLOGY), (*NERVES, *TONGUE), NERVE CELLS, NERVE IMPULSES, PHYSIOLOGY, NERVOUS SYSTEM, STIMULATION(PHYSIOLOGY), NERVE FIBERS, RATS...HAMSTERS, STIMULATION(PHYSIOLOGY), PERCEPTION, COOLING, BEHAVIOR, PSYCHOPHYSIOLOGY, TEMPERATURE, THRESHOLDS(PHYSIOLOGY), CHEMORECEPTORS , STATISTICAL ANALYSIS, JAPAN
Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.
2012-01-01
Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548
Alternative right ventricular pacing sites.
Łuciuk, Dariusz; Łuciuk, Marek; Gajek, Jacek
2015-01-01
The main adverse effect of chronic stimulation is stimulation-induced heart failure in case of ventricular contraction dyssynchrony. Because of this fact, new techniques of stimulation should be considered to optimize electrotherapy. One of these methods is pacing from alternative right ventricular sites. The purpose of this article is to review currently accumulated data about alternative sites of cardiac pacing. Medline and PubMed bases were used to search English and Polish reports published recently. Recent studies report a deleterious effect of long term apical pacing. It is suggested that permanent apical stimulation, by omitting physiological conduction pattern with His-Purkinie network, may lead to electrical and mechanical dyssynchrony of heart muscle contraction. In the long term this pathological situation can lead to severe heart failure and death. Because of this, scientists began to search for some alternative sites of cardiac pacing to reduce the deleterious effect of stimulation. Based on current accumulated data, it is suggested that the right ventricular outflow tract, right ventricular septum, direct His-bundle or biventricular pacing are better alternatives due to more physiological electrical impulse propagation within the heart and the reduction of the dyssynchrony effect. These methods should preserve a better left ventricular function and prevent the development of heart failure in permanent paced patients. As there is still not enough, long-term, randomized, prospective, cross-over and multicenter studies, further research is required to validate the benefits of using this kind of therapy. The article should pay attention to new sites of cardiac stimulation as a better and safer method of treatment.
Yamakoshi, T; Yamakoshi, K; Tanaka, S; Nogawa, M; Kusakabe, M; Kusumi, M; Tanida, K
2004-01-01
Monotonous automobile operation in our daily life may cause the lowering of what might be termed an activation state of the human body, resulting in an increased risk of an accident. We therefore propose to create a more suitable environment in-car so as to allow active operation of the vehicle, hopefully thus avoiding potentially dangerous situations during driving. In order to develop such an activation method as a final goal, we have firstly focused on the acquisition of physiological variables, including cardiovascular parameters, during presentation to the driver of a monotonous screen image, simulating autonomous travel of constant-speed on a motorway. Subsequently, we investigated the derivation of a driver's activation index. During the screen image presentation, a momentary electrical stimulation of about 1 second duration was involuntarily applied to a subject's shoulder to obtain a physiological response. We have successfully monitored various physiological variables during the image presentation, and results suggest that a peculiar pattern in the beat-by-beat change of blood pressure in response to the involuntary stimulus may be an appropriate, and feasible, index relevant to activation state.
A Simple Constant-Current Neural Stimulator With Accurate Pulse-Amplitude Control
2001-10-25
STIMULATOR The block diagram of the proposed neurostimulator is displayed in Figure 1. It consists of a pair of transformers followed by full-bridge...to 6%. Pulse-repetition ranges from 1Hz to 10Hz. Figure 1. Block diagram of the neurostimulator Voltage Regulator T 1 Astable T 2 V/I...discrete transistors. For explanatory reasons, the neurostimulator schematic is split into three main elements: the oscillator, the output V/I converter
Sarkar, Amar; Dowker, Ann
2014-01-01
The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect—impaired executive control in a flanker task—a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. PMID:25505313
Sarkar, Amar; Dowker, Ann; Cohen Kadosh, Roi
2014-12-10
The surge in noninvasive brain stimulation studies investigating cognitive enhancement has neglected the effect of interindividual differences, such as traits, on stimulation outcomes. Using the case of mathematics anxiety in a sample of healthy human participants in a placebo-controlled, double-blind, crossover experiment, we show that identical transcranial direct current stimulation (tDCS) exerts opposite behavioral and physiological effects depending on individual trait levels. Mathematics anxiety is the negative emotional response elicited by numerical tasks, impairing mathematical achievement. tDCS was applied to the dorsolateral prefrontal cortex, a frequent target for modulating emotional regulation. It improved reaction times on simple arithmetic decisions and decreased cortisol concentrations (a biomarker of stress) in high mathematics anxiety individuals. In contrast, tDCS impaired reaction times for low mathematics anxiety individuals and prevented a decrease in cortisol concentration compared with sham stimulation. Both groups showed a tDCS-induced side effect-impaired executive control in a flanker task-a cognitive function subserved by the stimulated region. These behavioral and physiological double dissociations have implications for brain stimulation research by highlighting the role of individual traits in experimental findings. Brain stimulation clearly does not produce uniform benefits, even applied in the same configuration during the same tasks, but may interact with traits to produce markedly opposed outcomes. Copyright © 2014 Sarkar et al.
New modalities of brain stimulation for stroke rehabilitation
Lucas, T. H.; Carey, J. R.; Fetz, E. E.
2014-01-01
Stroke is a leading cause of disability, and the number of stroke survivors continues to rise. Traditional neurorehabilitation strategies aimed at restoring function to weakened limbs provide only modest benefit. New brain stimulation techniques designed to augment traditional neurorehabilitation hold promise for reducing the burden of stroke-related disability. Investigators discovered that repetitive transcranial magnetic stimulation (rTMS), trans-cranial direct current stimulation (tDCS), and epidural cortical stimulation (ECS) can enhance neural plasticity in the motor cortex post-stroke. Improved outcomes may be obtained with activity-dependent stimulation, in which brain stimulation is contingent on neural or muscular activity during normal behavior. We review the evidence for improved motor function in stroke patients treated with rTMS, tDCS, and ECS and discuss the mediating physiological mechanisms. We compare these techniques to activity-dependent stimulation, discuss the advantages of this newer strategy for stroke rehabilitation, and suggest future applications for activity-dependent brain stimulation. PMID:23192336
A technical guide to tDCS, and related non-invasive brain stimulation tools.
Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A
2016-02-01
Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.
Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M
1985-01-01
Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139
Magnetic field therapy: a review.
Markov, Marko S
2007-01-01
There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.
Easterling, K W; Holtzman, S G
1997-01-01
Traditional ICSS methodologies have attempted to evaluate changes in the rewarding value of brain stimulation by assessing the lowest value of the stimulation that will support responding. However, orderly changes in suprathreshold indicants of hedonic magnitude such as titration point have been shown. In the present experiments, rats were trained to respond on two ICSS autotitration schedules in which every response on one lever produced stimulation of the medial forebrain bundle, and every Xth response decreased either the stimulation current or the stimulation frequency. At any time, a response on a second "reset" lever restored the stimulation current or frequency available on the stimulation lever to its starting level and operationally defined changes in "reward value". In order to study this titration point measure, two response requirements (responses/stepdown; step size) and two stimulation parameters (initial stimulation level; train duration) were systematically varied. Under both current and frequency titration schedules, data indicated that response rate and titration point remained stable over repeated trials and multiple testing days--parameters being constant. Across all conditions, compared to the frequency titration schedule, subjects responding under the current titration schedule showed significantly higher titration points and lower rates of responding. Indicating the independence of rate and titration point data, parametric manipulations did not affect titration point and rate data concurrently. Results support the conclusion that titration point is a relative measure of "reward value" that is generally independent of response rate, but that is affected by manipulations that alter the amount of stimulation available between "resets". Additional work is needed in order to determine the relationship between the magnitude of stimulation needed to maintain minimal responding and that needed to maintain response equilibrium in an autotitration task.
Measurement of Young's modulus in the in vivo human vocal folds.
Tran, Q T; Berke, G S; Gerratt, B R; Kreiman, J
1993-08-01
Currently, surgeons have no objective means to evaluate and optimize results of phonosurgery intraoperatively. Instead, they usually judge the vocal folds subjectively by visual inspection or by listening to the voice. This paper describes a new device that measures Young's (elastic) modulus values for the human vocal fold intraoperatively. Physiologically, the modulus of the vocal fold may be important in determining the nature of vocal fold vibration in normal and pathologic states. This study also reports the effect of recurrent laryngeal nerve stimulation on Young's modulus of the human vocal folds, measured by means of transcutaneous nerve stimulation techniques. Young's modulus increased with increases in current stimulation to the recurrent laryngeal nerve. Ultimately, Young's modulus values may assist surgeons in optimizing the results of various phonosurgeries.
Psychobiology of Altered States of Consciousness
ERIC Educational Resources Information Center
Vaitl, Dieter; Birbaumer, Niels; Gruzelier, John; Jamieson, Graham A.; Kotchoubey, Boris; Kubler, Andrea; Lehmann, Dietrich; Miltner, Wolfgang H. R.; Ott, Ulrich; Sammer, Gebhard; Strauch, Inge; Strehl, Ute; Wackermann, Jiri; Weiss, Thomas
2005-01-01
The article reviews the current knowledge regarding altered states of consciousness (ASC) (a) occurring spontaneously, (b) evoked by physical and physiological stimulation, (c) induced by psychological means, and (d) caused by diseases. The emphasis is laid on psychological and neurobiological approaches. The phenomenological analysis of the…
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Physiological cyclic strain promotes endothelial cell survival via the induction of heme oxygenase-1
Liu, Xiao-ming; Peyton, Kelly J.
2013-01-01
Endothelial cells (ECs) are constantly subjected to cyclic strain that arises from periodic change in vessel wall diameter as a result of pulsatile blood flow. Application of physiological levels of cyclic strain inhibits EC apoptosis; however, the underlying mechanism is not known. Since heme oxygenase-1 (HO-1) is a potent inhibitor of apoptosis, the present study investigated whether HO-1 contributes to the antiapoptotic action of cyclic strain. Administration of physiological cyclic strain (6% at 1 Hz) to human aortic ECs stimulated an increase in HO-1 activity, protein, and mRNA expression. The induction of HO-1 was preceded by a rise in reactive oxygen species (ROS) and Nrf2 protein expression. Cyclic strain also stimulated an increase in HO-1 promoter activity that was prevented by mutating the antioxidant responsive element in the promoter or by overexpressing dominant-negative Nrf2. In addition, the strain-mediated induction of HO-1 and activation of Nrf2 was abolished by the antioxidant N-acetyl-l-cysteine. Finally, application of cyclic strain blocked inflammatory cytokine-mediated EC death and apoptosis. However, the protective action of cyclic strain was reversed by the HO inhibitor tin protoporphyrin-IX and was absent in ECs isolated from HO-1-deficient mice. In conclusion, the present study demonstrates that a hemodynamically relevant level of cyclic strain stimulates HO-1 gene expression in ECs via the ROS-Nrf2 signaling pathway to inhibit EC death. The ability of cyclic strain to induce HO-1 expression may provide an important mechanism by which hemodynamic forces promote EC survival and vascular homeostasis. PMID:23604711
Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms
Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla
2011-01-01
The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331
Ocean acidification modulates expression of genes and physiological performance of a marine diatom
NASA Astrophysics Data System (ADS)
Li, Y.; Zhuang, S.; Wu, Y.; Ren, H.; Cheng, F.; Lin, X.; Wang, K.; Beardall, J.; Gao, K.
2015-09-01
Ocean Acidification (OA) is known to affect various aspects of the physiological performance of diatoms, but there is little information on the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum expression of the genes related to light harvesting, carbon acquisition and carboxylation, nitrite assimilation and ATP synthesis are modulated by OA. Growth and photosynthetic carbon fixation were enhanced by elevated CO2 (1000 μatm) under both constant indoor and fluctuating outdoor light regimes. The genetic expression of nitrite reductase (NiR) was up-regulated by OA regardless of light levels and/or regimes. The transcriptional expression of fucoxanthin chlorophyll a/c protein (lhcf type (FCP)) and mitochondrial ATP synthase (mtATP synthase) genes were also enhanced by OA, but only under high light intensity. OA treatment decreased the expression of β-carbonic anhydrase (β-CA) along with down-regulation of CO2 concentrating mechanisms (CCMs). Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expressions either under constant indoor light or fluctuating sunlight. Thus, OA enhanced photosynthetic and growth rates by stimulating nitrogen assimilation and indirectly by down-regulating the energy-costly inorganic carbon acquisition process.
Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner
2017-05-01
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.
Some anatomical and physiological aspects of anal sexual practices.
Agnew, J
1985-01-01
Anal manipulation and penetration produce stimulation enjoyed as sexual by some people. Although this type of sexual activity is not new, the current social climate of sexual freedom and experimentation has brought it out into the open. This paper reviews some of the anatomical, physiological, and behavioral aspects of this variation of human sexual gratification, and provides the practicing professional, who has to deal with questions on anal sexuality, with information on the subject and suitable background material and literature references for further study.
Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha
2015-10-01
Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.
NASA Astrophysics Data System (ADS)
Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.
2014-02-01
Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.
Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua
2017-01-01
Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894
Impey, Danielle; de la Salle, Sara; Knott, Verner
2016-06-01
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Stress inoculation training supported by physiology-driven adaptive virtual reality stimulation.
Popović, Sinisa; Horvat, Marko; Kukolja, Davor; Dropuljić, Branimir; Cosić, Kresimir
2009-01-01
Significant proportion of psychological problems related to combat stress in recent large peacekeeping operations underscores importance of effective methods for strengthening the stress resistance of military personnel. Adaptive control of virtual reality (VR) stimulation, based on estimation of the subject's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Therefore, following an overview of SIT and its applications in the military setting, generic concept of physiology-driven adaptive VR stimulation is presented in the paper. Toward the end of the paper, closed-loop adaptive control strategy applicable to SIT is outlined.
Cosić, Kresimir; Popović, Sinisa; Kukolja, Davor; Horvat, Marko; Dropuljić, Branimir
2010-02-01
The significant proportion of severe psychological problems related to intensive stress in recent large peacekeeping operations underscores the importance of effective methods for strengthening the prevention and treatment of stress-related disorders. Adaptive control of virtual reality (VR) stimulation presented in this work, based on estimation of the person's emotional state from physiological signals, may enhance existing stress inoculation training (SIT). Physiology-driven adaptive VR stimulation can tailor the progress of stressful stimuli delivery to the physiological characteristics of each individual, which is indicated for improvement in stress resistance. Following an overview of physiology-driven adaptive VR stimulation, its major functional subsystems are described in more detail. A specific algorithm of stimuli delivery applicable to SIT is outlined.
A Synthesis of Current Research On Marijuana
ERIC Educational Resources Information Center
Brubaker, Timothy H.
1973-01-01
Since the isolation of the active component of marijuana (THC), studies have revealed various effects to the memory, specific physiological effects, and definite visual effects to individuals while under the influence of marijuana. The sociological aspects of the drug may stimulate an individual into the use of this drug. (Author)
Ariyasu, Hiroyuki; Akamizu, Takashi
2015-01-01
Ghrelin, an endogenous ligand for the growth hormone (GH) secretagogue receptor (GHS-R or ghrelin receptor), is a 28-amino acid acylated peptide mainly produced in the stomach. The pharmacological administration of ghrelin is known to exert diverse effects, such as stimulating GH secretion, promoting food intake, and increasing adiposity. In recent years, genetically engineered mouse models have provided important insights into the physiology of various hormones. In this review, we discuss current knowledge regarding the physiological significance of ghrelin on the basis of studies using genetically engineered mouse models with modifications in the ghrelin system.
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
Extra-auditory responses to long-term intermittent noise stimulation in humans.
Fruhstorfer, B; Hensel, H
1980-12-01
Respiration, heart rate, cutaneous blood flow, and electroencephalogram (EEG) reactions to long-term intermittent noise exposure were recorded from 13 volunteers (20-29 yr) with normal hearing and vegetative reactivity. They received daily within 1 h 12 noise stimuli (16 s 100 dB (A) white noise) for 10 or 21 days, respectively. Most subjects reported partial subjective adaptation to the noise. Heart rate adapted within a session but did not change considerably during successive days. Vascular responses did not change during one session but diminished mainly during the first 10 days. Noise responses in the EEG remained constant, but a decrease in vigilance occurred during the whole experimental series. Respiration responses were unpredictable and showed no trend within the sessions. It was concluded that certain physiological responses adapt to loud noise but that the time course of adaptation is different. Therefore a general statement about physiological noise adaptation is not possible.
The Effect of Surface Electrical Stimulation on Vocal Fold Position
Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Ludlow, Christy L.
2008-01-01
Objectives/Hypothesis Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Design Prospective single effects study. Methods The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using ten different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Results Vocal fold angles changed only to a small extent during two electrode placements (p ≤ 0.05). When two sets of electrodes were placed vertically on the neck the mean true vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (p=0.03). Conclusions Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing and one position may produce a slight increase in true vocal fold opening. PMID:18043496
Progranulin and its biological effects in cancer.
Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura
2017-11-07
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.
2014-10-01
Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.
Contributions to muscle force and EMG by combined neural excitation and electrical stimulation
Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M
2014-01-01
Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203
Induction of neuroplasticity and recovery in post-stroke aphasia by non-invasive brain stimulation
Shah, Priyanka P.; Szaflarski, Jerzy P.; Allendorfer, Jane; Hamilton, Roy H.
2013-01-01
Stroke victims tend to prioritize speaking, writing, and walking as the three most important rehabilitation goals. Of note is that two of these goals involve communication. This underscores the significance of developing successful approaches to aphasia treatment for the several hundred thousand new aphasia patients each year and over 1 million stroke survivors with chronic aphasia in the U.S. alone. After several years of growth as a research tool, non-invasive brain stimulation (NBS) is gradually entering the arena of clinical aphasiology. In this review, we first examine the current state of knowledge of post-stroke language recovery including the contributions from the dominant and non-dominant hemispheres. Next, we briefly discuss the methods and the physiologic basis of the use of inhibitory and excitatory repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) as research tools in patients who experience post-stroke aphasia. Finally, we provide a critical review of the most influential evidence behind the potential use of these two brain stimulation methods as clinical rehabilitative tools. PMID:24399952
Roach, Shane M.; Song, Dong; Berger, Theodore W.
2012-01-01
Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947
Microscopic magnetic stimulation of neural tissue
Bonmassar, Giorgio; Lee, Seung Woo; Freeman, Daniel K.; Polasek, Miloslav; Fried, Shelley I.; Gale, John T.
2012-01-01
Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices. PMID:22735449
Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A
2017-02-15
Chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) increased and prolonged the long-term potentiation-like plasticity induced by anodal transcranial direct current stimulation (tDCS) for over 24 h. Chronic administration of RBX converted cathodal tDCS-induced long-term depression-like plasticity into facilitation for 120 min. Chronic noradrenergic activity enhancement on plasticity of the human brain might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases. Noradrenaline affects cognition and motor learning processes via its impact on long-term potentiation (LTP) and depression (LTD). We aimed to explore the impact of single dose and chronic administration of the selective noradrenaline reuptake inhibitor (NRI) reboxetine (RBX) on plasticity induced by transcranial direct current stimulation (tDCS) in healthy humans via a double-blinded, placebo-controlled, randomized crossover study. Sixteen healthy volunteers received placebo or single dose RBX (8 mg) before anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took RBX (8 mg day -1 ) consecutively for 21 days. During this period, two additional interventions were performed (RBX with anodal or cathodal tDCS), to explore the impact of chronic RBX treatment on plasticity. Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic administration of RBX increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h. Chronic RBX significantly converted cathodal tDCS-induced LTD-like plasticity into facilitation, as compared to the single dose condition, for 120 min after stimulation. The results show a prominent impact of chronic noradrenergic enhancement on plasticity of the human brain that might partially explain the delayed therapeutic impact of selective NRIs in depression and other neuropsychiatric diseases. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
A wireless integrated circuit for 100-channel charge-balanced neural stimulation.
Thurgood, B K; Warren, D J; Ledbetter, N M; Clark, G A; Harrison, R R
2009-12-01
The authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in - vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (< 100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex.
Charge Trapping in Interface Doped MNOS Structures.
1981-07-01
Current density 55 0 JN Current density in nitride at gate 55 k Boltzmann’s constant: 1.38 x 10-23 joule /0K 85 m Effective mass of carrier 89 xi MIS...Trap Barrier Lowering by Applied Field: Poole-Frenkel Effect 90 vi Figure 3- 2: Thermally Stimulated Current System 92 Figure 3- 3: TSC Curves from a...Tungsten Atomic Concentration vs Effective Thickness 175 ix List of Tables Table 1-1: Trap Energy Levels and Spatial Densities 31 Table 2-1: Device
Distinct interneuronal networks influence excitability of the surround during movement initiation.
Thirugnanasambandam, Nivethida; Khera, Rohan; Wang, Han; Kukke, Sahana N; Hallett, Mark
2015-08-01
Surround inhibition (SI) is a feature of motor control in which activation of task-related muscles is associated with inhibition of neighboring, nonprotagonist muscles, allowing selective motor control. The physiological basis for SI still remains unknown. In all previous studies, SI in the motor system was measured during movement initiation by using transcranial magnetic stimulation (TMS) to deliver a posteroanterior current at a single suprathreshold intensity. To expand our understanding of SI, we explored this phenomenon at a wide range of intensities and by stimulating motor cortex with currents along anteroposterior and lateromedial directions. Fifteen healthy volunteers performed a brief isometric index finger flexion on hearing a tone. Electromyography was recorded from the synergist and surround finger muscles. Single-pulse TMS was applied to stimulate the surround muscle at different intensities at rest or movement initiation. The motor evoked potential (MEP) amplitudes were then plotted against stimulation intensities to obtain the MEP recruitment curves for the rest and movement initiation conditions and for the three current directions for every subject. From the recruitment curves, we found that surround inhibition could be elicited only by the posteroanterior current. Hence, we postulate that surround inhibition is mediated by intracortical circuits in the motor cortex. Also, for the first time, we observed surround facilitation when the motor cortex was stimulated with anteroposterior current. Further studies are needed to investigate the mechanisms underlying both these phenomena individually in healthy subjects and patients with dystonia and other movement disorders.
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; McHenry, M. Q.; Dickman, J. D.; Perachio, A. A.
2000-01-01
The effects of functional, reversible ablation and potential recruitment of the most irregular otolith afferents on the dynamics and sensitivity of the translational vestibuloocular reflexes (trVORs) were investigated in rhesus monkeys trained to fixate near and far targets. Translational motion stimuli consisted of either steady-state lateral and fore-aft sinusoidal oscillations or short-lasting transient lateral head displacements. Short-duration (usually <2 s) anodal (inhibitory) and cathodal (excitatory) currents (50-100 microA) were delivered bilaterally during motion. In the presence of anodal labyrinthine stimulation, trVOR sensitivity and its dependence on viewing distance were significantly decreased. In addition, anodal currents significantly increased phase lags. During transient motion, anodal stimulation resulted in significantly lower initial eye acceleration and more sluggish responses. Cathodal currents tended to have opposite effects. The main characteristics of these results were simulated by a simple model where both regularly and irregularly discharging afferents contribute to the trVORs. Anodal labyrinthine currents also were found to decrease eye velocity during long-duration, constant velocity rotations, although results were generally more variable compared with those during translational motion.
Theta-burst microstimulation in the human entorhinal area improves memory specificity.
Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak
2017-10-24
The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.
Celler, B G; Stella, A; Golin, R; Zanchetti, A
1996-08-01
In ten sino aortic denervated, vagotomized and aneasthetized cats, renal efferent nerves were stimulated for 30 s with trains of constant current pulses at frequencies in the range 5-30 Hz. The arterial pressure, heart rate, urine flow rate (electronic drop counter) and renal blood flow (electromagnetic technique) were recorded. Subsequent computer processing gave the true means of renal artery pressure (MRAP) and renal blood flow (MRBF) and hence the renal vascular resistance (MRVR), over each cardiac cycle. Recovery of MRVR after the end of stimulation exhibited two distinct time constants. The fast component had a time constant of 2.03 +/- 0.26 s and represented 60.2 +/- 1.71% of the recovery. The time constant of the slower component was 14.1 +/- 1.9 s and represented 36.0 +/- 1.6% of the recovery. The relationship between MRVR and stimulus frequency was sigmoidal with maximum sensitivity at stimulus frequencies of 12.6 +/- 0.76 Hz. Changes in urine flow rate, in contrast, followed a hyperbolic function with maximum response sensitivity occurring at very low stimulus frequencies. Changes in urine flow rate were 50% complete at stimulus frequencies of 5 Hz. Identification of two distinct components in the relaxation phase of renal vascular resistance leads to a reasonable hypothesis that 60% of total renal vascular resistance may lie proximal to the glomerulus, whereas 36% may be accounted for by the efferent arterioles.
Kushiyama, Yasunori; Honjo, Haruo; Niwa, Ryoko; Takanari, Hiroki; Yamazaki, Masatoshi; Takemoto, Yoshio; Sakuma, Ichiro; Kodama, Itsuo; Kamiya, Kaichiro
2016-09-01
It has been reported that blockade of the inward rectifier K(+) current (IK1) facilitates termination of ventricular fibrillation. We hypothesized that partial IK1 blockade destabilizes spiral wave (SW) re-entry, leading to its termination. Optical action potential (AP) signals were recorded from left ventricles of Langendorff-perfused rabbit hearts with endocardial cryoablation. The dynamics of SW re-entry were analyzed during ventricular tachycardia (VT), induced by cross-field stimulation. Intercellular electrical coupling in the myocardial tissue was evaluated by the space constant. In separate experiments, AP recordings were made using the microelectrode technique from right ventricular papillary muscles of rabbit hearts. Ba(2+) (10-50 μM) caused a dose-dependent prolongation of VT cycle length and facilitated termination of VT in perfused hearts. Baseline VT was maintained by a stable rotor, where an SW rotated around an I-shaped functional block line (FBL). Ba(2+) at 10 μM prolonged I-shaped FBL and phase-singularity trajectory, whereas Ba(2+) at 50 μM transformed the SW rotation dynamics from a stable linear pattern to unstable circular/cycloidal meandering. The SW destabilization was not accompanied by SW breakup. Under constant pacing, Ba(2+) caused a dose-dependent prolongation of APs, and Ba(2+) at 50 μM decreased conduction velocity. In papillary muscles, Ba(2+) at 50 μM depolarized the resting membrane potential. The space constant was increased by 50 μM Ba(2+) Partial IK1 blockade destabilizes SW rotation dynamics through a combination of prolongation of the wave length, reduction of excitability, and enhancement of electrotonic interactions, which facilitates termination of ventricular tachyarrhythmias. Copyright © 2016 the American Physiological Society.
Meffin, Hamish; Tahayori, Bahman; Grayden, David B; Burkitt, Anthony N
2012-12-01
Neuroprosthetic devices, such as cochlear and retinal implants, work by directly stimulating neurons with extracellular electrodes. This is commonly modeled using the cable equation with an applied extracellular voltage. In this paper a framework for modeling extracellular electrical stimulation is presented. To this end, a cylindrical neurite with confined extracellular space in the subthreshold regime is modeled in three-dimensional space. Through cylindrical harmonic expansion of Laplace's equation, we derive the spatio-temporal equations governing different modes of stimulation, referred to as longitudinal and transverse modes, under types of boundary conditions. The longitudinal mode is described by the well-known cable equation, however, the transverse modes are described by a novel ordinary differential equation. For the longitudinal mode, we find that different electrotonic length constants apply under the two different boundary conditions. Equations connecting current density to voltage boundary conditions are derived that are used to calculate the trans-impedance of the neurite-plus-thin-extracellular-sheath. A detailed explanation on depolarization mechanisms and the dominant current pathway under different modes of stimulation is provided. The analytic results derived here enable the estimation of a neurite's membrane potential under extracellular stimulation, hence bypassing the heavy computational cost of using numerical methods.
Electrical Stimulation Technologies for Wound Healing
Kloth, Luther C.
2014-01-01
Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348
The enduring legacy of the “constant-field equation” in membrane ion transport
2017-01-01
In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell’s membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport. PMID:28931632
Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).
Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph
2016-09-01
Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.
Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS)
Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph
2016-01-01
Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a ‘top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal ‘activation', cathodal ‘deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the ‘top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep. PMID:27143601
Xu, Kai; Gao, Kunshan
2015-01-01
Emiliania huxleyi, the most abundant coccolithophorid in the oceans, is naturally exposed to solar UV radiation (UVR, 280-400 nm) in addition to photosynthetically active radiation (PAR). We investigated the physiological responses of E. huxleyi to the present day and elevated CO2 (390 vs 1000 μatm; with pH(NBS) 8.20 vs 7.86) under indoor constant PAR and fluctuating solar radiation with or without UVR. Enrichment of CO2 stimulated the production rate of particulate organic carbon (POC) under constant PAR, but led to unchanged POC production under incident fluctuating solar radiation. The production rates of particulate inorganic carbon (PIC) as well as PIC/POC ratios were reduced under the elevated CO2, ocean acidification (OA) condition, regardless of PAR levels, and the presence of UVR. However, moderate levels of UVR increased PIC production rates and PIC/POC ratios. OA treatment interacted with UVR to influence the alga's physiological performance, leading to reduced specific growth rate in the presence of UVA (315-400 nm) and decreased quantum yield, along with enhanced nonphotochemical quenching, with addition of UVB (280-315 nm). The results clearly indicate that UV radiation needs to be invoked as a key stressor when considering the impacts of ocean acidification on E. huxleyi. © 2014 The American Society of Photobiology.
Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan
2015-09-01
Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. Copyright © 2015. Published by Elsevier Inc.
Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan
2015-01-01
Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310
Breeding of tomorrow's chickens to improve well-being.
Cheng, H-W
2010-04-01
Chickens, as well as other animals, have the ability to change their behavior (behavioral plasticity) and physiology (physiological plasticity) based on the costs and benefits to fit their environment (adaptation). Through natural selection, the population preserves and accumulates traits that are beneficial and rejects those that are detrimental in their prevailing environments. The surviving populations are able to contribute more genes associated with beneficial traits for increased fitness to subsequent generations. Natural selection is slow but constant; working over multiple generations, the changes to the population often appear silent or undetectable at a given point in history. Chickens were domesticated from the wild red jungle fowl. The principle of domestication of chickens, as well as other farm animals, by humans is similar to that of natural selection: selecting the best animals with the highest survivability and reproducibility (artificial selection). Compared with natural selection, the process of artificial selection is motivated by human needs and acts more rapidly with more visible results over a short time period. This process has been further accelerated following the development of current breeding programs and the emergence of specialized breeding companies. A laying hen, for example, produces more than 300 hundred eggs a year, whereas a jungle fowl lays 4 to 6 eggs in a year. During the domestication process, chickens retained their capability to adapt to their housing environments, which is usually achieved by genetic changes occurring with each subsequent generation. Genes control the behavioral, physiological, immunological, and psychological responses of animals to stressors, including environmental stimulations. With advances in understanding of genetic mediation of animal physiology and behavior and the discovery of the genome sequences of many species, animal production breeding programs can be improved in both speed and efficiency. Modern chicken breeding programs have the potential to be operated successfully in the breeding of tomorrow's chickens with high production efficiency and optimal welfare, resulting from resistance to stress, disease, or both.
Heise, Kirstin-Friederike; Niehoff, Martina; Feldheim, J.-F.; Liuzzi, Gianpiero; Gerloff, Christian; Hummel, Friedhelm C.
2014-01-01
Changes in γ-aminobutyric acid (GABA) mediated synaptic transmission have been associated with age-related motor and cognitive functional decline. Since anodal transcranial direct current stimulation (atDCS) has been suggested to target cortical GABAergic inhibitory interneurons, its potential for the treatment of deficient inhibitory activity and functional decline is being increasingly discussed. Therefore, after-effects of a single session of atDCS on resting-state and event-related short-interval intracortical inhibition (SICI) as evaluated with double-pulse TMS and dexterous manual performance were examined using a sham-controlled cross-over design in a sample of older and younger participants. The atDCS effect on resting-state inhibition differed in direction, magnitude, and timing, i.e., late relative release of inhibition in the younger and early relative increase in inhibition in the older. More pronounced release of event-related inhibition after atDCS was exclusively seen in the older. Event-related modulation of inhibition prior to stimulation predicted the magnitude of atDCS-induced effects on resting-state inhibition. Specifically, older participants with high modulatory capacity showed a disinhibitory effect comparable to the younger. Beneficial effects on behavior were mainly seen in the older and in tasks requiring higher dexterity, no clear association with physiological changes was found. Differential effects of atDCS on SICI, discussed to reflect GABAergic inhibition at the level of the primary motor cortex, might be distinct in older and younger participants depending on the functional integrity of the underlying neural network. Older participants with preserved modulatory capacity, i.e., a physiologically “young” motor network, were more likely to show a disinhibitory effect of atDCS. These results favor individually tailored application of tDCS with respect to specific target groups. PMID:25071555
Stephani, Caspar; Paulus, Walter; Sommer, Martin
2016-01-01
The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
'The effect of different genres of music on the stress levels of kennelled dogs'.
Bowman, A; Dowell, F J; Evans, N P
2017-03-15
Classical music has been shown to reduce stress in kennelled dogs; however, rapid habituation of dogs to this form of auditory enrichment has also been demonstrated. The current study investigated the physiological and behavioural response of kennelled dogs (n=38) to medium-term (5days) auditory enrichment with five different genres of music including Soft Rock, Motown, Pop, Reggae and Classical, to determine whether increasing the variety of auditory stimulation reduces the level of habituation to auditory enrichment. Dogs were found to spend significantly more time lying and significantly less time standing when music was played, regardless of genre. There was no observable effect of music on barking, however, dogs were significantly (z=2.2, P<0.05) more likely to bark following cessation of auditory enrichment. Heart Rate Variability (HRV) was significantly higher, indicative of decreased stress, when dogs were played Soft Rock and Reggae, with a lesser effect observed when Motown, Pop and Classical genres were played. Relative to the silent period prior to auditory enrichment, urinary cortisol:creatanine (UCCR) values were significantly higher during Soft Rock (t=2.781, P<0.01) and the second silent control period following auditory enrichment (t=2.46, P<0.05). Despite the mixed response to different genres, the physiological and behavioural changes observed remained constant over the 5d of enrichment suggesting that the effect of habituation may be reduced by increasing the variety of auditory enrichment provided. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Lizhi; Gutbrod, Sarah R.; Bonifas, Andrew P.; Su, Yewang; Sulkin, Matthew S.; Lu, Nanshu; Chung, Hyun-Joong; Jang, Kyung-In; Liu, Zhuangjian; Ying, Ming; Lu, Chi; Webb, R. Chad; Kim, Jong-Seon; Laughner, Jacob I.; Cheng, Huanyu; Liu, Yuhao; Ameen, Abid; Jeong, Jae-Woong; Kim, Gwang-Tae; Huang, Yonggang; Efimov, Igor R.; Rogers, John A.
2015-01-01
Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable bioti-/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy. PMID:24569383
Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.
Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z
2017-03-01
A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.
High Intracellular Chloride Slows the Decay of Glycinergic Currents
Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco
2009-01-01
The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182
Bikson, Marom; Brunoni, Andre R; Charvet, Leigh E; Clark, Vincent P; Cohen, Leonardo G; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J; Frohlich, Flavio; Kappenman, Emily S; Lim, Kelvin O; Loo, Colleen; Mantovani, Antonio; McMullen, David P; Parra, Lucas C; Pearson, Michele; Richardson, Jessica D; Rumsey, Judith M; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M; Woods, Adam J; Lisanby, Sarah H
Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. Published by Elsevier Inc.
Bikson, Marom; Brunoni, Andre R.; Charvet, Leigh E.; Clark, Vincent P.; Cohen, Leonardo G.; Deng, Zhi-De; Dmochowski, Jacek; Edwards, Dylan J.; Frohlich, Flavio; Kappenman, Emily S.; Lim, Kelvin O.; Loo, Colleen; Mantovani, Antonio; McMullen, David P.; Parra, Lucas C.; Pearson, Michele; Richardson, Jessica D.; Rumsey, Judith M.; Sehatpour, Pejman; Sommers, David; Unal, Gozde; Wassermann, Eric M.; Woods, Adam J.; Lisanby, Sarah H.
2018-01-01
Background Neuropsychiatric disorders are a leading source of disability and require novel treatments that target mechanisms of disease. As such disorders are thought to result from aberrant neuronal circuit activity, neuromodulation approaches are of increasing interest given their potential for manipulating circuits directly. Low intensity transcranial electrical stimulation (tES) with direct currents (transcranial direct current stimulation, tDCS) or alternating currents (transcranial alternating current stimulation, tACS) represent novel, safe, well-tolerated, and relatively inexpensive putative treatment modalities. Objective This report seeks to promote the science, technology and effective clinical applications of these modalities, identify research challenges, and suggest approaches for addressing these needs in order to achieve rigorous, reproducible findings that can advance clinical treatment. Methods The National Institute of Mental Health (NIMH) convened a workshop in September 2016 that brought together experts in basic and human neuroscience, electrical stimulation biophysics and devices, and clinical trial methods to examine the physiological mechanisms underlying tDCS/tACS, technologies and technical strategies for optimizing stimulation protocols, and the state of the science with respect to therapeutic applications and trial designs. Results Advances in understanding mechanisms, methodological and technological improvements (e.g., electronics, computational models to facilitate proper dosing), and improved clinical trial designs are poised to advance rigorous, reproducible therapeutic applications of these techniques. A number of challenges were identified and meeting participants made recommendations made to address them. Conclusions These recommendations align with requirements in NIMH funding opportunity announcements to, among other needs, define dosimetry, demonstrate dose/response relationships, implement rigorous blinded trial designs, employ computational modeling, and demonstrate target engagement when testing stimulation-based interventions for the treatment of mental disorders. PMID:29398575
Peoples, Gregory E; McLennan, Peter L
2017-06-01
Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.
Jensen, Ralph J; Rizzo, Joseph F; Ziv, Ofer R; Grumet, Andrew; Wyatt, John
2003-08-01
To determine electrical thresholds required for extracellular activation of retinal ganglion cells as part of a project to develop an epiretinal prosthesis. Retinal ganglion cells were recorded extracellularly in retinas isolated from adult New Zealand White rabbits. Electrical current pulses of 100- micro s duration were delivered to the inner surface of the retina from a 5- micro m long electrode. In about half of the cells, the point of lowest threshold was found by searching with anodal current pulses; in the other cells, cathodal current pulses were used. Threshold measurements were obtained near the cell bodies of 20 ganglion cells and near the axons of 19 ganglion cells. Both cathodal and anodal stimuli evoked a neural response in the ganglion cells that consisted of a single action potential of near-constant latency that persisted when retinal synaptic transmission was blocked with cadmium chloride. For cell bodies, but not axons, thresholds for both cathodal and anodal stimulation were dependent on the search method used to find the point of lowest threshold. With search and stimulation of matching polarity, cathodal stimuli evoked a ganglion cell response at lower currents (approximately one seventh to one tenth axonal threshold) than did anodal stimuli for both cell bodies and axons. With cathodal search and stimulation, cell body median thresholds were somewhat lower (approximately one half) than the axonal median thresholds. With anodal search and stimulation, cell body median thresholds were approximately the same as axonal median thresholds. The results suggest that cathodal stimulation should produce lower thresholds, more localized stimulation, and somewhat better selectivity for cell bodies over axons than would anodal stimulation.
Janice Jimenez-Torres, G; Weinstein, Benjamin L; Walker, Cory R; Christopher Fowler, J; Ashford, Philippa; Borckardt, Jeffrey J; Madan, Alok
2017-03-01
Available treatments for chronic pain (CP) are modestly effective or associated with iatrogenic harm. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that may be an effective, adjunctive treatment to non-opioid therapies. In this randomized control trial (RCT), we compare adjunctive active versus sham tDCS among patients in a multimodal inpatient pain management program. The primary objectives of the RCT are to improve pain tolerance and subjective pain experience. Patients admitted to the Pain Management Program at The Menninger Clinic in Houston, Texas are eligible for this trial. Eighty-four participants will be randomized (1:1) into a single-blind, 2×12 (group×time) controlled trial. A battery-powered direct and constant current stimulator (Soterix Medical Inc. 2014) delivers anodal stimulation over the left dorsolateral prefrontal cortex (DLPFC) and cathodal stimulation over the right DLPFC. Active tDCS is applied by supplying a 2mA current for 20min/session over 10 sessions. Participants complete self-report and performance-based assessments on a weekly basis just prior to brain stimulation. Self-report assessments are collected via Chronic Pain Tracker version 3.6, an iPad interfaced application. The performance-based pain tolerance task is completed through the cold presser task. Interventions with cross-symptomatic therapeutic potential are absolutely essential in the context of CP, in which psychiatric comorbidity is the norm. Modalities that can be used in tandem with evidence-based, non-opioid therapies have the potential to have a synergistic effect, resulting in increased effectiveness of what have been modestly effective treatments to date. Copyright © 2017 Elsevier Inc. All rights reserved.
Nathaniel, Thomas I; Otukonyong, Effiong; Abdellatif, Ahmed; Soyinka, Julius O
2012-10-01
Recent investigations of hypoxia physiology in the naked mole rat have opened up an interesting line of research into the basic physiological and genomic alterations that accompany hypoxia survival. The extent to which such findings connect the effect of hypoxia to metabolic rate (O₂ consumption), core body temperature (Tb), and transcripts encoding the immediate early gene product (such as c-fos) under a constant ambient temperature (Ta) is not well known. We investigated this issue in the current study. Our first sets of experiments measured Tb and metabolic rates during exposure of naked mole rats to hypoxia over a constant Ta. Hypoxia significantly decreased metabolic rates in the naked mole rat. Although core Tb also decreased during hypoxia, the effect of hypoxia in suppressing core Tb was not significant. The second series of experiments revealed that c-fos protein and mRNA expression in the hippocampus neurons (CA1) increased in naked mole rats that were repeatedly exposed to 3% O₂ for 60 min per day for 5 days when compared to normoxia. Our findings provide evidence for the up-regulation of c-fos and suppression of metabolic rate in hypoxia tolerating naked mole rats under constant ambient temperature. Metabolic suppression and c-fos upregulation constitute part of the physiological complex associated with adaptation to hypoxia. Published by Elsevier Ltd.
Revill, Ann L; Fuglevand, Andrew J
2017-01-01
Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing rate profiles were best fitted by rising exponential functions. With stimulation, however, firing rate profiles were best fitted with linear functions or with less steeply rising exponentials. Firing rate profiles for the descending phases of the contractions were best fitted with linear functions for both control and stimulation conditions. These results seem consistent with the idea that PICs contribute to non-linear firing rate profiles during ascending but not descending phases of contractions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment.
Mermillod-Blondin, F; Lefour, C; Lalouette, L; Renault, D; Malard, F; Simon, L; Douady, C J
2013-05-01
The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of three isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by an annual temperature amplitude of less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies, although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.
Edwards, Dylan; Cortes, Mar; Datta, Abhishek; Minhas, Preet; Wassermann, Eric M.; Bikson, Marom
2015-01-01
Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric fields in human transcranial stimulation, and (2) assess the magnitude and spread of cortical electric field with a novel High-Definition tDCS (HD-tDCS) scalp montage using a 4×1-Ring electrode configuration. In three healthy adults, Transcranial Electrical Stimulation (TES) over primary motor cortex (M1) was delivered using the 4×1 montage (4× cathode, surrounding a single central anode; montage radius ~3 cm) with sufficient intensity to elicit a discrete muscle twitch in the hand. The estimated current distribution in M1 was calculated using the individualized MRI-based model, and compared with the observed motor response across subjects. The response magnitude was quantified with stimulation over motor cortex as well as anterior and posterior to motor cortex. In each case the model data were consistent with the motor response across subjects. The estimated cortical electric fields with the 4×1 montage were compared (area, magnitude, direction) for TES and tDCS in each subject. We provide direct evidence in humans that TES with a 4×1-Ring configuration can activate motor cortex and that current does not substantially spread outside the stimulation area. Computational models predict that both TES and tDCS waveforms using the 4×1-Ring configuration generate electric fields in cortex with comparable gross current distribution, and preferentially directed normal (inward) currents. The agreement of modeling and experimental data for both current delivery and focality support the use of the HD-tDCS 4×1-Ring montage for cortically targeted neuromodulation. PMID:23370061
Technical Rebuilding of Movement Function Using Functional Electrical Stimulation
NASA Astrophysics Data System (ADS)
Gföhler, Margit
To rebuild lost movement functions, neuroprostheses based on functional electrical stimulation (FES) artificially activate skeletal muscles in corresponding sequences, using both residual body functions and artificial signals for control. Besides the functional gain, FES training also brings physiological and psychological benefits for spinal cord-injured subjects. In this chapter, current stimulation technology and the main components of FES-based neuroprostheses including enhanced control systems are presented. Technology and application of FES cycling and rowing, both approaches that enable spinal cord-injured subjects to participate in mainstream activities and improve their health and fitness by exercising like able-bodied subjects, are discussed in detail, and an overview of neuroprostheses that aim at restoring movement functions for daily life as walking or grasping is given.
Hidalgo, C; Latorre, R
1970-11-01
1. The permeability for micro-injected [(3)H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed.2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above.3. Experiments were done with the combined voltage clamp-perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant.4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled.
Hidalgo, Cecilia; Latorre, Ramón
1970-01-01
1. The permeability for micro-injected [3H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed. 2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above. 3. Experiments were done with the combined voltage clamp—perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant. 4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled. PMID:5500991
Manipulating neuronal activity with low frequency transcranial ultrasound
NASA Astrophysics Data System (ADS)
Moore, Michele Elizabeth
Stimulation of the rodent cerebral cortex is used to investigate the underlying biological basis for the restorative effects of slow wave sleep. Neuronal activation by optogenetic and ultrasound stimulation elicits changes in action potentials across the cerebral cortex that are recorded as electroencephalograms. Optogenetic stimulation requires an invasive implantation procedure limiting its application in human studies. We sought to determine whether ultrasound stimulation could be as effective as optogenetic techniques currently used, in an effort to further understand the physiological and metabolic requirements of sleep. We successfully recorded electroencephalograms in response to transcranial ultrasound stimulation of the barrel cortex at 1 and 7 Hz frequencies, comparing them to those recorded in response to optogenetic stimuli applied at the same frequencies. Our results showed application of a 473 nm blue LED positioned 6 cm above the skull and ultrasound stimulation at an output voltage of 1000 mVpp produced electroencephalograms with physiological responses of similar amplitude. We concluded that there exists an intensity-proportionate response in the optogenetic stimulation, but not with ultrasound stimulation at the frequencies we surveyed. Activation of neuronal cells in response to optogenetic stimulation in a Thy1-ChR2 transgenic mouse line is specifically targeted to pyramidal cells in the cerebral cortex. ChR2 responses to optogenetic stimulation are mediated by a focal activation of neuronal ion channels. We measured electrophysiological responses to ultrasound stimulation, comparing them to those recorded from optogenetic stimuli. Our results show striking similarities between ultrasound-induced responses and optogenetically-induced responses, which may indicate that transcranial ultrasound stimulation is also mediated by ion channel dependent processes in cerebral cortical neurons. The biophysical substrates for electrical excitability of neurons impose temporal constraints on their response to stimulation. If ultrasound-mediated responses are, in fact, ion channel mediated responses, ultrasound-induced responses should exhibit time-dependence characteristics similar to those of optogenetically-triggered responses. Minimal stimulus duration thresholds and the temporal limits of paired pulse facilitation for ultrasound stimulation were identical to those of optogenetic stimulation. Collectively, these experiments demonstrate an electrophysiological basis for low-frequency transcranial ultrasound stimulation of cerebral cortical neuronal activity.
Mantovani, F; Mastromarino, G; Fenice, O; Canclini, L; Patelli, E; Colombo, F; Vecchio, D; Austoni, E
1994-09-01
The recent clinical and experimental research innovations in Andrology make possible the following classification of impotence: "Failure to initiate" "Failure to store" "Failure to fill" The last aspect, including veno-occlusive dysfunction, is continuously reevaluated by andrologic studies. The main diagnostic procedure of this complex problem, in constant evolution, is represented by cavernometry. Recently, but with full success, we are utilizing direct radioisotopic penogram in video sexy stimulation: in preselection function but probably in future with substitutive function of the more invasive and traditional cavernometry. In spite of this methodologic progress the findings of cavernometry are in continuous discussion as in tumultuous evolution, in anatomo-physiological environment, is the intracavernous district that, for many aspects, necessity of ulterior histochemical, pharmacodynamic and neurophysiological acknowledgements.
Boiko, A N; Batysheva, T T; Minaeva, N G; Babina, L A; Vdovichenko, T V; Zhuravleva, E Yu; Shikhkerimov, R K; Malykhina, E A; Khozova, A A; Zaitsev, K A; Kostenko, E V
2008-11-01
Despite the significant symptomatic effects of levodopa, stable 24-h treatment responses are in the vast majority of patients replaced 2-3 years from the start of treatment by oscillations in motor symptoms (fluctuation, dyskinesia), amelioration of which requires addition of constant (physiological) stimulation of postsynaptic dopamine receptors. To some extent this is provided by Stalevo, which contains levodopa and two enzyme inhibitors: the DDC inhibitor carbidopa and the COMT inhibitor entacapone. The results obtained in the present study demonstrated the advantages of Stalevo over traditional agents in patients with the "wearing off" and "on-off" phenomena.
ORAL INSECT REPELLENTS - INSECT TASTE RECEPTORS AND THEIR ACTION,
CULICIDAE, * CHEMORECEPTORS ), INSECT REPELLENTS, ELECTROPHYSIOLOGY, STIMULATION(PHYSIOLOGY), ELECTROLYTES(PHYSIOLOGY), BLOOD, INGESTION(PHYSIOLOGY), REPRODUCTION(PHYSIOLOGY), NUTRITION, ENTOMOLOGY, AEDES, MOUTH
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
Immersive Environments: Using Flow and Sound to Blur Inhabitant and Surroundings
NASA Astrophysics Data System (ADS)
Laverty, Luke
Following in the footsteps of motif-reviving, aesthetically-focused Postmodern and deconstructivist architecture, purely computer-generated formalist contemporary architecture (i.e. blobitecture) has been reduced to vast, empty sculptural, and therefore, purely ocularcentric gestures for their own sake. Taking precedent over the deliberate relation to the people inhabiting them beyond scaleless visual stimulation, the forms become separated from and hostile toward their inhabitants; a boundary appears. This thesis calls for a reintroduction of human-centered design beyond Modern functionalism and ergonomics and Postmodern form and metaphor into architecture by exploring ecological psychology (specifically how one becomes attached to objects) and phenomenology (specifically sound) in an attempt to reach a contemporary human scale using the technology of today: the physiological mind. Psychologist Dr. Mihaly Csikszentmihalyi's concept of flow---when one becomes so mentally immersed within the current activity and immediate surroundings that the boundary between inhabitant and environment becomes transparent through a form of trance---is the embodiment of this thesis' goal, but it is limited to only specific moments throughout the day and typically studied without regard to the environment. Physiologically, the area within the brain---the medial prefrontal cortex---stimulated during flow experiences is also stimulated by the synthesis of sound, memory, and emotion. By exploiting sound (a sense not typically focused on within phenomenology) as a form of constant nuance within the everyday productive dissonance, the engagement and complete concentration on one's own interpretation of this sensory input affords flow experiences and, therefore, a blurred boundary with one's environment. This thesis aims to answer the question: How does the built environment embody flow? The above concept will be illustrated within a ubiquitous building type---the everyday housing tower---in the form of a live-work vertical artist commune in New York City---the antithesis of intimate, human architectural environments---coupled with the design of a sound sensory experiential walk through the surrounding blurred neighborhood boundaries in the attempt to exploit and create an environment one becomes absorbed within and feels comfortable enough with which to experience flow. To do so, the characteristics of flow lead to the capturing of the senses, interaction, and flexibility. This thesis will explore and exploit how one perceives, interacts with, and becomes attached to when confronted with a space or artifact; reintroducing the humanity into contemporary architecture.
Watanabe, Masashi; Takayama, Shin; Yamamoto, Yoshiko; Nagase, Satoru; Seki, Takashi; Yaegashi, Nobuo
2012-01-01
Acupuncture is commonly performed on acupoints. A comparison of quantitative physiological alterations induced by stimulation on different acupoints has never been performed in the superior mesenteric artery (SMA) in humans. Therefore, we investigated changes in blood flow volume (BFV) in the SMA as an indicator of physiological effects induced by stimulation on 3 points. Thirty healthy participants aged 29 ± 10 years (mean ± SD) were enrolled. All participants underwent stimulations on 3 points located in the lower legs: ST36, LR3, and a non-acupoint. Control pertains to a condition with no-stimulation. Stimulation was performed bilaterally with manual rotation of the needles. BFV was measured by ultrasonography before insertion and 10, 20, 30, and 60 minutes after stimulation. Following acupuncture on ST36, BFV increased significantly 20 and 30 minutes after stimulation, compared to BFV before insertion (P < 0.05). Following stimulation on LR3 and the non-acupoint, no significant differences in BFV could be found. Relative to the no-stimulation group, stimulation on LR3, and the non-acupoint, stimulation on ST36 elicited a significant increase in BFV (P < 0.05). The results suggest that stimulation on the different points causes distinct physiological effects in BFV in the SMA. PMID:22675391
Watanabe, Masashi; Takayama, Shin; Yamamoto, Yoshiko; Nagase, Satoru; Seki, Takashi; Yaegashi, Nobuo
2012-01-01
Acupuncture is commonly performed on acupoints. A comparison of quantitative physiological alterations induced by stimulation on different acupoints has never been performed in the superior mesenteric artery (SMA) in humans. Therefore, we investigated changes in blood flow volume (BFV) in the SMA as an indicator of physiological effects induced by stimulation on 3 points. Thirty healthy participants aged 29 ± 10 years (mean ± SD) were enrolled. All participants underwent stimulations on 3 points located in the lower legs: ST36, LR3, and a non-acupoint. Control pertains to a condition with no-stimulation. Stimulation was performed bilaterally with manual rotation of the needles. BFV was measured by ultrasonography before insertion and 10, 20, 30, and 60 minutes after stimulation. Following acupuncture on ST36, BFV increased significantly 20 and 30 minutes after stimulation, compared to BFV before insertion (P < 0.05). Following stimulation on LR3 and the non-acupoint, no significant differences in BFV could be found. Relative to the no-stimulation group, stimulation on LR3, and the non-acupoint, stimulation on ST36 elicited a significant increase in BFV (P < 0.05). The results suggest that stimulation on the different points causes distinct physiological effects in BFV in the SMA.
Droste, Nicolas; Peacock, Amy; Bruno, Raimondo; Pennay, Amy; Zinkiewicz, Lucy; Lubman, Dan I; Miller, Peter
2017-08-01
Negative physiological stimulation and sedation side effects are experienced by a significant proportion of consumers who consume alcohol mixed with energy drinks (AmED). Few studies have compared the frequency of side effects between sessions of AmED and sessions of alcohol only within-subject, and none have explored a dose relationship. Explore the occurrence of self-reported physiological stimulant and sedative side effects between sessions of AmED and alcohol only, and at varying ED dosage levels within AmED sessions. A convenience sample of 2953 residents of New South Wales, Australia completed an online survey. N=731 AmED users reported daily caffeine intake, typical alcohol and AmED consumption, and past 12-month experience of physiological stimulation and sedation side effects during AmED and alcohol only sessions. Within-subject analyses compared occurrence of side effects between session types. Hierarchical binary logistic regression analyses explored the association of ED dose during AmED sessions with the experience of physiological side effects. There were greater odds of most stimulant side effects, and lower odds of sedation side effects, during AmED sessions compared to alcohol only sessions. Compared to one ED, consumption of three or more EDs was significantly associated with the majority of both stimulant and alcohol intoxication side effects after controlling for demographics and consumption covariates. AmED is associated with perceived changes in physiological stimulant and sedation side effects of alcohol. Experience of side effects is positively associated with ED dosage. Future research should account for varying ED dosage, and reflect real world consumption levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Electrical Response to Injury: Molecular Mechanisms and Wound Healing
Reid, Brian; Zhao, Min
2014-01-01
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358
Turco, Cristina; Di Pino, Giovanni; Arcara, Giorgio
2018-01-01
Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders. PMID:29593782
Heitmann, Stewart; Rule, Michael; Truccolo, Wilson; Ermentrout, Bard
2017-01-01
Constant optogenetic stimulation targeting both pyramidal cells and inhibitory interneurons has recently been shown to elicit propagating waves of gamma-band (40-80 Hz) oscillations in the local field potential of non-human primate motor cortex. The oscillations emerge with non-zero frequency and small amplitude-the hallmark of a type II excitable medium-yet they also propagate far beyond the stimulation site in the manner of a type I excitable medium. How can neural tissue exhibit both type I and type II excitability? We investigated the apparent contradiction by modeling the cortex as a Wilson-Cowan neural field in which optogenetic stimulation was represented by an external current source. In the absence of any external current, the model operated as a type I excitable medium that supported propagating waves of gamma oscillations similar to those observed in vivo. Applying an external current to the population of inhibitory neurons transformed the model into a type II excitable medium. The findings suggest that cortical tissue normally operates as a type I excitable medium but it is locally transformed into a type II medium by optogenetic stimulation which predominantly targets inhibitory neurons. The proposed mechanism accounts for the graded emergence of gamma oscillations at the stimulation site while retaining propagating waves of gamma oscillations in the non-stimulated tissue. It also predicts that gamma waves can be emitted on every second cycle of a 100 Hz oscillation. That prediction was subsequently confirmed by re-analysis of the neurophysiological data. The model thus offers a theoretical account of how optogenetic stimulation alters the excitability of cortical neural fields.
Acute effects of gentamicin on the ionic currents of semicircular canal hair cells in the frog.
Martini, Marta; Canella, Rita; Prigioni, Ivo; Russo, Giancarlo; Tavazzani, Elisa; Fesce, Riccardo; Rossi, Maria Lisa
2011-12-01
The effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(Ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (∼34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics. The I(KCa) component of the delayed I(KD) was similarly affected: peak and steady-state mean amplitudes were significantly reduced, by about 47 and 54%, respectively, whereas the time constant of the mono-exponential current rising phase did not change. The Ca(2+) independent fraction of I(KD), I(KV), and the fast IA current were unaffected. Transduction channels (permeable to and blocked by gentamicin) are not available in the isolated hair cell, so the effect of intracellular gentamicin was tested by applying the drug through the patch pipette (1 mM in the pipette): again, it significantly reduced both I(Ca) and I(KD) amplitude, without affecting currents kinetics. IA properties were also unaffected. The drug did not affect the onset and removal of I(KD) inactivation, although the changes were scaled to the reduced I(KD) amplitude. From these observations, it is expected that hair cells exposed to gentamicin 'in vivo' become unresponsive to physiological stimulation (block of the transduction channels) and transmitter release at the cytoneural junction be drastically depressed due to reduced Ca(2+) inflow. In particular, functional impairment ensues much earlier than biochemical events that lead to hair cell apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Watanabe, Masashi; Takayama, Shin; Hirano, Atsushi; Seki, Takashi; Yaegashi, Nobuo
2012-01-01
Acupuncture is commonly performed at acupoints. No comparisons of quantitative physiological alterations in the brachial artery (BA) induced by the stimulation of different acupoints in the lower limbs have been performed in humans. Therefore, we investigated changes in blood flow volume (BFV) in the BA as an indicator of the physiological effects induced by stimulation at 3 points. Seventy-five healthy participants aged 33 ± 9 years (mean ± SD) were enrolled and randomly assigned to 3 groups; they received stimulation at 3 different points located on the lower limbs: ST36, LR3, and a non-acupoint. Stimulation was performed bilaterally with manual rotation of the needles. Using ultrasonography, BFV was measured continuously from rest to 180 seconds after stimulation. LR3 stimulation significantly increased BFV compared to that before needle insertion. Meanwhile, stimulation at ST36 and the non-acupoint significantly decreased BFV compared to that before needle insertion. Stimulation at LR3 elicited a significant increase in BFV compared to that at ST36 and the non-acupoint. The results suggest that the stimulation of different points on the lower limbs causes distinct physiological effects on BFV in the BA.
Crago, Patrick E; Makowski, Nathaniel S
2014-10-01
Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.
Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano
2016-08-01
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Khizhkin, Evgeniy A; Ilukha, Victor A; Vinogradova, Irina A; Uzenbaeva, Lyudmila B; Ilyina, Tatiana N; Yunash, Victoria D; Morozov, Artem V; Anisimov, Vladimir N
2017-01-01
The present study was aimed to identify how age-related changes in some physiological and biochemical systems are related to changes in the life span of rats with long-term pineal gland hypo- and hyperfunction induced by constant light and constant darkness, respectively. At the age of 25 days the rats were randomly divided into 3 groups: standard light/dark regimen (LD), constant light (LL) and constant darkness (DD). Age-related Antioxidant System (AOS) changes in liver tissues, alteration of immunoreactivity in blood smears were investigated, pubescence and lifespan of the animals were determined. Modification of the level of melatonin synthesis induced by constant light results in interrelated rearrangements in the functioning of the investigated physiological systems. Elevated activity of the antioxidant system extends the lifespan, while at the same time slowing down pubescence and altering the morpho-functional properties of leukocytes in blood. The absence of light/dark alternation (constant light and constant darkness) affects only those physiological indices that follow the organism's circadian rhythms (Activity of Antioxidant Enzymes (AOE), levels of individual immune system cell types), whereas changes in the parameters not governed by circadian fluctuations (vitamin concentrations, pubescence, and aging) depend on the level of melatonin produced by the pineal gland.
Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah
2017-04-17
High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2013-09-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input–output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings. PMID:29695959
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.
Rozier, Kelvin; Bondarenko, Vladimir E
2017-05-01
The β 1 - and β 2 -adrenergic signaling systems play different roles in the functioning of cardiac cells. Experimental data show that the activation of the β 1 -adrenergic signaling system produces significant inotropic, lusitropic, and chronotropic effects in the heart, whereas the effects of the β 2 -adrenergic signaling system is less apparent. In this paper, a comprehensive compartmentalized experimentally based mathematical model of the combined β 1 - and β 2 -adrenergic signaling systems in mouse ventricular myocytes is developed to simulate the experimental findings and make testable predictions of the behavior of the cardiac cells under different physiological conditions. Simulations describe the dynamics of major signaling molecules in different subcellular compartments; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca 2+ handling proteins; modifications of action potential shape and duration; and [Ca 2+ ] i and [Na + ] i dynamics upon stimulation of β 1 - and β 2 -adrenergic receptors (β 1 - and β 2 -ARs). The model reveals physiological conditions when β 2 -ARs do not produce significant physiological effects and when their effects can be measured experimentally. Simulations demonstrated that stimulation of β 2 -ARs with isoproterenol caused a marked increase in the magnitude of the L-type Ca 2+ current, [Ca 2+ ] i transient, and phosphorylation of phospholamban only upon additional application of pertussis toxin or inhibition of phosphodiesterases of type 3 and 4. The model also made testable predictions of the changes in magnitudes of [Ca 2+ ] i and [Na + ] i fluxes, the rate of decay of [Na + ] i concentration upon both combined and separate stimulation of β 1 - and β 2 -ARs, and the contribution of phosphorylation of PKA targets to the changes in the action potential and [Ca 2+ ] i transient. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.
2013-06-01
Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.
Warth, Marco; Kessler, Jens; Kotz, Svenja; Hillecke, Thomas K; Bardenheuer, Hubert J
2015-12-15
The present study aimed at examining whether methodological strategies from a previously implemented study design could be transferred to the evaluation of the psychological and physiological effects of a music therapy intervention working with vibroacoustic stimulation in palliative care. Nine participants suffering from advanced cancer took part in single-sessions of music therapy, lasting for 30 min. The live music therapy intervention utilized singing chair sounds and vocal improvisation. Visual analogue scales (VAS) were used to assess self-ratings of pain, relaxation, and well-being before and after each session. During the intervention, we continuously recorded heart rate variability (HRV) as a measure of autonomic functioning. Data collection was complemented by a semi-structured interview to explore subjective experiences in more detail. Feasibility was defined as the ability to complete 80 % of the sessions in accordance with the study protocol. In 5 out of 9 sessions (55 %) it was possible to deliver the intervention and obtain all data as intended. VAS assessment was feasible, although graphical and statistical examination revealed only marginal mean changes between pre and post. HRV recordings were subject to artifacts. While HRV parameters differed between individuals, mean changes over time remained relatively constant. Interview data confirmed that the individual perception was very heterogeneous, ranging from "calming" to "overwhelming". The criterion of feasibility was not met in this study. Physiological data showed high attrition rates, most likely due to movement artifacts and reduced peripheral blood flow in some participants' extremities. Examination of individual-level trajectories revealed that vibroacoustic stimulation may have an impact on the autonomic response. However, the direction and mechanisms of effects needs to be further explored in future studies. German Clinical Trials Register - DRKS00006137 (July 4(th), 2014).
AT2 RECEPTOR ACTIVITIES AND PATHOPHYSIOLOGICAL IMPLICATIONS
Matavelli, Luis C.; Siragy, Helmy M.
2014-01-01
Although angiotensin II subtype-2 receptor (AT2R) was discovered over two decades ago, its contribution to physiology and pathophysiology is not fully elucidated. Current knowledge suggests that under normal physiologic conditions, AT2R counterbalances the effects of angiotensin II subtype-1 receptor (AT1R). A major obstacle for AT2R investigations was the lack of specific agonists. Most of the earlier AT2R studies were performed using the peptidic agonist, CG42112A, or the non-peptidic antagonist PD123319. CGP42112A is non-specific for AT2R and in higher concentrations can bind to AT1R. Recently, the development of specific non-peptidic AT2R agonists boosted the efforts in identifying the therapeutic potentials for AT2R stimulation. Unlike AT1R, AT2R is involved in vasodilation via release of bradykinin and nitric oxide, anti-inflammation and healing from injury. Interestingly, the vasodilatory effects of AT2R stimulation were not associated with significant reduction in blood pressure. In the kidney, AT2R stimulation produced natriuresis, increased renal blood flow, and reduced tissue inflammation. In animal studies, enhanced AT2R function led to reduction of cardiac inflammation and fibrosis, and reduced the size of the infarcted area. Similarly, AT2R stimulation demonstrated protective effects in vasculature and brain. PMID:25636068
Anand, Ankur; Chi, Chih-Hung; Banerjee, Subhasree; Chou, Ming-Yi; Tseng, Fan-Gang; Pan, Chien-Yuan; Chen, Yit-Tsong
2018-06-01
The Zn 2+ stored in the secretory vesicles of glutamatergic neurons is coreleased with glutamate upon stimulation, resulting in the elevation of extracellular Zn 2+ concentration (CZn2+ex). This elevation of CZn2+ex regulates the neurotransmission and facilitates the fibrilization of amyloid-β (Aβ). However, the exact CZn2+ex surrounding neurons under (patho)physiological conditions is not clear and the connection between CZn2+ex and the Aβ fibrilization remains obscure. Here, a silicon nanowire field-effect transistor (SiNW-FET) with the Zn 2+ -sensitive fluorophore, FluoZin-3 (FZ-3), to quantify the CZn2+ex in real time is modified. This FZ-3/SiNW-FET device has a dissociation constant of ≈12 × 10 -9 m against Zn 2+ . By placing a coverslip seeded with cultured embryonic cortical neurons atop an FZ-3/SiNW-FET, the CZn2+ex elevated to ≈110 × 10 -9 m upon stimulation with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Blockers against the AMPA receptor or exocytosis greatly suppress this elevation, indicating that the Zn 2+ stored in the synaptic vesicles is the major source responsible for this elevation of CZn2+ex. In addition, a SiNW-FET modified with Aβ could bind Zn 2+ with a dissociation constant of ≈633 × 10 -9 m and respond to the Zn 2+ released from AMPA-stimulated neurons. Therefore, the CZn2+ex can reach a level high enough to bind Aβ and the Zn 2+ homeostasis can be a therapeutic strategy to prevent neurodegeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Al-Haidary, Ahmed A; Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Sani, Mamane; Refinetti, Roberto
2016-08-01
Camels are well adapted to hot arid environments and can contribute significantly to the economy of developing countries in arid regions of the world. Full understanding of the physiology of camels requires understanding of the internal temporal order of the body, as reflected in daily or circadian rhythms. In the current study, we investigated the daily rhythmicity of 20 physiological variables in camels exposed to natural oscillations of ambient temperature in a desert environment and compared the daily temporal courses of the variables. We also studied the rhythm of core body temperature under experimental conditions with constant ambient temperature in the presence and absence of a light-dark cycle. The obtained results indicated that different physiological variables exhibit different degrees of daily rhythmicity and reach their daily peaks at different times of the day, starting with plasma cholesterol, which peaks 24min after midnight, and ending with plasma calcium, which peaks 3h before midnight. Furthermore, the rhythm of core body temperature persisted in the absence of environmental rhythmicity, thus confirming its endogenous nature. The observed delay in the acrophase of core body temperature rhythm under constant conditions suggests that the circadian period is longer than 24h. Further studies with more refined experimental manipulation of different variables are needed to fully elucidate the causal network of circadian rhythms in dromedary camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Blood pressure and the contractility of a human leg muscle.
Luu, Billy L; Fitzpatrick, Richard C
2013-11-01
These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.
Blood pressure and the contractility of a human leg muscle
Luu, Billy L; Fitzpatrick, Richard C
2013-01-01
These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K+ concentration. PMID:24018946
Vigneri, Simone; Bonventre, Sebastiano; Inviati, Angela; Schifano, Domenico; Cosentino, Giuseppe; Puma, Angela; Giglia, Giuseppe; Paladino, Piera; Brighina, Filippo; Fierro, Brigida
2014-09-01
To evaluate the effects of transcranial direct current stimulation (tDCS) on esophageal peristalsis in patients with gastroesophageal reflux disease (GERD). Patients with GERD preliminary diagnosis were included in a randomized double-blind sham-controlled study. Esophageal manometry was performed before and during transcranial direct current stimulation (tDCS) of the right precentral cortex. Half of patients were randomly assigned to anodal, half to sham stimulation. Distal waves amplitude and pathological waves percentage were measured, after swallowing water boli, for ten subsequent times. Last, a 24h pH-bilimetry was done to diagnose non-erosive reflux disease (NERD) or functional heartburn (FH). The values obtained before and during anodal or sham tDCS were compared. Sixty-eight patients were enrolled in the study. Distal waves mean amplitude increased significantly only during anodal tDCS in NERD (p=0.00002) and FH subgroups (p=0.008) while percentage of pathological waves strongly decreased only in NERDs (p=0.002). Transcranial stimulation can influence cortical control of esophageal motility and improve pathological motor pattern in NERD and FH but not in erosive reflux disease (ERD) patients. Pathophysiological processes in GERD are not only due to peripheral damage but to central neural control involvement as well. In ERD patients dysfunctions of the cortico-esophageal circuit seem to be more severe and may affect central nervous system physiology. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Benussi, Alberto; Dell'Era, Valentina; Cotelli, Maria Sofia; Turla, Marinella; Casali, Carlo; Padovani, Alessandro; Borroni, Barbara
Neurodegenerative cerebellar ataxias represent a group of disabling disorders for which we currently lack effective therapies. Cerebellar transcranial direct current stimulation (tDCS) is a non-invasive technique, which has been demonstrated to modulate cerebellar excitability and improve symptoms in patients with cerebellar ataxias. The present study investigated whether a two-weeks' treatment with cerebellar anodal tDCS could improve symptoms in patients with neurodegenerative cerebellar ataxia and could modulate cerebello-motor connectivity, at short and long term. We performed a double-blind, randomized, sham controlled trial with cerebellar tDCS (5 days/week for 2 weeks) in twenty patients with ataxia. Each patient underwent a clinical evaluation pre- and post-anodal tDCS or sham stimulation. A follow-up evaluation was performed at one and three months. Cerebello-motor connectivity was evaluated using transcranial magnetic stimulation (TMS) at baseline and at follow-up. Patients who underwent anodal tDCS showed a significant improvement in all performance scores (scale for the assessment and rating of ataxia, international cooperative ataxia rating scale, 9-hole peg test, 8-m walking time) and in cerebellar brain inhibition compared to patients who underwent sham stimulation. A two-weeks' treatment with anodal cerebellar tDCS improves symptoms in patients with ataxia and restores physiological cerebellar brain inhibition pathways. Cerebellar tDCS might represent a promising future therapeutic and rehabilitative approach in patients with neurodegenerative ataxia. Copyright © 2016 Elsevier Inc. All rights reserved.
Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control
NASA Astrophysics Data System (ADS)
Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.
2016-02-01
The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.
NASA Astrophysics Data System (ADS)
Gerhart, L. M.; Harris, J. M.; Ward, J. K.
2011-12-01
During the Last Glacial Maximum, atmospheric [CO2] was as low as 180 ppm and has currently risen to a modern value of 393 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced trees over the last 50,000 years, we analyzed carbon isotope ratios and width of individual tree rings from glacial Juniperus specimens preserved in the Rancho La Brea tar pits in southern California (aged 14-49 kyr BP). Modern trees were also analyzed to compare effects of changing precipitation, temperature and atmospheric [CO2] on physiology and growth. To assess physiological responses, we calculated ci/ca (intercellular [CO2]/atmospheric [CO2]) for each annual ring of each tree. This ratio incorporates numerous aspects of plant physiology, including stomatal conductance and photosynthetic capacity. In addition, we measured ring widths for each sample, and standardized these measurements into indices in order to compare across individuals. Mean ci/ca values remained constant throughout 50,000 years despite major environmental changes, indicating a long-term physiological set point for ci/ca in this group. Constant ci/ca ratios would be maintained through offsetting changes in stomatal conductance and photosynthetic capacity. Glacial Juniperus never experienced ci values below 90 ppm, suggesting a survival compensation point for Juniperus. In addition, glacial trees showed significantly reduced interannual variation in ci/ca, even though interannual climatic variability was as high during the LGM in this region as it is today. A lack of variability in ci/ca of glacial trees suggests that tree physiology was dominated by low [CO2], which shows low interannual variation. Modern trees showed high interannual variation in ci/ca, since water availability dominates current physiological responses and varies greatly from year to year. Interestingly, interannual variation in ring width index did not show significant differences between glacial and modern trees, suggesting these trees were adapted to maintain growth under low [CO2]. These adaptations may constrain the ability of modern trees to fully utilize increases in atmospheric [CO2]. These results have significant implications for our understanding of the adaptations of trees to changing [CO2] and indicate that the environmental factors that most strongly influence plant physiology may have changed over geologic time scales.
Energy efficient neural stimulation: coupling circuit design and membrane biophysics.
Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C
2012-01-01
The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.
Saraswathula, Anirudh; Reap, Elizabeth A; Choi, Bryan D; Schmittling, Robert J; Norberg, Pamela K; Sayour, Elias J; Herndon, James E; Healy, Patrick; Congdon, Kendra L; Archer, Gerald E; Sanchez-Perez, Luis; Sampson, John H
2016-02-01
Regulatory B cells that secrete IL-10 (IL-10(+) Bregs) represent a suppressive subset of the B cell compartment with prominent anti-inflammatory capacity, capable of suppressing cellular and humoral responses to cancer and vaccines. B lymphocyte stimulator (BLyS) is a key regulatory molecule in IL-10(+) Breg biology with tightly controlled serum levels. However, BLyS levels can be drastically altered upon chemotherapeutic intervention. We have previously shown that serum BLyS levels are elevated, and directly associated, with increased antigen-specific antibody titers in patients with glioblastoma (GBM) undergoing lymphodepletive temozolomide chemotherapy and vaccination. In this study, we examined corresponding IL-10(+) Breg responses within this patient population and demonstrate that the IL-10(+) Breg compartment remains constant before and after administration of the vaccine, despite elevated BLyS levels in circulation. IL-10(+) Breg frequencies were not associated with serum BLyS levels, and ex vivo stimulation with a physiologically relevant concentration of BLyS did not increase IL-10(+) Breg frequency. However, BLyS stimulation did increase the frequency of the overall B cell compartment and promoted B cell proliferation upon B cell receptor engagement. Therefore, using BLyS as an adjuvant with therapeutic peptide vaccination could promote humoral immunity with no increase in immunosuppressive IL-10(+) Bregs. These results have implications for modulating humoral responses in human peptide vaccine trials in patients with GBM.
Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting.
Morozova, Ekaterina O; Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C; Kuznetsov, Alexey
2016-10-01
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca 2+ ) concentration, thus reducing the Ca 2+ -dependent potassium (K + ) current. In this way, the GABA-mediated hyperpolarization replaces Ca 2+ -dependent K + current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. Copyright © 2016 the American Physiological Society.
Maternal melatonin selectively inhibits cortisol production in the primate fetal adrenal gland
Torres-Farfan, Claudia; Richter, Hans G; Germain, Alfredo M; Valenzuela, Guillermo J; Campino, Carmen; Rojas-García, Pedro; Forcelledo, María Luisa; Torrealba, Fernando; Serón-Ferré, María
2004-01-01
We tested the hypothesis that in primates, maternal melatonin restrains fetal and newborn adrenal cortisol production. A functional G-protein-coupled MT1 membrane-bound melatonin receptor was detected in 90% gestation capuchin monkey fetal adrenals by (a) 2-[125I] iodomelatonin binding (Kd, 75.7 ± 6.9 pm; Bmax, 2.6 ± 0.4 fmol (mg protein)−1), (b) cDNA identification, and (c) melatonin inhibition of adrenocorticotrophic hormone (ACTH)- and corticotrophin-releasing hormone (CRH)-stimulated cortisol but not of dehydroepiandrosterone sulphate (DHAS) production in vitro. Melatonin also inhibited ACTH-induced 3β-hydroxysteroid dehydrogenase mRNA expression. To assess the physiological relevance of these findings, we next studied the effect of chronic maternal melatonin suppression (induced by exposure to constant light during the last third of gestation) on maternal plasma oestradiol during gestation and on plasma cortisol concentration in the 4- to 6-day-old newborn. Constant light suppressed maternal melatonin without affecting maternal plasma oestradiol concentration, consistent with no effect on fetal DHAS, the precursor of maternal oestradiol. However, newborns from mothers under constant light condition had twice as much plasma cortisol as newborns from mothers maintained under a normal light–dark schedule. Newborns from mothers exposed to chronic constant light and daily melatonin replacement had normal plasma cortisol concentration. Our results support a role of maternal melatonin in fetal and neonatal primate cortisol regulation. PMID:14673186
NASA Astrophysics Data System (ADS)
Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian
2004-03-01
Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.
Nishiyama, A; Petersen, O H
1975-01-01
1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124
Ladenbauer, Julia; Ladenbauer, Josef; Külzow, Nadine; de Boor, Rebecca; Avramova, Elena; Grittner, Ulrike; Flöel, Agnes
2017-07-26
Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation. SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI. Copyright © 2017 the authors 0270-6474/17/377111-14$15.00/0.
Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
Teka, Wondimu; Stockton, David; Santamaria, Fidel
2016-03-01
We studied the effects of non-Markovian power-law voltage dependent conductances on the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To implement slow-adapting power-law dynamics of the gating variables of the potassium, n, and sodium, m and h, conductances we used fractional derivatives of order η≤1. The fractional derivatives were used to solve the kinetic equations of each gate. We systematically classified the properties of each gate as a function of η. We then tested if the full model could generate action potentials with the different power-law behaving gates. Finally, we studied the patterns of action potential that emerged in each case. Our results show the model produces a wide range of action potential shapes and spiking patterns in response to constant current stimulation as a function of η. In comparison with the classical model, the action potential shapes for power-law behaving potassium conductance (n gate) showed a longer peak and shallow hyperpolarization; for power-law activation of the sodium conductance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of the sodium conductance (h gate) the spikes had wider peak that for low values of η replicated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a wide range of spiking patterns emerged as a function of the value of the constant input current and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau potentials. Our analyses show that the intrinsic memory trace of the fractional derivative provides a negative feedback mechanism between the voltage trace and the activity of the power-law behaving gate variable. As a consequence, power-law behaving conductances result in an increase in the number of spiking patterns a neuron can generate and, we propose, expand the computational capacity of the neuron.
Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.
Lewis, S A; Wills, N K
1983-08-01
Previous studies have shown that aldosterone stimulates the rate of Na+ transport across the rabbit urinary bladder epithelium by increasing the apical membrane permeability to Na+. Paradoxically, ion-sensitive and conventional micro-electrode measurements demonstrated that intracellular Na+ activity aiNa+ was essentially unchanged by aldosterone, i.e. aiNa+ was constant regardless of the rate of Na+ transport. The present study was designed to resolve this apparent contradiction. The effects of elevated, endogenous aldosterone levels produced by low-Na+ diet (Lewis & Diamond, 1976) on urinary bladder Na+ transport were investigated in vitro using Ussing-type chambers and intracellular conventional and ion-sensitive microelectrodes. Apical membrane selectivity and kinetics of the Na+ pump were assessed as a function of hormone stimulation. The aldosterone-stimulated increase in Na+ transport was accounted for by increases in both the relative selective permeability of the apical membrane to Na+ and an increase in its absolute Na+ permeability. The kinetics of the Na+ pump were evaluated electrically by loading the cells with Na+ (monitored with Na+-sensitive micro-electrodes) or alternatively by manipulating serosal solution K+ concentration and measuring changes in the basolateral membrane electromotive forces and resistance. From these measurements the current generated by the pump was calculated as a function of intracellular Na+ or extracellular K+. The kinetics of the pump were not altered by aldosterone. A model of highly co-operative binding estimated Km for Na+ as 14.2 mM and 2.3 mM for K+. Hill coefficients for these ions were 2.8 and 1.8, respectively, consistent with a pump stoichiometry of 3 Na+ to 2 K+. The kinetic properties of the Na-K pump indicate that physiological levels of aiNa+ are poised at the foot of a step kinetic curve which energetically favours Na+ extrusion.
State of the Art: Novel Applications for Cortical Stimulation.
De Ridder, Dirk; Perera, Sanjaya; Vanneste, Sven
2017-04-01
Electrical stimulation via implanted electrodes that overlie the cortex of the brain is an upcoming neurosurgical technique that was hindered for a long time by insufficient knowledge of how the brain functions in a dynamic, physiological, and pathological way, as well as by technological limitations of the implantable stimulation devices. This paper provides an overview of cortex stimulation via implantable devices and introduces future possibilities to improve cortex stimulation. Cortex stimulation was initially used preoperatively as a technique to localize functions in the brain and only later evolved into a treatment technique. It was first used for pain, but more recently a multitude of pathologies are being targeted by cortex stimulation. These disorders are being treated by stimulating different cortical areas of the brain. Risks and complications are essentially similar to those related to deep brain stimulation and predominantly include haemorrhage, seizures, infection, and hardware failures. For cortex stimulation to fully mature, further technological development is required to predict its outcomes and improve stimulation designs. This includes the development of network science-based functional connectivity approaches, genetic analyses, development of navigated high definition transcranial alternating current stimulation, and development of pseudorandom stimulation designs for preventing habituation. In conclusion, cortex stimulation is a nascent but very promising approach to treating a variety of diseases, but requires further technological development for predicting outcomes, such as network science based functional connectivity approaches, genetic analyses, development of navigated transcranial electrical stimulation, and development of pseudorandom stimulation designs for preventing habituation. © 2017 International Neuromodulation Society.
Recent advances in thermoregulation.
Tansey, Etain A; Johnson, Christopher D
2015-09-01
Thermoregulation is the maintenance of a relatively constant core body temperature. Humans normally maintain a body temperature at 37°C, and maintenance of this relatively high temperature is critical to human survival. This concept is so important that control of thermoregulation is often the principal example cited when teaching physiological homeostasis. A basic understanding of the processes underpinning temperature regulation is necessary for all undergraduate students studying biology and biology-related disciplines, and a thorough understanding is necessary for those students in clinical training. Our aim in this review is to broadly present the thermoregulatory process taking into account current advances in this area. First, we summarize the basic concepts of thermoregulation and subsequently assess the physiological responses to heat and cold stress, including vasodilation and vasoconstriction, sweating, nonshivering thermogenesis, piloerection, shivering, and altered behavior. Current research is presented concerning the body's detection of thermal challenge, peripheral and central thermoregulatory control mechanisms, including brown adipose tissue in adult humans and temperature transduction by the relatively recently discovered transient receptor potential channels. Finally, we present an updated understanding of the neuroanatomic circuitry supporting thermoregulation. Copyright © 2015 The American Physiological Society.
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-07-15
Transcutaneous electrical stimulation is applied in a range of biomedical applications including transcranial direct current stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize "high-definition" electrode-gel parameters for electrode durability, skin safety and subjective pain. Anode and cathode electrode potential, temperature, pH and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 min on agar gel or subject forearms. A selection of five types of solid-conductors (Ag pellet, Ag/AgCl pellet, rubber pellet, Ag/AgCl ring and Ag/AgCl disc) and seven conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, rubber and Ag/AgCl pellet electrodes across all gels. Copyright 2010 Elsevier B.V. All rights reserved.
Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom
2010-01-01
Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-Definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize “high-definition” electrode-gel parameters for electrode durability, skin safety, and subjective pain. Anode and cathode electrode potential, temperature, pH, and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 minutes on agar gel or subject forearms. A selection of 5 types of solid-conductors (Ag pellet, Ag/AgCl pellet, Rubber pellet, Ag/AgCl ring, and Ag/AgCl disc) and 7 conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron, and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and Rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, Rubber, and Ag/AgCl pellet electrodes across all gels. PMID:20488204
Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations.
Vosskuhl, Johannes; Strüber, Daniel; Herrmann, Christoph S
2018-01-01
Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS) techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS), an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo . These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.
Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera
2018-03-26
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.
Barss, Trevor S; Ainsley, Emily N; Claveria-Gonzalez, Francisca C; Luu, M John; Miller, Dylan J; Wiest, Matheus J; Collins, David F
2018-04-01
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor
Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario
2017-01-01
Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958
Firing patterns in the adaptive exponential integrate-and-fire model.
Naud, Richard; Marcille, Nicolas; Clopath, Claudia; Gerstner, Wulfram
2008-11-01
For simulations of large spiking neuron networks, an accurate, simple and versatile single-neuron modeling framework is required. Here we explore the versatility of a simple two-equation model: the adaptive exponential integrate-and-fire neuron. We show that this model generates multiple firing patterns depending on the choice of parameter values, and present a phase diagram describing the transition from one firing type to another. We give an analytical criterion to distinguish between continuous adaption, initial bursting, regular bursting and two types of tonic spiking. Also, we report that the deterministic model is capable of producing irregular spiking when stimulated with constant current, indicating low-dimensional chaos. Lastly, the simple model is fitted to real experiments of cortical neurons under step current stimulation. The results provide support for the suitability of simple models such as the adaptive exponential integrate-and-fire neuron for large network simulations.
Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Nayak, Satheesha
2011-01-01
It is quite difficult to teach complex topics like the physiology of vestibular apparatus to undergraduate students. Understanding the orientation and mode of stimulation of receptors in vestibular apparatus is also quite challenging for the students. As faculty we attempt to use innovative methods to teach physiology and enhance student learning. This article describes a simple and innovative method (student-involved demonstration approach, or SID) to teach the physiology of the vestibular apparatus to the undergraduate medical students. The current study describes a protocol where students engage in role-play sessions in the middle of the regular didactic lectures. Effectiveness of the sessions was later evaluated by using a questionnaire and by comparing the pre-SID and post-SID test results of the students. The posttest score of the students was significantly higher than the pretest score, and this indicates the usefulness of SID sessions on enhancing the student learning in the class. Students also found this method very interesting and useful in better understanding the physiology of the vestibular apparatus.
Timmermann, Lars; Jain, Roshini; Chen, Lilly; Maarouf, Mohamed; Barbe, Michael T; Allert, Niels; Brücke, Thomas; Kaiser, Iris; Beirer, Sebastian; Sejio, Fernando; Suarez, Esther; Lozano, Beatriz; Haegelen, Claire; Vérin, Marc; Porta, Mauro; Servello, Domenico; Gill, Steven; Whone, Alan; Van Dyck, Nic; Alesch, Francois
2015-07-01
High-frequency deep brain stimulation (DBS) with a single electrical source is effective for motor symptom relief in patients with Parkinson's disease. We postulated that a multiple-source, constant-current device that permits well defined distribution of current would lead to motor improvement in patients with Parkinson's disease. We did a prospective, multicentre, non-randomised, open-label intervention study of an implantable DBS device (the VANTAGE study) at six specialist DBS centres at universities in six European countries. Patients were judged eligible if they were aged 21-75 years, had been diagnosed with bilateral idiopathic Parkinson's disease with motor symptoms for more than 5 years, had a Hoehn and Yahr score of 2 or greater, and had a Unified Parkinson's disease rating scale part III (UPDRS III) score in the medication-off state of more than 30, which improved by 33% or more after a levodopa challenge. Participants underwent bilateral implantation in the subthalamic nucleus of a multiple-source, constant-current, eight-contact, rechargeable DBS system, and were assessed 12, 26, and 52 weeks after implantation. The primary endpoint was the mean change in UPDRS III scores (assessed by site investigators who were aware of the treatment assignment) from baseline (medication-off state) to 26 weeks after first lead implantation (stimulation-on, medication-off state). This study is registered with ClinicalTrials.gov, number NCT01221948. Of 53 patients enrolled in the study, 40 received a bilateral implant in the subthalamic nucleus and their data contributed to the primary endpoint analysis. Improvement was noted in the UPDRS III motor score 6 months after first lead implantation (mean 13·5 [SD 6·8], 95% CI 11·3-15·7) compared with baseline (37·4 [8·9], 34·5-40·2), with a mean difference of 23·8 (SD 10·6; 95% CI 20·3-27·3; p<0·0001). One patient died of pneumonia 24 weeks after implantation, which was judged to be unrelated to the procedure. 125 adverse events were reported, the most frequent of which were dystonia, speech disorder, and apathy. 18 serious adverse events were recorded, three of which were attributed to the device or procedure (one case each of infection, migration, and respiratory depression). All serious adverse events resolved without residual effects and stimulation remained on during the study. The multiple-source, constant-current, eight-contact DBS system suppressed motor symptoms effectively in patients with Parkinson's disease, with an acceptable safety profile. Future trials are needed to investigate systematically the potential benefits of this system on postoperative outcome and its side-effects. Boston Scientific. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning
2016-01-01
Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.
Kidd, Michael W; Bulley, Simon; Jaggar, Jonathan H
2017-03-01
Several different voltage-dependent K + (K V ) channel isoforms are expressed in arterial smooth muscle cells (myocytes). Vasoconstrictors inhibit K V currents, but the isoform selectivity and mechanisms involved are unclear. We show that angiotensin II (Ang II), a vasoconstrictor, stimulates degradation of K V 1.5, but not K V 2.1, channels through a protein kinase C- and lysosome-dependent mechanism, reducing abundance at the surface of mesenteric artery myocytes. The Ang II-induced decrease in cell surface K V 1.5 channels reduces whole-cell K V 1.5 currents and attenuates K V 1.5 function in pressurized arteries. We describe a mechanism by which Ang II stimulates protein kinase C-dependent K V 1.5 channel degradation, reducing the abundance of functional channels at the myocyte surface. Smooth muscle cells (myocytes) of resistance-size arteries express several different voltage-dependent K + (K V ) channels, including K V 1.5 and K V 2.1, which regulate contractility. Myocyte K V currents are inhibited by vasoconstrictors, including angiotensin II (Ang II), but the mechanisms involved are unclear. Here, we tested the hypothesis that Ang II inhibits K V currents by reducing the plasma membrane abundance of K V channels in myocytes. Angiotensin II (applied for 2 h) reduced surface and total K V 1.5 protein in rat mesenteric arteries. In contrast, Ang II did not alter total or surface K V 2.1, or K V 1.5 or K V 2.1 cellular distribution, measured as the percentage of total protein at the surface. Bisindolylmaleimide (BIM; a protein kinase C blocker), a protein kinase C inhibitory peptide or bafilomycin A (a lysosomal degradation inhibitor) each blocked the Ang II-induced decrease in total and surface K V 1.5. Immunofluorescence also suggested that Ang II reduced surface K V 1.5 protein in isolated myocytes; an effect inhibited by BIM. Arteries were exposed to Ang II or Ang II plus BIM (for 2 h), after which these agents were removed and contractility measurements performed or myocytes isolated for patch-clamp electrophysiology. Angiotensin II reduced both whole-cell K V currents and currents inhibited by Psora-4, a K V 1.5 channel blocker. Angiotensin II also reduced vasoconstriction stimulated by Psora-4 or 4-aminopyridine, another K V channel inhibitor. These data indicate that Ang II activates protein kinase C, which stimulates K V 1.5 channel degradation, leading to a decrease in surface K V 1.5, a reduction in whole-cell K V 1.5 currents and a loss of functional K V 1.5 channels in myocytes of pressurized arteries. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Berman, J R; Berman, L A; Lin, H; Flaherty, E; Lahey, N; Goldstein, I; Cantey-Kiser, J
2001-01-01
Sexual dysfunction is a complaint of 30-50% of American women. Aside from hormone replacement therapy, there are no current FDA-approved medical treatments for female sexual complaints. The goal of this pilot study was to determine safety and efficacy of sildenafil for use in women with sexual arousal disorder (SAD). Evaluations were completed on 48 women with complaints of SAD. Physiologic measurements, including genital blood flow, vaginal lubrication, intravaginal pressure-volume changes, and genital sensation were recorded pre- and postsexual stimulation at baseline and following 100 mg sildenafil. Subjective sexual function was assessed using a validated sexual function inventory at baseline and following 6 weeks of home use of sildenafil. At termination of the study patients also completed an intervention efficacy index (FIEI). Following sildenafil, poststimulation physiologic measurements improved significantly compared to baseline. Baseline subjective sexual function complaints, including low arousal, low desire, low sexual satisfaction, difficulty achieving orgasm, decreased vaginal lubrication, and dyspareunia also improved significantly following 6 weeks home use of sildenafil. Sildenafil appears to significantly improve both subjective and physiologic parameters of the female sexual response. Double-blind, placebo-controlled studies are currently in progress to further determine efficacy of this medication for treatment of female sexual dysfunction complaints in different populations of women.
Orderly recruitment of motor units under optical control in vivo.
Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L
2010-10-01
A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.
Electrostimulation of rat callus cells and human lymphocytes in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aro, H.; Eerola, E.; Aho, A.J.
1984-01-01
Asymmetrical pulsing low voltage current was supplied via electrodes to cultured rat fracture callus cells and human peripheral blood lymphocytes. The (/sup 3/H)thymidine incorporation of the callus cells and 5-(/sup 125/I)iodo-2'-deoxyuridine incorporation of the lymphocytes were determined. The growth pattern of callus cells (estimated by cellular density) did not respond to electrical stimulation. However, the uptake of (/sup 3/H)thymidine was increased at the early phase of cell proliferation and inhibited at later phases of proliferation. The (/sup 3/H)thymidine uptake of confluent callus cell cultures did not respond to electrical stimulation. Lymphocytes reacted in a similar way; stimulated cells took upmore » more DNA precursor than control cells at the early phase of stimulation. During cell division, induced by the mitogens phytohemagglutinin and Concanavalin-A, the uptake of DNA precursor by stimulated cells was constantly inhibited. The results suggest that electrical stimuli affect the uptake mechanisms of cell membranes. The duality of the effect seems to be dependent on the cell cycle.« less
Single embryo transfer: the role of natural cycle/minimal stimulation IVF in the future.
Nygren, Karl-Gösta
2007-05-01
There are several good reasons to assume that single embryo transfer (SET) eventually will become the norm internationally in IVF treatments. A tendency is clearly visible, as demonstrated in the latest IVF World Report. The Nordic countries and Belgium have been leading the way. Sweden at present has 70% SET, with 5% twins and a pregnancy rate per transfer remaining constant at about 30%. As a consequence, recent data show a drastic reduction of the risk of prematurity and therefore of child morbidity and perinatal mortality. It is now time to discuss alternatives to the current clinical policy of quite an aggressive ovarian stimulation in settings where SET is the norm. When and at what proportion could natural cycle/soft stimulation be used? What group of patients would benefit? What will the consequences be in terms of efficacy, safety, cost, time and quality of life? Selection of the most beneficial, rather than the most aggressive, ovarian stimulation protocol by clinicians and by the couples themselves in the future may well include a much wider use of natural cycle/soft stimulation in IVF.
Cheng, Hongwei; Cannell, Mark B; Hancox, Jules C
2017-03-01
Transient outward potassium current (I to ) in the heart underlies phase 1 repolarization of cardiac action potentials and thereby affects excitation-contraction coupling. Small molecule activators of I to may therefore offer novel treatments for cardiac dysfunction, including heart failure and atrial fibrillation. NS5806 has been identified as a prototypic activator of canine I to This study investigated, for the first time, actions of NS5806 on rabbit atrial and ventricular I to Whole cell patch-clamp recordings of I to and action potentials were made at physiological temperature from rabbit ventricular and atrial myocytes. 10 μ mol/L NS5806 increased ventricular I to with a leftward shift in I to activation and accelerated restitution. At higher concentrations, stimulation of I to was followed by inhibition. The EC 50 for stimulation was 1.6 μ mol/L and inhibition had an IC 50 of 40.7 μ mol/L. NS5806 only inhibited atrial I to (IC 50 of 18 μ mol/L) and produced a modest leftward shifts in I to activation and inactivation, without an effect on restitution. 10 μ mol/L NS5806 shortened ventricular action potential duration (APD) at APD 20 -APD 90 but prolonged atrial APD NS5806 also reduced atrial AP upstroke and amplitude, consistent with an additional atrio-selective effect on Na + channels. In contrast to NS5806, flecainide, which discriminates between Kv1.4 and 4.x channels, produced similar levels of inhibition of ventricular and atrial I to NS5806 discriminates between rabbit ventricular and atrial I to, with mixed activator and inhibitor actions on the former and inhibitor actions against the later. NS5806 may be of significant value for pharmacological interrogation of regional differences in native cardiac I to . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Stimulation of the BKCa channel in cultured smooth muscle cells of human trachea by magnolol
Wu, S; Chen, C; Li, H; Lo, Y; Chen, S; Chiang, H
2002-01-01
Background: Magnolol, a compound isolated from the cortex of Magnolia officinalis, has been found to possess anti-allergic and anti-asthmatic activity. Methods: The effect of magnolol on ionic currents was studied in cultured smooth muscle cells of human trachea with the aid of the patch clamp technique. Results: In whole cell current recordings magnolol reversibly increased the amplitude of K+ outward currents. The increase in outward current caused by magnolol was sensitive to inhibition by iberiotoxin (200 nM) or paxilline (1 µM) but not by glibenclamide (10 µM). In inside out patches, magnolol added to the bath did not modify single channel conductance but effectively enhanced the activity of large conductance Ca2+ activated K+ (BKCa) channels. Magnolol increased the probability of these channel openings in a concentration dependent manner with an EC50 value of 1.5 µM. The magnolol stimulated increase in the probability of channels opening was independent of internal Ca2+. The application of magnolol also shifted the activation curve of BKCa channels to less positive membrane potentials. The change in the kinetic behaviour of BKCa channels caused by magnolol in these cells is the result of an increase in dissociation and gating constants. Conclusions: These results provide evidence that, in addition to the presence of antioxidative activity, magnolol is potent in stimulating BKCa channel activity in tracheal smooth muscle cells. The direct stimulation of these BKCa channels by magnolol may contribute to the underlying mechanism by which it acts as an anti-asthmatic compound. PMID:11809993
The mitochondrial uniporter controls fight or flight heart rate increases.
Wu, Yuejin; Rasmussen, Tyler P; Koval, Olha M; Joiner, Mei-Ling A; Hall, Duane D; Chen, Biyi; Luczak, Elizabeth D; Wang, Qiongling; Rokita, Adam G; Wehrens, Xander H T; Song, Long-Sheng; Anderson, Mark E
2015-01-20
Heart rate increases are a fundamental adaptation to physiological stress, while inappropriate heart rate increases are resistant to current therapies. However, the metabolic mechanisms driving heart rate acceleration in cardiac pacemaker cells remain incompletely understood. The mitochondrial calcium uniporter (MCU) facilitates calcium entry into the mitochondrial matrix to stimulate metabolism. We developed mice with myocardial MCU inhibition by transgenic expression of a dominant-negative (DN) MCU. Here, we show that DN-MCU mice had normal resting heart rates but were incapable of physiological fight or flight heart rate acceleration. We found that MCU function was essential for rapidly increasing mitochondrial calcium in pacemaker cells and that MCU-enhanced oxidative phoshorylation was required to accelerate reloading of an intracellular calcium compartment before each heartbeat. Our findings show that MCU is necessary for complete physiological heart rate acceleration and suggest that MCU inhibition could reduce inappropriate heart rate increases without affecting resting heart rate.
The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels.
Yu, Haijie; Yuan, Can; Westenbroek, Ruth E; Catterall, William A
2018-06-04
Stimulation of the L-type Ca 2+ current conducted by Ca V 1.2 channels in cardiac myocytes by the β-adrenergic/protein kinase A (PKA) signaling pathway requires anchoring of PKA to the Ca V 1.2 channel by an A-kinase anchoring protein (AKAP). However, the AKAP(s) responsible for regulation in vivo remain unknown. Here, we test the role of the AKAP Cypher/Zasp in β-adrenergic regulation of Ca V 1.2 channels using physiological studies of cardiac ventricular myocytes from young-adult mice lacking the long form of Cypher/Zasp (LCyphKO mice). These myocytes have increased protein levels of Ca V 1.2, PKA, and calcineurin. In contrast, the cell surface density of Ca V 1.2 channels and the basal Ca 2+ current conducted by Ca V 1.2 channels are significantly reduced without substantial changes to kinetics or voltage dependence. β-adrenergic regulation of these L-type Ca 2+ currents is also significantly reduced in myocytes from LCyphKO mice, whether calculated as a stimulation ratio or as net-stimulated Ca 2+ current. At 100 nM isoproterenol, the net β-adrenergic-Ca 2+ current conducted by Ca V 1.2 channels was reduced to 39 ± 12% of wild type. However, concentration-response curves for β-adrenergic stimulation of myocytes from LCyphKO mice have concentrations that give a half-maximal response similar to those for wild-type mice. These results identify Cypher/Zasp as an important AKAP for β-adrenergic regulation of cardiac Ca V 1.2 channels. Other AKAPs may work cooperatively with Cypher/Zasp to give the full magnitude of β-adrenergic regulation of Ca V 1.2 channels observed in vivo. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
The Physiology Constant Database of Teen-Agers in Beijing
Wei-Qi, Wei; Guang-Jin, Zhu; Cheng-Li, Xu; Shao-Mei, Han; Bao-Shen, Qi; Li, Chen; Shu-Yu, Zu; Xiao-Mei, Zhou; Wen-Feng, Hu; Zheng-Guo, Zhang
2004-01-01
Physiology constants of adolescents are important to understand growing living systems and are a useful reference in clinical and epidemiological research. Until recently, physiology constants were not available in China and therefore most physiologists, physicians, and nutritionists had to use data from abroad for reference. However, the very difference between the Eastern and Western races casts doubt on the usefulness of overseas data. We have therefore created a database system to provide a repository for the storage of physiology constants of teen-agers in Beijing. The several thousands of pieces of data are now divided into hematological biochemistry, lung function, and cardiac function with all data manually checked before being transferred into the database. The database was accomplished through the development of a web interface, scripts, and a relational database. The physiology data were integrated into the relational database system to provide flexible facilities by using combinations of various terms and parameters. A web browser interface was designed for the users to facilitate their searching. The database is available on the web. The statistical table, scatter diagram, and histogram of the data are available for both anonym and user according to queries, while only the user can achieve detail, including download data and advanced search. PMID:15258669
Nawaz, Fahim; Naeem, Muhammad; Zulfiqar, Bilal; Akram, Asim; Ashraf, Muhammad Yasin; Raheel, Muhammad; Shabbir, Rana Nauman; Hussain, Rai Altaf; Anwar, Irfan; Aurangzaib, Muhammad
2017-07-01
Brassinosteroids (BRs) are steroidal plant hormones involved in regulation of physiological and molecular processes to ameliorate various biotic and abiotic stresses. Exogenous application of BRs to improve stress tolerance in plants has recently become a high research priority. Several studies have revealed the involvement of these steroidal hormones in upregulation of stress-related defense genes and their cross talk with other metabolic pathways. This is likely to stimulate research on many unanswered questions regarding their role in enhancing the ability of plants to tolerate adverse environmental conditions. Thus, this review appraises new insights on mechanisms mediating BR-regulated changes in plants, focused mainly on their involvement in regulation of physiological and molecular mechanisms under stress conditions. Herein, examples of BR-stimulated modulation of antioxidant defense system and upregulation of transcription factors in plants exposed to various biotic (bacterial, viral, and fungal attack) and abiotic stresses (drought, salinity, heat, low temperature, and heavy metal stress) are discussed. Based on these insights, future research in the current direction can be helpful to increase our understanding of BR-mediated complex and interrelated processes under stress conditions.
Iuculano, Teresa; Cohen Kadosh, Roi
2014-01-01
Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD), which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small-yet constant-current through the brain, a non-invasive technique named transcranial electrical stimulation (tES). Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS) in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC). The first subject (DD1) received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance's improvements in healthy subjects. The second subject (DD2) received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i) automaticity of number processing; and (ii) mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation, and education.
Brown, P Leon; Shepard, Paul D
2016-09-01
The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience. Copyright © 2016 the American Physiological Society.
Crago, Patrick E; Makowski, Nathan S
2014-01-01
Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation. PMID:25161163
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.
2014-10-01
Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Acid-base regulation during heating and cooling in the lizard, Varanus exanthematicus.
Wood, S C; Johansen, K; Glass, M L; Hoyt, R W
1981-04-01
Current concepts of acid-base balance in ectothermic animals require that arterial pH vary inversely with body temperature in order to maintain a constant OH-/H+ and constant net charge on proteins. The present study evaluates acid-base regulation in Varanus exanthematicus under various regimes of heating and cooling between 15 and 38 degrees C. Arterial blood was sampled during heating and cooling at various rates, using restrained and unrestrained animals with and without face masks. Arterial pH was found to have a small temperature dependence, i.e., pH = 7.66--0.005 (T). The slope (dpH/dT = -0.005), while significantly greater than zero (P less than 0.05), is much less than that required for a constant OH-/H+ or a constant imidazole alphastat (dpH/dT congruent to 0.018). The physiological mechanism that distinguishes this species from most other ectotherms is the presence of a ventilatory response to temperature-induced changes in CO2 production and O2 uptake, i.e., VE/VO2 is constant. This results in a constant O2 extraction and arterial saturation (approx. 90%), which is adaptive to the high aerobic requirements of this species.
Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Crujido, Lisa; Wright-Harp, Wilhelmina; Payne, Joan; Jeffries, Neal; Sonies, Barbara C.; Ludlow, Christy L.
2006-01-01
Surface electrical stimulation is currently used in therapy for swallowing problems, although little is known about its physiological effects on neck muscles or swallowing. Previously, when one surface electrode placement was used in dysphagic patients at rest, it lowered the hyo-laryngeal complex. Here we examined the effects of nine other placements in normal volunteers to determine: 1) if movements induced by surface stimulation using other placements differ, and 2) if lowering the hyo-laryngeal complex by surface electrical stimulation interfered with swallowing in healthy adults. Ten bipolar surface electrode placements overlying the submental and laryngeal regions were tested. Maximum tolerated stimulation levels were applied at rest while participants held their mouths closed. Videofluoroscopic recordings were used to measure hyoid bone and subglottic air column (laryngeal) movements from resting position and while swallowing 5ml of liquid barium with and without stimulation. Videofluoroscopic recordings of swallows were rated blind to condition using the NIH-Swallowing Safety Scale (NIH-SSS). Significant (p<0.0001) laryngeal and hyoid descent occurred with stimulation at rest. During swallowing, significant (p≤0.01) reductions in both the larynx and hyoid bone peak elevation occurred during stimulated swallows. The stimulated swallows were also judged less safe than non-stimulated swallows using the NIH-SSS (p=0.0275). Because surface electrical stimulation reduced hyo-laryngeal elevation during swallowing in normal volunteers, our findings suggest that surface electrical stimulation will reduce elevation during swallowing therapy for dysphagia. PMID:16873602
Delbeke, Jean; Hoffman, Luis; Mols, Katrien; Braeken, Dries; Prodanov, Dimiter
2017-01-01
Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies. PMID:29311765
Manenti, Rosa; Sandrini, Marco; Brambilla, Michela; Cotelli, Maria
2016-09-15
Episodic memory displays the largest degree of age-related decline. A noninvasive brain stimulation technique that can be used to modulate memory in physiological aging is transcranial Direct Current Stimulation (tDCS). However, an aspect that has not been adequately investigated in previous studies is the optimal timing of stimulation to induce long-lasting positive effects on episodic memory function. Our previous studies showed episodic memory enhancement in older adults when anodal tDCS was applied over the left lateral prefrontal cortex during encoding or after memory consolidation with or without a contextual reminder. Here we directly compared the two studies to explore which of the tDCS protocols would induce longer-lasting positive effects on episodic memory function in older adults. In addition, we aimed to determine whether subjective memory complaints would be related to the changes in memory performance (forgetting) induced by tDCS, a relevant issue in aging research since individuals with subjective memory complaints seem to be at higher risk of later memory decline. The results showed that anodal tDCS applied after consolidation with a contextual reminder induced longer-lasting positive effects on episodic memory, conceivably through reconsolidation, than anodal tDCS during encoding. Furthermore, we reported, providing new data, a moderate negative correlation between subjective memory complaints and forgetting when anodal tDCS was applied after consolidation with a contextual reminder. This study sheds light on the best-suited timing of stimulation to induce long-lasting positive effects on memory function and might help the clinicians to select the most effective tDCS protocol to prevent memory decline. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics of GLUT4 Trafficking in Rat and Human Skeletal Muscle
Karlsson, Håkan K.R.; Chibalin, Alexander V.; Koistinen, Heikki A.; Yang, Jing; Koumanov, Francoise; Wallberg-Henriksson, Harriet; Zierath, Juleen R.; Holman, Geoffrey D.
2009-01-01
OBJECTIVE In skeletal muscle, insulin stimulates glucose transport activity three- to fourfold, and a large part of this stimulation is associated with a net translocation of GLUT4 from an intracellular compartment to the cell surface. We examined the extent to which insulin or the AMP-activated protein kinase activator AICAR can lead to a stimulation of the exocytosis limb of the GLUT4 translocation pathway and thereby account for the net increase in glucose transport activity. RESEARCH DESIGN AND METHODS Using a biotinylated photoaffinity label, we tagged endogenous GLUT4 and studied the kinetics of exocytosis of the tagged protein in rat and human skeletal muscle in response to insulin or AICAR. Isolated epitrochlearis muscles were obtained from male Wistar rats. Vastus lateralis skeletal muscle strips were prepared from open muscle biopsies obtained from six healthy men (age 39 ± 11 years and BMI 25.8 ± 0.8 kg/m2). RESULTS In rat epitrochlearis muscle, insulin exposure leads to a sixfold stimulation of the GLUT4 exocytosis rate (with basal and insulin-stimulated rate constants of 0.010 and 0.067 min−1, respectively). In human vastus lateralis muscle, insulin stimulates GLUT4 translocation by a similar sixfold increase in the exocytosis rate constant (with basal and insulin-stimulated rate constants of 0.011 and 0.075 min−1, respectively). In contrast, AICAR treatment does not markedly increase exocytosis in either rat or human muscle. CONCLUSIONS Insulin stimulation of the GLUT4 exocytosis rate constant is sufficient to account for most of the observed increase in glucose transport activity in rat and human muscle. PMID:19188436
Using stimulation of the diving reflex in humans to teach integrative physiology.
Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne
2014-12-01
During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.
Prichard, George; Weiller, Cornelius; Fritsch, Brita; Reis, Janine
2014-01-01
Noninvasive electrical brain stimulation (NEBS) with transcranial direct current (tDCS) or random noise stimulation (tRNS) applied to the primary motor cortex (M1) can augment motor learning. We tested whether different types of stimulation alter particular aspects of learning a tracing task over three consecutive days, namely skill acquisition (online/within session effects) or consolidation (offline/between session effects). Motor training on a tracing task over three consecutive days was combined with different types and montages of stimulation (tDCS, tRNS). Unilateral M1 stimulation using tRNS as well as unilateral and bilateral M1 tDCS all enhanced motor skill learning compared to sham stimulation. In all groups, this appeared to be driven by online effects without an additional offline effect. Unilateral tDCS resulted in large skill gains immediately following the onset of stimulation, while tRNS exerted more gradual effects. Control stimulation of the right temporal lobe did not enhance skill learning relative to sham. The mechanisms of action of tDCS and tRNS are likely different. Hence, the time course of skill improvement within sessions could point to specific and temporally distinct interactions with the physiological process of motor skill learning. Exploring the parameters of NEBS on different tasks and in patients with brain injury will allow us to maximize the benefits of NEBS for neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.
Functional MRI Detection of Hemodynamic Response of Repeated Median Nerve Stimulation
Ai, Leo; Oya, Hiroyuki; Howard, Matthew; Xiong, Jinhu
2012-01-01
Median nerve stimulation is a commonly used technique in the clinical setting to determine areas of neuronal function in the brain. Neuronal activity of repeated median nerve stimulation is well studied. The cerebral hemodynamic response of the stimulation, on the other hand, is not very clear. In this study, we investigate how cerebral hemodynamics behaves over time using the same repeated median nerve stimulation. Ten subjects received constant repeated electrical stimulation to the right median nerve. Each subject had fMRI scans while receiving said stimulations for seven runs. Our results show that the BOLD signal significantly decreases across each run. Significant BOLD signal decreases can also be seen within runs. These results are consistent with studies that have studied the hemodynamic habituation effect with other forms of stimulation. However, the results do not completely agree with the findings of studies where evoked potentials were examined. Thus, further inquiry of how evoked potentials and cerebral hemodynamics are coupled when using constant stimulations is needed. PMID:23228312
Invasive Cortical Stimulation to Promote Recovery of Function After Stroke
Plow, Ela B.; Carey, James R.; Nudo, Randolph J.; Pascual-Leone, Alvaro
2011-01-01
Background and Purpose Residual motor deficits frequently linger after stroke. Search for newer effective strategies to promote functional recovery is ongoing. Brain stimulation, as a means of directing adaptive plasticity, is appealing. Animal studies and Phase I and II trials in humans have indicated safety, feasibility, and efficacy of combining rehabilitation and concurrent invasive cortical stimulation. However, a recent Phase III trial showed no advantage of the combination. We critically review results of various trials and discuss the factors that contributed to the distinctive result. Summary of Review Regarding cortical stimulation, it is important to determine the (1) location of peri-infarct representations by integrating multiple neuroanatomical and physiological techniques; (2) role of other mechanisms of stroke recovery; (3) viability of peri-infarct tissue and descending pathways; (4) lesion geometry to ensure no alteration/displacement of current density; and (5) applicability of lessons generated from noninvasive brain stimulation studies in humans. In terms of combining stimulation with rehabilitation, we should understand (1) the principle of homeostatic plasticity; (2) the effect of ongoing cortical activity and phases of learning; and (3) that subject-specific intervention may be necessary. Conclusions Future cortical stimulation trials should consider the factors that may have contributed to the peculiar results of the Phase III trial and address those in future study designs. PMID:19359643
Fulop, Tiberiu; Smith, Corey
2007-11-30
Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.
Huang, Chiung-Yu; Hsieh, Yuan-Mei; Lai, Hui-Ling
2016-09-01
Music has been found to improve depressive symptoms and relaxation. However, few studies related to this issue have been conducted using music videos (MVs). The aim was to compare the effects of stimulative and sedative MVs on depressive symptoms and physiological relaxation (i.e., electromyography, heart rate variability, and skin conductance) in older adults with depressive symptoms. Using a 2-week crossover design, interventions alternated between watching a stimulative and sedative MV and vice versa. Each intervention lasted for 30 minutes on 1 day during the first week, and was then alternated to another intervention for 1 day during the following week. Stimulative MVs were more effective in treating depressive symptoms than sedative MVs. Stimulative and sedative MVs had beneficial effects on depressive symptoms and physiological relaxation compared with baseline data. These findings add new knowledge to the literature for health care providers to improve psychophysiological health in older adults with depressive symptoms. [Res Gerontol Nurs. 2016; 9(5):233-242.]. Copyright 2016, SLACK Incorporated.
Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A
2016-01-01
About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al 3+ -chelating malate anions through these channels is stimulated by external Al 3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes.
Sharma, Tripti; Dreyer, Ingo; Kochian, Leon; Piñeros, Miguel A.
2016-01-01
About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance toward toxic aluminum ions in the soil. The efflux of Al3+-chelating malate anions through these channels is stimulated by external Al3+ ions. This feature of a few proteins determined the name of the entire protein family as Aluminum-activated Malate Transporters (ALMT). Meanwhile, after several years of research, it is known that the physiological roles of ALMTs go far beyond Al-detoxification. In this review article we summarize the current knowledge on this transporter family and assess their involvement in diverse physiological processes. PMID:27757118
Gandhi, Neeraj J; Barton, Ellen J; Sparks, David L
2008-07-01
Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.
Anxiety as a factor influencing physiological effects of acupuncture.
Vickland, Victor; Rogers, Carole; Craig, Ashley; Tran, Yvonne
2009-08-01
This study investigated the influence of manual acupuncture on heart rate variability and the role which anxiety can play in modifying physiological outcomes. Analysis of heart rate variability (HRV) was used as a sensitive and a reliable indicator of the balance between sympathetic and parasympathetic regulation of the heartbeat. Two groups of healthy female subjects were recruited into the study. The control group (n=30) attended one experimental session where no acupuncture treatment was used. The experimental group (n=30) attended three sessions in which unilateral manual stimulation of acupuncture points LU7 and KD6 was performed. The stimulation of the acupuncture points LU7 and KD6 was not associated with significant changes in HRV. Previous familiarity with acupuncture did not influence the outcomes but level of anxiety had a strong impact on physiological outcomes. Stimulation of LU7 acupuncture point counterbalanced naturally occurring sympathetic increase over time and had relaxing and harmonizing effect on the heart rhythm without influencing subjective perception of increased anxiety. Stimulation of KD6 acupuncture point had sympathetic influence on HRV in subjects with low "trait" anxiety and this influence was nullified by simultaneous stimulation of LU7 acupuncture point. It seems likely that the level of anxiety can modify HRV during acupuncture treatment and up to 40 min after the treatment. Psychological factors such as anxiety level should be considered as having important influence on physiological response to acupuncture.
Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera
2018-01-01
The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology. PMID:29588808
1983-02-01
with an isovolumic left ven- tricular balloon. Coronary flow was held constant to simulate the physiolog of coronary atherosclerosis and other...erythrocyte DPG content can potentially benefit patients with coronary atherosclerosis , or other states with a limited coronary vasodilator reserve, who...Coronary flow was held constant to simulate the physiology of coronary atherosclerosis and other conditions of limited coronary vasodilator reserve
Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells
Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.
2010-01-01
Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088
Frequency-specific insight into short-term memory capacity.
Feurra, Matteo; Galli, Giulia; Pavone, Enea Francesco; Rossi, Alessandro; Rossi, Simone
2016-07-01
The digit span is one of the most widely used memory tests in clinical and experimental neuropsychology for reliably measuring short-term memory capacity. In the forward version, sequences of digits of increasing length have to be reproduced in the order in which they are presented, whereas in the backward version items must be reproduced in the reversed order. Here, we assessed whether transcranial alternating current stimulation (tACS) increases the memory span for digits of young and midlife adults. Imperceptibly weak electrical currents in the alpha (10 Hz), beta (20 Hz), theta (5 Hz), and gamma (40 Hz) range, as well as a sham stimulation, were delivered over the left posterior parietal cortex, a cortical region thought to sustain maintenance processes in short-term memory through oscillatory brain activity in the beta range. We showed a frequency-specific effect of beta-tACS that robustly increased the forward memory span of young, but not middle-aged, healthy individuals. The effect correlated with age: the younger the subjects, the greater the benefit arising from parietal beta stimulation. Our results provide evidence of a short-term memory capacity improvement in young adults by online frequency-specific tACS application. Copyright © 2016 the American Physiological Society.
Modulation of motor performance and motor learning by transcranial direct current stimulation.
Reis, Janine; Fritsch, Brita
2011-12-01
Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.
Chan, S A; Smith, C
2001-12-15
1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells
Chan, Shyue-An; Smith, Corey
2001-01-01
Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... devices include headaches following treatment with electrical stimulation. Potential risk of seizure--electrical stimulation of the brain may result in seizures, particularly in patients with a history of... effects from electrical stimulation of the brain--The physiological effects associated with electrical...
The effects of incubation temperature and experimental design on heart rates of lizard embryos.
Hulbert, Austin C; Mitchell, Timothy S; Hall, Joshua M; Guiffre, Cassia M; Douglas, Danielle C; Warner, Daniel A
2017-08-01
Many studies of phenotypic plasticity alter environmental conditions during embryonic development, yet only measure phenotypes at the neonatal stage (after embryonic development). However, measuring aspects of embryo physiology enhances our understanding of how environmental factors immediately affect embryos, which aids our understanding of developmental plasticity. While current research on reptile developmental plasticity has demonstrated that fluctuating incubation temperatures affect development differently than constant temperatures, most research on embryo physiology is still performed with constant temperature experiments. In this study, we noninvasively measured embryonic heart rates of the brown anole (Anolis sagrei), across ecologically relevant fluctuating temperatures. We incubated eggs under temperatures measured from potential nests in the field and examined how heart rates change through a diel cycle and throughout embryonic development. We also evaluated how experimental design (e.g., repeated vs. single measures designs, constant vs. fluctuating temperatures) and different protocols (e.g., removing eggs from incubators) might influence heart rate. We found that heart rates were correlated with daily temperature and increased through development. Our findings suggest that experimenters have reasonable flexibility in choosing an experimental design to address their questions; however, some aspects of design and protocol can potentially influence estimations of heart rates. Overall, we present the first ecologically relevant measures of anole embryonic heart rates and provide recommendations for experimental designs for future experiments. © 2017 Wiley Periodicals, Inc.
Yang, Yuanbin; Xiao, Juan; Song, Haiqing; Wang, Ralph; Hussain, Mohammed; Song, Weiqun
2015-04-01
We report a rare case of relapsing herpes simplex encephalitis in a-37-year-old patient which was previously confirmed by positive polymerase chain reaction, herpes simplex virus (HSV) type1 IgG antibodies in cerebrospinal fluid and characterized on MRI. During the first admission, he was treated with continuous acyclovir treatment for one month with clinical improvement except for residual aphasia, for which he received a course of outpatient transcranial direct current stimulation (tDCS). A constant current of 1.2 mA was applied for 20 min twice daily. After the 4th day the patient was found to be irritable and uncooperative by staff and family members. A subsequent MRI showed significant deterioration of the lesion on comparison to the first MRI which led to discontinuation of tDCS.The relatively rapid exacerbation of HSV in only a few days is unusual. Our aim is to discuss if tDCS is related to HSV relapse and in doing so highlight possible mechanisms. Copyright © 2015. Published by Elsevier B.V.
Ato, Satoru; Makanae, Yuhei; Kido, Kohei; Sase, Kohei; Yoshii, Naomi; Fujita, Satoshi
2017-08-01
Previous studies have reported that different modes of muscle contraction (i.e., eccentric or concentric contraction) with similar contraction times can affect muscle proteolytic responses. However, the effect of different contraction modes on muscle proteolytic response under the same force-time integral (FTI: contraction force × time) has not been investigated. The purpose of this study was to investigate the effect of different contraction modes, with the same FTI, on acute proteolytic signaling responses. Eleven-week-old male Sprague-Dawley rats were randomly assigned to eccentric (EC), concentric (CC), or isometric contraction (IC) groups. Different modes of muscle contraction were performed on the right gastrocnemius muscle using electrical stimulation, with the left muscle acting as a control. In order to apply an equivalent FTI, the number of stimulation sets was modified between the groups. Muscle samples were taken immediately and three hours after exercise. Phosphorylation of FoxO3a at Ser253 was significantly increased immediately after exercise compared to controls irrespective of contraction mode. The mRNA levels of the ubiquitin ligases, MuRF1, and MAFbx mRNA were unchanged by contraction mode or time. Phosphorylation of ULK1 at Ser317 (positive regulatory site) and Ser757 (negative regulatory site) was significantly increased compared to controls, immediately or 3 h after exercise, in all contraction modes. The autophagy markers (LC3B-II/I ratio and p62 expression) were unchanged, regardless of contraction mode. These data suggest that differences in contraction mode during resistance exercise with a constant FTI, are not factors in regulating proteolytic signaling in the early phase of skeletal muscle contraction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Sack, Martin; Lempa, Wolfgang; Steinmetz, Adrian; Lamprecht, Friedhelm; Hofmann, Arne
2008-10-01
EMDR combines stimuli that evoke divided attention--e.g. eye movements--with exposure to traumatic memories. Our objective was to investigate psycho-physiological correlates of EMDR during treatment sessions. A total of 55 treatment sessions from 10 patients with PTSD was monitored applying impedance cardiography. Onset of every stimulation/exposure period (n=811) was marked and effects within and across stimulation sets on heart rate (HR), heart rate variability (HRV), pre-ejection period (PEP) and respiration rate were examined. At stimulation onsets a sharp increase of HRV and a significant decrease of HR was noticed indicating de-arousal. During ongoing stimulation, PEP and HRV decreased significantly while respiration rate significantly increased, indicating stress-related arousal. However, across entire sessions a significant decrease of psycho-physiological activity was noticed, evidenced by progressively decreasing HR and increasing HRV. These findings suggest that EMDR is associated with patterns of autonomic activity associated with substantial psycho-physiological de-arousal over time.
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.
Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos
2015-05-19
Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc
Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos
2015-01-01
Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151
Animal models of transcranial direct current stimulation: Methods and mechanisms.
Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom
2016-11-01
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Animal Models of transcranial Direct Current Stimulation: Methods and Mechanisms
Jackson, Mark P.; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C.; Bikson, Marom
2016-01-01
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: 1) transcranial stimulation; 2) direct cortical stimulation in vivo and 3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching “quasi-uniform” assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding “functional targeting” suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. PMID:27693941
Litvak, Leonid M; Spahr, Anthony J; Emadi, Gulam
2007-08-01
Most cochlear implant strategies utilize monopolar stimulation, likely inducing relatively broad activation of the auditory neurons. The spread of activity may be narrowed with a tripolar stimulation scheme, wherein compensating current of opposite polarity is simultaneously delivered to two adjacent electrodes. In this study, a model and cochlear implant subjects were used to examine loudness growth for varying amounts of tripolar compensation, parameterized by a coefficient sigma, ranging from 0 (monopolar) to 1 (full tripolar). In both the model and the subjects, current required for threshold activation could be approximated by I(sigma)=Ithr(0)(1-sigmaK), with fitted constants Ithr(0) and K. Three of the subjects had a "positioner," intended to place their electrode arrays closer to their neural tissue. The values of K were smaller for the positioner users and for a "close" electrode-to-tissue distance in the model. Above threshold, equal-loudness contours for some subjects deviated significantly from a linear scale-up of the threshold approximations. The patterns of deviation were similar to those observed in the model for conditions in which most of the neurons near the center electrode were excited.
A Simple fMRI Compatible Robotic Stimulator to Study the Neural Mechanisms of Touch and Pain.
Riillo, F; Bagnato, C; Allievi, A G; Takagi, A; Fabrizi, L; Saggio, G; Arichi, T; Burdet, E
2016-08-01
This paper presents a simple device for the investigation of the human somatosensory system with functional magnetic imaging (fMRI). PC-controlled pneumatic actuation is employed to produce innocuous or noxious mechanical stimulation of the skin. Stimulation patterns are synchronized with fMRI and other relevant physiological measurements like electroencephalographic activity and vital physiological parameters. The system allows adjustable regulation of stimulation parameters and provides consistent patterns of stimulation. A validation experiment demonstrates that the system safely and reliably identifies clusters of functional activity in brain regions involved in the processing of pain. This new device is inexpensive, portable, easy-to-assemble and customizable to suit different experimental requirements. It provides robust and consistent somatosensory stimulation, which is of crucial importance to investigating the mechanisms of pain and its strong connection with the sense of touch.
Urate as a Physiological Substrate for Myeloperoxidase
Meotti, Flavia C.; Jameson, Guy N. L.; Turner, Rufus; Harwood, D. Tim; Stockwell, Samantha; Rees, Martin D.; Thomas, Shane R.; Kettle, Anthony J.
2011-01-01
Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 105 m−1 s−1 for compound I and 1.7 × 104 m−1 s−1 for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease. PMID:21266577
Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans
2013-03-01
Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.
Gleizes, Marie; Perrier, Simon P.; Fonta, Caroline
2017-01-01
Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies. PMID:28820903
Giordano, T; Brigatti, C; Podini, P; Bonifacio, E; Meldolesi, J; Malosio, M L
2008-06-01
We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Evidence against Resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR
Jai, Ying; Shah, Kalpit; Bridges, Robert J.; Bradbury, Neil A.
2015-01-01
BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. PMID:26342647
Ferreira-Marques, Marisa; Aveleira, Célia A; Carmo-Silva, Sara; Botelho, Mariana; Pereira de Almeida, Luís; Cavadas, Cláudia
2016-07-01
Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process.
Schumacher, S; Bross, S; Scheepe, J R; Alken, P; Jünemann, K P
1999-01-01
Conventional sacral anterior root stimulation (SARS) results in simultaneous activation of both the detrusor muscle and the external urethral sphincter. We evaluated the possibilities of different neurostimulation techniques to overcome stimulation induced detrusor-sphincter-dyssynergia and to achieve a physiological voiding. The literature was reviewed on different techniques of sacral anterior root stimulation of the bladder and the significance of posterior rhizotomy in patients with supraconal spinal cord injury suffering from the loss of voluntary bladder control, detrusor hyperreflexia and sphincter spasm. The achievement of selective detrusor activation would improve current sacral neurostimulation of the bladder, including the principle of "poststimulus voiding". This is possible with the application of selective neurostimulation in techniques of anodal block, high frequency block, depolarizing prepulses and cold block. Nowadays, sacral deafferentation is a standard therapy in combination with neurostimulation of the bladder because in conclusion advantages of complete rhizotomy predominate. The combination of sacral anterior root stimulation and sacral deafferentation is a successful procedure for restoration of bladder function in patients with supraconal spinal cord injury. Anodal block technique and cryotechnique are excellent methods for selective bladder activation to avoid detrusor-sphincter-dyssynergia and thus improve stimulation induced voiding.
Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia
2016-01-01
Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412
NASA Astrophysics Data System (ADS)
Zakynthinaki, M. S.; Stirling, J. R.
2007-01-01
Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.
Model-based iterative learning control of Parkinsonian state in thalamic relay neuron
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile
2014-09-01
Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.
Statistical physics and physiology: monofractal and multifractal approaches
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.
1999-01-01
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.
Thompson, John A.
2016-01-01
The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. PMID:26762887
Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation
Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.
2016-01-01
Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709
Vinnakota, Kalyan C; Dash, Ranjan K; Beard, Daniel A
2011-09-02
Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca(2+) under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca(2+) in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mM extramitochondrial free magnesium, Ca(2+) can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca(2+) concentration averaged per beat, Ca(2+) had no observable stimulatory effect. A modest apparent stimulatory effect (22-27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mM initial phosphate. The stimulatory effects observed over the physiological Ca(2+) range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo.
Vinnakota, Kalyan C.; Dash, Ranjan K.; Beard, Daniel A.
2011-01-01
Mitochondrial TCA cycle dehydrogenase enzymes have been shown to be stimulated by Ca2+ under various substrate and ADP incubation conditions in an attempt to determine and understand the role of Ca2+ in maintaining energy homeostasis in working hearts. In this study, we tested the hypothesis that, at physiological temperature and 1 mm extramitochondrial free magnesium, Ca2+ can stimulate the overall mitochondrial NAD(P)H generation flux in rat heart mitochondria utilizing pyruvate and malate as substrates at both subsaturating and saturating concentrations. In both cases, we found that, in the physiological regime of mitochondrial oxygen consumption observed in the intact animal and in the physiological range of cytosolic Ca2+ concentration averaged per beat, Ca2+ had no observable stimulatory effect. A modest apparent stimulatory effect (22–27%) was observable at supraphysiological maximal ADP-stimulated respiration at 2.5 mm initial phosphate. The stimulatory effects observed over the physiological Ca2+ range are not sufficient to make a significant contribution to the control of oxidative phosphorylation in the heart in vivo. PMID:21757763
Tools for Physiology Labs: Inexpensive Equipment for Physiological Stimulation
Land, Bruce R.; Johnson, Bruce R.; Wyttenbach, Robert A.; Hoy, Ronald R.
2004-01-01
We describe the design of inexpensive equipment and software for physiological stimulation in the neurobiology teaching laboratory. The core component is a stimulus isolation unit (SIU) that uses DC-DC converters, rather than expensive high-voltage batteries, to generate isolated power at high voltage. The SIU has no offset when inactive and produces pulses up to 100 V with moderately fast (50 μs) rise times. We also describe two methods of stimulus timing control. The first is a simplified conventional, stand-alone analog pulse generator. The second uses a digital microcontroller interfaced with a personal computer. The SIU has performed well and withstood intensive use in our undergraduate physiology laboratory. This project is part of our ongoing effort to make reliable low-cost physiology equipment available for both student teaching and faculty research laboratories. PMID:23493817
Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.
Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C
2016-04-01
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.
Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert
2017-02-01
The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.
Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang
2013-01-01
Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026
Specific TRPC6 Channel Activation, a Novel Approach to Stimulate Keratinocyte Differentiation*S⃞
Müller, Margarethe; Essin, Kirill; Hill, Kerstin; Beschmann, Heike; Rubant, Simone; Schempp, Christoph M.; Gollasch, Maik; Boehncke, W. Henning; Harteneck, Christian; Müller, Walter E.; Leuner, Kristina
2008-01-01
The protective epithelial barrier in our skin undergoes constant regulation, whereby the balance between differentiation and proliferation of keratinocytes plays a major role. Impaired keratinocyte differentiation and proliferation are key elements in the pathophysiology of several important dermatological diseases, including atopic dermatitis and psoriasis. Ca2+ influx plays an essential role in this process presumably mediated by different transient receptor potential (TRP) channels. However, investigating their individual role was hampered by the lack of specific stimulators or inhibitors. Because we have recently identified hyperforin as a specific TRPC6 activator, we investigated the contribution of TRPC6 to keratinocyte differentiation and proliferation. Like the endogenous differentiation stimulus high extracellular Ca2+ concentration ([Ca2+]o), hyperforin triggers differentiation in HaCaT cells and in primary cultures of human keratinocytes by inducing Ca2+ influx via TRPC6 channels and additional inhibition of proliferation. Knocking down TRPC6 channels prevents the induction of Ca2+- and hyperforin-induced differentiation. Importantly, TRPC6 activation is sufficient to induce keratinocyte differentiation similar to the physiological stimulus [Ca2+]o. Therefore, TRPC6 activation by hyperforin may represent a new innovative therapeutic strategy in skin disorders characterized by altered keratinocyte differentiation. PMID:18818211
Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
Frey Law, Laura A; Shields, Richard K
2006-03-01
Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.
Andersen, Martin N; Hefting, Louise L; Steffensen, Annette B; Schmitt, Nicole; Olesen, Søren-Peter; Olsen, Jesper V; Lundby, Alicia; Rasmussen, Hanne B
2015-11-15
The potassium channel Kv7.1 plays critical physiological roles in both heart and epithelial tissues. In heart, Kv7.1 and the accessory subunit KCNE1 forms the slowly activating delayed-rectifier potassium current current, which is enhanced by protein kinase A (PKA)-mediated phosphorylation. The observed current increase requires both phosphorylation of Kv7.1 and the presence of KCNE1. However, PKA also stimulates Kv7.1 currents in epithelial tissues, such as colon, where the channel does not coassemble with KCNE1. Here, we demonstrate that PKA activity significantly impacts the subcellular localization of Kv7.1 in Madin-Darby canine kidney cells. While PKA inhibition reduced the fraction of channels at the cell surface, PKA activation increased it. We show that PKA inhibition led to intracellular accumulation of Kv7.1 in late endosomes/lysosomes. By mass spectroscopy we identified eight phosphorylated residues on Kv7.1, however, none appeared to play a role in the observed response. Instead, we found that PKA acted by regulating endocytic trafficking involving the ubiquitin ligase Nedd4-2. We show that a Nedd4-2-resistant Kv7.1-mutant displayed significantly reduced intracellular accumulation upon PKA inhibition. Similar effects were observed upon siRNA knockdown of Nedd4-2. However, although Nedd4-2 is known to regulate Kv7.1 by ubiquitylation, biochemical analyses demonstrated that PKA did not influence the amount of Nedd4-2 bound to Kv7.1 or the ubiquitylation level of the channel. This suggests that PKA influences Nedd4-2-dependent Kv7.1 transport though a different molecular mechanism. In summary, we identify a novel mechanism whereby PKA can increase Kv7.1 current levels, namely by regulating Nedd4-2-dependent Kv7.1 transport. Copyright © 2015 the American Physiological Society.
Electrotactile and vibrotactile displays for sensory substitution systems
NASA Technical Reports Server (NTRS)
Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.
1991-01-01
Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu
2014-11-01
Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less
Eickenscheidt, Max; Zeck, Günther
2014-06-01
The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.
Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.
2014-01-01
Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.
We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less
Extracellular pH monitoring for use in closed-loop vagus nerve stimulation
NASA Astrophysics Data System (ADS)
Cork, Simon C.; Eftekhar, Amir; Mirza, Khalid B.; Zuliani, Claudio; Nikolic, Konstantin; Gardiner, James V.; Bloom, Stephen R.; Toumazou, Christofer
2018-02-01
Objective. Vagal nerve stimulation (VNS) has shown potential benefits for obesity treatment; however, current devices lack physiological feedback, which limit their efficacy. Changes in extracellular pH (pHe) have shown to be correlated with neural activity, but have traditionally been measured with glass microelectrodes, which limit their in vivo applicability. Approach. Iridium oxide has previously been shown to be sensitive to fluctuations in pH and is biocompatible. Iridium oxide microelectrodes were inserted into the subdiaphragmatic vagus nerve of anaesthetised rats. Introduction of the gut hormone cholecystokinin (CCK) or distension of the stomach was used to elicit vagal nerve activity. Main results. Iridium oxide microelectrodes have sufficient pH sensitivity to readily detect changes in pHe associated with both CCK and gastric distension. Furthermore, a custom-made Matlab script was able to use these changes in pHe to automatically trigger an implanted VNS device. Significance. This is the first study to show pHe changes in peripheral nerves in vivo. In addition, the demonstration that iridium oxide microelectrodes are sufficiently pH sensitive as to measure changes in pHe associated with physiological stimuli means they have the potential to be integrated into closed-loop neurostimulating devices.
Effects of Electrical Stimulation Rate on Speech Recognition in Cochlear Implant Users
Park, Sung Hye; Kim, Eunoak; Lee, Hyo-Jeong
2012-01-01
Background and Objectives The stimulus signals delivered in cochlear implant (CI) systems are generally derived by sampling the temporal envelope of each channel at some constant rate and using its intensity to control the stimulation current level delivered to the corresponding electrode site. The objective of the study was to investigate speech recognition performance of cochlear implant users in quiet and noisy environments using either moderate or high rates of electrical stimulations. Materials and Methods Six post-lingually deafened adult users of the Nucleus CI24 cochlear implant (Contour® electrode array, Cochlear™, Macquarie Park, Australia) with the Freedom® speech processor participated in the study. Stimulation rates of 900 and 2400 pulses-per-second/channel (pps/ch) were used after both stimulation programs were balanced for loudness. Monosyllabic word and sentence recognition scores in quiet and noisy environments were evaluated for each stimulation program after two months of practice. Subjects were also asked to respond to a questionnaire to examine their preference to any stimulation rate in different hearing conditions. Results Word recognition scores for monosyllabic words in quiet conditions with the 900 stimulation rate was better than that of the 2400 stimulation rate, although no significant differences between them were found for sentence test in noise. A survey questionnaire indicated that most subjects preferred the 900 stimulation rate to the 2400 stimulation rate, especially in quiet conditions. Conclusions Most subjects indicated a preference for 900 pps/ch rate in quiet conditions. It is recommended to remap at 900 pps/ch for those CI users whose performance in quiet conditions is less than ideal. PMID:24653862
Effects of electrical stimulation rate on speech recognition in cochlear implant users.
Park, Sung Hye; Kim, Eunoak; Lee, Hyo-Jeong; Kim, Hyung-Jong
2012-04-01
The stimulus signals delivered in cochlear implant (CI) systems are generally derived by sampling the temporal envelope of each channel at some constant rate and using its intensity to control the stimulation current level delivered to the corresponding electrode site. The objective of the study was to investigate speech recognition performance of cochlear implant users in quiet and noisy environments using either moderate or high rates of electrical stimulations. Six post-lingually deafened adult users of the Nucleus CI24 cochlear implant (Contour® electrode array, Cochlear™, Macquarie Park, Australia) with the Freedom® speech processor participated in the study. Stimulation rates of 900 and 2400 pulses-per-second/channel (pps/ch) were used after both stimulation programs were balanced for loudness. Monosyllabic word and sentence recognition scores in quiet and noisy environments were evaluated for each stimulation program after two months of practice. Subjects were also asked to respond to a questionnaire to examine their preference to any stimulation rate in different hearing conditions. Word recognition scores for monosyllabic words in quiet conditions with the 900 stimulation rate was better than that of the 2400 stimulation rate, although no significant differences between them were found for sentence test in noise. A survey questionnaire indicated that most subjects preferred the 900 stimulation rate to the 2400 stimulation rate, especially in quiet conditions. Most subjects indicated a preference for 900 pps/ch rate in quiet conditions. It is recommended to remap at 900 pps/ch for those CI users whose performance in quiet conditions is less than ideal.
Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L
2014-01-01
Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.
Lymphocyte Electrotaxis in vitro and in vivo
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D.; Santiago, Juan G.; Butcher, Eugene C.
2008-01-01
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e. electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified transwell assay and a simple microfluidic device, we show that human peripheral blood lymphocytes migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well. PMID:18684937
Lymphocyte electrotaxis in vitro and in vivo.
Lin, Francis; Baldessari, Fabio; Gyenge, Christina Crenguta; Sato, Tohru; Chambers, Robert D; Santiago, Juan G; Butcher, Eugene C
2008-08-15
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including penetrating injury to epithelial barriers. An applied electric field with strength within the physiologic range can induce directional cell migration (i.e., electrotaxis) of epithelial cells, endothelial cells, fibroblasts, and neutrophils suggesting a potential role in cell positioning during wound healing. In the present study, we investigated the ability of lymphocytes to respond to applied direct current (DC) electric fields. Using a modified Transwell assay and a simple microfluidic device, we show that human PBLs migrate toward the cathode in physiologically relevant DC electric fields. Additionally, electrical stimulation activates intracellular kinase signaling pathways shared with chemotactic stimuli. Finally, video microscopic tracing of GFP-tagged immunocytes in the skin of mouse ears reveals that motile cutaneous T cells actively migrate toward the cathode of an applied DC electric field. Lymphocyte positioning within tissues can thus be manipulated by externally applied electric fields, and may be influenced by endogenous electrical potential gradients as well.
Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.
Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier
2016-05-01
Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Electrospun poly(methyl methacrylate) fibrous mat showing piezoelectric properties
NASA Astrophysics Data System (ADS)
Nobeshima, Taiki; Ishii, Yuya; Sakai, Heisuke; Uemura, Sei; Yoshida, Manabu
2018-05-01
A piezoelectric effect, such as actuation behavior with voltage application, could be observed from a poly(methyl methacrylate) (PMMA) fibrous mat fabricated by electrospinning. This fibrous mat increased or decreased its thickness in accordance with the polarity of the applied voltage, which appears to be an inverse piezoelectric effect. The appearance d T constant was as large as 8.5 nm/V owing to the softness of the fibrous structure, and the coupling constant K T = 0.31 indicated its efficient piezoelectric property. This piezoelectric behavior was repeatedly observed to be stable at room temperature. In addition, the polarization components of the fibrous mat, which are considered to be the origin of its piezoelectric effect, and its relaxation behavior were confirmed from the results of thermally stimulated current measurements.
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra
2014-01-01
Cycling induced by Functional Electrical Stimulation (FES) training currently requires a manual setting of different parameters, which is a time-consuming and scarcely repeatable procedure. We proposed an automatic procedure for setting session-specific parameters optimized for hemiparetic patients. This procedure consisted of the identification of the stimulation strategy as the angular ranges during which FES drove the motion, the comparison between the identified strategy and the physiological muscular activation strategy, and the setting of the pulse amplitude and duration of each stimulated muscle. Preliminary trials on 10 healthy volunteers helped define the procedure. Feasibility tests on 8 hemiparetic patients (5 stroke, 3 traumatic brain injury) were performed. The procedure maximized the motor output within the tolerance constraint, identified a biomimetic strategy in 6 patients, and always lasted less than 5 minutes. Its reasonable duration and automatic nature make the procedure usable at the beginning of every training session, potentially enhancing the performance of FES-cycling training.
Necroptosis: Modules and molecular switches with therapeutic implications.
Arora, Deepika; Sharma, Pradeep Kumar; Siddiqui, Mohammed Haris; Shukla, Yogeshwer
2017-06-01
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Controversial constitutive TSHR activity: patients, physiology, and in vitro characterization.
Huth, S; Jaeschke, H; Schaarschmidt, J; Paschke, R
2014-06-01
G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are "preliminary attempts" and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity. © Georg Thieme Verlag KG Stuttgart · New York.
A Nerve Clamp Electrode Design for Indirect Stimulation of Skeletal Muscle
2010-10-01
neurons. This device enables stimulation of muscle contraction indirectly as opposed to contraction from direct muscle stimulation. The electrode is able...to stimulate indirect muscle contraction when tested on ex vivo preparations from rodent phrenic nerve-hemidiaphragm muscle in similar fashion to...unsuccessful in stimulating indirect muscle contraction . Therefore, this novel electrode is useful for physiological assessment of nerve agents and
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K
2015-03-02
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Patki, Mugdha; Patil, Vidya
2016-05-01
Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.
The XIIIth International Physiological Congress in Boston in 1929: American Physiology Comes of Age
ERIC Educational Resources Information Center
Rall, Jack A.
2016-01-01
In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological…
Spatial channel interactions in cochlear implants
NASA Astrophysics Data System (ADS)
Tang, Qing; Benítez, Raul; Zeng, Fan-Gang
2011-08-01
The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal side. In contrast, the evoked compound action potential and perceptual channel interaction data showed much greater individual variability. It is likely that actual reduction in neural and higher level interactions, instead of simple sharpening of the electric current field, would be the key to predicting and hopefully improving the variable cochlear implant performance. The present results are obtained with auditory prostheses but can be applied to other neural prostheses, in which independent spatial channels, rather than a high stimulation rate, are critical to their performance.
Wangemann, Philine; Wonneberger, Kai
2005-11-01
The cochlea receives its main blood supply from the basilar artery via the anterior inferior cerebellar artery and the spiral modiolar artery. Morphologic studies have shown sympathetic innervation along the spiral modiolar artery of the gerbil and the guinea pig and functional studies in the isolated in vitro superfused spiral modiolar artery of the gerbil have demonstrated norepinephrine-induced vasoconstrictions via alpha(1A)-adrenergic receptors. It is current unclear whether the sympathetic innervation is physiologically relevant. Stimulation of sympathetic ganglia in guinea pigs has been shown to alter cochlear blood flow in situ. Whether these changes originated from local or more systemic changes in the vascular diameter remained uncertain. The goal of the present study was to demonstrate the presence or absence of neurogenic changes in the diameter of the isolated in vitro superfused spiral modiolar artery, anterior inferior cerebellar artery and basilar artery from the gerbil and the guinea pig. Vascular diameter was monitored by videomicroscopy. Electric field stimulation was used to elicit neurotransmitter release. A reversible inhibitory effect of 10(-6) M tetrodotoxin was taken as criterion to discriminate between neurogenic and myogenic changes in vascular diameter. Mesentery arteries of comparable diameter, which are known to respond with a neurogenic vasoconstriction to electric field stimulation, served as controls. Basilar artery, anterior inferior cerebellar artery, spiral modiolar artery and mesentery arteries constricted in response to electric field stimulation. No dilations were observed. Myogenic and neurogenic vasoconstrictions were observed in all vessels. These observations suggest that the sympathetic innervation of the basilar artery, the anterior inferior cerebellar artery and branch points of the spiral modiolar artery is involved in a physiologically relevant control of the vascular diameter in the gerbil and the guinea pig.
ERIC Educational Resources Information Center
Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.
2009-01-01
Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…
Rossini, P M; Burke, D; Chen, R; Cohen, L G; Daskalakis, Z; Di Iorio, R; Di Lazzaro, V; Ferreri, F; Fitzgerald, P B; George, M S; Hallett, M; Lefaucheur, J P; Langguth, B; Matsumoto, H; Miniussi, C; Nitsche, M A; Pascual-Leone, A; Paulus, W; Rossi, S; Rothwell, J C; Siebner, H R; Ugawa, Y; Walsh, V; Ziemann, U
2015-06-01
These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain-behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yi-Chao; Cui, Wan-Xing; Wang, Xu-Jing; Amthor, Franklin; Yao, Xin-Cheng
2011-03-01
Intrinsic optical signal (IOS) imaging has been established for noninvasive monitoring of stimulus-evoked physiological responses in the retina and other neural tissues. Recently, we extended the IOS imaging technology for functional evaluation of insulin secreting INS-1 cells. INS-1 cells provide a popular model for investigating β-cell dysfunction and diabetes. Our experiments indicate that IOS imaging allows simultaneous monitoring of glucose-stimulated physiological responses in multiple cells with high spatial (sub-cellular) and temporal (sub-second) resolution. Rapid image sequences reveal transient optical responses that have time courses comparable to glucose-evoked β-cell electrical activities.
The G-factor as a tool to learn more about bone structure and function.
Zerath, E
1999-07-01
In normal life on earth, the locomotor system is exposed to two types of stimulation: gravity (passive stimulation) and motion (active stimulation). Both permanently combine, and the interactions between locomotion and gravity induce an overall recruitment which is repeated daily and maintains the bone tissue structure within the range of constraints to which it is adapted. This range is one of the basic hypotheses underlying the mechanical concepts of bone structure control, and it has been considered as logical to assume that weightlessness of spaceflight should produce bone loss since astronauts are outside of the terrestrial gravitational field of forces, no longer relying on muscular work to change positions or move. But, thirty years after the first changes in phospho-calcium metabolism were observed in astronauts after spaceflight, current knowledge does not provide a full understanding of this pathogeny, and prove the G-factor is now considered as an essential component of the experimental tools available to study bone physiology. The study of the physiology of bone tissue usually consists in the investigation of its two fundamental roles, i.e. reservoir of inorganic elements (calcium, phosphorus, magnesium) and mechanical support for soft tissues. Together with the combined action of muscles, tendons, and ligaments, this support permits motion and locomotion. These two functions rely on a sophisticated bone tissue architecture, and on the adaptability of this structure, with modeling and remodeling processes, themselves associated with the coupled activity of specialized bone cell populations.
Varoli, Erica; Pisoni, Alberto; Mattavelli, Giulia C.; Vergallito, Alessandra; Gallucci, Alessia; Mauro, Lilia D.; Rosanova, Mario; Bolognini, Nadia; Vallar, Giuseppe; Romero Lauro, Leonor J.
2018-01-01
Transcranial direct current stimulation (tDCS) is increasingly used in both research and therapeutic settings, but its precise mechanisms remain largely unknown. At a neuronal level, tDCS modulates cortical excitability by shifting the resting membrane potential in a polarity-dependent way: anodal stimulation increases the spontaneous firing rate, while cathodal decreases it. However, the neurophysiological underpinnings of anodal/cathodal tDCS seem to be different, as well as their behavioral effect, in particular when high order areas are involved, compared to when motor or sensory brain areas are targeted. Previously, we investigated the effect of anodal tDCS on cortical excitability, by means of a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Results showed a diffuse rise of cortical excitability in a bilateral fronto-parietal network. In the present study, we tested, with the same paradigm, the effect of cathodal tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 10 min of cathodal or sham tDCS over the right PPC, while recording HD-EEG. Indexes of global and local cortical excitability were obtained both at sensors and cortical sources level. At sensors, global and local mean field power (GMFP and LMFP) were computed for three temporal windows (0–50, 50–100, and 100–150 ms), on all channels (GMFP), and in four different clusters of electrodes (LMFP, left and right, in frontal and parietal regions). After source reconstruction, Significant Current Density was computed at the global level, and for four Broadmann's areas (left/right BA 6 and 7). Both sensors and cortical sources results converge in showing no differences during and after cathodal tDCS compared to pre-stimulation sessions, both at global and local level. The same holds for sham tDCS. These data highlight an asymmetric impact of anodal and cathodal stimulation on cortical excitability, with a diffuse effect of anodal and no effect of cathodal tDCS over the parietal cortex. These results are consistent with the current literature: while anodal-excitatory and cathodal-inhibitory effects are well-established in the sensory and motor domains, both at physiological and behavioral levels, results for cathodal stimulation are more controversial for modulation of exitability of higher order areas. PMID:29867330
Stratford, Jennifer M; Thompson, John A
2016-03-01
The marker of neuronal activation, c-Fos, can be used to visualize spatial patterns of neural activity in response to taste stimulation. Because animals will not voluntarily consume aversive tastes, these stimuli are infused directly into the oral cavity via intraoral cannulae, whereas appetitive stimuli are given in drinking bottles. Differences in these 2 methods make comparison of taste-evoked brain activity between results that utilize these methods problematic. Surprisingly, the intraoral cannulae experimental conditions that produce a similar pattern of c-Fos activity in response to taste stimulation remain unexplored. Stimulation pattern (e.g., constant/intermittent) and hydration state (e.g., water-restricted/hydrated) are the 2 primary differences between delivering tastes via bottles versus intraoral cannulae. Thus, we quantified monosodium glutamate (MSG)-evoked brain activity, as measured by c-Fos, in the nucleus of the solitary tract (nTS; primary taste nucleus) across several conditions. The number and pattern of c-Fos neurons in the nTS of animals that were water-restricted and received a constant infusion of MSG via intraoral cannula most closely mimicked animals that consumed MSG from a bottle. Therefore, in order to compare c-Fos activity between cannulae-stimulated and bottle-stimulated animals, cannulated animals should be water restricted prior to stimulation, and receive taste stimuli at a constant flow. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
de Girolamo, Laura; Lucarelli, Enrico; Alessandri, Giulio; Avanzini, Maria Antonietta; Bernardo, Maria Ester; Biagi, Ettore; Brini, Anna Teresa; D’Amico, Giovanna; Fagioli, Franca; Ferrero, Ivana; Locatelli, Franco; Maccario, Rita; Marazzi, Mario; Parolini, Ornella; Pessina, Augusto; Torre, Maria Luisa
2013-01-01
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects. PMID:23278600
Prefrontal transcranial direct current stimulation improves fundamental vehicle control abilities.
Sakai, Hiroyuki; Uchiyama, Yuji; Tanaka, Satoshi; Sugawara, Sho K; Sadato, Norihiro
2014-10-15
Noninvasive brain stimulation techniques have increasingly attracted the attention of neuroscientists because they enable the identification of the causal role of a targeted brain region. However, few studies have applied such techniques to everyday life situations. Here, we investigate the causal role of the dorsolateral prefrontal cortex (DLPFC) in fundamental vehicle control abilities. Thirteen participants underwent a simulated driving task under prefrontal transcranial direct current stimulation (tDCS) on three separate testing days. Each testing day was randomly assigned to either anodal over the right with cathodal over the left DLPFC, cathodal over the right with anodal over the left DLPFC, or sham stimulation. The driving task required the participants to maintain an inter-vehicle distance to a leading car traveling a winding road with a constant speed. Driving performance was quantified using two metrics: the root-mean-square error of inter-vehicle distance as car-following performance, and the standard deviation of lateral position as lane-keeping performance. Results showed that both car-following and lane-keeping performances were significantly greater for right anodal/left cathodal compared with right cathodal/left cathodal and sham stimulation. These results suggest not only the causal involvement of the DLPFC in driving, but also right hemisphere dominance for vehicle control. The findings of this study indicate that tDCS can be a useful tool to examine the causal role of a specific brain region in ecologically valid environments, and also might be a help to drivers with difficulties in vehicle control. Copyright © 2014 Elsevier B.V. All rights reserved.
Brody, Stuart; Klapilova, Katerina; Krejčová, Lucie
2013-07-01
Research indicated that: (i) vaginal orgasm (induced by penile-vaginal intercourse [PVI] without concurrent clitoral masturbation) consistency (vaginal orgasm consistency [VOC]; percentage of PVI occasions resulting in vaginal orgasm) is associated with mental attention to vaginal sensations during PVI, preference for a longer penis, and indices of psychological and physiological functioning, and (ii) clitoral, distal vaginal, and deep vaginal/cervical stimulation project via different peripheral nerves to different brain regions. The aim of this study is to examine the association of VOC with: (i) sexual arousability perceived from deep vaginal stimulation (compared with middle and shallow vaginal stimulation and clitoral stimulation), and (ii) whether vaginal stimulation was present during the woman's first masturbation. A sample of 75 Czech women (aged 18-36), provided details of recent VOC, site of genital stimulation during first masturbation, and their recent sexual arousability from the four genital sites. The association of VOC with: (i) sexual arousability perceived from the four genital sites and (ii) involvement of vaginal stimulation in first-ever masturbation. VOC was associated with greater sexual arousability from deep vaginal stimulation but not with sexual arousability from other genital sites. VOC was also associated with women's first masturbation incorporating (or being exclusively) vaginal stimulation. The findings suggest (i) stimulating the vagina during early life masturbation might indicate individual readiness for developing greater vaginal responsiveness, leading to adult greater VOC, and (ii) current sensitivity of deep vaginal and cervical regions is associated with VOC, which might be due to some combination of different neurophysiological projections of the deep regions and their greater responsiveness to penile stimulation. © 2013 International Society for Sexual Medicine.
Yang, Yiwei; Xu, Yuejin; Miu, Jichang; Zhou, Linghong; Xiao, Zhongju
2012-10-01
To apply the classic leakage integrate-and-fire models, based on the mechanism of the generation of physiological auditory stimulation, in the information processing coding of cochlear implants to improve the auditory result. The results of algorithm simulation in digital signal processor (DSP) were imported into Matlab for a comparative analysis. Compared with CIS coding, the algorithm of membrane potential integrate-and-fire (MPIF) allowed more natural pulse discharge in a pseudo-random manner to better fit the physiological structures. The MPIF algorithm can effectively solve the problem of the dynamic structure of the delivered auditory information sequence issued in the auditory center and allowed integration of the stimulating pulses and time coding to ensure the coherence and relevance of the stimulating pulse time.
One- and two-piece colostomy appliances: merits and indications.
Burch, Jennie; Sica, Jo
Approximately 10000 new colostomies are formed each year (IMS, 2006), most of which will be permanent. There is currently a wide range of colostomy products available, and new appliances are constantly coming onto the Drug Tariff. While this gives colostomates greater choice and ensures that their various needs are met, it can make the selection of an appropriate appliance difficult. This article discusses the merits of, and indications for, the one- and two-piece colostomy appliances currently available in the UK. It gives a brief overview of the anatomy and physiology of the gastrointestinal tract in relation to colostomy formation, and outlines the more common types of operation that may result in the formation of a colostomy.
Ni, D
1992-12-01
A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht
2016-07-01
Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy.
Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia
Raju, Sammeta V.; Wang, Guoshun
2012-01-01
Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662
The acute physiological and mood effects of tea and coffee: the role of caffeine level.
Quinlan, P T; Lane, J; Moore, K L; Aspen, J; Rycroft, J A; O'Brien, D C
2000-05-01
The objective of this study was to determine the effect of caffeine level in tea and coffee on acute physiological responses and mood. Randomised full crossover design in subjects after overnight caffeine abstention was studied. In study 1 (n = 17) the caffeine level was manipulated naturalistically by preparing tea and coffee at different strengths (1 or 2 cups equivalent). Caffeine levels were 37.5 and 75 mg in tea, 75 and 150 mg in coffee, with water and no-drink controls. In study 2 (n = 15) caffeine level alone was manipulated (water, decaffeinated tea, plus 0, 25, 50, 100, and 200 mg caffeine). Beverage volume and temperature (55 degrees C) were constant. SBP, DBP, heart rate, skin temperature, skin conductance, and mood were monitored over each 3-h study session. In study 1, tea and coffee produced mild autonomic stimulation and an elevation in mood. There were no effects of tea vs. coffee or caffeine dose, despite a fourfold variation in the latter. Increasing beverage strength was associated with greater increases in DBP and energetic arousal. In study 2, caffeinated beverages increased SBP, DBP, and skin conductance and lowered heart rate and skin temperature compared to water. Significant dose-response relationships to caffeine were seen only for SBP, heart rate, and skin temperature. There were significant effects of caffeine on energetic arousal but no consistent dose-response effects. Caffeinated beverages acutely stimulate the autonomic nervous system and increase alertness. Although caffeine can exert dose-dependent effects on a number of acute autonomic responses, caffeine level is not an important factor. Factors besides caffeine may contribute to these acute effects.
A novel field generator for magnetic stimulation in cell culture experiments.
Vogt, G; Schrefl, A; Mitteregger, R; Falkenhagen, D
1997-06-01
A novel field generator specially designed to examine the influence of low frequency magnetic fields on specific cell material was constructed and characterized. The exposure unit described in this paper consists of a controller unit and three sets of coils. The field generator permits a precious definition of the revelant signal parameters and allows the superposition of alternating current (AC) and direct current (DC) magnetic fields. Critical system parameters were monitored continuously. The three sets of coils, each arranged in the Helmholtz Configuration were characterized. After data processing and visualization the results showed a constant and homogeneous field within the experimental area. The special coil design also allows their use in an incubator.
Measuring the acoustoelectric interaction constant using ultrasound current source density imaging
NASA Astrophysics Data System (ADS)
Li, Qian; Olafsson, Ragnar; Ingram, Pier; Wang, Zhaohui; Witte, Russell
2012-10-01
Ultrasound current source density imaging (UCSDI) exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity, to map electrical conduction in the heart. The conversion efficiency for UCSDI is determined by the AE interaction constant K, a fundamental property of all materials; K directly affects the magnitude of the detected voltage signal in UCSDI. This paper describes a technique for measuring K in biological tissue, and reports its value for the first time in cadaver hearts. A custom chamber was designed and fabricated to control the geometry for estimating K, which was measured in different ionic salt solutions and seven cadaver rabbit hearts. We found K to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart, K was determined to be 0.041±0.012%/MPa, similar to the measurement of K in physiological saline (0.034±0.003%/MPa). This study provides a baseline estimate of K for modeling and experimental studies that involve UCSDI to map cardiac conduction and reentry currents associated with arrhythmias.
Novel and emerging nonpositive airway pressure therapies for sleep apnea.
Park, John G; Morgenthaler, Timothy M; Gay, Peter C
2013-12-01
CPAP therapy has remained the standard of care for the treatment of sleep apnea for nearly 4 decades. Its overall effectiveness, however, has been limited by incomplete adherence despite many efforts to improve comfort. Conventional alternative therapies include oral appliances and upper airway surgeries. Recently, several innovative alternatives to CPAP have been developed. These novel approaches include means to increase arousal thresholds, electrical nerve stimulation, oral vacuum devices, and nasal expiratory resistive devices. We will review the physiologic mechanisms and the current evidence for these novel treatments.
Muscle and the physiology of locomotion. [in zero gravity
NASA Technical Reports Server (NTRS)
Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.
1983-01-01
NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.
Sokolov, V S; Apell, H J; Corrie, J E; Trentham, D R
1998-01-01
Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C. PMID:9591656
Kanda, Hiroyuki; Morimoto, Takeshi; Fujikado, Takashi; Tano, Yasuo; Fukuda, Yutaka; Sawai, Hajime
2004-02-01
Assessment of a novel method of retinal stimulation, known as suprachoroidal-transretinal stimulation (STS), which was designed to minimize insult to the retina by implantation of stimulating electrodes for artificial vision. In 17 normal hooded rats and 12 Royal College of Surgeons (RCS) rats, a small area of the retina was focally stimulated with electric currents through an anode placed on the fenestrated sclera and a cathode inserted into the vitreous chamber. Evoked potentials (EPs) in response to STS were recorded from the surface of the superior colliculus (SC) with a silver-ball electrode, and their physiological properties and localization were studied. In both normal and RCS rats, STS elicited triphasic EPs that were vastly diminished by changing polarity of stimulating electrodes and abolished by transecting the optic nerve. The threshold intensity (C) of the EP response to STS was approximately 7.2 +/- 2.8 nC in normal and 12.9 +/- 7.7 nC in RCS rats. The responses to minimal STS were localized in an area on the SC surface measuring 0.12 +/- 0.07 mm(2) in normal rats and 0.24 +/- 0.12 mm(2) in RCS rats. The responsive area corresponded retinotopically to the retinal region immediately beneath the anodic stimulating electrode. STS is less invasive in the retina than stimulation through epiretinal or subretinal implants. STS can generate focal excitation in retinal ganglion cells in normal animals and in those with degenerated photoreceptors, which suggests that this method of retinal stimulation is suitable for artificial vision.
Barikroo, Ali; Berretin-Felix, Giedré; Carnaby, Giselle; Crary, Michael
2017-03-01
This study compared the effect of transcutaneous electrical stimulation (TES) amplitude on timing of lingual-palatal and pharyngeal peak pressures during swallowing in healthy younger and older adults. Transcutaneous electrical stimulation amplitude is one parameter that may have different impacts on the neuromotor system and swallowing physiology. One aspect of swallowing physiology influenced by age is the timing of swallowing events. However, the effect of varying TES amplitudes on timing of swallowing physiology is poorly understood, especially in older adults. Thirty-four adults (20 younger and 14 older) swallowed 10 ml of nectar-thick liquid under three TES conditions: no stimulation, low-amplitude stimulation and high-amplitude stimulation. TES was delivered by surface electrodes on the anterior neck. Timing of pressure peaks for lingual-palatal contacts and pharyngeal pressures were measured under each condition. A significant age × stimulation amplitude interaction was identified for the base of tongue (BOT) [F(2,62) = 5.087, p < 0.009] and the hypopharynx (HYPO) [F(2,62) = 3.277, p < 0.044]. At the BOT, low-amplitude TES resulted in slower swallows in the younger adults compared with no TES. In older adults, low-amplitude TES resulted in faster swallows compared with high-amplitude TES. At the HYPO, no significant differences were identified in pressure timing across the three TES amplitudes in both age groups. In each case, low-amplitude TES resulted in faster swallows in older adults compared with younger adults. Transcutaneous electrical stimulation influences pharyngeal pressure timing differently in young and old people, which questions the appropriateness of using a 'one-size-fits-all' TES amplitude for rehabilitating people with dysphagia. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
A PP2A-mediated feedback mechanism controls Ca2+-dependent NO synthesis under physiological oxygen.
Keeley, Thomas P; Siow, Richard C M; Jacob, Ron; Mann, Giovanni E
2017-12-01
Intracellular O 2 is a key regulator of NO signaling, yet most in vitro studies are conducted in atmospheric O 2 levels, hyperoxic with respect to the physiologic milieu. We investigated NO signaling in endothelial cells cultured in physiologic (5%) O 2 and stimulated with histamine or shear stress. Culture of cells in 5% O 2 (>5 d) decreased histamine- but not shear stress-stimulated endothelial (e)NOS activity. Unlike cells adapted to a hypoxic environment (1% O 2 ), those cultured in 5% O 2 still mobilized sufficient Ca 2+ to activate AMPK. Enhanced expression and membrane targeting of PP2A-C was observed in 5% O 2 , resulting in greater interaction with eNOS in response to histamine. Moreover, increased dephosphorylation of eNOS in 5% O 2 was Ca 2+ -sensitive and reversed by okadaic acid or PP2A-C siRNA. The present findings establish that Ca 2+ mobilization stimulates both NO synthesis and PP2A-mediated eNOS dephosphorylation, thus constituting a novel negative feedback mechanism regulating eNOS activity not present in response to shear stress. This, coupled with enhanced NO bioavailability, underpins differences in NO signaling induced by inflammatory and physiologic stimuli that are apparent only in physiologic O 2 levels. Furthermore, an explicit delineation between physiologic normoxia and genuine hypoxia is defined here, with implications for our understanding of pathophysiological hypoxia.-Keeley, T. P., Siow, R. C. M., Jacob, R., Mann, G. E. A PP2A-mediated feedback mechanism controls Ca 2+ -dependent NO synthesis under physiological oxygen. © The Author(s).
Ortega, Eduardo; Hinchado, M D; Martín-Cordero, L; Asea, A
2009-05-01
We studied the physiological role of the 72 kDa extracellular heat shock protein (Hsp72, a stress-inducible protein) in modulating neutrophil chemotaxis during a single bout of intense exercise performed by sedentary women, together with various cell mechanisms potentially involved in the modulation. For each volunteer, we evaluated neutrophil chemotaxis and serum Hsp72 concentration before and immediately after a single bout of exercise (1 h on a cycle ergometer at 70% VO(2) max), and 24 h later. Both parameters were found to be stimulated by the exercise, and had returned to basal values 24 h later. In vitro, there was a dose-dependent increase in chemotaxis when neutrophils were incubated both with physiological Hsp72 concentrations and with a 100 x greater concentration. The chemotaxis was greater when the neutrophils were incubated with the post-exercise Hsp72 concentration than with the basal concentration, suggesting a physiological role for this protein in the context of the stimulation of neutrophil chemotaxis by intense exercise. The 100 x Hsp72 concentration stimulated chemotaxis even more strongly. In addition, Hsp72 was found to have chemoattractant and chemokinetic effects on the neutrophils at physiological concentrations, with these effects being significantly greater with the post-exercise than with the basal Hsp72 concentration. The Hsp72-induced stimulation of neutrophil chemotaxis disappeared when the toll-like receptor 2 (TLR-2) was blocked, and phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), and nuclear transcription factor kappa B (NF-kappaB) were also found to be involved in the signaling process. No changes were observed, however, in neutrophil intracellular calcium levels in response to Hsp72. In conclusion, physiological concentrations of the stress protein Hsp72 stimulate human neutrophil chemotaxis through TLR-2 with its cofactor CD14, involving ERK, NF-kappaB, and PI3K, but not iCa(2 + ), as intracellular messengers. In addition, Hsp72 seems to participate in the stimulation of chemotaxis induced by a single bout of intense exercise performed by sedentary women.
NASA Astrophysics Data System (ADS)
Caravaca, A. S.; Tsaava, T.; Goldman, L.; Silverman, H.; Riggott, G.; Chavan, S. S.; Bouton, C.; Tracey, K. J.; Desimone, R.; Boyden, E. S.; Sohal, H. S.; Olofsson, P. S.
2017-12-01
Objective. Neural reflexes regulate immune responses and homeostasis. Advances in bioelectronic medicine indicate that electrical stimulation of the vagus nerve can be used to treat inflammatory disease, yet the understanding of neural signals that regulate inflammation is incomplete. Current interfaces with the vagus nerve do not permit effective chronic stimulation or recording in mouse models, which is vital to studying the molecular and neurophysiological mechanisms that control inflammation homeostasis in health and disease. We developed an implantable, dual purpose, multi-channel, flexible ‘microelectrode’ array, for recording and stimulation of the mouse vagus nerve. Approach. The array was microfabricated on an 8 µm layer of highly biocompatible parylene configured with 16 sites. The microelectrode was evaluated by studying the recording and stimulation performance. Mice were chronically implanted with devices for up to 12 weeks. Main results. Using the microelectrode in vivo, high fidelity signals were recorded during physiological challenges (e.g potassium chloride and interleukin-1β), and electrical stimulation of the vagus nerve produced the expected significant reduction of blood levels of tumor necrosis factor (TNF) in endotoxemia. Inflammatory cell infiltration at the microelectrode 12 weeks of implantation was limited according to radial distribution analysis of inflammatory cells. Significance. This novel device provides an important step towards a viable chronic interface for cervical vagus nerve stimulation and recording in mice.
Perceived physiological and orgasmic sensations at ejaculation in spinal cord injured men.
Courtois, Frédérique; Charvier, Kathleen; Leriche, Albert; Vézina, Jean-Guy; Côté, Isabelle; Raymond, Denis; Jacquemin, Géraldine; Fournier, Christine; Bélanger, Marc
2008-10-01
With the advances in penile vibrator stimulation (PVS), most spinal cord injured (SCI) men can self-ejaculate. Oral midodrine may further increase ejaculation success, while maintaining autonomy. Since most SCI men attempt ejaculation for sexual rather than reproductive purposes, self-ejaculation should be emphasized and sensations explored. Explore (i) self-ejaculation success rate in SCI men; (ii) vascular parameters indicative of autonomic dysreflexia (AD) during sexual stimulation and ejaculation; and (iii) sensations associated with ejaculation. Ejaculation was assessed on 81 SCI men with complete ASIA A (49%) and incomplete B to D lesions (51%), subdivided into tetraplegics (C2-T2), paraplegics sensitive to AD (T3-T6), paraplegics not sensitive to AD (T7-T10), paraplegics with lesions to the emission pathway (T11-L2), and paraplegics with lesions interrupting the emission-ejaculation pathways (L3-below). Natural stimulation was attempted first followed, if negative, by PVS followed, if again negative, by PVS combined with oral midodrine (5-25 mg). Ejaculation success, systolic and diastolic blood pressure, and perceived physiological and orgasmic sensations. Overall 91% reached ejaculation, 30% with natural stimulation, 49% with PVS and 12% with midodrine plus PVS. Midodrine salvaged up to 27% depending upon the lesion. Physiological and orgasmic sensations were perceived significantly more at ejaculation than sexual stimulation. Tetraplegics did not differ from paraplegics sensitive to AD on perceived cardiovascular and muscular sensations, but perceived significantly more autonomic sensations, and generally more physiological sensations than lower lesions unsensitive to AD. Most SCI men can self-ejaculate and perceive physiological and orgasmic sensations. The climactic experience of ejaculation seems related to AD, few sensations being reported when AD is not reached, pleasurable climactic sensations being reported when mild to moderate AD is reached, and unpleasant or painful sensations reported with severe AD. Sexual rehabilitation should emphasize self-ejaculation and self-exploration and consider cognitive reframing to maximize sexual perceptions.
Sasada, Syusaku; Endoh, Takashi; Ishii, Tomoya; Komiyama, Tomoyoshi
2017-09-14
Sprint motor performance, such as in short-distance running or cycling, gradually decreases after reaching a maximum speed or cadence. This may be attributed to the central nervous system. Brain stimulation studies have recently revealed the plastic nature of the human brain and spinal cord, but it is unclear how direct current stimulation (DCS) affects sprint motor performance. To address this issue, we investigated DCS's effect on healthy volunteers' sprint cycling performance. DCS was applied to the lumbar spinal cord (3mA) or the leg area of the motor cortex (2mA) for 15min with 3 different polarities: anodal, cathodal, and sham. After DCS, the subjects performed maximal-effort sprint cycling for 30s under a constant load. Pooled mean power during the 30s was significantly greater after cathodal transcutaneous spinal DCS to the lumbar spinal cord (tsDCS) than anodal or sham tsDCS. The improvement with cathodal stimulation was notable both 0-5 and 20-25s after the performance onset. There were no significant inter-conditional differences in peak power. Pooled mean power was significantly greater after anodal transcranial DCS to the motor cortex (tDCS) than after cathodal tDCS, although mean powers of anodal and sham tDCS were not significantly different. The increase in mean power after cathodal tsDCS could result from a reduction in central fatigue. This stimulus method might improve sprint performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of tDCS on Bimanual Motor Skills: A Brief Review
Pixa, Nils H.; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation. PMID:29670514
Effects of tDCS on Bimanual Motor Skills: A Brief Review.
Pixa, Nils H; Pollok, Bettina
2018-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.
Electrical Coupling Between Glial Cells in the Rat Retina
Ceelen, Paul W.; Lockridge, Amber; Newman, Eric A.
2008-01-01
The strength of electrical coupling between retinal glial cells was quantified with simultaneous whole-cell current-clamp recordings from astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell pairs in the acutely isolated rat retina. Experimental results were fit and space constants determined using a resistive model of the glial cell network that assumed a homogeneous two-dimensional glial syncytium. The effective space constant (the distance from the point of stimulation to where the voltage falls to 1/e) equaled 12.9, 6.2, and 3.7 µm, respectively for astrocyte–astrocyte, astrocyte–Müller cell, and Müller cell–Müller cell coupling. The addition of 1 mM Ba2+ had little effect on network space constants, while 0.5 mM octanol shortened the space constants to 4.7, 4.4, and 2.6 µm for the three types of coupling. For a given distance separating cell pairs, the strength of coupling showed considerable variability. This variability in coupling strength was reproduced accurately by a second resistive model of the glial cell network (incorporating discrete astrocytes spaced at varying distances from each other), demonstrating that the variability was an intrinsic property of the glial cell network. Coupling between glial cells in the retina may permit the intercellular spread of ions and small molecules, including messengers mediating Ca2+ wave propagation, but it is too weak to carry significant K+ spatial buffer currents. PMID:11424187
[Repetitive transcranial magnetic stimulation: A potential therapy for cognitive disorders?
Nouhaud, C; Sherrard, R M; Belmin, J
2017-03-01
Considering the limited effectiveness of drugs treatments in cognitive disorders, the emergence of noninvasive techniques to modify brain function is very interesting. Among these techniques, repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability and have potential therapeutic effects on cognition and behaviour. These effects are due to physiological modifications in the stimulated cortical tissue and their associated circuits, which depend on the parameters of stimulation. The objective of this article is to specify current knowledge and efficacy of rTMS in cognitive disorders. Previous studies found very encouraging results with significant improvement of higher brain functions. Nevertheless, these few studies have limits: a few patients were enrolled, the lack of control of the mechanisms of action by brain imaging, insufficiently formalized technique and variability of cognitive tests. It is therefore necessary to perform more studies, which identify statistical significant improvement and to specify underlying mechanisms of action and the parameters of use of the rTMS to offer rTMS as a routine therapy for cognitive dysfunction. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Abnormal aldosterone physiology and cardiometabolic risk factors.
Vaidya, Anand; Underwood, Patricia C; Hopkins, Paul N; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H; Adler, Gail K
2013-04-01
Abnormal aldosterone physiology has been implicated in the pathogenesis of cardiometabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardiometabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the sodium-modulated aldosterone suppression-stimulation index (SASSI for serum and SAUSSI for urine), could predict cardiometabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal and restricted sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on liberal (maximally suppressed aldosterone) to the aldosterone on restricted (stimulated aldosterone) diets and associated with risk factors using adjusted regression models. Cardiometabolic risk factors associated with either impaired suppression of aldosterone on liberal diet, or impaired stimulation on restricted diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that constitute the metabolic syndrome, there was a strong positive association between the number of metabolic syndrome components (0-4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero metabolic syndrome components (86% for SASSI and 83% for SAUSSI). Assessing the physiological range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, or result from, early cardiometabolic abnormalities.
Elenes, Sergio; Ni, Ying; Cymes, Gisela D.; Grosman, Claudio
2006-01-01
Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief (∼1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure–function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction. PMID:17074980
Bye, Robin T; Neilson, Peter D
2010-10-01
Physiological tremor during movement is characterized by ∼10 Hz oscillation observed both in the electromyogram activity and in the velocity profile. We propose that this particular rhythm occurs as the direct consequence of a movement response planning system that acts as an intermittent predictive controller operating at discrete intervals of ∼100 ms. The BUMP model of response planning describes such a system. It forms the kernel of Adaptive Model Theory which defines, in computational terms, a basic unit of motor production or BUMP. Each BUMP consists of three processes: (1) analyzing sensory information, (2) planning a desired optimal response, and (3) execution of that response. These processes operate in parallel across successive sequential BUMPs. The response planning process requires a discrete-time interval in which to generate a minimum acceleration trajectory to connect the actual response with the predicted future state of the target and compensate for executional error. We have shown previously that a response planning time of 100 ms accounts for the intermittency observed experimentally in visual tracking studies and for the psychological refractory period observed in double stimulation reaction time studies. We have also shown that simulations of aimed movement, using this same planning interval, reproduce experimentally observed speed-accuracy tradeoffs and movement velocity profiles. Here we show, by means of a simulation study of constant velocity tracking movements, that employing a 100 ms planning interval closely reproduces the measurement discontinuities and power spectra of electromyograms, joint-angles, and angular velocities of physiological tremor reported experimentally. We conclude that intermittent predictive control through sequential operation of BUMPs is a fundamental mechanism of 10 Hz physiological tremor in movement. Copyright © 2010 Elsevier B.V. All rights reserved.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Current status and approaches to developing press-coated chronodelivery drug systems.
Lin, Shan-Yang; Kawashima, Yoshiaki
2012-02-10
The past several decades have seen the development of many controlled-release preparations featuring constant release rates to maintain drug concentrations in the human body, regardless of the patient's physiological condition. However, long-term constant drug concentrations in the blood and tissue can cause problems such as resistance, tolerability, and drug side effects. People vary considerably in their physiological and biochemical conditions during any 24 h period, due to the circadian rhythm, and thus, the constant delivery of a drug into the body seems both unnecessary and undesirable. If the drug release profile mimics a living system's pulsatile hormone secretion, then it may improve drug efficacy, and reduce the toxicity of a specific drug administration schedule. Medication and treatments provided according to the body's circadian rhythms will result in better outcomes. This may be provided by a chronopharmaceutical dosage regimen with pulsatile release that matches the circadian rhythm resulting from a disease state, so optimizing the therapeutic effect while minimizing side effects. The press coating technique is a simple and unique technology used to provide tablets with a programmable lag phase, followed by a fast, or rate-controlled, drug release after administration. The technique offers many advantages, and no special coating solvent or coating equipment is required for manufacturing this type of tablet. The present review article introduces chronopharmaceutical press-coated products from a patient physiological needs perspective. The contents of this article include biological rhythms and pulsatile hormone secretion in humans, the reasons for using pulsatile drug delivery for disease treatment, recent chronopharmaceutical preparations appearing on the market, updated compilation of all research articles and press-coated delivery techniques, factors affecting the performance and drug release characteristics of press-coated delivery systems, and recent challenges for the press coating technique. We also provide a brief overview of press-coating approaches intended for chronotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.
Brown, Matthew S; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.
Brown, Matthew S.; Ashley, Brandon; Koh, Ahyeon
2018-01-01
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress. PMID:29755977
Buhl, E H; Szilágyi, T; Halasy, K; Somogyi, P
1996-01-01
Basket and bistratified cells form two anatomically distinct classes of GABAergic local-circuit neurons in the CA1 region of the rat hippocampus. A physiological comparison was made of intracellularly recorded basket (n = 13) and bistratified neurons (n = 6), all of which had been anatomically defined by their efferent target profile (Halasy et al., 1996). Basket cells had an average resting membrane potential of -64.2 +/- 7.2 vs. -69.2 +/- 4.6 mV in bistratified cells. The latter had considerably higher mean input resistances (60.2 +/- 42.1 vs. 31.3 +/- 10.9 M Ohms) and longer membrane time constants (18.6 +/- 8.1 vs. 9.8 +/- 4.5 ms) than basket cells. Differences were also apparent in the duration of action potentials, those of basket cells being 364 +/- 77 and those of bistratified cells being 527 +/- 138 microseconds at half-amplitude. Action potentials were generally followed by prominent, fast after-hyperpolarizing potentials which in basket cells were 13.5 +/- 6.7 mV in amplitude vs. 10.5 +/- 5.1 in bistratified cells. The differences in membrane time constant, resting membrane potential, and action potential duration reached statistical significance (P < 0.05). Extracellular stimulation of Schaffer collateral/commissural afferents elicited short-latency excitatory postsynaptic potentials (EPSPs) in both cell types. The average 10-90% rise time and duration (at half-amplitude) of subthreshold EPSPs in basket cells were 1.9 +/- 0.5 and 10.7 +/- 5.6 ms, compared to 3.3 +/- 1.3 and 20.1 +/- 9.7 ms in bistratified cells, the difference in EPSP rise times being statistically significant. Basket and bistratified EPSPs were highly sensitive to a bath applied antagonist of non-N-methyl-D-aspartate (NMDA) receptors, whereas the remaining slow-rise EPSP could be abolished by an NMDA receptor antagonist. Increasing stimulation intensity elicited biphasic inhibitory postsynaptic potentials (IPSPs) in both basket and bistratified cells. In conclusion, basket and bistratified cells in the CA1 area show prominent differences in several of their membrane and firing properties. Both cell classes are activated by Schaffer collateral/commissural axons in a feedforward manner and receive inhibitory input from other, as yet unidentified, local-circuit neurons.
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*
Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen
2013-01-01
The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033
Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma
2018-05-09
Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.
Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology
ERIC Educational Resources Information Center
Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne
2014-01-01
During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…
Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B
2017-11-15
Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology experiments support the hypothesis that paired stimulation is mediated by convergence of descending motor circuits and large diameter afferents in the spinal cord. The large effect size of this protocol and the conservation of the circuits being manipulated between rats and humans makes it worth pursuing for recovery of sensorimotor function after injury to the central nervous system. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Impact of human emotions on physiological characteristics
NASA Astrophysics Data System (ADS)
Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.
2014-05-01
Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.
Physiological correlates of imagery-induced orgasm in women.
Whipple, B; Ogden, G; Komisaruk, B R
1992-04-01
Orgasm has been reported to occur in response to imagery in the absence of any physical stimulation. This study was undertaken to ascertain whether the subjective report of imagery-induced orgasm is accompanied by physiological and perceptual events that are characteristic of genitally stimulated orgasm. Subjects were women who claimed that they could experience orgasm from imagery alone. Orgasm from self-induced imagery or genital self-stimulation generated significant increases in systolic blood pressure, heart rate, pupil diameter, pain detection threshold, and pain tolerance threshold over resting control conditions. These findings provide evidence that orgasm from self-induced imagery and genital self-stimulation can each produce significant and substantial net sympathetic activation and concomitant significant increases in pain thresholds. The increases in the self-induced imagery orgasm condition were comparable in magnitude to those in the genital self-stimulation-produced orgasm condition. On this basis we state that physical genital stimulation is evidently not necessary to produce a state that is reported to be an orgasm and that a reassessment of the nature of orgasm is warranted.
Reiner, A; Stern, E A; Wilson, C J
2001-01-01
Much of the Wulst and dorsal ventricular ridge (DVR) in birds, which together make up the part of the avian telencephalon functionally resembling mammalian cerebral cortex, projects to the striatum. Those connections arise from neurons projecting additionally to the brainstem as well as from neurons projecting only within the telencephalon. As part of an effort to further characterize corticostriatal-type projection neurons in birds, we recorded intracellularly from neurons of the outer DVR, identified neurons projecting to the striatum by antidromic stimulation from the ipsilateral rostromedial striatum or subsequently by their axonal projection, characterized these neurons physiologically and then filled them with biocytin. As neurons in the outer DVR only project within telencephalon, neurons within it projecting to the striatum are of the intratelencephalically projecting (IT) type. Our studies suggest that: (1) the membrane potentials of avian IT-type neurons fluctuate between two preferred subthreshold values, and action potentials occur only in the 'up' state, (2) avian IT-type neurons show a time-dependent inward rectification in response to hyperpolarization and regular firing in response to constant current injection, (3) the conduction velocity of avian IT-type neurons is slow (about 0.2 m/s), (4) avian IT-type neurons possess radially disposed densely spiny dendrites but no apical dendrite, (5) avian IT-type neurons have local and distant collateral projections within the DVR, and (6) individual avian IT-type neurons give rise to an extensive terminal field within the striatum. Aside from the shape of their dendritic tree, IT-type neurons in birds closely resemble IT-type corticostriatal neurons in mammals in these various aspects, although it is presently uncertain whether this neuron type has been inherited in common by birds and mammals from stem amniotes. Copyright 2002 S. Karger AG, Basel
Marks, Katherine R.; Lile, Joshua A.; Stoops, William W.
2014-01-01
Rationale Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. Objectives The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Methods Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Results Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. Conclusions The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration. PMID:24464531
Marks, Katherine R; Lile, Joshua A; Stoops, William W; Rush, Craig R
2014-07-01
Opioid antagonists (e.g., naltrexone) and positive modulators of γ-aminobutyric-acidA (GABAA) receptors (e.g., alprazolam) modestly attenuate the abuse-related effects of stimulants like amphetamine. The use of higher doses to achieve greater efficacy is precluded by side effects. Combining naltrexone and alprazolam might safely maximize efficacy while avoiding the untoward effects of the constituent compounds. The present pilot study tested the hypothesis that acute pretreatment with the combination of naltrexone and alprazolam would not produce clinically problematic physiological effects or negative subjective effects and would reduce the positive subjective effects of d-amphetamine to a greater extent than the constituent drugs alone. Eight nontreatment-seeking, stimulant-using individuals completed an outpatient experiment in which oral d-amphetamine (0, 15, and 30 mg) was administered following acute pretreatment with naltrexone (0 and 50 mg) and alprazolam (0 and 0.5 mg). Subjective effects, psychomotor task performance, and physiological measures were collected. Oral d-amphetamine produced prototypical physiological and stimulant-like positive subjective effects (e.g., VAS ratings of Active/Alert/Energetic, Good Effect, and High). Pretreatment with naltrexone, alprazolam, and their combination did not produce clinically problematic acute physiological effects or negative subjective effects. Naltrexone and alprazolam each significantly attenuated some of the subjective effects of d-amphetamine. The combination attenuated a greater number of subjective effects than the constituent drugs alone. The present results support the continued evaluation of an opioid receptor antagonist combined with a GABAA-positive modulator using more clinically relevant experimental conditions like examining the effect of chronic dosing with these drugs on methamphetamine self-administration.
Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators
Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.
2016-01-01
W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499
NASA Astrophysics Data System (ADS)
Senova, Suhan; Scisniak, Ilona; Chiang, Chih Chieh; Doignon, Isabelle; Martin, Claire; Palfi, Stephane; Chaillet, Antoine; Pain, Frederic
2016-03-01
2D surface maps of light distribution and temperature increase were recorded in wild type anesthetized rats brains during 90s light stimulation at 478nm (blue) and 638nm (red) with continuous or pulsed optical stimulations with corresponding power ranging from 100 up to 1200 mW/mm² at the output of an optical fiber. Post mortem maps were recorded in the same animals to assess the cooling effect of blood flow. Post mortem histological analysis were carried out to assess whether high power light stimulations had phototoxic effects or could trigger non physiological functional activation. Temperature increase remains below physiological changes (0,5 -1°) for stimulations up to 400mW/mm² at 40Hz. . Histology did not show significant irreversible modifications or damage to the tissues. The spatial profile of light distribution and heat were correlated and demonstrate as expected a rapid attenuation with diatnce to the fiber.
ERIC Educational Resources Information Center
Paganini, Matteo; Bondì, Michela; Rubini, Alessandro
2017-01-01
Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…
2011-01-01
can have a significant impact on normal physiological functioning if precipitous increases in core temperature are not adequately controlled with...anterior hypothalamusIntroduction Thermal stress can have a significant impact on normal physiological functioning if precipitous increases in core...fat and skin). The regulation of a relatively constant internal temperature is critical for normal physiological functioning of tissues and cells, as
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
[Prostaglandins in gynecology and obstetrics].
Klausch, B; Kyank, H
1972-06-03
A review of early research (up through 1970) on prostaglandins (PGs) is presented. Their chemical structure and classification based on their ring-structure is detailed as well as various analytic methods of mammalian tissues and body fluids. For clinical use PGE1 and 2, PGF2alpha and PGA1 are the most significant ones because of their properties. PGs have many physiological activities encompassing many organ systems. Their pharmacological actions include: 1) stimulation of nonvascular smooth muscle; 2) peripheral vasodilation (excluding PGFs which cause vasoconstriction); 3) inhibition of lipolysis; 4) inhibition of platelet aggregation; 5) inhibition of gastric peristalsis and gastric juice secretion; 6) bronchodilation; and 7) inhibition of spontaneous CNS activity. The level of PGEs in semen is closely related to the degree of fertility; normally fertile men have 55 mcg PGE/ml and never less than 11 mcg/ml. Current studies are under way on the effect of PGE in artificial insemination of sperm of subfertile men. PGF2alpha and PGE2 stimulate menstruation and uterine contraction; other PGs inhibit uterine contraction. PGs from semen have a role in sperm transport and possibly act on fallopian tube motility aiding sperm capacitation, and ovum retention and transport. Early trials with PGs point to a possible action as an abortifacient, as a once-a-month contraceptive, or a postconception contraceptive agent. PGF2alpha is found in variable concentrations in maternal blood during contraction of the pregnant uterus; levels increase as labor progresses. PGs have been used for labor induction, for induction of abortion and in mole pregnancy. Given as a constant intravenous infusion they produce regular contractions leading to natural expulsion of the fetus and causing very few side effects in the woman with no adverse effects on the fetus. PGs' action compares favorably with that of oxytocin and is preferable for labor induction in certain pregnancy complications. PGE1 and 2 have a stronger effect than PGF2alpha, hence can be used in smaller dosage and cause fewer adverse effects.
Van Havenbergh, Tony; Vancamp, Tim; Van Looy, Pieter; Vanneste, Sven; De Ridder, Dirk
2015-01-01
Spinal cord stimulation is a commonly used, safe, and effective procedure applied for medically intractable failed back surgery syndrome, as well as other neuropathic pain syndromes. Recently, a novel stimulation paradigm called burst stimulation has been developed that is paresthesia-free and has a more pronounced suppressive effect on neuropathic pain. Fifteen patients who were being treated with burst spinal cord stimulation for failed back surgery syndrome participated in an open-label trial to verify whether their pain suppression could be further ameliorated by changing the burst pattern. Burst stimulation with packets of five electrical pulses delivered at 500 Hz with 1000-μsec pulse width 40 times per second was changed to burst mode delivering five spikes at 1000 Hz with 500-μsec pulse width 40 times a second. As the amplitudes did not differ between the two groups, the total delivery of current to the spinal cord was not different between the two modes of burst stimulation. Scores on visual analog scales for pain and paresthesia, the Pain Catastrophizing Scale, the Pain Vigilance and Awareness Questionnaire, and the Short Form 36 quality of life measurement were compared between the two modes of burst stimulation. [Correction added on 06 Feb 2015, after first online publication: this paragraph has been revised to signify the comparison of amplitudes between two groups] No statistically significant differences were found between the two modes of stimulation. The results suggest that increasing the frequency from 500 to 1000 Hz while keeping the pulse width constant does not add any extra benefit in suppressing pain. Further studies should verify whether increasing the frequency above 1000 Hz has a similar lack of effect. © 2014 International Neuromodulation Society.
Frequency-dependence of the slow force response.
von Lewinski, Dirk; Zhu, Danan; Khafaga, Mounir; Kockskamper, Jens; Maier, Lars S; Hasenfuss, Gerd; Pieske, Burkert
2008-05-01
Stretch induces biphasic inotropic effects in mammalian myocardium. A delayed component (slow force response, SFR) has been demonstrated in various species, however, experimental conditions varied and the underlying mechanisms are controversial. The physiological relevance of the SFR is poorly understood. Experiments were performed in ventricular muscle strips from failing human hearts and non-failing rabbit hearts. Upon stretch, twitch force was assessed at basal conditions (1 Hz, 37 degrees C) and after changing stimulation frequency with and without blockade of the Na+/H+-exchanger-1 (NHE1) or reverse-mode Na+/Ca2+-exchange (NCX). Action potential duration (APD) was assessed using floating electrodes. Low stimulation rates (0.2 Hz) potentiated and higher stimulation rates (2 and 3 Hz) reduced the SFR. The extent of SFR inhibition by NHE1 or NCX inhibition was not affected by stimulation rate. APD decreased at 0.2 Hz but was not altered at higher stimulation rates. The data demonstrate frequency-dependence of the SFR with greater positive inotropic effects at lower stimulation rates. Subcellular mechanisms underlying the SFR are not fundamentally affected by stimulation rate. The SFR may have more pronounced physiological effects at lower heart rates.
Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.
Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R
2018-03-24
Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Changes in Cortical Plasticity in Relation to a History of Concussion during Adolescence
Meehan, Sean K.; Mirdamadi, Jasmine L.; Martini, Douglas N.; Broglio, Steven P.
2017-01-01
Adolescence and early adulthood is a critical period for neurophysiological development potentially characterized by an increased susceptibility to the long-term effects of traumatic brain injury. The current study investigated differences in motor cortical physiology and neuroplastic potential across a cohort of young adults with adolescent concussion history and those without. Transcranial magnetic stimulation (TMS) was used to assess motor evoked potential (MEP) amplitude, short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) before and after intermittent theta burst stimulation (iTBS). Pre-iTBS, MEP amplitude, but not SICI or ICF, was greater in the concussion history group. Post-iTBS, the expected increase in MEP amplitude and ICF was tempered in the concussion history group. Change in SICI was variable within the concussion history group. Post hoc assessment revealed that SICI was significantly lower in individuals whose concussion was not diagnosed at the time of injury compared to both those without a concussion history or whose concussion was medically diagnosed. Concussive impacts during adolescence appear to result in a persistent reduction of the ability to modulate facilitatory motor networks. Failure to report/identify concussive impacts close to injury during adolescence also appears to produce persistent change in inhibitory networks. These findings highlight the potential long-term impact of adolescent concussion upon motor cortical physiology. PMID:28144218
Matamales, Miriam
2012-01-01
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance. PMID:24327840
Matamales, Miriam
2012-12-19
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.
Matamales, Miriam
2012-01-01
Synaptic activity can trigger gene expression programs that are required for the stable change of neuronal properties, a process that is essential for learning and memory. Currently, it is still unclear how the stimulation of dendritic synapses can be coupled to transcription in the nucleus in a timely way given that large distances can separate these two cellular compartments. Although several mechanisms have been proposed to explain long distance communication between synapses and the nucleus, the possible co-existence of these models and their relevance in physiological conditions remain elusive. One model suggests that synaptic activation triggers the translocation to the nucleus of certain transcription regulators localised at postsynaptic sites that function as synapto-nuclear messengers. Alternatively, it has been hypothesised that synaptic activity initiates propagating regenerative intracellular calcium waves that spread through dendrites into the nucleus where nuclear transcription machinery is thereby regulated. It has also been postulated that membrane depolarisation of voltage-gated calcium channels on the somatic membrane is sufficient to increase intracellular calcium concentration and activate transcription without the need for transported signals from distant synapses. Here I provide a critical overview of the suggested mechanisms for coupling synaptic stimulation to transcription, the underlying assumptions behind them and their plausible physiological significance.
Microfluidic perfusion system for automated delivery of temporal gradients to islets of Langerhans.
Zhang, Xinyu; Roper, Michael G
2009-02-01
A microfluidic perfusion system was developed for automated delivery of stimulant waveforms to cells within the device. The 3-layer glass/polymer device contained two pneumatic pumps, a 12 cm mixing channel, and a 0.2 microL cell chamber. By altering the flow rate ratio of the pumps, a series of output concentrations could be produced while a constant 1.43 +/- 0.07 microL/min flow rate was maintained. The output concentrations could be changed in time producing step gradients and other waveforms, such as sine and triangle waves, at different amplitudes and frequencies. Waveforms were analyzed by comparing the amplitude of output waveforms to the amplitude of theoretical waveforms. Below a frequency of 0.0098 Hz, the output waveforms had less than 20% difference than input waveforms. To reduce backflow of solutions into the pumps, the operational sequence of the valving program was modified, as well as differential etching of the valve seat depths. These modifications reduced backflow to the point that it was not detected. Gradients in glucose levels were applied in this work to stimulate single islets of Langerhans. Glucose gradients between 3 and 20 mM brought clear and intense oscillations of intracellular [Ca(2+)] indicating the system will be useful in future studies of cellular physiology.
Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.
2017-01-01
Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes. PMID:28539922
Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart.
Abdul-Ghani, Mohammad; Suen, Colin; Jiang, Baohua; Deng, Yupu; Weldrick, Jonathan J; Putinski, Charis; Brunette, Steve; Fernando, Pasan; Lee, Tom T; Flynn, Peter; Leenen, Frans H H; Burgon, Patrick G; Stewart, Duncan J; Megeney, Lynn A
2017-10-01
The post-natal heart adapts to stress and overload through hypertrophic growth, a process that may be pathologic or beneficial (physiologic hypertrophy). Physiologic hypertrophy improves cardiac performance in both healthy and diseased individuals, yet the mechanisms that propagate this favorable adaptation remain poorly defined. We identify the cytokine cardiotrophin 1 (CT1) as a factor capable of recapitulating the key features of physiologic growth of the heart including transient and reversible hypertrophy of the myocardium, and stimulation of cardiomyocyte-derived angiogenic signals leading to increased vascularity. The capacity of CT1 to induce physiologic hypertrophy originates from a CK2-mediated restraining of caspase activation, preventing the transition to unrestrained pathologic growth. Exogenous CT1 protein delivery attenuated pathology and restored contractile function in a severe model of right heart failure, suggesting a novel treatment option for this intractable cardiac disease.
Sources of signal-dependent noise during isometric force production.
Jones, Kelvin E; Hamilton, Antonia F; Wolpert, Daniel M
2002-09-01
It has been proposed that the invariant kinematics observed during goal-directed movements result from reducing the consequences of signal-dependent noise (SDN) on motor output. The purpose of this study was to investigate the presence of SDN during isometric force production and determine how central and peripheral components contribute to this feature of motor control. Peripheral and central components were distinguished experimentally by comparing voluntary contractions to those elicited by electrical stimulation of the extensor pollicis longus muscle. To determine other factors of motor-unit physiology that may contribute to SDN, a model was constructed and its output compared with the empirical data. SDN was evident in voluntary isometric contractions as a linear scaling of force variability (SD) with respect to the mean force level. However, during electrically stimulated contractions to the same force levels, the variability remained constant over the same range of mean forces. When the subjects were asked to combine voluntary with stimulation-induced contractions, the linear scaling relationship between the SD and mean force returned. The modeling results highlight that much of the basic physiological organization of the motor-unit pool, such as range of twitch amplitudes and range of recruitment thresholds, biases force output to exhibit linearly scaled SDN. This is in contrast to the square root scaling of variability with mean force present in any individual motor-unit of the pool. Orderly recruitment by twitch amplitude was a necessary condition for producing linearly scaled SDN. Surprisingly, the scaling of SDN was independent of the variability of motoneuron firing and therefore by inference, independent of presynaptic noise in the motor command. We conclude that the linear scaling of SDN during voluntary isometric contractions is a natural by-product of the organization of the motor-unit pool that does not depend on signal-dependent noise in the motor command. Synaptic noise in the motor command and common drive, which give rise to the variability and synchronization of motoneuron spiking, determine the magnitude of the force variability at a given level of mean force output.
Selective neural activation in a histologically derived model of peripheral nerve
NASA Astrophysics Data System (ADS)
Butson, Christopher R.; Miller, Ian O.; Normann, Richard A.; Clark, Gregory A.
2011-06-01
Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types. Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Our results indicate that physiologically based tissue properties cause considerable variability in the neural response, and the inclusion of these properties is an important component in accurately predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.
A novel role of thrombopoietin as a physiological modulator of coronary flow.
Ramella, Roberta; Gallo, Maria Pia; Spatola, Tiziana; Lupia, Enrico; Alloatti, Giuseppe
2011-02-25
Thrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart. The expression of TPO receptor (c-mpl) and the TPO-dependent eNOS phosphorylation (P(Ser1179)) were studied on Cardiac-derived normal Human Micro Vascular Endothelial Cells (HMVEC-C) by Western blot analysis. While TPO (10-200 pg/mL) did not modify coronary flow (CF) under basal conditions, it reduced the coronary constriction caused by endothelin-1 (ET-1; 10nM) in a dose-dependent manner. This effect was blocked by both Wortmannin (100 nM) and L-NAME (100 nM); on HMVEC-C, TPO induced eNOS phosphorylation through a Wortmannin sensitive mechanism. Taken together, our data suggest a potential role of TPO as a physiological regulator of CF. By acting on specific receptors present on endothelial cells, TPO may induce PI3K/Akt-dependent eNOS phosphorylation and NO release. Copyright © 2011 Elsevier B.V. All rights reserved.
In Vitro Measurements of Metabolism for Application in Pharmacokinetic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipscomb, John C.; Poet, Torka S.
2008-04-01
Abstract Human risk and exposure assessments require dosimetry information. Species-specific tissue dose response will be driven by physiological and biochemical processes. While metabolism and pharmacokinetic data are often not available in humans, they are much more available in laboratory animals; metabolic rate constants can be readily derived in vitro. The physiological differences between laboratory animals and humans are known. Biochemical processes, especially metabolism, can be measured in vitro and extrapolated to account for in vivo metabolism through clearance models or when linked to a physiologically based biological (PBPK) model to describe the physiological processes, such as drug delivery to themore » metabolic organ. This review focuses on the different organ, cellular, and subcellular systems that can be used to measure in vitro metabolic rate constants and how that data is extrapolated to be used in biokinetic modeling.« less
French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.
2014-01-01
We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044
Stimulating Student Interest in Physiology: The Intermedical School Physiology Quiz
ERIC Educational Resources Information Center
Cheng, Hwee-Ming
2010-01-01
The Intermedical School Physiology Quiz (IMSPQ) was initiated in 2003 during the author's last sabbatical from the University of Malaya. At this inaugural event, there were just seven competing teams from Malaysian medical schools. The challenge trophy for the IMSPQ is named in honor of Prof. A. Raman, who was the first Malaysian Professor of…
Restivo, Domenico A; Hamdy, Shaheen
2018-01-01
Neurogenic dysphagia (ND) can occur in patients with nervous system diseases of varying etiologies. Moreover, recovery from ND is not guaranteed. The therapeutic approaches for oropharyngeal ND have drastically changed over the last decade, mainly due to a better knowledge of the neurophysiology of swallowing along with the progress of neuroimaging and neurophysiological studies. For this reason, it is a priority to develop a treatment that is repeatable, safe, and can be carried out at the bedside as well as for outpatients. Pharyngeal electrical stimulation (PES) is a novel rehabilitation treatment for ND. PES is carried out via location-specific intraluminal catheters that are introduced transnasally and enable clinicians to stimulate the pharynx directly. This technique has demonstrated increasingly promising evidence in improving swallowing performance in patients with ND associated with stroke and multiple sclerosis, probably by increasing the corticobulbar excitability and inducing cortical reorganization of swallowing motor cortex. In this article, we update the reader as to both the physiologic background and past and current studies of PES in an effort to highlight the clinical progress of this important technique.
Yeh, Mei-Ling; Chung, Yu-Chu; Hsu, Lun-Chia; Hung, Shuo-Hui
2018-05-01
Hemorrhoidectomy is the current best treatment for severe hemorrhoids, but it causes significant postoperative pain and anxiety, which is associated with heart rate variability (HRV). Transcutaneous acupoint electrical stimulation (TAES) was assumed to alleviate pain and anxiety, and modify the autonomic nervous system. This study aimed to examine the effects of TAES intervention on postoperative pain, anxiety, and HRV in patients who received a hemorrhoidectomy. A randomized-controlled trial with five repeated measures was conducted. The TAES group ( n = 39) received four 20-min sessions of electrical stimulation at chengshan (BL57) and erbai (EX-UE2) after hemorrhoidectomy, whereas the control group ( n = 41) did not. Data were collected using Visual Analogue Scale (VAS), State Anxiety Inventory (STAI), and HRV physiological signal monitor. TAES resulted in a significant group difference in pain scores, anxiety levels, and some HRV parameters. The findings indicate that TAES can help reduce pain and anxiety associated with hemorrhoidectomy. TAES is a noninvasive, simple, and convenient modality for post-hemorrhoidectomy-associated pain control and anxiety reduction.
Nita, Małgorzata; Grzybowski, Andrzej
2016-01-01
The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration. PMID:26881021
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
James, Declan J; Kowalchyk, Judith; Daily, Neil; Petrie, Matt; Martin, Thomas F J
2009-10-13
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
Mechanisms of β-cell functional adaptation to changes in workload
Wortham, Matthew; Sander, Maike
2016-01-01
Insulin secretion must be tightly coupled to nutritional state to maintain blood glucose homeostasis. To this end, pancreatic β-cells sense and respond to changes in metabolic conditions, thereby anticipating insulin demands for a given physiological context. This is achieved in part through adjustments of nutrient metabolism, which is controlled at several levels including allosteric regulation, posttranslational modifications, and altered expression of metabolic enzymes. In this review, we discuss mechanisms of β-cell metabolic and functional adaptation in the context of two physiological states that alter glucose-stimulated insulin secretion: fasting and insulin resistance. We review current knowledge of metabolic changes that occur in the β-cell during adaptation and specifically discuss transcriptional mechanisms that underlie β-cell adaptation. A more comprehensive understanding of how β-cells adapt to changes in nutrient state could identify mechanisms to be co-opted for therapeutically modulating insulin secretion in metabolic disease. PMID:27615135
Exercise countermeasures for spaceflight.
Convertino, V A; Sandler, H
1995-01-01
The authors present a physiological basis for the use of exercise as a weightlessness countermeasure, outline special considerations for the development of exercise countermeasures, review and evaluate exercise used during space flight, and provide new approaches and concepts for the implementation of novel exercise countermeasures for future space flight. The discussion of the physiological basis for countermeasures examines maximal oxygen uptake, blood volume, metabolic responses to work, muscle function, bone loss, and orthostatic instability. The discussion of considerations for exercise prescriptions during space flight includes operational considerations, type of exercise, fitness considerations, age and gender, and psychological considerations. The discussion of exercise currently used in space flight examines cycle ergometry, the treadmill, strength training devices, electrical stimulation, and the Penguin suit worn by Russian crews. New approaches to exercise countermeasures include twin bicycles, dynamic resistance exercisers, maximal exercise effects, grasim (gravity simulators), and the relationship between exercise and LBNP.
Gentet, Luc J; Ulrich, Daniel
2004-02-01
Corticothalamic (CT) feedback projections to the thalamus outnumber sensory inputs from the periphery by orders of magnitude. However, their functional role remains elusive. CT projections may directly excite thalamic relay cells or indirectly inhibit them via excitation of the nucleus reticularis thalami (nRT), a nuclear formation composed entirely of gamma-aminobutyric acidergic neurons. The relative strengths of these two pathways will ultimately control the effects of CT projections on the output of thalamic relay cells. However, corticoreticular synapses have not yet been fully physiologically characterized. Here, local stimulation of layer VI cells by focal application of K+ or AMPA elicited excitatory postsynaptic potentials in nRT neurons with a mean peak amplitude of 2.4 +/- 0.1 mV (n = 75, mean +/- SEM), a mean rise time (10-90%) of 0.74 +/- 0.03 ms and a weighted decay time constant of 11 +/- 0.3 ms. A pharmacological profile of responses was drawn in both current-clamp and voltage-clamp modes, showing the presence of a small N-methyl-d-aspartate receptor-dependent component at depolarized potentials. In two pairs of synaptically coupled layer VI cell-nRT neuron, moderate rates of transmission failures were observed while the latencies were above 5 ms in both cases. Our results indicate that the corticoreticular pathway fulfills the criteria for 'modulatory' inputs and is temporally restricted. We suggest that it may be involved in coincidence detection of convergent corticoreticular signals.
Dynamic functional imaging of brain glucose utilization using fPET-FDG
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...
2014-06-14
We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less
ABNORMAL ALDOSTERONE PHYSIOLOGY AND CARDIO-METABOLIC RISK FACTORS
Vaidya, Anand; Underwood, Patricia C.; Hopkins, Paul N.; Jeunemaitre, Xavier; Ferri, Claudio; Williams, Gordon H.; Adler, Gail K.
2013-01-01
Abnormal aldosterone physiology has been implicated in the pathogenesis of cardio-metabolic diseases. Single aldosterone measurements capture only a limited range of aldosterone physiology. New methods of characterizing aldosterone physiology may provide a more comprehensive understanding of its relationship with cardio-metabolic disease. We evaluated whether novel indices of aldosterone responses to dietary sodium modulation, the Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI for serum and SAUSSI for urine), could predict cardio-metabolic risk factors. We performed cross-sectional analyses on 539 subjects studied on liberal (LIB) and restricted (RES) sodium diets with serum and urinary aldosterone measurements. SASSI and SAUSSI were calculated as the ratio of aldosterone on LIB (maximally suppressed aldosterone) to aldosterone on RES (stimulated aldosterone) diets, and associated with risk factors using adjusted regression models. Cardio-metabolic risk factors associated with either impaired suppression of aldosterone on LIB diet, or impaired stimulation on RES diet, or both; in all of these individual cases, these risk factors associated with higher SASSI or SAUSSI. In the context of abnormalities that comprise the metabolic syndrome (MetS), there was a strong positive association between the number of MetS components (0–4) and both SASSI and SAUSSI (P<0.0001) that was independent of known aldosterone secretagogues (angiotensin II, corticotropin, potassium). SASSI and SAUSSI exhibited a high sensitivity in detecting normal individuals with zero MetS components (86% for SASSI and 83% for SAUSSI). Assessing the physiologic range of aldosterone responses may provide greater insights into adrenal pathophysiology. Dysregulated aldosterone physiology may contribute to, and/or result from, early cardio-metabolic abnormalities. PMID:23399714
CAM Modalities Can Stimulate Advances in Theoretical Biology
2005-01-01
Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments. PMID:15841271
Medical Electronics and Physiological Measurement.
ERIC Educational Resources Information Center
Cochrane, T.
1989-01-01
Described are developments in medical electronics and physiological measurement. Discussed are electrocardiology, audiology, and urology as mature applications; applied potential tomography, magnetic stimulation of nerves, and laser Doppler flowmetry as new techniques; and optical sensors, ambulatory monitoring, and biosensors as future…
Lamb, Iain R; Novielli, Nicole M; Murrant, Coral L
2018-04-15
The current theory behind matching blood flow to metabolic demand of skeletal muscle suggests redundant interactions between metabolic vasodilators. Capillaries play an important role in blood flow control given their ability to respond to muscle contraction by causing conducted vasodilatation in upstream arterioles that control their perfusion. We sought to determine whether redundancies occur between vasodilators at the level of the capillary by stimulating the capillaries with muscle contraction and vasodilators relevant to muscle contraction. We identified redundancies between potassium and both adenosine and nitric oxide, between nitric oxide and potassium, and between adenosine and both potassium and nitric oxide. During muscle contraction, we demonstrate redundancies between potassium and nitric oxide as well as between potassium and adenosine. Our data show that redundancy is physiologically relevant and involved in the coordination of the vasodilator response during muscle contraction at the level of the capillaries. We sought to determine if redundancy between vasodilators is physiologically relevant during active hyperaemia. As inhibitory interactions between vasodilators are indicative of redundancy, we tested whether vasodilators implicated in mediating active hyperaemia (potassium (K + ), adenosine (ADO) and nitric oxide (NO)) inhibit one another's vasodilatory effects through direct application of pharmacological agents and during muscle contraction. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries with one vasodilator in the absence and the presence of a second vasodilator (10 -7 m S-nitroso-N-acetylpenicillamine (SNAP), 10 -7 m ADO, 10 mm KCl) applied sequentially and simultaneously, and observed the response in the associated upstream 4A arteriole controlling the perfusion of the stimulated capillary. We found that KCl significantly attenuated SNAP- and ADO-induced vasodilatations by ∼49.7% and ∼128.0% respectively and ADO significantly attenuated KCl- and SNAP-induced vasodilatations by ∼94.7% and ∼59.6%, respectively. NO significantly attenuated KCl vasodilatation by 93.8%. Further, during muscle contraction we found that inhibition of NO production using l-N G -nitroarginine methyl ester and inhibition of ADO receptors using xanthine amine congener was effective at inhibiting contraction-induced vasodilatation but only in the presence of K + release channel inhibition. Thus, only when the inhibiting vasodilator K + was blocked was the second vasodilator, NO or ADO, able to produce effective vasodilatation. Therefore, we show that there are inhibitory interactions between specific vasodilators at the level of the capillary. Further, these inhibitions can be observed during muscle contraction indicating that redundancies between vasodilators are physiologically relevant and influence vasodilatation during active hyperaemia. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall
NASA Astrophysics Data System (ADS)
Nadeem, S.; Shaheen, A.; Hussain, S.
2015-12-01
This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.
Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport.
Karayalcin, S S; Sturbaum, C W; Wachsman, J T; Cha, J H; Powell, D W
1990-01-01
The changes in short circuit current (electrogenic Cl- secretion) of rat colon brought about by xanthine/xanthine oxidase in the Ussing chamber were inhibited by catalase and diethyldithiocarbamate, but not by superoxide dismutase. These results, the reproduction of the response with glucose/glucose oxidase and with exogenous H2O2, and the lack of effect of preincubation with deferoxamine or thiourea implicate H2O2, and not O2- or OH., as the important reactive oxygen metabolite altering intestinal electrolyte transport. 1 mM H2O2 stimulated colonic PGE2 and PGI2 production 8- and 15-fold, respectively, inhibited neutral NaCl absorption, and stimulated biphasic electrogenic Cl secretion with little effect on enterocyte lactic dehydrogenase release, epithelial conductance, or histology. Cl- secretion was reduced by cyclooxygenase inhibition. Also, the Cl- secretion, but not the increase in prostaglandin production, was reduced by enteric nervous system blockade with tetrodotoxin, hexamethonium, or atropine. Thus, H2O2 appears to alter electrolyte transport by releasing prostaglandins that activate the enteric nervous system. The change in short circuit current in response to Iloprost, but not PGE2, was blocked by tetrodotoxin. Therefore, PGI2 may be the mediator of the H2O2 response. H2O2 produced in nontoxic concentrations in the inflamed gut could have significant physiologic effects on intestinal water and electrolyte transport. Images PMID:2164049
A graphical simulation software for instruction in cardiovascular mechanics physiology.
Wildhaber, Reto A; Verrey, François; Wenger, Roland H
2011-01-25
Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG). Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.
Yanofsky, Stephen D; Shen, Emily S; Holden, Frank; Whitehorn, Erik; Aguilar, Barbara; Tate, Emily; Holmes, Christopher P; Scheuerman, Randall; MacLean, Derek; Wu, May M; Frail, Donald E; López, Francisco J; Winneker, Richard; Arey, Brian J; Barrett, Ronald W
2006-05-12
The pituitary glycoprotein hormones, luteinizing hormone and follicle-stimulating hormone (FSH), act through their cognate receptors to initiate a series of coordinated physiological events that results in germ cell maturation. Given the importance of FSH in regulating folliculogenesis and fertility, the development of FSH mimetics has been sought to treat infertility. Currently, purified and recombinant human FSH are the only FSH receptor (FSH-R) agonists available for infertility treatment. By screening unbiased combinatorial chemistry libraries, using a cAMP-responsive luciferase reporter assay, we discovered thiazolidinone agonists (EC50's = 20 microm) of the human FSH-R. Subsequent analog library screening and parallel synthesis optimization resulted in the identification of a potent agonist (EC50 = 2 nm) with full efficacy compared with FSH that was FSH-R-selective and -dependent. The compound mediated progesterone production in Y1 cells transfected with the human FSH-R (EC50 = 980 nm) and estradiol production from primary rat ovarian granulosa cells (EC50 = 10.5 nm). This and related compounds did not compete with FSH for binding to the FSH-R. Use of human FSH/thyroid-stimulating hormone (TSH) receptor chimeras suggested a novel mechanism for receptor activation through a binding site independent of the natural hormone binding site. This study is the first report of a high affinity small molecule agonist that activates a glycoprotein hormone receptor through an allosteric mechanism. The small molecule FSH receptor agonists described here could lead to an oral alternative to the current parenteral FSH treatments used clinically to induce ovarian stimulation for both in vivo and in vitro fertilization therapy.
Dietary therapy is not the best option for refractory nonsurgical epilepsy.
Vaccarezza, María Magdalena; Silva, Walter Horacio
2015-09-01
The ketogenic diet (KD) is currently a well-established treatment for patients with medically refractory, nonsurgical epilepsy. However, despite its efficacy, the KD is highly restrictive and constitutes a treatment with serious potential adverse effects, and often with difficulties in its implementation and compliance. Patients on the KD require strict follow-up and constant supervision by a medical team highly experienced in its management in order to prevent complications. Other alternative treatments for patients with refractory epilepsy include vagus nerve stimulation (VNS), new-generation antiepileptic drugs (AEDs), corpus callosotomy (CC), and responsive focal cortical stimulation (RNS). In this review, we explain not only the difficulties of the KD as a therapeutic option for refractory epilepsy but also the benefits of other therapeutic strategies, which, in many cases, have proven to have better efficacy than the KD itself. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
1999-01-01
might increase their arousal or lead to orgasm , such as direct clitoral 10 stimulation . Poor sexual skills might also lead to frequent sexual failure and... orgasm . However, cessation of stimulation during the plateau or excitement phases results in eventual return to pre- stimulation levels. The orgasmic ...access to the physical and psychological stimulation that would normally produce heightened sexual arousal and "spontaneous" erection. This interference
NASA Astrophysics Data System (ADS)
Roth, Bradley J.; Krassowska, Wanda
1998-03-01
This review examines the initiation of reentry in cardiac muscle by strong electric shocks. Specifically, it concentrates on the mechanisms by which electric shocks change the transmembrane potential of the cardiac membrane and create the physiological substrate required by the critical point theory for the initiation of rotors. The mechanisms examined include (1) direct polarization of the tissue by the stimulating current, as described by the one-dimensional cable model and its two- and three-dimensional extensions, (2) the presence of virtual anodes and cathodes, as described by the bidomain model with unequal anisotropy ratios of the intra- and extracellular spaces, (3) polarization of the tissue due to changing orientation of cardiac fibers, and (4) polarization of individual cells or groups of cells by the electric field ("sawtooth potential"). The importance of these mechanisms in the initiation of reentry is examined in two case studies: the induction of rotors using successive stimulation with a unipolar electrode, and the induction of rotors using cross-field stimulation. These cases reveal that the mechanism by which a unipolar stimulation induces arrhythmias can be explained in the framework of the bidomain model with unequal anisotropy ratios. In contrast, none of the examined mechanisms provide an adequate explanation for the induction of rotors by cross-field stimulation. Hence, this study emphasizes the need for further experimental and theoretical work directed toward explaining the mechanism of field stimulation.
Toward an implantable functional electrical stimulation device to correct strabismus
Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.
2010-01-01
PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369
Inotropic effects of diadenosine tetraphosphate (AP4A) in human and animal cardiac preparations.
Vahlensieck, U; Bokník, P; Gombosová, I; Huke, S; Knapp, J; Linck, B; Lüss, H; Müller, F U; Neumann, J; Deng, M C; Scheld, H H; Jankowski, H; Schlüter, H; Zidek, W; Zimmermann, N; Schmitz, W
1999-02-01
Diadenosine tetraphosphate (AP4A) is an endogenous compound and exerts diverse physiological effects in animal systems. However, the effects of AP4A on inotropy in ventricular cardiac preparations have not yet been studied. The effects of AP4A on force of contraction (FOC) were studied in isolated electrically driven guinea pig and human cardiac preparations. Furthermore, the effects of AP4A on L-type calcium current and [Ca]i were studied in isolated guinea pig ventricular myocytes. In guinea pig left atria, AP4A (0.1-100 microM) reduced FOC maximally by 36.5 +/- 4.3%. In guinea pig papillary muscles, AP4A (100 microM) alone was ineffective, but reduced isoproterenol-stimulated FOC maximally by 29.3 +/- 3.4%. The negative inotropic effects of AP4A in atria and papillary muscles were abolished by the A1-adenosine receptor antagonist 1, 3-dipropyl-cyclopentylxanthine. In guinea pig ventricular myocytes, AP4A (100 microM) attenuated isoproterenol-stimulated L-type calcium current and [Ca]i. In human atrial and ventricular preparations, AP4A (100 microM) alone increased FOC to 158.3 +/- 12.4% and 167.5 +/- 25.1%, respectively. These positive inotropic effects were abolished by the P2-purinoceptor antagonist suramin. On the other hand, AP4A (100 microM) reduced FOC by 27.2 +/- 7.4% in isoproterenol-stimulated human ventricular trabeculae. The latter effect was abolished by 1,3-dipropyl-cyclopentylxanthine. In summary, after beta adrenergic stimulation AP4A exerts negative inotropic effects in animal and human ventricular preparations via stimulation of A1-adenosine receptors. In contrast, AP4A alone can exert positive inotropic effects via P2-purinoceptors in human ventricular myocardium. Thus, P2-purinoceptor stimulation might be a new positive inotropic principle in the human myocardium.
Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.
2018-01-01
The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.
Ben-Tabou De-Leon, Shlomo; Blotnick, Edna; Nussinovitch, Itzhak
2003-10-01
Decrease in extracellular osmolarity ([Os]e) results in stimulation of hormone secretion from pituitary cells. Different mechanisms can account for this stimulation of hormone secretion. In this study we examined the possibility that hyposmolarity directly modulates voltage-gated calcium influx in pituitary cells. The effects of hyposmolarity on L-type (IL) and T-type (IT) calcium currents in pituitary cells were investigated by using two hyposmotic stimuli, moderate (18-22% decrease in [Os]e) and strong (31-32% decrease in [Os]e). Exposure to moderate hyposmotic stimuli resulted in three response types in IL (a decrease, a biphasic effect, and an increase in IL) and in increase in IT. Exposure to strong hyposmotic stimuli resulted only in increases in both IL and IT. Similarly, in intact pituitary cells (perforated patch method), exposure to either moderate or strong hyposmotic stimuli resulted only in increases in both IL and IT. Thus it appears that the main effect of decrease in [Os]e is increase in calcium channel currents. This increase was differential (IL were more sensitive than IT) and voltage independent. In addition, we show that these hyposmotic effects cannot be explained by activation of an anionic conductance or by an increase in cell membrane surface area. In conclusion, this study shows that hyposmotic swelling of pituitary cells can directly modulate voltage-gated calcium influx. This hyposmotic modulation of IL and IT may contribute to the previously reported hyposmotic stimulation of hormone secretion. The mechanisms underlying these hyposmotic effects and their possible physiological relevance are discussed.
MO-F-CAMPUS-I-01: EIT Imaging to Monitor Human Salivary Gland Functionality: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohli, K; Karvat, A; Liu, J
Purpose: Clinically, there exists a need to develop a non-invasive technique for monitoring salivary activity. In this study, we investigate the feasibility of a using the electrical conductivity information from Electrical Impedance Tomography (EIT) to monitor salivary flow activity. Methods: To acquire EIT data, eight Ag/AgCl ECG electrodes were placed around the mandible of the subject. An EIT scan was obtained by injecting current at 50 KHz, 0.4 mA through each pair of electrodes and recording voltage across other electrode pairs. The functional conductivity image was obtained through reconstruction of the voltage data, using Electrical Impedance Tomography and Diffuse Opticalmore » Tomography Reconstruction Software (EIDORS) in Matlab. In using EIDORS, forward solution was obtained using a user-defined finite element model shape and inverse solution was obtained using one-step Gaussian solver. EIT scans of volunteer research team members were acquired for three different physiological states: pre-stimulation, stimulation and post-stimulation. For pre-stimulation phase, data were collected in intervals of 5 minutes for 15 minutes. The salivary glands were then stimulated in the subject using lemon and the data were collected immediately. Post-stimulation data were collected at 4 different timings after stimulation. Results: Variations were observed in the electrical conductivity patterns near parotid regions between the pre- and post-stimulation stages. The three images acquired during the 15 minute pre-stimulation phase showed no major changes in the conductivity. Immediately after stimulation, electrical conductivity increased near parotid regions and 15 minutes later slowly returned to pre-stimulation level. Conclusion: In the present study involving human subjects, the change in electrical conductivity pattern shown in the EIT images, acquired at different times with and without stimulation of salivary glands, appeared to be consistent with the change in salivary gland activity. The conductivity changes imaged through EIT are potentially useful for the purpose of salivary monitoring.« less
Coubard, Olivier A
2016-01-01
Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, 26 years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR) in anxiety disorders, particularly in post-traumatic stress disorder (PTSD). The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER)-model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i) activity level enhancement of attentional control component; and (ii) bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms.
CRH-stimulated cortisol release and food intake in healthy, non-obese adults.
George, Sophie A; Khan, Samir; Briggs, Hedieh; Abelson, James L
2010-05-01
There is considerable anecdotal and some scientific evidence that stress triggers eating behavior, but underlying physiological mechanisms remain uncertain. The hypothalamic-pituitary-adrenal (HPA) axis is a key mediator of physiological stress responses and may play a role in the link between stress and food intake. Cortisol responses to laboratory stressors predict consumption but it is unclear whether such responses mark a vulnerability to stress-related eating or whether cortisol directly stimulates eating in humans. We infused healthy adults with corticotropin-releasing hormone (CRH) at a dose that is subjectively undetectable but elicits a robust endogenous cortisol response, and measured subsequent intake of snack foods, allowing analysis of HPA reactivity effects on food intake without the complex psychological effects of a stress paradigm. CRH elevated cortisol levels relative to placebo but did not impact subjective anxious distress. Subjects ate more following CRH than following placebo and peak cortisol response to CRH was strongly related to both caloric intake and total consumption. These data show that HPA axis reactivity to pharmacological stimulation predicts subsequent food intake and suggest that cortisol itself may directly stimulate food consumption in humans. Understanding the physiological mechanisms that underlie stress-related eating may prove useful in efforts to attack the public health crises created by obesity. Copyright 2009 Elsevier Ltd. All rights reserved.
Hamed, Ayman; Kim, Paul; Cho, Michael
2006-12-01
Electrotherapy for bone healing, remodeling and wound healing may be mediated by modulation of nitric oxide (NO). Using NO-specific fluorophore (DAF-2), we report here that application of non-invasive, physiologic electrical stimulation induces NO synthesis in human osteoblasts, and that such NO generation is comparable to that induced by estrogen treatment. For example, application of a sinusoidal 1 Hz, 2 V/cm (peak to peak) electrical stimulation (ES) increases NO-bound DAF-2 fluorescence intensity by a 2-fold within 60 min exposure by activating nitric oxide synthase (NOS). Increase in the NO level is found to depend critically on the frequency and strength of ES. While the frequency of 1 Hz ES seems optimal, the ES strength >0.5 V/cm is required to induce significant NO increase, however. Nitric oxide synthesis in response to ES is completely prevented by blocking estrogen receptors using a competitive inhibitor, suggesting that NO generation is likely initiated by activation of estrogen receptors at the cell surface. Based on these findings, physiologic stimulation of electrotherapy appears to represent a potential non-invasive, non-genomic, and novel physical technique that could be used to regulate NO-mediated bone density and facilitate bone remodeling without adverse effects associated with hormone therapy.
Eye-Pressing by Visually Impaired Children.
ERIC Educational Resources Information Center
Jan, James E.; And Others
1983-01-01
The nature of eye-pressing as a visual stimulation mannerism in children with severely impaired eyesight is examined, and a possible physiological explanation (that self-stimulation occurs when the demand of the brain for meaningful visual information is not met) is offered. (CL)
Technological Advances in Deep Brain Stimulation.
Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars
2015-01-01
Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.
Rejc, Enrico; Angeli, Claudia A.; Bryant, Nicole
2017-01-01
Abstract Individuals affected by motor complete spinal cord injury are unable to stand, walk, or move their lower limbs voluntarily; this diagnosis normally implies severe limitations for functional recovery. We have recently shown that the appropriate selection of epidural stimulation parameters was critical to promoting full-body, weight-bearing standing with independent knee extension in four individuals with chronic clinically complete paralysis. In the current study, we examined the effects of stand training and subsequent step training with epidural stimulation on motor function for standing in the same four individuals. After stand training, the ability to stand improved to different extents in the four participants. Step training performed afterwards substantially impaired standing ability in three of the four individuals. Improved standing ability generally coincided with continuous electromyography (EMG) patterns with constant levels of ground reaction forces. Conversely, poorer standing ability was associated with more variable EMG patterns that alternated EMG bursts and longer periods of negligible activity in most of the muscles. Stand and step training also differentially affected the evoked potentials amplitude modulation induced by sitting-to-standing transition. Finally, stand and step training with epidural stimulation were not sufficient to improve motor function for standing without stimulation. These findings show that the spinal circuitry of motor complete paraplegics can generate motor patterns effective for standing in response to task-specific training with optimized stimulation parameters. Conversely, step training can lead to neural adaptations resulting in impaired motor function for standing. PMID:27566051
Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2010-01-01
Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.
Pires, Paulo W; Ko, Eun-A; Pritchard, Harry A T; Rudokas, Michael; Yamasaki, Evan; Earley, Scott
2017-07-15
The angiotensin II receptor type 1b (AT 1 R b ) is the primary sensor of intraluminal pressure in cerebral arteries. Pressure or membrane-stretch induced stimulation of AT 1 R b activates the TRPM4 channel and results in inward transient cation currents that depolarize smooth muscle cells, leading to vasoconstriction. Activation of either AT 1 R a or AT 1 R b with angiotensin II stimulates TRPM4 currents in cerebral artery myocytes and vasoconstriction of cerebral arteries. The expression of AT 1 R b mRNA is ∼30-fold higher than AT 1 R a in whole cerebral arteries and ∼45-fold higher in isolated cerebral artery smooth muscle cells. Higher levels of expression are likely to account for the obligatory role of AT 1 R b for pressure-induced vasoconstriction . ABSTRACT: Myogenic vasoconstriction, which reflects the intrinsic ability of smooth muscle cells to contract in response to increases in intraluminal pressure, is critically important for the autoregulation of blood flow. In smooth muscle cells from cerebral arteries, increasing intraluminal pressure engages a signalling cascade that stimulates cation influx through transient receptor potential (TRP) melastatin 4 (TRPM4) channels to cause membrane depolarization and vasoconstriction. Substantial evidence indicates that the angiotensin II receptor type 1 (AT 1 R) is inherently mechanosensitive and initiates this signalling pathway. Rodents express two types of AT 1 R - AT 1 R a and AT 1 R b - and conflicting studies provide support for either isoform as the primary sensor of intraluminal pressure in peripheral arteries. We hypothesized that mechanical activation of AT 1 R a increases TRPM4 currents to induce myogenic constriction of cerebral arteries. However, we found that development of myogenic tone was greater in arteries from AT 1 R a knockout animals compared with controls. In patch-clamp experiments using native cerebral arterial myocytes, membrane stretch-induced cation currents were blocked by the TRPM4 inhibitor 9-phenanthrol in both groups. Further, the AT 1 R blocker losartan (1 μm) diminished myogenic tone and blocked stretch-induced cation currents in cerebral arteries from both groups. Activation of AT 1 R with angiotensin II (30 nm) also increased TRPM4 currents in smooth muscle cells and constricted cerebral arteries from both groups. Expression of AT 1 R b mRNA was ∼30-fold greater than AT 1 R a in cerebral arteries, and knockdown of AT 1 R b selectively diminished myogenic constriction. We conclude that AT 1 R b , acting upstream of TRPM4 channels, is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
2013-01-01
Background Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent. Methods The power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window. Results The distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor. Conclusion Parkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off. PMID:23834737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebata, T.; Ito, M.
1992-04-16
This paper reports the intramolecular vibrational redistribution (IVR) of the jet-cooled p-alkylphenols and p-alkylanilines in S{sub 0} state by using stimulated emission ion dip and stimulated raman-UV optical double-resonance spectroscopy. The IVR rate constants of several vibrational levels localized in the benzene ring are estimated. 31 refs., 12 figs., 4 tabs.
What is the physiological time to recovery after concussion? A systematic review.
Kamins, Joshua; Bigler, Erin; Covassin, Tracey; Henry, Luke; Kemp, Simon; Leddy, John J; Mayer, Andrew; McCrea, Michael; Prins, Mayumi; Schneider, Kathryn J; Valovich McLeod, Tamara C; Zemek, Roger; Giza, Christopher C
2017-06-01
The aim of this study is to consolidate studies of physiological measures following sport-related concussion (SRC) to determine if a time course of postinjury altered neurobiology can be outlined. This biological time course was considered with respect to clinically relevant outcomes such as vulnerability to repeat injury and safe timing of return to physical contact risk. Systematic review. PubMed, CINAHL, Cochrane Central, PsychINFO. Studies were included if they reported original research on physiological or neurobiological changes after SRC. Excluded were cases series <5 subjects, reviews, meta-analyses, editorials, animal research and research not pertaining to SRC. A total of 5834 articles were identified, of which 80 were included for full-text data extraction and review. Relatively few longitudinal studies exist that follow both physiological dysfunction and clinical measures to recovery. Modalities of measuring physiological change after SRC were categorised into the following: functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, cerebral blood flow, electrophysiology, heart rate, exercise, fluid biomarkers and transcranial magnetic stimulation. Due to differences in modalities, time course, study design and outcomes, it is not possible to define a single 'physiological time window' for SRC recovery. Multiple studies suggest physiological dysfunction may outlast current clinical measures of recovery, supporting a buffer zone of gradually increasing activity before full contact risk. Future studies need to use generalisable populations, longitudinal designs following to physiological and clinical recovery and careful correlation of neurobiological modalities with clinical measures. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
+Gz load and executive functions.
Biernacki, Marcin P; Tarnowski, Adam; Lengsfeld, Kamila; Lewkowicz, Rafał; Kowalczuk, Krzysztof; Dereń, Miroslaw
2013-05-01
Pilots are constantly exposed to a number of environmental factors, which include +Gz load. Physiological changes evoked by +Gz stimuli have already been well investigated in aviation medicine. However, the influence of +Gz stimulation on executive functions in pilots has not yet been thoroughly explored. There were 20 pilot cadets between the ages of 19 and 22 yr who volunteered to participate in the experiment. The subjects were divided into two groups: the G-load group, which was exposed to accelerations in the centrifuge, and the control group, which did not undergo this stimulation. Executive functions were assessed by means of the Schulte tables and the Rey-Osterrieth complex figure test. +Gz load exposure significantly improved attention switching. This relationship was valid for performance speed (M = 268.09 s in the pretest in the G-load group; M = 228.09 s in the posttest in the G-load group) and for the cumulative time of mistakes (M = 26.73 s in the pretest in the G-load group; M = 12 s in the posttest in the G-load group), whereas reproduction of visuospatial stimuli from memory deteriorated significantly under the influence of +Gz stimulation (M = 17.18 points in the posttest in the G-load group; M = 28.18 points in the posttest in the control group). These results suggest that the impact of +Gz load is not homogenous and unidirectional, since it improves attention switching but visuospatial working memory decreases under its influence. These aspects are particularly important for understanding the mechanisms responsible for maintaining situational awareness during the flight.
Physiological insights into novel therapies for nephrogenic diabetes insipidus.
Sands, Jeff M; Klein, Janet D
2016-12-01
Fundamental kidney physiology research can provide important insight into how the kidney works and suggest novel therapeutic opportunities to treat human diseases. This is especially true for nephrogenic diabetes insipidus (NDI). Over the past decade, studies elucidating the molecular physiology and signaling pathways regulating water transport have suggested novel therapeutic possibilities. In patients with congenital NDI due to mutations in the type 2 vasopressin receptor (V2R) or acquired NDI due to lithium (or other medications), there are no functional abnormalities in the aquaporin-2 (AQP2) water channel, or in another key inner medullary transport protein, the UT-A1 urea transporter. If it is possible to phosphorylate and/or increase the apical membrane accumulation of these proteins, independent of vasopressin or cAMP, one may be able to treat NDI. Sildenifil (through cGMP), erlotinib, and simvastatin each stimulate AQP2 insertion into the apical plasma membrane. Some recent human data suggest that sildenafil and simvastatin may improve urine concentrating ability. ONO-AE1-329 (ONO) stimulates the EP4 prostanoid receptor (EP4), which stimulates kinases that in turn phosphorylate AQP2 and UT-A1. Clopidogrel is a P2Y12-R antagonist that potentiates the effect of vasopressin and increases AQP2 abundance. Metformin stimulates AMPK to phosphorylate and activate AQP2 and UT-A1, and it increases urine concentrating ability in two rodent models of NDI. Since metformin, sildenafil, and simvastatin are commercially available and have excellent safety records, the potential for rapidly advancing them into clinical trials is high. Copyright © 2016 the American Physiological Society.
Kwon, Yong Hyun; Jang, Sung Ho
2012-08-25
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
Kwon, Yong Hyun; Jang, Sung Ho
2012-01-01
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815
Direct stimulation of pituitary prolactin release by glutamate.
Login, I S
1990-01-01
The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.
Adaptation of vestibular signals for self-motion perception
St George, Rebecca J; Day, Brian L; Fitzpatrick, Richard C
2011-01-01
A fundamental concern of the brain is to establish the spatial relationship between self and the world to allow purposeful action. Response adaptation to unvarying sensory stimuli is a common feature of neural processing, both peripherally and centrally. For the semicircular canals, peripheral adaptation of the canal-cupula system to constant angular-velocity stimuli dominates the picture and masks central adaptation. Here we ask whether galvanic vestibular stimulation circumvents peripheral adaptation and, if so, does it reveal central adaptive processes. Transmastoidal bipolar galvanic stimulation and platform rotation (20 deg s−1) were applied separately and held constant for 2 min while perceived rotation was measured by verbal report. During real rotation, the perception of turn decayed from the onset of constant velocity with a mean time constant of 15.8 s. During galvanic-evoked virtual rotation, the perception of rotation initially rose but then declined towards zero over a period of ∼100 s. For both stimuli, oppositely directed perceptions of similar amplitude were reported when stimulation ceased indicating signal adaptation at some level. From these data the time constants of three independent processes were estimated: (i) the peripheral canal-cupula adaptation with time constant 7.3 s, (ii) the central ‘velocity-storage’ process that extends the afferent signal with time constant 7.7 s, and (iii) a long-term adaptation with time constant 75.9 s. The first two agree with previous data based on constant-velocity stimuli. The third component decayed with the profile of a real constant angular acceleration stimulus, showing that the galvanic stimulus signal bypasses the peripheral transformation so that the brainstem sees the galvanic signal as angular acceleration. An adaptive process involving both peripheral and central processes is indicated. Signals evoked by most natural movements will decay peripherally before adaptation can exert an appreciable effect, making a specific vestibular behavioural role unlikely. This adaptation appears to be a general property of the internal coding of self-motion that receives information from multiple sensory sources and filters out the unvarying components regardless of their origin. In this instance of a pure vestibular sensation, it defines the afferent signal that represents the stationary or zero-rotation state. PMID:20937715
Catecholamine-Independent Heart Rate Increases Require CaMKII
Gao, Zhan; Singh, Madhu V; Hall, Duane D; Koval, Olha M.; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Chen, Biyi; Wu, Yuejin; Chaudhary, Ashok K; Martins, James B; Hund, Thomas J; Mohler, Peter J; Song, Long-Sheng; Anderson, Mark E.
2011-01-01
Background Catecholamines increase heart rate by augmenting the cAMP responsive HCN4 ‘pacemaker current’ (If) and/or by promoting inward Na+/Ca2+ exchanger current (INCX), by a ‘Ca2+ clock’ mechanism in sinoatrial nodal cells (SANCs). The importance, identity and function of signals that connect If and Ca2+ clock mechanisms are uncertain and controversial, but the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is required for physiological heart rate responses to β-adrenergic receptor (β-AR) stimulation. The aim of this stuy is to measure the contribution of the Ca2+ clock and CaMKII to cardiac pacing independent of β-AR agonist stimulation. Methods and Results We used the L-type Ca2+ channel agonist BayK 8644 (BayK) to activate the SANC Ca2+ clock. BayK and isoproterenol were similarly effective in increasing rates in SANCs and Langendorff-perfused hearts from WT control mice. In contrast, SANCs and isolated hearts from mice with CaMKII inhibition by transgenic expression of an inhibitory peptide (AC3-I) were resistant to rate increases by BayK. BayK only activated CaMKII in control SANCs, but increased ICa equally in all SANCs, indicating that increasing ICa was insufficient and suggesting CaMKII activation was required for heart rate increases by BayK. BayK did not increase If or protein kinase A (PKA)-dependent phosphorylation of phospholamban (at Ser16), indicating that increased SANC Ca2+ by BayK did not augment cAMP/PKA signaling at these targets. Late diastolic intracellular Ca2+ release and INCX were significantly reduced in AC3-I SANCs and the response to BayK was eliminated by ryanodine in all groups. Conclusions The Ca2+ clock is capable of supporting physiological fight or flight responses, independent of β-AR stimulation or If increases. Complete Ca2+ clock and β-AR stimulation responses require CaMKII. PMID:21406683
Miller, Melissa; Shi, Jie; Zhu, Yingmin; Kustov, Maksym; Tian, Jin-bin; Stevens, Amy; Wu, Meng; Xu, Jia; Long, Shunyou; Yang, Pu; Zholos, Alexander V.; Salovich, James M.; Weaver, C. David; Hopkins, Corey R.; Lindsley, Craig W.; McManus, Owen; Li, Min; Zhu, Michael X.
2011-01-01
Transient receptor potential canonical (TRPC) channels are Ca2+-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca2+ rise in response to stimulation of mouse TRPC4β by μ-opioid receptors. ML204 inhibited TRPC4β-mediated intracellular Ca2+ rise with an IC50 value of 0.96 μm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4β currents activated through either μ-opioid receptor stimulation or intracellular dialysis of guanosine 5′-3-O-(thio)triphosphate (GTPγS), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10–20 μm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTPγS, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4. PMID:21795696
Simon, S; Smith, A J
2014-03-01
Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.
Cardiac P2X purinergic receptors as a new pathway for increasing Na⁺ entry in cardiac myocytes.
Shen, Jian-Bing; Yang, Ronghua; Pappano, Achilles; Liang, Bruce T
2014-11-15
P2X4 receptors (P2X4Rs) are ligand-gated ion channels capable of conducting cations such as Na(+). Endogenous cardiac P2X4R can mediate ATP-activated current in adult murine cardiomyocytes. In the present study, we tested the hypothesis that cardiac P2X receptors can induce Na(+) entry and modulate Na(+) handling. We further determined whether P2X receptor-induced stimulation of the Na(+)/Ca(2+) exchanger (NCX) has a role in modulating the cardiac contractile state. Changes in Na(+)-K(+)-ATPase current (Ip) and NCX current (INCX) after agonist stimulation were measured in ventricular myocytes of P2X4 transgenic mice using whole cell patch-clamp techniques. The agonist 2-methylthio-ATP (2-meSATP) increased peak Ip from a basal level of 0.52 ± 0.02 to 0.58 ± 0.03 pA/pF. 2-meSATP also increased the Ca(2+) entry mode of INCX (0.55 ± 0.09 pA/pF under control conditions vs. 0.82 ± 0.14 pA/pF with 2-meSATP) at a membrane potential of +50 mV. 2-meSATP shifted the reversal potential of INCX from -14 ± 2.3 to -25 ± 4.1 mV, causing an estimated intracellular Na(+) concentration increase of 1.28 ± 0.42 mM. These experimental results were closely mimicked by mathematical simulations based on previously established models. KB-R7943 or a structurally different agent preferentially opposing the Ca(2+) entry mode of NCX, YM-244769, could inhibit the 2-meSATP-induced increase in cell shortening in transgenic myocytes. Thus, the Ca(2+) entry mode of INCX participates in P2X agonist-stimulated contractions. In ventricular myocytes from wild-type mice, the P2X agonist could increase INCX, and KB-R7943 was able to inhibit the contractile effect of endogenous P2X4Rs, indicating a physiological role of these receptors in wild-type cells. The data demonstrate a novel Na(+) entry pathway through ligand-gated P2X4Rs in cardiomyocytes. Copyright © 2014 the American Physiological Society.
Brain stimulation in posttraumatic stress disorder
Novakovic, Vladan; Sher, Leo; Lapidus, Kyle A.B.; Mindes, Janet; A.Golier, Julia; Yehuda, Rachel
2011-01-01
Posttraumatic stress disorder (PTSD) is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT) and Cranial electrotherapy stimulation (CES) have both been in use for decades; transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), deep brain stimulation (DBS), transcranial Direct Current Stimulation (tDCS), and vagus nerve stimulation (VNS) have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES), depression (ECT, CES, rTMS, VNS, DBS), obsessive-compulsive disorder (OCD) (DBS), essential tremor, dystonia (DBS), epilepsy (DBS, VNS), Parkinson Disease (DBS), pain (CES), and insomnia (CES). To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in reducing anxiety, findings that may suggest possible utility in relieving PTSD-associated anxiety. Treatment of animal models of PTSD with DBS suggests potential human benefit. Additional research and novel treatment options for PTSD are urgently needed. The potential usefulness of brain stimulation in treating PTSD deserves further exploration. PMID:22893803
Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.
Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J
2011-10-01
A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.
Cros, Caroline; Brette, Fabien
2013-01-01
β-adrenergic stimulation is a key regulator of cardiac function. The localization of major cardiac adrenergic receptors (β1 and β2) has been investigated using biochemical and biophysical approaches and has led to contradictory results. This study investigates the functional subcellular localization of β1- and β2-adrenergic receptors in rat ventricular myocytes using a physiological approach. Ventricular myocytes were isolated from the hearts of rat and detubulated using formamide. Physiological cardiac function was measured as Ca2+ transient using Fura-2-AM and cell shortening. Selective activation of β1- and β2-adrenergic receptors was induced with isoproterenol (0.1 μmol/L) and ICI-118,551 (0.1 μmol/L); and with salbutamol (10 μmol/L) and atenolol (1 μmol/L), respectively. β1- and β2-adrenergic stimulations induced a significant increase in Ca2+ transient amplitude and cell shortening in intact rat ventricular myocytes (i.e., surface sarcolemma and t-tubules) and in detubulated cells (depleted from t-tubules, surface sarcolemma only). Both β1- and β2-adrenergic receptors stimulation caused a greater effect on Ca2+ transient and cell shortening in detubulated myocytes than in control myocytes. Quantitative analysis indicates that β1-adrenergic stimulation is ∼3 times more effective at surface sarcolemma compared to t-tubules, whereas β2- adrenergic stimulation occurs almost exclusively at surface sarcolemma (∼100 times more effective). These physiological data demonstrate that in rat ventricular myocytes, β1-adrenergic receptors are functionally present at surface sarcolemma and t-tubules, while β2-adrenergic receptors stimulation occurs only at surface sarcolemma of cardiac cells. PMID:24303124
Oltedal, Leif; Hartveit, Espen
2010-05-01
Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.
Samaddar, Sreyashi; Vazquez, Kizzy; Ponkia, Dipen; Toruno, Pedro; Sahbani, Karim; Begum, Sultana; Abouelela, Ahmed; Mekhael, Wagdy; Ahmed, Zaghloul
2017-02-01
Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a potential mechanism of action regarding the functional effects of applying direct current. Thus tsDCS may represent a novel method by which to manipulate the migration and cell number of adult newly born cells and restore functions following brain or spinal cord injury. Copyright © 2017 the American Physiological Society.
Broxterman, Ryan M; Skiba, Phillip F; Craig, Jesse C; Wilcox, Samuel L; Ade, Carl J; Barstow, Thomas J
2016-10-01
The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
A Psychophysiological Interpretation of Voodoo Illness and Voodoo Death.
ERIC Educational Resources Information Center
Lachman, Sheldon J.
1982-01-01
Discusses voodoo illness, a form of psychosomatic illness which can result in death when sufficiently intense and prolonged. The extreme physiological arousal pattern to stimulation that comprises emotional behavior produces pathological changes in physiological functioning. Persons who are socially prepared or physically predisposed are…
Klismaphilia--a physiological perspective.
Agnew, J
1982-10-01
Dr. Joanne Denko coined the work klismaphilia to describe the practices of some of her patients who enjoyed the use of enemas as a sexual stimulant. Since then questions occasionally appear in the professional literature asking about the relationship between enemas and sexual pleasure. This paper considers some of the physiological aspects of the human sexual apparatus that relate to anal sensitivity and explores why klismaphilia can be sexually grafifying. The paper starts with a discussion of the physiological basis for anal sensitivity and anal masturbation in both the human male and the human female. The paper then goes on to relate all this to the sexual sensations received from an enema, and discusses the similarities and differences between all these types of stimulation. Some of the psychological aspects of klismaphilia are also considered in relationship to the physiology involved. The paper concludes with a brief discussion of masked anal masturbation among the population at large. A comprehensive list of references from the literature is given to support these findings.
Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus
NASA Astrophysics Data System (ADS)
Gras, Heribert; Bartels, Anke
Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.
Näsi, Tiina; Mäki, Hanna; Kotilahti, Kalle; Nissilä, Ilkka; Haapalahti, Petri; Ilmoniemi, Risto J.
2011-01-01
Hemodynamic responses evoked by transcranial magnetic stimulation (TMS) can be measured with near-infrared spectroscopy (NIRS). This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG) amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT) on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65–0.87). All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity. PMID:21887362
Näsi, Tiina; Mäki, Hanna; Kotilahti, Kalle; Nissilä, Ilkka; Haapalahti, Petri; Ilmoniemi, Risto J
2011-01-01
Hemodynamic responses evoked by transcranial magnetic stimulation (TMS) can be measured with near-infrared spectroscopy (NIRS). This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG) amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT) on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65-0.87). All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity.
Role of recoverin in rod photoreceptor light adaptation.
Morshedian, Ala; Woodruff, Michael L; Fain, Gordon L
2018-04-15
Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is also deleted, steady-state currents are already larger and rods saturate at brighter intensities. We argue that neither (i) nor (ii) can be caused by modulation of rhodopsin phosphorylation but may instead be produced by direct modulation of phophodiesterase-6 (PDE6), the phototransduction effector enzyme. We propose that recoverin in dark-adapted rods keeps the integration time long and the spontaneous PDE6 rate relatively high to improve sensitivity. In background light, the integration time is decreased to facilitate detection of change and motion and the spontaneous PDE6 rate decreases to augment the rod working range. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Nguyen, Hieu T; Wei, Claudia; Chow, Jacqueline K; Nguyen, Alvin; Coursen, Jeff; Sapp, Shawn; Luebben, Silvia; Chang, Emily; Ross, Robert; Schmidt, Christine E
2014-01-01
Nerve guidance conduits (NGCs) are FDA-approved devices used to bridge gaps across severed nerve cables and help direct axons sprouting from the proximal end toward the distal stump. In this paper we present the development of a novel electrically conductive, biodegradable NGC made from a polypyrrole-block-polycaprolactone (PPy-PCL) copolymer material laminated with poly(lactic-co-glycolic acid) (PLGA). The PPy-PCL has a bulk conductivity ranging 10–20 S/cm and loses 40 wt% after 7 months under physiologic conditions. Dorsal root ganglia (DRG) grown on flat PPy-PCL/PLGA material exposed to direct current electric fields (EF) of 100 mV/cm for 2 h increased axon growth by 13% (± 2%) towards either electrode of a 2-electrode setup, compared to control grown on identical substrates without EF exposure. Alternating current increased axon growth by 21% (± 3%) without an observable directional preference, compared to the same control group. The results from this study demonstrate PLGA-coated PPy-PCL is a unique biodegradable material that can deliver substrate EF stimulation to improve axon growth for peripheral nerve repair. PMID:23964001
Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater
NASA Astrophysics Data System (ADS)
Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.
2017-08-01
Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (
The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors.
Juul, Kristian Vinter; Bichet, Daniel G; Nielsen, Søren; Nørgaard, Jens Peter
2014-05-01
The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.
Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane
2017-07-17
High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.
Welt, C K; Martin, K A; Taylor, A E; Lambert-Messerlian, G M; Crowley, W F; Smith, J A; Schoenfeld, D A; Hall, J E
1997-08-01
To isolate the impact of GnRH pulse frequency on FSH secretion and to examine the effect of differing levels of FSH on inhibin B secretion during the luteal-follicular transition, exogenous GnRH was administered to GnRH-deficient women using one of two regimens, and the results were compared to those in normal women. In the GnRH-deficient women, the GnRH pulse frequency was increased from every 4 h in the late luteal phase to every 90 min on the day of menses to mimic normal cycling women (physiological frequency transition; n = 8 studies) or the GnRH pulse frequency was kept constant at a late luteal phase frequency of every 4 h through the first 6 days of the subsequent early follicular phase of cycle 2 (slow frequency transition; n = 6 studies). The differential rise in FSH secretion induced in these studies allowed us to examine the subsequent contribution of varying levels of FSH to inhibin B secretion. A physiological regimen of GnRH during the luteal-follicular transition resulted in a rise in FSH and inhibin B levels that did not differ from that in normal cycling women and a normal follicular phase length. On the other hand, maintaining a luteal frequency of GnRH for 6 days into the subsequent early follicular phase produced FSH levels significantly lower than those in the physiological transition (P < 0.05), with the greatest difference seen on the day after menses (9.1 +/- 1.0 vs. 16.4 +/- 1.4 IU/L for the slow and physiological transition groups, respectively; P < 0.005), but no difference in LH. This slower rise of FSH secretion in the slow frequency group was associated with significantly lower inhibin B levels (43.3 +/- 21.5 vs. 140.0 +/- 24.4 pg/mL, mean days 1, 3, and 5; P < 0.02), a later doubling of estradiol from baseline (day 9.6 +/- 0.9 vs. day 5.6 +/- 0.1; P < 0.02), and a longer follicular phase length (16.0 +/- 1.4 vs. 11.6 +/- 0.9 days; P < 0.05) compared with those in the physiological transition group. In conclusion, during the luteal-follicular transition, the GnRH pulse frequency contributes to but is not solely responsible for the FSH rise that initiates folliculogenesis. Alteration of FSH dynamics induced by changes in GnRH pulse frequency in GnRH-deficient women provides evidence that FSH stimulates inhibin B production in the human. Timely follicular development indicated by both estradiol and inhibin B secretion appears to be dependent on the pattern of increase in FSH during the luteal-follicular transition.
This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...
A physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Kinetic time course data...
physiologically based pharmacokinetic (PBPK) model was developed for the conazole fungicide triadimefon and its primary metabolite, triadimenol. Rat tissue:blood partition coefficients and metabolic constants were measured in vitro for both compounds. Pharmacokinetic data for par...
Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew
2015-11-15
Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.
Rosedale, Mary; Malaspina, Dolores; Malamud, Daniel; Strauss, Shiela M; Horne, Jaclyn D; Abouzied, Salman; Cruciani, Ricardo A; Knotkova, Helena
2012-01-01
This article reports and discusses how quantitative (physiological and behavioral) and qualitative methods are being combined in an open-label pilot feasibility study. The study evaluates safety, tolerability, and acceptability of a protocol to treat depression in HIV-infected individuals, using a 2-week block of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex. Major depressive disorder (MDD) is the second most prevalent psychiatric disorder after substance abuse among HIV-positive adults, and novel antidepressant treatments are needed for this vulnerable population. The authors describe the challenges and contributions derived from different research perspectives and methodological approaches and provide a philosophical framework for combining quantitative and qualitative measurements for a fuller examination of the disorder. Four methodological points are presented: (1) the value of combining quantitative and qualitative approaches; (2) the need for context-specific measures when studying patients with medical and psychiatric comorbidities; (3) the importance of research designs that integrate physiological, behavioral, and qualitative approaches when evaluating novel treatments; and (4) the need to explore the relationships between biomarkers, clinical symptom assessments, patient self-evaluations, and patient experiences when developing new, patient-centered protocols. The authors conclude that the complexity of studying novel treatments in complex and new patient populations requires complex research designs to capture the richness of data that inform translational research.
Is transcranial direct current stimulation a potential method for improving response inhibition?☆
Kwon, Yong Hyun; Kwon, Jung Won
2013-01-01
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition. PMID:25206399
Is transcranial direct current stimulation a potential method for improving response inhibition?
Kwon, Yong Hyun; Kwon, Jung Won
2013-04-15
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.
[Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].
Sabel, B A
2017-02-01
Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.
Kinetics of veratridine action on Na channels of skeletal muscle
Sutro, JB
1986-01-01
Veratridine bath-applied to frog muscle makes inactivation of INa incomplete during a depolarizing voltage-clamp pulse and leads to a persistent veratridine-induced Na tail current. During repetitive depolarizations, the size of successive tail currents grows to a plateau and then gradually decreases. When pulsing is stopped, the tail current declines to zero with a time constant of approximately 3 s. Higher rates of stimulation result in a faster build-up of the tail current and a larger maximum value. I propose that veratridine binds only to open channels and, when bound, prevents normal fast inactivation and rapid shutting of the channel on return to rest. Veratridine-modified channels are also subject to a "slow" inactivation during long depolarizations or extended pulse trains. At rest, veratridine unbinds with a time constant of approximately 3 s. Three tests confirm these hypotheses: (a) the time course of the development of veratridine-induced tail currents parallels a running time integral of gNa during the pulse; (b) inactivating prepulses reduce the ability to evoke tails, and the voltage dependence of this reduction parallels the voltage dependence of h infinity; (c) chloramine-T, N-bromoacetamide, and scorpion toxin, agents that decrease inactivation in Na channels, each greatly enhance the tail currents and alter the time course of the appearance of the tails as predicted by the hypothesis. Veratridine-modified channels shut during hyperpolarizations from -90 mV and reopen on repolarization to -90 mV, a process that resembles normal activation gating. Veratridine appears to bind more rapidly during larger depolarizations. PMID:2419478
Xu, Xiaoming; Al-Ghabeish, Manar; Rahman, Ziyaur; Krishnaiah, Yellela S R; Yerlikaya, Firat; Yang, Yang; Manda, Prashanth; Hunt, Robert L; Khan, Mansoor A
2015-09-30
Owing to its unique anatomical and physiological functions, ocular surface presents special challenges for both design and performance evaluation of the ophthalmic ointment drug products formulated with a variety of bases. The current investigation was carried out to understand and identify the appropriate in vitro methods suitable for quality and performance evaluation of ophthalmic ointment, and to study the effect of formulation and process variables on its critical quality attributes (CQA). The evaluated critical formulation variables include API initial size, drug percentage, and mineral oil percentage while the critical process parameters include mixing rate, temperature, time and cooling rate. The investigated quality and performance attributes include drug assay, content uniformity, API particle size in ointment, rheological characteristics, in vitro drug release and in vitro transcorneal drug permeation. Using design of experiments (DoE) as well as a novel principle component analysis approach, five of the quality and performance attributes (API particle size, storage modulus of ointment, high shear viscosity of ointment, in vitro drug release constant and in vitro transcorneal drug permeation rate constant) were found to be highly influenced by the formulation, in particular the strength of API, and to a lesser degree by processing variables. Correlating the ocular physiology with the physicochemical characteristics of acyclovir ophthalmic ointment suggested that in vitro quality metrics could be a valuable predictor of its in vivo performance. Published by Elsevier B.V.
Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.
Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D
2010-01-01
Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.
The Exercise Physiology Laboratory--A Source of Health Promotion.
ERIC Educational Resources Information Center
Norris, William; Norred, Robert
1988-01-01
A visit to the Exercise Physiology Laboratory at the University of Tennessee is part of a physical education class required of all undergraduate students. The laboratory demonstration stimulates student interest and enrollment in physical education. Benefits to students, the laboratory, and the school are described. (MT)
Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph
2014-01-01
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509
Coubard, Olivier A.
2016-01-01
Since the seminal report by Shapiro that bilateral stimulation induces cognitive and emotional changes, 26 years of basic and clinical research have examined the effects of Eye Movement Desensitization and Reprocessing (EMDR) in anxiety disorders, particularly in post-traumatic stress disorder (PTSD). The present article aims at better understanding EMDR neural mechanism. I first review procedural aspects of EMDR protocol and theoretical hypothesis about EMDR effects, and develop the reasons why the scientific community is still divided about EMDR. I then slide from psychology to physiology describing eye movements/emotion interaction from the physiological viewpoint, and introduce theoretical and technical tools used in movement research to re-examine EMDR neural mechanism. Using a recent physiological model for the neuropsychological architecture of motor and cognitive control, the Threshold Interval Modulation with Early Release-Rate of rIse Deviation with Early Release (TIMER-RIDER)—model, I explore how attentional control and bilateral stimulation may participate to EMDR effects. These effects may be obtained by two processes acting in parallel: (i) activity level enhancement of attentional control component; and (ii) bilateral stimulation in any sensorimotor modality, both resulting in lower inhibition enabling dysfunctional information to be processed and anxiety to be reduced. The TIMER-RIDER model offers quantitative predictions about EMDR effects for future research about its underlying physiological mechanisms. PMID:27092064
Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A
2013-04-01
Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI and ICF towards inhibition. No significant changes were observed in the other protocols. Sham tDCS did not induce significant MEP alterations. These results suggest that an enhancement of tDCS intensity does not necessarily increase efficacy of stimulation, but might also shift the direction of excitability alterations. This should be taken into account for applications of the stimulation technique using different intensities and durations in order to achieve stronger or longer lasting after-effects.
Mechanistic species distribution modelling as a link between physiology and conservation.
Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W
2015-01-01
Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and conservation practitioners would work collaboratively to build models, interpret results and consider conservation management options, and articulating this need here may help to stimulate collaboration.
Lab on chip microdevices for cellular mechanotransduction in urothelial cells
NASA Astrophysics Data System (ADS)
Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.
2016-04-01
Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.
Zynda, Evan R; Grimm, Melissa J; Yuan, Min; Zhong, Lingwen; Mace, Thomas A; Capitano, Maegan; Ostberg, Julie R; Lee, Kelvin P; Pralle, Arnd; Repasky, Elizabeth A
2015-01-01
Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever. PMID:26131730
This work describes the development of a physiologically based pharmacokinetic (PBPK) model of deltamethrin, a type II pyrethroid, in the developing male Sprague-Dawley rat. Generalized Michaelis-Menten equations were used to calculate metabolic rate constants and organ weights ...
Molecular crowding favors reactivity of a human ribozyme under physiological ionic conditions.
Strulson, Christopher A; Yennawar, Neela H; Rambo, Robert P; Bevilacqua, Philip C
2013-11-19
In an effort to relate RNA folding to function under cellular-like conditions, we monitored the self-cleavage reaction of the human hepatitis delta virus-like CPEB3 ribozyme in the background of physiological ionic concentrations and various crowding and cosolute agents. We found that at physiological free Mg(2+) concentrations (∼0.1-0.5 mM), both crowders and cosolutes stimulate the rate of self-cleavage, up to ∼6-fold, but that in 10 mM Mg(2+) (conditions widely used for in vitro ribozyme studies) these same additives have virtually no effect on the self-cleavage rate. We further observe a dependence of the self-cleavage rate on crowder size, wherein the level of rate stimulation is diminished for crowders larger than the size of the unfolded RNA. Monitoring effects of crowding and cosolute agents on rates in biological amounts of urea revealed additive-promoted increases at both low and high Mg(2+) concentrations, with a maximal stimulation of more than 10-fold and a rescue of the rate to its urea-free values. Small-angle X-ray scattering experiments reveal a structural basis for this stimulation in that higher-molecular weight crowding agents favor a more compact form of the ribozyme in 0.5 mM Mg(2+) that is essentially equivalent to the form under standard ribozyme conditions of 10 mM Mg(2+) without a crowder. This finding suggests that at least a portion of the rate enhancement arises from favoring the native RNA tertiary structure. We conclude that cellular-like crowding supports ribozyme reactivity by favoring a compact form of the ribozyme, but only under physiological ionic and cosolute conditions.
A dynamic model of the eye nystagmus response to high magnetic fields.
Glover, Paul M; Li, Yan; Antunes, Andre; Mian, Omar S; Day, Brian L
2014-02-07
It was recently shown that high magnetic fields evoke nystagmus in human subjects with functioning vestibular systems. The proposed mechanism involves interaction between ionic currents in the endolymph of the vestibular labyrinth and the static magnetic field. This results in a Lorentz force that causes endolymph flow to deflect the cupulae of the semi-circular canals to evoke a vestibular-ocular reflex (VOR). This should be analogous to stimulation by angular acceleration or caloric irrigation. We made measurements of nystagmus slow-phase velocities in healthy adults experiencing variable magnetic field profiles of up to 7 T while supine on a bed that could be moved smoothly into the bore of an MRI machine. The horizontal slow-phase velocity data were reliably modelled by a linear transfer function incorporating a low-pass term and a high-pass adaptation term. The adaptation time constant was estimated at 39.3 s from long exposure trials. When constrained to this value, the low-pass time constant was estimated at 13.6 ± 3.6 s (to 95% confidence) from both short and long exposure trials. This confidence interval overlaps with values obtained previously using angular acceleration and caloric stimulation. Hence it is compatible with endolymph flow causing a cupular deflection and therefore supports the hypothesis that the Lorentz force is a likely transduction mechanism of the magnetic field-evoked VOR.
Alam, Mahtab; Truong, Dennis Q; Khadka, Niranjan; Bikson, Marom
2016-06-21
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability-enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm(2)) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4 × 1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring's diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation ([Formula: see text] · (σ [Formula: see text] V) = 0) was solved for cortical electric field, which was interpreted using physiological assumptions to correlate with stimulation and modulation. Cortical field intensity was predicted to increase with increasing ring diameter at the cost of focality while uni-directionality decreased. Additional surrounding ring electrodes increased uni-directionality while lowering cortical field intensity and increasing focality; though, this effect saturated and more than 4 surround electrode would not be justified. Using a range of concentric HD-tDCS montages, we showed that cortical region of influence can be controlled while balancing other design factors such as intensity at the target and uni-directionality. Furthermore, the evaluated concentric HD-tDCS approaches can provide categorical improvements in targeting compared to conventional tDCS. Hypothesis driven clinical trials, based on specific target engagement, would benefit by this more precise method of stimulation that could avoid potentially confounding brain regions.
Shapiro, A D; Pfeffer, S R
1995-05-12
Rab9 is a Ras-like GTPase required for the transport of mannose 6-phosphate receptors between late endosomes and the trans Golgi network. Rab9 occurs in the cytosol as a complex with GDP dissociation inhibitor (GDI), which we have shown delivers prenyl Rab9 to late endosomes in a functional form. We report here basal rate constants for guanine nucleotide dissociation and GTP hydrolysis for prenyl Rab9. Both rate constants were influenced in part by the hydrophobic environment of the prenyl group. Guanine nucleotide dissociation and GTP hydrolysis rates were lower in the presence of lipid; detergent stimulated intrinsic nucleotide exchange. GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 2.4-fold. GDI-alpha associated with prenyl Rab9 with a KD of 60 nM in 0.1% Lubrol and 23 nM in 0.02% Lubrol. In 0.1% Lubrol, GDI-alpha inhibited GDP dissociation half maximally at 72 +/- 18 nM, consistent with the KD determinations. These data suggest that GDI-alpha associates with prenyl Rab9 with a KD of < or = 23 nM under physiological conditions. Finally, a previously uncharacterized minor form of GDI-alpha inhibited GDP dissociation from prenyl Rab9 by 1.9-fold and bound prenyl Rab9 with a KD of 67 nM in 0.1% Lubrol.
Shell shock at Queen Square: Lewis Yealland 100 years on
Jones, Edgar; Lees, Andrew J.
2013-01-01
This article reviews the treatment of functional neurological symptoms during World War I by Lewis Yealland at the National Hospital for the Paralysed and Epileptic in London. Yealland was among the first doctors in Britain to incorporate electricity in the systematic treatment of shell shock. Our analysis is based on the original case records of his treatment of 196 soldiers with functional motor and sensory symptoms, functional seizures and somatoform disorders. Yealland’s treatment approach integrated peripheral and central electrical stimulation with a variety of other—psychological and physical—interventions. A combination of electrical stimulation of affected muscles with suggestion of imminent improvement was the hallmark of his approach. Although his reported success rates were high, Yealland conducted no formal follow-up. Many of the principles of his treatment, including the emphasis on suggestion, demonstration of preserved function and the communication of a physiological illness model, are encountered in current therapeutic approaches to functional motor and sensory symptoms. Yealland has been attacked for his use of electrical stimulation and harsh disciplinary procedures in popular and scientific literature during and after World War I. This criticism reflects changing views on patient autonomy and the social role of doctors and directly impacts on current debates on ethical justification of suggestive therapies. We argue that knowledge of the historical approaches to diagnosis and management of functional neurological syndromes can inform both aetiological models and treatment concepts for these challenging conditions. PMID:23384604
Technological advances in the surgical treatment of movement disorders.
Gross, Robert E; McDougal, Margaret E
2013-08-01
Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments
Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-01-01
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377
A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.
Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna
2016-06-07
Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.
Deike, Susann; Deliano, Matthias; Brechmann, André
2016-10-01
One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bondarenko, Alexander I; Panasiuk, Olga; Okhai, Iryna; Montecucco, Fabrizio; Brandt, Karim J; Mach, Francois
2017-06-15
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca 2+ -dependent K + channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca 2+ -free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn 2+ , an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BK Ca channel activity in a concentration-dependent manner within a physiological Ca 2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca 2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BK Ca channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BK Ca opener. The action does not require cell integrity or integrins and is caused by direct modification of BK Ca channel activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Viaña, John Noel M; Vickers, James C; Cook, Mark J; Gilbert, Frederic
2017-08-01
The serendipitous discovery of triggered autobiographical memories and eventual memory improvement in an obese patient who received fornix deep brain stimulation in 2008 paved the way for several phase I and phase II clinical trials focused on the safety and efficacy of this potential intervention for people with Alzheimer's disease. In this article, we summarize clinical trials and case reports on fornix deep brain stimulation for Alzheimer's disease and review experiments on animal models evaluating the physiological or behavioral effects of this intervention. Based on information from these reports and studies, we identify potential translational challenges of this approach and determine practical and ethical considerations for clinical trials, focusing on issues regarding selection criteria, trial design, and outcome evaluation. Based on initial results suggesting greater benefit for those with milder disease stage, we find it essential that participant expectations are carefully managed to avoid treatment disenchantment and/or frustration from participants and caregivers. Finally, we urge for collaboration between centers to establish proper clinical standards and to promote better trial results comparison. Copyright © 2017 Elsevier Inc. All rights reserved.
Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe
2011-01-01
Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126
The Repression-Sensitization Dimension in Relation to Impending Painful Stimulation
ERIC Educational Resources Information Center
Scarpetti, William L.
1973-01-01
The study attempted to replicate previous findings of differences between self-report and physiological indices of disturbance in repressors and sensitizers placed in threatening situations. Results indicate that repressors admit to less anxiety on the self-report measure while producing more physiological reactivity to threat of shock. No such…
Developmental Exposure to a Thyroid Disrupting Chemical Stimulates Phagocytosis in Juvenile Sprague-Dawley Rats.
AA Rooney1, R Matulka2, and R Luebke3. 1NCSU/US EPA CVM, Department of Anatomy, Physiological Sciences and Radiology, Raleigh, NC;2UNC Department of Toxicology, Cha...
Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M
2007-12-01
The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients.
[Evolution of ideas and techniques, and future prospects in epilepsy surgery].
Mathon, B; Bédos-Ulvin, L; Baulac, M; Dupont, S; Navarro, V; Carpentier, A; Cornu, P; Clemenceau, S
2015-02-01
The aim of this article was to review and evaluate the published literature related to the outcome of epilepsy surgery, while placing it in an historical perspective, and to describe the future prospects in this field. Temporal lobe surgery achieves seizure freedom in about 70% of cases. Seizure outcome is similar in the pediatric population. Extratemporal resections impart good results to 40% to 60% of patients, with a better prognosis in the case of frontal lobe surgery. Pediatric hemispherotomy leads to seizure control in about 80% of children. Radiosurgery used as a treatment for temporal mesial epilepsy has an outcome quite similar to that obtained with surgical resection, but provides a neuropsychological advantage. Radiosurgery is also effective in 60% of children treated for seizures related to hypothalamic hamartoma. Regarding palliative surgery, callosotomy and multiple subpial transections show satisfactory outcomes in over 60% of cases. Neuromodulation techniques (vagus nerve stimulation and bilateral stimulation of the anterior nucleus of the thalamus) allow a 50% reduction of seizures in half of patients. Transcranial magnetic stimulation combined with electroencephalography seems a promising technique because of its diagnostic, prognostic and therapeutic applications. Transcranial ultrasound stimulation, which can reversibly control neuronal activity, is also under consideration. Concerning neuromodulation, trigeminal nerve stimulation may become an alternative to vagus nerve stimulation; while other targets of deep brain stimulation are being evaluated. Also, the possibility of coupling SEEG seizure focus detection with concomitant laser or radiofrequency focus destruction is under development. Constant evolution of epilepsy surgery has improved patient outcomes over time. Current research and development axes suggest the continuation of this trend and a reduction of the invasiveness of surgical procedures. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Phase-Locked Loop for Precisely Timed Acoustic Stimulation during Sleep
Santostasi, Giovanni; Malkani, Roneil; Riedner, Brady; Bellesi, Michele; Tononi, Giulio; Paller, Ken A.; Zee, Phyllis C.
2016-01-01
Background A Brain-Computer Interface could potentially enhance the various benefits of sleep. New Method We describe a strategy for enhancing slow-wave sleep (SWS) by stimulating the sleeping brain with periodic acoustic stimuli that produce resonance in the form of enhanced slow-wave activity in the electroencephalogram (EEG). The system delivers each acoustic stimulus at a particular phase of an electrophysiological rhythm using a Phase-Locked Loop (PLL). Results The PLL is computationally economical and well suited to follow and predict the temporal behavior of the EEG during slow-wave sleep. Comparison with Existing Methods Acoustic stimulation methods may be able to enhance SWS without the risks inherent in electrical stimulation or pharmacological methods. The PLL method differs from other acoustic stimulation methods that are based on detecting a single slow wave rather than modeling slow-wave activity over an extended period of time. Conclusions By providing real-time estimates of the phase of ongoing EEG oscillations, the PLL can rapidly adjust to physiological changes, thus opening up new possibilities to study brain dynamics during sleep. Future application of these methods hold promise for enhancing sleep quality and associated daytime behavior and improving physiologic function. PMID:26617321
Wenzel, Eva M.; Morton, Andrew; Ebert, Katrin; Welzel, Oliver; Kornhuber, Johannes; Cousin, Michael A.; Groemer, Teja W.
2012-01-01
To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity. PMID:22675521
Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology
Sizemore, Rachel J.; Seeger-Armbruster, Sonja; Hughes, Stephanie M.
2016-01-01
Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. PMID:26888111
Love as sensory stimulation: physiological consequences of its deprivation and expression.
Komisaruk, B R; Whipple, B
1998-11-01
For the present purpose, love is defined as one's having stimulation that one desires. The nature of the stimulation can range on a continuum from the most abstract cognitive, to the most direct sensory, forms. Thus, this definition of love encompasses having an emotional bond with a person for whom one yearns, as well as having sensory stimulation that one desires. We address some of the physiological and perceptual consequences both of having, and of not having, love. We propose a neural mechanism by which deprivation of love may generate endogenous, compensatory sensory stimulation that manifests itself as psychosomatic illness. In addition, we propose a neuroendocrine mechanism underlying sexual response and orgasm. The latter includes vaginocervical sensory pathways to the brain that can produce analgesia, release oxytocin, and/or bypass the spinal cord via the vagus nerve. We present evidence of the existence of non-genital orgasms, which suggests that genital orgasm is a special case of a more pervasive orgasmic process. Through recent studies, the mechanisms and manifestations of love and its deprivation are becoming better understood. The better is our understanding of love, the greater is our respect for the significance and potency of its role in mental and physical health.
Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation
Hoang, Kimberly B.; Cassar, Isaac R.; Grill, Warren M.; Turner, Dennis A.
2017-01-01
The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms. PMID:29066947
Rozier, Kelvin; Bondarenko, Vladimir E
2018-03-01
Transgenic (TG) mice overexpressing β 2 -adrenergic receptors (β 2 -ARs) demonstrate enhanced myocardial function, which manifests in increased basal adenylyl cyclase activity, enhanced atrial contractility, and increased left ventricular function in vivo. To gain insights into the mechanisms of these effects, we developed a comprehensive mathematical model of the mouse ventricular myocyte overexpressing β 2 -ARs. We found that most of the β 2 -ARs are active in control conditions in TG mice. The simulations describe the dynamics of major signaling molecules in different subcellular compartments, increased basal adenylyl cyclase activity, modifications of action potential shape and duration, and the effects on L-type Ca 2+ current and intracellular Ca 2+ concentration ([Ca 2+ ] i ) transients upon stimulation of β 2 -ARs in control, after the application of pertussis toxin, upon stimulation with a specific β 2 -AR agonist zinterol, and upon stimulation with zinterol in the presence of pertussis toxin. The model also describes the effects of the β 2 -AR inverse agonist ICI-118,551 on adenylyl cyclase activity, action potential, and [Ca 2+ ] i transients. The simulation results were compared with experimental data obtained in ventricular myocytes from TG mice overexpressing β 2 -ARs and with simulation data on wild-type mice. In conclusion, a new comprehensive mathematical model was developed that describes multiple experimental data on TG mice overexpressing β 2 -ARs and can be used to test numerous hypotheses. As an example, using the developed model, we proved the hypothesis of the major contribution of L-type Ca 2+ current to the changes in the action potential and [Ca 2+ ] i transient upon stimulation of β 2 -ARs with zinterol. NEW & NOTEWORTHY We developed a new mathematical model for transgenic mouse ventricular myocytes overexpressing β 2 -adrenoceptors that describes the experimental findings in transgenic mice. The model reveals mechanisms of the differential effects of stimulation of β 2 -adrenoceptors in wild-type and transgenic mice overexpressing β 2 -adrenoceptors.
A CMOS Neural Interface for a Multichannel Vestibular Prosthesis
Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.
2015-01-01
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945
In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.
Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S
2003-09-04
A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant skin resistance AC iontophoresis generally provides less inter- and intra-subject variability than conventional constant current DC.
Leffa, Douglas Teixeira; de Souza, Andressa; Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Grevet, Eugenio Horacio; Caumo, Wolnei; de Souza, Diogo Onofre; Rohde, Luis Augusto Paim; Torres, Iraci L S
2016-02-01
Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals. Copyright © 2016. Published by Elsevier B.V.
Acute seizure suppression by transcranial direct current stimulation in rats
Dhamne, Sameer C; Ekstein, Dana; Zhuo, Zhihong; Gersner, Roman; Zurakowski, David; Loddenkemper, Tobias; Pascual-Leone, Alvaro; Jensen, Frances E; Rotenberg, Alexander
2015-01-01
Objective Cathodal transcranial direct current stimulation (tDCS) is a focal neuromodulation technique that suppresses cortical excitability by low-amplitude constant electrical current, and may have an antiepileptic effect. Yet, tDCS has not been tested in status epilepticus (SE). Furthermore, a combined tDCS and pharmacotherapy antiseizure approach is unexplored. We therefore examined in the rat pentylenetetrazol (PTZ) SE model whether cathodal tDCS (1) suppresses seizures, (2) augments lorazepam (LZP) efficacy, and (3) enhances GABAergic cortical inhibition. Methods Experiment 1 aimed to identify an effective cathodal tDCS intensity. Rats received intraperitoneal PTZ followed by tDCS (sham, cathodal 1 mA, or cathodal 0.1 mA; for 20 min), and then a second PTZ challenge. In Experiment 2, two additional animal groups received a subtherapeutic LZP dose after PTZ, and then verum or sham tDCS. Clinical and electroencephalography (EEG) epileptic activity were compared between all groups. In Experiment 3, we measured GABA-mediated paired-pulse inhibition of the motor evoked potential by paired-pulse transcranial magnetic stimulation (ppTMS) in rats that received PTZ or saline, and either verum or sham tDCS. Results Cathodal 1 mA tDCS (1) reduced EEG spike bursts, and suppressed clinical seizures after the second PTZ challenge, (2) in combination with LZP was more effective in seizure suppression and improved the clinical seizure outcomes compared to either tDCS or LZP alone, and (3) prevented the loss of ppTMS motor cortex inhibition that accompanied PTZ injection. Interpretation These results suggest that cathodal 1 mA tDCS alone and in combination with LZP can suppress seizures by augmenting GABAergic cortical inhibition. PMID:26339678
Tofari, Paul J; Laing Treloar, Alison K; Silk, Aaron J
2013-05-01
The Australian Defence Force is reviewing the physical demands of all employment categories in the Australian Army to establish valid and legally defensible assessments. The current assessments, performed in physical training attire, are not specific to job demands. Moreover, the fitness standards decrease based on age and are lower for females, and as job requirements are constant, these assessments are counterintuitive. With regard to the Army Emergency Responder employment category, tasks of physical demand in the present study were selected through consultation with subject-matter experts. Participants consisted of 10 qualified Army Emergency Responder soldiers and three noncareer firefighters under instruction. Real-life firefighting scenarios were witnessed by researchers and helped form task simulations allowing measurement of heart rate and oxygen consumption. Peak oxygen consumption ranged from 21.8 ± 3.8 to 40.0 ± 3.4 mL kg(-1) min(-1) during cutting activities and a search and rescue task, respectively, representing values similar to or higher than the current entry standards. Manual handling tasks were also assessed, with the heaviest measured being two soldiers lifting a 37.7-kg Utility Trunk to 150 cm. The findings provide a quantitative assessment of the physiological demands of Army Emergency Responders, and highlight the need for change in current fitness assessments. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Stimulus waveform determines the characteristics of sensory nerve action potentials.
Pereira, Pedro; Leote, João; Cabib, Christopher; Casanova-Molla, Jordi; Valls-Sole, Josep
2016-03-01
In routine nerve conduction studies supramaximal electrical stimuli generate sensory nerve action potentials by depolarization of nerve fibers under the cathode. However, stimuli of submaximal intensity may give rise to action potentials generated under the anode. We tested if this phenomenon depends on the characteristics of stimulus ending. We added a circuit to our stimulation device that allowed us to modify the end of the stimulus by increasing the time constant of the decay phase. Increasing the fall time caused a reduction of anode action potential (anAP) amplitude, and eventually abolished it, in all tested subjects. We subsequently examined the stimulus waveform in a series of available electromyographs stimulators and found that the anAP could only be obtained with stimulators that issued stimuli ending sharply. Our results prove that the anAP is generated at stimulus end, and depends on the sharpness of current shut down. Electromyographs produce stimuli of varying characteristics, which limits the reproducibility of anAP results by interested researchers. The study of anodal action potentials might be a useful tool to have a quick appraisal of distal human sensory nerve excitability. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Reynolds, Greg D; Lickliter, Robert
2004-06-01
Asynchronous bimodal stimulation during prenatal development elicits higher levels of behavioral and physiological arousal in precocial avian embryos than does unimodal sensory stimulation. To investigate whether the increased arousal associated with prenatal bimodal stimulation has enduring effects into postnatal development, bobwhite quail (Colinus virginianus) embryos received no supplemental stimulation, unimodal auditory stimulation, or bimodal (audiovisual) stimulation prior to hatching. Embryos exposed to concurrent bimodal stimulation demonstrated greater levels of behavioral activity and failed to use maternal visual cues to successfully direct species-specific perceptual preferences following hatching. These results provide initial evidence that asynchronous bimodal sensory stimulation during prenatal development can have enduring effects on early postnatal behavioral arousal and perceptual responsiveness and suggest that developmental limitations on prenatal sensory stimulation play an important role in the emergence of species-typical behavior.
Self-consistent non-stationary theory of the gyrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbrajs, Olgierd; Nusinovich, Gregory S.
2016-08-15
For a long time, the gyrotron theory was developed assuming that the transit time of electrons through the interaction space is much shorter than the cavity fill time. Correspondingly, it was assumed that during this transit time, the amplitude of microwave oscillations remains constant. A recent interest to such additional effects as the after-cavity interaction between electrons and the outgoing wave in the output waveguide had stimulated some studies of the beam-wave interaction processes over much longer distances than a regular part of the waveguide which serves as a cavity in gyrotrons. Correspondingly, it turned out that the gyrotron theorymore » free from the assumption about constant amplitude of microwave oscillations during the electron transit time should be developed. The present paper contains some results obtained in the framework of such theory. The main attention is paid to modification of the boundary between the regions of oscillations with constant amplitude and automodulation in the plane of normalized parameters characterizing the external magnetic field and the beam current. It is shown that the theory free from the assumption about the frozen wave amplitude during the electron transit time predicts some widening of the region of automodulation.« less
Current and emerging therapies for Addison's disease.
Napier, Catherine; Pearce, Simon H S
2014-06-01
The purpose of this article is to review the current therapy of Addison's disease and to highlight recent developments in this field. Conventional steroid replacement for Addison's disease consists of twice or three-times daily oral hydrocortisone and once-daily fludrocortisone; however, new treatment modalities such as modified-released hydrocortisone and continuous subcutaneous hydrocortisone infusion have recently been developed. These offer the potential for closer simulation of the physiological serum cortisol rhythm. Two studies have also looked at modifying the natural history of adrenal failure using adrenocorticotropic hormone (ACTH) stimulation and immunomodulatory therapies, leading to the concept of residual adrenal function in some Addison's disease patients. Following more than 60 years with no significant innovation in the management of Addison's disease, these new approaches hold promise for improved patient health and better quality of life in the future.
Summary of: Regenerative endodontics.
Clark, Stephen J
2014-03-01
Significant advances in our understanding of the biological processes involved in tooth development and repair at the cellular and molecular levels have underpinned the newly emerging area of regenerative endodontics. Development of treatment protocols based on exploiting the natural wound healing properties of the dental pulp and applying tissue engineering principles has allowed reporting of case series showing preservation of tissue vitality and apexogenesis. To review current case series reporting regenerative endodontics. Current treatment approaches tend to stimulate more reparative than regenerative responses in respect of the new tissue generated, which often does not closely resemble the physiological structure of dentine-pulp. However, despite these biological limitations, such techniques appear to offer significant promise for improved treatment outcomes. Improved biological outcomes will likely emerge from the many experimental studies being reported and will further contribute to improvements in clinical treatment protocols.
Current knowledge of the roles of ghrelin in regulating food intake and energy balance in birds.
Kaiya, Hiroyuki; Furuse, Mitsuhiro; Miyazato, Mikiya; Kangawa, Kenji
2009-09-01
A decade has passed since the peptide hormone ghrelin was first discovered in rat stomach. During this period, ghrelin has been identified not only in other mammals but also in fish, amphibians, reptiles and birds, and its physiological functions have been widely investigated. Avian ghrelin was first identified in chickens in 2002 and to date, the amino acid sequences of six different avian ghrelin peptides have been reported. In mammals, ghrelin is the only known gut-derived hormone to stimulate food intake when administered centrally or peripherally. In studies on chickens and quail, however, ghrelin inhibits food intake when injected centrally, while the effects on feeding behavior elicited by ghrelin injected peripherally are equivocal. This review summarizes what is currently known about the regulation of food intake and energy balance by ghrelin in birds.
Tong, Wing-Chiu; Choi, Cecilia Y.; Karche, Sanjay; Holden, Arun V.; Zhang, Henggui; Taggart, Michael J.
2011-01-01
Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels. PMID:21559514
Willingham, E; Rhen, T; Sakata, J T; Crews, D
2000-01-01
Many compounds in the environment capable of acting as endocrine disruptors have been assayed for their developmental effects on morphogenesis; however, few studies have addressed how such xenobiotics affect physiology. In the current study we examine the effects of three endocrine-disrupting compounds, chlordane, trans-nonachlor, and the polychlorinated biphenyl (PCB) mixture Aroclor 1242, on the steroid hormone concentrations of red-eared slider turtle (Trachemys scripta elegans) hatchlings treated in ovo. Basal steroid concentrations and steroid concentrations in response to follicle-stimulating hormone were examined in both male and female turtles treated with each of the three compounds. Treated male turtles exposed to Aroclor 1242 or chlordane exhibited significantly lower testosterone concentrations than controls, whereas chlordane-treated females had significantly lower progesterone, testosterone, and 5[alpha]-dihydrotestosterone concentrations relative to controls. The effects of these endocrine disruptors extend beyond embryonic development, altering sex-steroid physiology in exposed animals. Images Figure 1 Figure 2 PMID:10753091
R-Spondin1 expands Paneth cells and prevents dysbiosis induced by graft-versus-host disease
Hayase, Eiko; Nakamura, Kiminori; Noizat, Clara; Ogasawara, Reiki; Ohigashi, Hiroyuki; Sugimoto, Rina; Matsuoka, Satomi; Ara, Takahide; Yokoyama, Emi; Yamakawa, Tomohiro; Ebata, Ko; Kondo, Takeshi; Aizawa, Tomoyasu; Ogura, Yoshitoshi; Hayashi, Tetsuya; Mori, Hiroshi; Tomizuka, Kazuma; Ayabe, Tokiyoshi
2017-01-01
The intestinal microbial ecosystem is actively regulated by Paneth cell–derived antimicrobial peptides such as α-defensins. Various disorders, including graft-versus-host disease (GVHD), disrupt Paneth cell functions, resulting in unfavorably altered intestinal microbiota (dysbiosis), which further accelerates the underlying diseases. Current strategies to restore the gut ecosystem are bacteriotherapy such as fecal microbiota transplantation and probiotics, and no physiological approach has been developed so far. In this study, we demonstrate a novel approach to restore gut microbial ecology by Wnt agonist R-Spondin1 (R-Spo1) or recombinant α-defensin in mice. R-Spo1 stimulates intestinal stem cells to differentiate to Paneth cells and enhances luminal secretion of α-defensins. Administration of R-Spo1 or recombinant α-defensin prevents GVHD-mediated dysbiosis, thus representing a novel and physiological approach at modifying the gut ecosystem to restore intestinal homeostasis and host–microbiota cross talk toward therapeutic benefits. PMID:29066578
Don't Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward.
Volkow, Nora D; Hampson, Aidan J; Baler, Ruben D
2017-01-06
Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions. However, over time, repeated activation of the ECS by cannabis can trigger neuroadaptations that may impair the sensitivity to stress and reward. This effect, in vulnerable individuals, can lead to addiction and other adverse consequences. The recent shift toward legalization of medical or recreational cannabis has renewed interest in investigating the physiological role of the ECS as well as the potential health effects, both adverse and beneficial, of cannabis. Here we review our current understanding of the ECS and its complex physiological roles. We discuss the implications of this understanding vis-á-vis the ECS's modulation of stress and reward and its relevance to mental disorders in which these processes are disrupted (i.e., addiction, depression, posttraumatic stress disorder, schizophrenia), along with the therapeutic potential of strategies to manipulate the ECS for these conditions.
Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D
2015-10-01
Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.
Zhu, Chang-E; Yu, Bo; Zhang, Wen; Chen, Wen-Hua; Qi, Qi; Miao, Yun
2017-01-19
To evaluate the effectiveness and safety of transcranial direct current stimulation for fibro-myalgia. Databases, conference records and registered trials were searched for articles published from the date of establishment of the database through to October 2015. Six randomized controlled trials (n=192) of transcranial direct current stimulation for fibromyalgia were included in the current study. Two researchers independently screened the literature, assessed methodological quality using the Cochrane Collaboration's tool, and extracted data. Studies were divided into 3 groups for meta-analysis according to stimulation site and polarity. Significant improvement in pain and general fibromyalgia-related function was seen with anodal transcranial direct current stimulation over the primary motor cortex (p<0.05). However, the pressure pain threshold did not improve (p>0.05). Anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex did not significantly reduce pain or improve general fibromyalgia-related function compared with sham stimulation (p>0.05). Cathodal transcranial direct current stimulation over the primary motor cortex did not improve the pressure pain threshold compared with sham stimulation (p>0.05). No significant adverse effects were seen. Anodal transcranial direct current stimulation over the primary motor cortex is more likely than sham transcranial direct current stimulation to relieve pain and improve general fibromyalgia-related function.
2001-10-25
inner retina. The device is intended as a treatment to blindness. Specifically, degenerative disorders of the retina such as retinitis pigmentosa ...Trullemans C., Chronic electrical stimulation of the optic nerve in a retinitis pigmentosa blind volunteer. Inv. Ophth. Vis. Sci., 1999, 40: S783...stimulation delivered to the retinal tissue is derived from two stimulation channels of the 100 channel neurostimulation electronics [9]. Power and
2004-03-31
relations, rather 37 than an active participant. This distractibility interferes with the physical and psychological stimulation needed for... orgasm during sexual behavior? If yes, Does this difficulty occur with a. masturbation b. intercourse c. foreplay/partner stimulation 2...how often did you have the feeling of orgasm or climax? 0 = No sexual stimulation /intercourse 1 = Almost never/never 2 = A few times (much less than
2004-01-01
rather 37 than an active participant. This distractibility interferes with the physical and psychological stimulation needed for heightened sexual... stimulation or intercourse, how often did you have the feeling of orgasm or climax? 0 = No sexual stimulation /intercourse 1 = Almost never/never 2...arousal and orgasm . The DSM-IV (1994) was the first revision to include a category for drug induced sexual dysfunction (Segraves, 2002). Erectile
An unavoidable modulation? Sensory attention and human primary motor cortex excitability.
Ruge, Diane; Muggleton, Neil; Hoad, Damon; Caronni, Antonio; Rothwell, John C
2014-09-01
The link between basic physiology and its modulation by cognitive states, such as attention, is poorly understood. A significant association becomes apparent when patients with movement disorders describe experiences with changing their attention focus and the fundamental effect that this has on their motor symptoms. Moreover, frequently used mental strategies for treating such patients, e.g. with task-specific dystonia, widely lack laboratory-based knowledge about physiological mechanisms. In this largely unexplored field, we looked at how the locus of attention, when it changed between internal (locus hand) and external (visual target), influenced excitability in the primary motor cortex (M1) in healthy humans. Intriguingly, both internal and external attention had the capacity to change M1 excitability. Both led to a reduced stimulation-induced GABA-related inhibition and a change in motor evoked potential size, i.e. an overall increased M1 excitability. These previously unreported findings indicated: (i) that cognitive state differentially interacted with M1 physiology, (ii) that our view of distraction (attention locus shifted towards external or distant location), which is used as a prevention or management strategy for use-dependent motor disorders, is too simple and currently unsupported for clinical application, and (iii) the physiological state reached through attention modulation represents an alternative explanation for frequently reported electrophysiology findings in neuropsychiatric disorders, such as an aberrant inhibition. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Electrical stimulation: a novel tool for tissue engineering.
Balint, Richard; Cassidy, Nigel J; Cartmell, Sarah H
2013-02-01
New advances in tissue engineering are being made through the application of different types of electrical stimuli to influence cell proliferation and differentiation. Developments made in the last decade have allowed us to improve the structure and functionality of tissue-engineered products through the use of growth factors, hormones, drugs, physical stimuli, bioreactor use, and two-dimensional (2-D) and three-dimensional (3-D) artificial extracellular matrices (with various material properties and topography). Another potential type of stimulus is electricity, which is important in the physiology and development of the majority of all human tissues. Despite its great potential, its role in tissue regeneration and its ability to influence cell migration, orientation, proliferation, and differentiation has rarely been considered in tissue engineering. This review highlights the importance of endogenous electrical stimulation, gathering the current knowledge on its natural occurrence and role in vivo, discussing the novel methods of delivering this stimulus and examining its cellular and tissue level effects, while evaluating how the technique could benefit the tissue engineering discipline in the future.
Minireview: Dopaminergic Regulation of Insulin Secretion from the Pancreatic Islet
Ustione, Alessandro
2013-01-01
Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating l-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, l-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an “antiincretin” signal that counterbalances the stimulatory effect of glucagon-like peptide 1. PMID:23744894
Surface-modified polymers for cardiac tissue engineering.
Moorthi, Ambigapathi; Tyan, Yu-Chang; Chung, Tze-Wen
2017-09-26
Cardiovascular disease (CVD), leading to myocardial infarction and heart failure, is one of the major causes of death worldwide. The physiological system cannot significantly regenerate the capabilities of a damaged heart. The current treatment involves pharmacological and surgical interventions; however, less invasive and more cost-effective approaches are sought. Such new approaches are developed to induce tissue regeneration following injury. Hence, regenerative medicine plays a key role in treating CVD. Recently, the extrinsic stimulation of cardiac regeneration has involved the use of potential polymers to stimulate stem cells toward the differentiation of cardiomyocytes as a new therapeutic intervention in cardiac tissue engineering (CTE). The therapeutic potentiality of natural or synthetic polymers and cell surface interactive factors/polymer surface modifications for cardiac repair has been demonstrated in vitro and in vivo. This review will discuss the recent advances in CTE using polymers and cell surface interactive factors that interact strongly with stem cells to trigger the molecular aspects of the differentiation or formulation of cardiomyocytes for the functional repair of heart injuries or cardiac defects.