Sample records for constant-time scalar-coupling evolution

  1. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.

    2016-12-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  2. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  3. Self-acceleration in scalar-bimetric theories

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick

    2018-05-01

    We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth force on small scales and decouples the local value of Newton constant from its cosmological value. This cannot be achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.

  4. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Molina, C.; Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo

    2010-06-01

    Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.

  5. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, C.; Pani, Paolo; Cardoso, Vitor

    2010-06-15

    Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun formore » Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.« less

  6. Coupled scalar fields in the late Universe: the mechanical approach and the late cosmic acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgazli, Alvina; Zhuk, Alexander; Morais, João

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a minimally coupled scalar field and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as fluctuations of other perfect fluids are non-relativistic. Such fluids are designated as coupled because they are concentrated around inhomogeneities. In the present papermore » we investigate the conditions under which a scalar field can become coupled, and show that, at the background level, such coupled scalar field behaves as a two component perfect fluid: a network of frustrated cosmic strings with EoS parameter w =-1/3 and a cosmological constant. The potential of this scalar field is very flat at the present time. Hence, the coupled scalar field can provide the late cosmic acceleration. The fluctuations of the energy density and pressure of this field are concentrated around the galaxies screening their gravitational potentials. Therefore, such scalar fields can be regarded as coupled to the inhomogeneities.« less

  7. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  8. The variation of the fine-structure constant from disformal couplings

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  9. The variation of the fine-structure constant from disformal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with themore » current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.« less

  10. Inflation from cosmological constant and nonminimally coupled scalar

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen; Marunović, Anja; Prokopec, Tomislav

    2015-08-01

    We consider inflation in a universe with a positive cosmological constant and a nonminimally coupled scalar field, in which the field couples both quadratically and quartically to the Ricci scalar. When considered in the Einstein frame and when the nonminimal couplings are negative, the field starts in slow roll and inflation ends with an asymptotic value of the principal slow-roll parameter, ɛE=4 /3 . Graceful exit can be achieved by suitably (tightly) coupling the scalar field to matter, such that at late time the total energy density reaches the scaling of matter, ɛE=ɛm . Quite generically the model produces a red spectrum of scalar cosmological perturbations and a small amount of gravitational radiation. With a suitable choice of the nonminimal couplings, the spectral slope can be as large as ns≃0.955 , which is about one standard deviation away from the central value measured by the Planck satellite. The model can be ruled out by future measurements if any of the following is observed: (a) the spectral index of scalar perturbations is ns>0.960 ; (b) the amplitude of tensor perturbations is above about r ˜10-2 ; (c) the running of the spectral index of scalar perturbations is positive.

  11. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  12. Scalar-tensor theory of gravitation with negative coupling constant

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  13. Non-minimally coupled varying constants quantum cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less

  14. Nonlinear evolution and final fate of (charged) superradiant instability

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Bosch, Pablo; Lehner, Luis

    2016-03-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordstrom-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  15. Dark energy coupling with electromagnetism as seen from future low-medium redshift probes

    NASA Astrophysics Data System (ADS)

    Calabrese, E.; Martinelli, M.; Pandolfi, S.; Cardone, V. F.; Martins, C. J. A. P.; Spiro, S.; Vielzeuf, P. E.

    2014-04-01

    Beyond the standard cosmological model the late-time accelerated expansion of the Universe can be reproduced by the introduction of an additional dynamical scalar field. In this case, the field is expected to be naturally coupled to the rest of the theory's fields, unless a (still unknown) symmetry suppresses this coupling. Therefore, this would possibly lead to some observational consequences, such as space-time variations of nature's fundamental constants. In this paper we investigate the coupling between a dynamical dark energy model and the electromagnetic field, and the corresponding evolution of the fine structure constant (α) with respect to the standard local value α0. In particular, we derive joint constraints on two dynamical dark energy model parametrizations (the Chevallier-Polarski-Linder and early dark energy model) and on the coupling with electromagnetism ζ, forecasting future low-medium redshift observations. We combine supernovae and weak lensing measurements from the Euclid experiment with high-resolution spectroscopy measurements of fundamental couplings and the redshift drift from the European Extremely Large Telescope, highlighting the contribution of each probe. Moreover, we also consider the case where the field driving the α evolution is not the one responsible for cosmic acceleration and investigate how future observations can constrain this scenario.

  16. K -essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Kumar, K. Sravan; Marto, João

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, we can consider the Universe to be filled with dust-like matter in the form of discretely distributed galaxies, a K -essence scalar field, playing the role of dark energy, and radiation as matter sources. We investigate such a Universe in the mechanical approach. This means that the peculiar velocities of the inhomogeneities (in the form of galaxies) as well as the fluctuations of the other perfect fluids are non-relativistic. Such fluids are designated as coupled becausemore » they are concentrated around the inhomogeneities. In the present paper, we investigate the conditions under which the K -essence scalar field with the most general form for its action can become coupled. We investigate at the background level three particular examples of the K -essence models: (i) the pure kinetic K -essence field, (ii) a K -essence with a constant speed of sound and (iii) the K -essence model with the Lagrangian bX + cX {sup 2}− V (φ). We demonstrate that if the K -essence is coupled, all these K -essence models take the form of multicomponent perfect fluids where one of the component is the cosmological constant. Therefore, they can provide the late-time cosmic acceleration and be simultaneously compatible with the mechanical approach.« less

  17. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  18. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability

    NASA Astrophysics Data System (ADS)

    Bosch, Pablo; Green, Stephen R.; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  19. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  20. Evolution in totally constrained models: Schrödinger vs. Heisenberg pictures

    NASA Astrophysics Data System (ADS)

    Olmedo, Javier

    2016-06-01

    We study the relation between two evolution pictures that are currently considered for totally constrained theories. Both descriptions are based on Rovelli’s evolving constants approach, where one identifies a (possibly local) degree of freedom of the system as an internal time. This method is well understood classically in several situations. The purpose of this paper is to further analyze this approach at the quantum level. Concretely, we will compare the (Schrödinger-like) picture where the physical states evolve in time with the (Heisenberg-like) picture in which one defines parametrized observables (or evolving constants of the motion). We will show that in the particular situations considered in this paper (the parametrized relativistic particle and a spatially flat homogeneous and isotropic spacetime coupled to a massless scalar field) both descriptions are equivalent. We will finally comment on possible issues and on the genericness of the equivalence between both pictures.

  1. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN datamore » one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.« less

  2. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  3. Scalar perturbation in symmetric Lee-Wick bouncing universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Inyong; Kwon, O-Kab, E-mail: iycho@seoultech.ac.kr, E-mail: okab@skku.edu

    2011-11-01

    We investigate the scalar perturbation in the Lee-Wick bouncing universe driven by an ordinary scalar field plus a ghost field. We consider only a symmetric evolution of the universe and the scalar fields about the bouncing point. The gauge invariant Sasaki-Mukhanov variable is numerically solved in the spatially flat gauge. We find a new form of the initial perturbation growing during the contracting phase. After the bouncing, this growing mode stabilizes to a constant mode which is responsible for the late-time power spectrum.

  4. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  5. Directions for model building from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  6. Non-minimally coupled scalar field in Kantowski-Sachs model and symmetry analysis

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Lakshmanan, Muthusamy; Chakraborty, Subenoy

    2018-06-01

    The paper deals with a non-minimally coupled scalar field in the background of homogeneous but anisotropic Kantowski-Sachs space-time model. The form of the coupling function of the scalar field with gravity and the potential function of the scalar field are not assumed phenomenologically, rather they are evaluated by imposing Noether symmetry to the Lagrangian of the present physical system. The physical system gets considerable mathematical simplification by a suitable transformation of the augmented variables (a , b , ϕ) →(u , v , w) and by the use of the conserved quantities due to the geometrical symmetry. Finally, cosmological solutions are evaluated and analyzed from the point of view of the present evolution of the Universe.

  7. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  8. Growth rate in the dynamical dark energy models.

    PubMed

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  9. Cosmological evolution and Solar System consistency of massive scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás

    2017-09-01

    The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.

  10. Self-gravitating static non-critical black holes in 4 D Einstein-Klein-Gordon system with nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Gunara, Bobby Eka; Yaqin, Ainol

    2018-06-01

    We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

  11. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  12. Asymptotics of the evolution semigroup associated with a scalar field in the presence of a non-linear electromagnetic field

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Tamura, Hiroshi

    2018-04-01

    We consider a model describing the coupling of a vector-valued and a scalar homogeneous Markovian random field over R4, interpreted as expressing the interaction between a charged scalar quantum field coupled with a nonlinear quantized electromagnetic field. Expectations of functionals of the random fields are expressed by Brownian bridges. Using this, together with Feynman-Kac-Itô type formulae and estimates on the small time and large time behaviour of Brownian functionals, we prove asymptotic upper and lower bounds on the kernel of the transition semigroup for our model. The upper bound gives faster than exponential decay for large distances of the corresponding resolvent (propagator).

  13. General aspects of Gauss-Bonnet models without potential in dimension four

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com

    In the present work, the isotropic and homogenous solutions with spatial curvature k =0 of four dimensional Gauss-Bonnet models are characterized. The main assumption is that the scalar field φ which is coupled to the Gauss-Bonnet term has no potential [1]–[2]. Some singular and some eternal solutions are described. The evolution of the universe is given in terms of a curve γ=( H (φ), φ) which is the solution of a polynomial equation P ( H {sup 2}, φ)=0 with φ dependent coefficients. In addition, it is shown that the initial conditions in these models put several restrictions on themore » evolution. For instance, an universe initially contracting will be contracting always for future times and an universe that is expanding was always expanding at past times. Thus, there are no cyclic cosmological solutions for this model. These results are universal, that is, independent on the form of the coupling f (φ) between the scalar field and the Gauss-Bonnet term. In addition, a proof that at a turning point φ-dot →0 a singularity necessarily emerges is presented, except for some specific choices of the coupling. This is valid unless the Hubble constant H → 0 at this point. This proof is based on the Raychaudhuri equation for the model. The description presented here is in part inspired in the works [3]–[4]. However, the mathematical methods that are implemented are complementary of those in these references, and they may be helpful for study more complicated situations in a future.« less

  14. Cosmological bounce and Genesis beyond Horndeski

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolevatov, R.; Mironov, S.; Volkova, V.

    2017-08-01

    We study 'classical' bouncing and Genesis models in beyond Horndeski theory. We give an example of spatially flat bouncing solution that is non-singular and stable throughout the whole evolution. We also provide an example of stable geodesically complete Genesis with similar features. The model is arranged in such a way that the scalar field driving the cosmological evolution initially behaves like full-fledged beyond Horndeski, whereas at late times it becomes a massless scalar field minimally coupled to gravity.

  15. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  16. Absorption and radiation of nonminimally coupled scalar field from charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-06-01

    In this paper we investigate the absorption and radiation of nonminimally coupled scalar field from the charged BTZ black hole. We find the analytical expressions for the reflection coefficient, the absorption cross section and the decay rate in strong coupling case. We find that the reflection coefficient is directly governed by Hawking temperature TH, scalar wave frequency ω , Bekenstein-Hawking entropy S_{BH}, angular momentum m and coupling constant ξ.

  17. Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás; Barausse, Enrico

    2016-11-01

    Certain scalar-tensor theories of gravity that generalize Jordan-Fierz-Brans-Dicke theory are known to predict nontrivial phenomenology for neutron stars. In these theories, first proposed by Damour and Esposito-Farèse, the scalar field has a standard kinetic term and couples conformally to the matter fields. The weak equivalence principle is therefore satisfied, but scalar effects may arise in strong-field regimes, e.g., allowing for violations of the strong equivalence principle in neutron stars ("spontaneous scalarization") or in sufficiently tight binary neutron-star systems ("dynamical/induced scalarization"). The original scalar-tensor theory proposed by Damour and Esposito-Farèse is in tension with Solar System constraints (for couplings that lead to scalarization), if one accounts for cosmological evolution of the scalar field and no mass term is included in the action. We extend here the conformal coupling of that theory, in order to ascertain if, in this way, Solar System tests can be passed, while retaining a nontrivial phenomenology for neutron stars. We find that, even with this generalized conformal coupling, it is impossible to construct a theory that passes both big bang nucleosynthesis and Solar System constraints, while simultaneously allowing for scalarization in isolated/binary neutron stars.

  18. Force field refinement from NMR scalar couplings

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Meuwly, Markus

    2012-03-01

    NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants hJ reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined hJ couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed hJ couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  19. Observational constraints on secret neutrino interactions from big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Huang, Guo-yuan; Ohlsson, Tommy; Zhou, Shun

    2018-04-01

    We investigate possible interactions between neutrinos and massive scalar bosons via gϕν ¯ν ϕ (or massive vector bosons via gVν ¯γμν Vμ) and explore the allowed parameter space of the coupling constant gϕ (or gV) and the scalar (or vector) boson mass mϕ (or mV) by requiring that these secret neutrino interactions (SNIs) should not spoil the success of big bang nucleosynthesis (BBN). Incorporating the SNIs into the evolution of the early Universe in the BBN era, we numerically solve the Boltzmann equations and compare the predictions for the abundances of light elements with observations. It turns out that the constraint on gϕ and mϕ in the scalar-boson case is rather weak, due to a small number of degrees of freedom (d.o.f.). However, in the vector-boson case, the most stringent bound on the coupling gV≲6 ×10-10 at 95% confidence level is obtained for mV≃1 MeV , while the bound becomes much weaker gV≲8 ×10-6 for smaller masses mV≲10-4 MeV . Moreover, we discuss in some detail how the SNIs affect the cosmological evolution and the abundances of the lightest elements.

  20. Effect of the chameleon scalar field on brane cosmological evolution

    NASA Astrophysics Data System (ADS)

    Bisabr, Y.; Ahmadi, F.

    2017-11-01

    We have investigated a brane world model in which the gravitational field in the bulk is described both by a metric tensor and a minimally coupled scalar field. This scalar field is taken to be a chameleon with an appropriate potential function. The scalar field interacts with matter and there is an energy transfer between the two components. We find a late-time asymptotic solution which exhibits late-time accelerating expansion. We also show that the Universe recently crosses the phantom barrier without recourse to any exotic matter. We provide some thermodynamic arguments which constrain both the direction of energy transfer and dynamics of the extra dimension.

  1. On symmetry inheritance of nonminimally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Barjašić, Irena; Smolić, Ivica

    2018-04-01

    We present the first symmetry inheritance analysis of fields non-minimally coupled to gravity. In this work we are focused on the real scalar field ϕ with nonminimal coupling of the form ξφ2 R . Possible cases of symmetry noninheriting fields are constrained by the properties of the Ricci tensor and the scalar potential. Examples of such spacetimes can be found among those which are ‘dressed’ with the stealth scalar field, a nontrivial scalar field configuration with the vanishing energy–momentum tensor. We classify the scalar field potentials which allow symmetry noninheriting stealth field configurations on top of the exact solutions of the Einstein’s gravitational field equation with the cosmological constant.

  2. Collapsing spherical star in Scalar-Einstein-Gauss-Bonnet gravity with a quadratic coupling

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya

    2018-04-01

    We study the evolution of a self interacting scalar field in Einstein-Gauss-Bonnet theory in four dimension where the scalar field couples non minimally with the Gauss-Bonnet term. Considering a polynomial coupling of the scalar field with the Gauss-Bonnet term, a self-interaction potential and an additional perfect fluid distribution alongwith the scalar field, we investigate different possibilities regarding the outcome of the collapsing scalar field. The strength of the coupling and choice of the self-interaction potential serves as the pivotal initial conditions of the models presented. The high degree of non-linearity in the equation system is taken care off by using a method of invertibe point transformation of anharmonic oscillator equation, which has proven itself very useful in recent past while investigating dynamics of minimally coupled scalar fields.

  3. Constant-roll (quasi-)linear inflation

    NASA Astrophysics Data System (ADS)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  4. CONSTRAINTS ON HYBRID METRIC-PALATINI GRAVITY FROM BACKGROUND EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, N. A.; Barreto, V. S., E-mail: ndal@roe.ac.uk, E-mail: vsm@roe.ac.uk

    2016-02-20

    In this work, we introduce two models of the hybrid metric-Palatini theory of gravitation. We explore their background evolution, showing explicitly that one recovers standard General Relativity with an effective cosmological constant at late times. This happens because the Palatini Ricci scalar evolves toward and asymptotically settles at the minimum of its effective potential during cosmological evolution. We then use a combination of cosmic microwave background, supernovae, and baryonic accoustic oscillations background data to constrain the models’ free parameters. For both models, we are able to constrain the maximum deviation from the gravitational constant G one can have at earlymore » times to be around 1%.« less

  5. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    NASA Astrophysics Data System (ADS)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  6. Simple cosmological model with inflation and late times acceleration

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-03-01

    In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.

  7. Weakly dynamic dark energy via metric-scalar couplings with torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sur, Sourav; Bhatia, Arshdeep Singh, E-mail: sourav.sur@gmail.com, E-mail: arshdeepsb@gmail.com

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping themmore » within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.« less

  8. Weakly dynamic dark energy via metric-scalar couplings with torsion

    NASA Astrophysics Data System (ADS)

    Sur, Sourav; Singh Bhatia, Arshdeep

    2017-07-01

    We study the dynamical aspects of dark energy in the context of a non-minimally coupled scalar field with curvature and torsion. Whereas the scalar field acts as the source of the trace mode of torsion, a suitable constraint on the torsion pseudo-trace provides a mass term for the scalar field in the effective action. In the equivalent scalar-tensor framework, we find explicit cosmological solutions representing dark energy in both Einstein and Jordan frames. We demand the dynamical evolution of the dark energy to be weak enough, so that the present-day values of the cosmological parameters could be estimated keeping them within the confidence limits set for the standard LCDM model from recent observations. For such estimates, we examine the variations of the effective matter density and the dark energy equation of state parameters over different redshift ranges. In spite of being weakly dynamic, the dark energy component differs significantly from the cosmological constant, both in characteristics and features, for e.g. it interacts with the cosmological (dust) fluid in the Einstein frame, and crosses the phantom barrier in the Jordan frame. We also obtain the upper bounds on the torsion mode parameters and the lower bound on the effective Brans-Dicke parameter. The latter turns out to be fairly large, and in agreement with the local gravity constraints, which therefore come in support of our analysis.

  9. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  10. Low energy determination of the QCD strong coupling constant on the lattice

    DOE PAGES

    Maezawa, Yu; Petreczky, Peter

    2016-09-28

    Here we present a determination of the strong coupling constant from lattice QCD using the moments of pseudo-scalar charmonium correlators calculated using highly improved staggerered quark action. We obtain a value α s( μ = mc) = 0.3397(56), which is the lowest energy determination of the strong coupling constant so far.

  11. Observational Constraints on Models of the Universe with Time Variable Gravitational and Cosmological Constants Along MOG

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.; Mazhari, N. S.; Momeni, D.; Myrzakulov, R.; Raza, M.

    2015-02-01

    The subject of this paper is to investigate the weak regime covariant scalar-tensor-vector gravity (STVG) theory, known as the MOdified gravity (MOG) theory of gravity. First, we show that the MOG in the absence of scalar fields is converted into Λ( t), G( t) models. Time evolution of the cosmological parameters for a family of viable models have been investigated. Numerical results with the cosmological data have been adjusted. We've introduced a model for dark energy (DE) density and cosmological constant which involves first order derivatives of Hubble parameter. To extend this model, correction terms including the gravitational constant are added. In our scenario, the cosmological constant is a function of time. To complete the model, interaction terms between dark energy and dark matter (DM) manually entered in phenomenological form. Instead of using the dust model for DM, we have proposed DM equivalent to a barotropic fluid. Time evolution of DM is a function of other cosmological parameters. Using sophisticated algorithms, the behavior of various quantities including the densities, Hubble parameter, etc. have been investigated graphically. The statefinder parameters have been used for the classification of DE models. Consistency of the numerical results with experimental data of S n e I a + B A O + C M B are studied by numerical analysis with high accuracy.

  12. Dynamical analysis for a scalar-tensor model with kinetic and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    We study the autonomous system for a scalar-tensor model of dark energy with nonminimal coupling to curvature and nonminimal kinetic coupling to the Einstein tensor. The critical points describe important stable asymptotic scenarios including quintessence, phantom and de Sitter attractor solutions. Two functional forms for the coupling functions and the scalar potential were considered: power-law and exponential functions of the scalar field. For power-law couplings, the restrictions on stable quintessence and phantom solutions lead to asymptotic freedom regime for the gravitational interaction. For the exponential functions, the stable quintessence, phantom or de Sitter solutions allow asymptotic behaviors where the effective Newtonian coupling can reach either the asymptotic freedom regime or constant value. The phantom solutions could be realized without appealing to ghost degrees of freedom. Transient inflationary and radiation dominated phases can also be described.

  13. Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories

    NASA Astrophysics Data System (ADS)

    Antoniou, G.; Bakopoulos, A.; Kanti, P.

    2018-04-01

    In the context of the Einstein-scalar-Gauss-Bonnet theory, with a general coupling function between the scalar field and the quadratic Gauss-Bonnet term, we investigate the existence of regular black-hole solutions with scalar hair. Based on a previous theoretical analysis, which studied the evasion of the old and novel no-hair theorems, we consider a variety of forms for the coupling function (exponential, even and odd polynomial, inverse polynomial, and logarithmic) that, in conjunction with the profile of the scalar field, satisfy a basic constraint. Our numerical analysis then always leads to families of regular, asymptotically flat black-hole solutions with nontrivial scalar hair. The solution for the scalar field and the profile of the corresponding energy-momentum tensor, depending on the value of the coupling constant, may exhibit a nonmonotonic behavior, an unusual feature that highlights the limitations of the existing no-hair theorems. We also determine and study in detail the scalar charge, horizon area, and entropy of our solutions.

  14. Nonminimal kinetic coupled gravity: Inflation on the warped DGP brane

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Parsiya, A.; Atazadeh, K.

    2016-03-01

    We consider the nonminimally kinetic coupled version of DGP brane model, where the kinetic term of the scalar field is coupled to the metric and Einstein tensor on the brane by a coupling constant ζ. We obtain the corresponding field equations, using the Friedmann-Robertson-Walker metric and the perfect fluid, and study the inflationary scenario to confront the numerical analysis of six typical scalar field potentials with the current observational results. We find that among the suggested potentials and coupling constants, subject to the e-folding N = 60, the potentials V (ϕ) = σϕ, V (ϕ) = σϕ2 and V (ϕ) = σϕ3 provide the best fits with both Planck+WP+highL data and Planck+WP+highL+BICEP2 data.

  15. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda

    2016-04-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less

  16. Probing neutrino coupling to a light scalar with coherent neutrino scattering

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.

  17. The role of phase dynamics in a stochastic model of a passively advected scalar

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan

    2016-05-01

    Collective synchronous motion of the phases is introduced in a model for the stochastic passive advection-diffusion of a scalar with external forcing. The model for the phase coupling dynamics follows the well known Kuramoto model paradigm of limit-cycle oscillators. The natural frequencies in the Kuramoto model are assumed to obey a given scale dependence through a dispersion relation of the drift-wave form -βk/1 +k2 , where β is a constant representing the typical strength of the gradient. The present aim is to study the importance of collective phase dynamics on the characteristic time evolution of the fluctuation energy and the formation of coherent structures. Our results show that the assumption of a fully stochastic phase state of turbulence is more relevant for high values of β, where we find that the energy spectrum follows a k-7 /2 scaling. Whereas for lower β there is a significant difference between a-synchronised and synchronised phase states, one could expect the formation of coherent modulations in the latter case.

  18. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    PubMed

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  19. Planck 2015 results. XIV. Dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.

  20. Current and future constraints on extended Bekenstein-type models for a varying fine-structure constant

    NASA Astrophysics Data System (ADS)

    Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.

    2018-01-01

    There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.

  1. Bi-scalar modified gravity and cosmology with conformal invariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saridakis, Emmanuel N.; Tsoukalas, Minas, E-mail: Emmanuel_Saridakis@baylor.edu, E-mail: minasts@central.ntua.gr

    2016-04-01

    We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sectormore » we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to 'mimetic dark matter' or to 'dark radiation' respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.« less

  2. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).

  3. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  4. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  5. Searching for dilaton dark matter with atomic clocks

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken

    2015-01-01

    We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.

  6. A mixing timescale model for TPDF simulations of turbulent premixed flames

    DOE PAGES

    Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...

    2017-02-06

    Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less

  7. A mixing timescale model for TPDF simulations of turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.

    Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less

  8. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  9. Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes

    NASA Astrophysics Data System (ADS)

    Smith, Graham

    2018-06-01

    We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.

  10. Graviton fluctuations erase the cosmological constant

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  11. Constraining cosmologies with fundamental constants - I. Quintessence and K-essence

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.

    2013-01-01

    Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.

  12. Scalar transport in inline mixers with spatially periodic flows

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2017-01-01

    Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.

  13. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  14. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo; Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  15. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  16. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  17. A cyclic universe approach to fine tuning

    DOE PAGES

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    2016-04-05

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  18. A cyclic universe approach to fine tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Stephon; Cormack, Sam; Gleiser, Marcelo

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on stringmore » landscape scenarios. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  19. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  20. The evolving Planck mass in classically scale-invariant theories

    NASA Astrophysics Data System (ADS)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  1. Are dark energy models with variable EoS parameter w compatible with the late inhomogeneous Universe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akarsu, Özgür; Bouhmadi-López, Mariam; Brilenkov, Maxim

    We study the late-time evolution of the Universe where dark energy (DE) is presented by a barotropic fluid on top of cold dark matter (CDM) . We also take into account the radiation content of the Universe. Here by the late stage of the evolution we refer to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under this condition the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. More precisely, we study scalar perturbations of the FLRW metric due to inhomogeneities ofmore » CDM as well as fluctuations of radiation and DE. For an arbitrary equation of state for DE we obtain a system of equations for the scalar perturbations within the mechanical approach. First, in the case of a constant DE equation of state parameter w, we demonstrate that our method singles out the cosmological constant as the only viable dark energy candidate. Then, we apply our approach to variable equation of state parameters in the form of three different linear parametrizations of w, e.g., the Chevallier-Polarski-Linder perfect fluid model. We conclude that all these models are incompatible with the theory of scalar perturbations in the late Universe.« less

  2. Cosmological perturbations during the Bose-Einstein condensation of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br

    In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less

  3. Charged Galileon black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less

  4. Spinor Field Nonlinearity and Space-Time Geometry

    NASA Astrophysics Data System (ADS)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time, though the isotropy of space-time can be attained for a large proportionality constant. As far as evolution is concerned, depending on the sign of coupling constant the model allows both accelerated and oscillatory mode of expansion. A negative coupling constant leads to an oscillatory mode of expansion, whereas a positive coupling constant generates expanding Universe with late time acceleration. Both deceleration parameter and EoS parameter in this case vary with time and are in agreement with modern concept of space-time evolution. In case of a Bianchi type-I space-time the non-diagonal components lead to three different possibilities. In case of a full BI space-time we find that the spinor field nonlinearity and the massive term vanish, hence the spinor field Lagrangian becomes massless and linear. In two other cases the space-time evolves into either LRSBI or FRW Universe. If we consider a locally rotationally symmetric BI( LRSBI) model, neither the mass term nor the spinor field nonlinearity vanishes. In this case depending on the sign of coupling constant we have either late time accelerated mode of expansion or oscillatory mode of evolution. In this case for an expanding Universe we have asymptotical isotropization. Finally, in case of a FRW model neither the mass term nor the spinor field nonlinearity vanishes. Like in LRSBI case we have either late time acceleration or cyclic mode of evolution. These findings allow us to conclude that the spinor field is very sensitive to the gravitational one.

  5. Quasinormal modes of the BTZ black hole under scalar perturbations with a non-minimal coupling: exact spectrum

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris

    2018-06-01

    We perturb the non-rotating BTZ black hole with a non-minimally coupled massless scalar field, and we compute the quasinormal spectrum exactly. We solve the radial equation in terms of hypergeometric functions, and we obtain an analytical expression for the quasinormal frequencies. In addition, we compare our analytical results with the 6th order semi-analytical WKB method, and we find an excellent agreement. The impact of the nonminimal coupling as well as of the cosmological constant on the quasinormal spectrum is briefly discussed.

  6. Effective gravitational coupling in modified teleparallel theories

    NASA Astrophysics Data System (ADS)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  7. Scale-invariant scalar field dark matter through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-05-01

    We discuss the dynamics and phenomenology of an oscillating scalar field coupled to the Higgs boson that accounts for the dark matter in the Universe. The model assumes an underlying scale invariance such that the scalar field only acquires mass after the electroweak phase transition, behaving as dark radiation before the latter takes place. While for a positive coupling to the Higgs field the dark scalar is stable, for a negative coupling it acquires a vacuum expectation value after the electroweak phase transition and may decay into photon pairs, albeit with a mean lifetime much larger than the age of the Universe. We explore possible astrophysical and laboratory signatures of such a dark matter candidate in both cases, including annihilation and decay into photons, Higgs decay, photon-dark scalar oscillations and induced oscillations of fundamental constants. We find that dark matter within this scenario will be generically difficult to detect in the near future, except for the promising case of a 7 keV dark scalar decaying into photons, which naturally explains the observed galactic and extra-galactic 3.5 keV X-ray line.

  8. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-02-15

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form ofmore » the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.« less

  9. Protecting quantum Fisher information in curved space-time

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-03-01

    In this work, we investigate the quantum Fisher information (QFI) dynamics of a two-level atom interacting with quantized conformally coupled massless scalar fields in de Sitter-invariant vacuum. We first derive the master equation that governs its evolution. It is found that the QFI decays with evolution time. Furthermore, we propose two schemes to protect QFI by employing prior weak measurement (WM) and post measurement reversal (MR). We find that the first scheme can not always protect QFI and the second scheme has prominent advantage over the first scheme.

  10. An almost trivial gauge theory in the limit of infinite gauge coupling constant.

    NASA Astrophysics Data System (ADS)

    Kaptanoglu, S.

    A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is considered. In the limit of infinite gauge coupling constant Yang-Mills fields become auxiliary and the action possesses a larger invariance than the usual gauge invariance; hence, the system develops a richer structure of constraints. The constraint analysis is carried out.

  11. Studies on silicon NMR characterization and kinetic modeling of the structural evolution of siloxane-based materials and their applications in drug delivery and adsorption

    NASA Astrophysics Data System (ADS)

    Ambati, Jyothirmai

    This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane rings formed from short-bridged precursors slow down but do not prevent gelation. The tuning of siloxane-based materials for adsorption technologies are also discussed here. In the first example, antioxidant enzyme loading is investigated as a means to reduce oxidative stress generated by silica nanoparticle drug carriers. Materials are engineered for promising enzyme loading and protection from proteolysis. Second, the potential of copper sulfate impregnation to enhance adsorption of ammonia by silica is explored by molecular simulation. KEYWORDS: Sol-gel Polymerization, Kinetic Investigation, Si NMR, Bridged Silanes, DFT Calculations.

  12. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-01-12

    A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.

  13. Planck 2015 results: XIV. Dark energy and modified gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    For this research, we study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forcedmore » to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. Finally, when testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.« less

  14. Planck 2015 results: XIV. Dark energy and modified gravity

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    For this research, we study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forcedmore » to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. Finally, when testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external data sets are included. It however disappears when including CMB lensing.« less

  15. Cosmology in bimetric theory with an effective composite coupling to matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia; Mukohyama, Shinji

    We study the cosmology of bimetric theory with a composite matter coupling. We find two possible branches of background evolution. We investigate the question of stability of cosmological perturbations. For the tensor and vector perturbations, we derive conditions on the absence of ghost and gradient instabilities. For the scalar modes, we obtain conditions for avoiding ghost degrees. In the first branch, we find that one of the scalar modes becomes a ghost at the late stages of the evolution. Conversely, this problem can be avoided in the second branch. However, we also find that the constraint for the second branchmore » prevents the doubly coupled matter fields from being the standard ingredients of cosmology. We thus conclude that a realistic and stable cosmological model requires additional minimally coupled matter fields.« less

  16. Off-equilibrium infrared structure of self-interacting scalar fields: Universal scaling, vortex-antivortex superfluid dynamics, and Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Schlichting, Soeren; Venugopalan, Raju; Wang, Qun

    2018-05-01

    We map the infrared dynamics of a relativistic single-component (N =1 ) interacting scalar field theory to that of nonrelativistic complex scalar fields. The Gross-Pitaevskii (GP) equation, describing the real-time dynamics of single-component ultracold Bose gases, is obtained at first nontrivial order in an expansion proportional to the powers of λ ϕ2/m2 where λ , ϕ , and m are the coupling constant, the scalar field, and the particle mass respectively. Our analytical studies are corroborated by numerical simulations of the spatial and momentum structure of overoccupied scalar fields in (2+1)-dimensions. Universal scaling of infrared modes, vortex-antivortex superfluid dynamics, and the off-equilibrium formation of a Bose-Einstein condensate are observed. Our results for the universal scaling exponents are in agreement with those extracted in the numerical simulations of the GP equation. As in these simulations, we observe coarsening phase kinetics in the Bose superfluid with strongly anomalous scaling exponents relative to that of vertex resummed kinetic theory. Our relativistic field theory framework further allows one to study more closely the coupling between superfluid and normal fluid modes, specifically the turbulent momentum and spatial structure of the coupling between a quasiparticle cascade to the infrared and an energy cascade to the ultraviolet. We outline possible applications of the formalism to the dynamics of vortex-antivortex formation and to the off-equilibrium dynamics of the strongly interacting matter formed in heavy-ion collisions.

  17. Structure formation by a fifth force: N-body versus linear simulations

    NASA Astrophysics Data System (ADS)

    Li, Baojiu; Zhao, Hongsheng

    2009-08-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million-particle simulations. The viable parameters for the scalar field can be inferred on intermediate or small scales at late times from, e.g., weak lensing and phase space properties, while the predicted Hubble expansion and linearly simulated CMB spectrum are virtually indistinguishable from the standard ΛCDM predictions.

  18. Scale-independent inflation and hierarchy generation

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2016-10-20

    We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only throughmore » $$-\\frac{1}{12}\\varsigma \\phi^2 R$$ couplings where $$\\varsigma$$ departs from the special conformal value of $1$; (iii) the Planck mass is dynamically generated by the vacuum expectations values (VEVs) of the scalars (iv) there is a stage of viable inflation associated with slow roll in the two--scalar potential; (v) the final vacuum has a small to vanishing cosmological constant and an hierarchically small ratio of the VEVs and the ratio of the scalar masses to the Planck scale. In addition, this assumes the paradigm of classical scale symmetry as a custodial symmetry of large hierarchies.« less

  19. Age Crises, Scalar Fields, and the Apocalypse

    NASA Astrophysics Data System (ADS)

    Jackson, J. C.

    Recent observations suggest that Hubble's constant is large, to the extent that the oldest stars appear to have ages which are greater than the Hubble time, and that the Hubble expansion is slowing down, so that according to conventional cosmology the age of the Universe is less than the Hubble time. The concepts of weak and strong age crises (respectively t0<1/H0 but longer than the age inferred from some lower limit on q0, and t0>1/H0 and q0>0) are introduced. These observations are reconciled in models which are dynamically dominated by a homogeneous scalar field, corresponding to an ultra-light boson whose Compton wavelength is of the same order as the Hubble radius. Two such models are considered, an open one with vacuum energy comprising a conventional cosmological term and a scalar field component, and a flat one with a scalar component only, aimed respectively at weak and strong age crises. Both models suggest that anti-gravity plays a significant role in the evolution of the Universe.

  20. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert

    2017-10-01

    Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  1. S U (2 ) Chern-Simons theory coupled to competing scalars

    NASA Astrophysics Data System (ADS)

    Pérez Ipiña, J. M.; Schaposnik, F. A.; Tallarita, G.

    2018-06-01

    We study a spontaneously broken S U (2 ) Chern-Simons-Higgs model coupled though a Higgs portal to an uncharged triplet scalar with a vacuum state competing with the Higgs one. We find vortexlike solutions to the field equations in different parameter space regions. Depending on the scalar coupling constants, we find a parameter region in which the competing order creates a halo about the Chern-Simons-Higgs vortex core, together with two other regions, one where no vortex solutions exist and the other where ordinary Chern-Simons-Higgs vortices can be found. We derive the low-energy theory for the moduli fields on the vortex world sheet and also discuss the connection of our results with those found in studies of competing orders in high-temperature superconductors.

  2. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Marciu, Mihai; Rudra, Prabir

    2018-04-01

    Within this work, we propose a new generalised quintom dark energy model in the teleparallel alternative of general relativity theory, by considering a non-minimal coupling between the scalar fields of a quintom model with the scalar torsion component T and the boundary term B. In the teleparallel alternative of general relativity theory, the boundary term represents the divergence of the torsion vector, B=2∇μTμ, and is related to the Ricci scalar R and the torsion scalar T, by the fundamental relation: R=‑T+B. We have investigated the dynamical properties of the present quintom scenario in the teleparallel alternative of general relativity theory by performing a dynamical system analysis in the case of decomposable exponential potentials. The study analysed the structure of the phase space, revealing the fundamental dynamical effects of the scalar torsion and boundary couplings in the case of a more general quintom scenario. Additionally, a numerical approach to the model is presented to analyse the cosmological evolution of the system.

  3. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  4. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less

  5. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  6. Sine-Gordon solitonic scalar stars and black holes

    NASA Astrophysics Data System (ADS)

    Franzin, Edgardo; Cadoni, Mariano; Tuveri, Matteo

    2018-06-01

    We study exact, analytic, static, spherically symmetric, four-dimensional solutions of minimally coupled Einstein-scalar gravity, sourced by a scalar field whose profile has the form of the sine-Gordon soliton. We present a horizonless, everywhere regular and positive-mass solution—a solitonic star—and a black hole. The scalar potential behaves as a constant near the origin and vanishes at infinity. In particular, the solitonic scalar star interpolates between an anti-de Sitter and an asympototically flat spacetime. The black-hole spacetime is unstable against linear perturbations, while due to numerical issues, we were not able to determine with confidence whether or not the starlike background solution is stable.

  7. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  8. Global cosmological dynamics for the scalar field representation of the modified Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Uggla, Claes

    2013-09-01

    In this paper we investigate the global dynamics for the minimally coupled scalar field representation of the modified Chaplygin gas in the context of flat Friedmann-Lemaître-Robertson Walker cosmology. The tool for doing this is a new set of bounded variables that lead to a regular dynamical system. It is shown that the exact modified Chaplygin gas perfect fluid solution appears as a straight line in the associated phase plane. It is also shown that no other solutions stay close to this solution during their entire temporal evolution, but that there exists an open subset of solutions that stay arbitrarily close during an intermediate time interval, and into the future in the case when the scalar field potential exhibits a global minimum.

  9. Construction of nonsingular pre-big-bang and ekpyrotic cosmologies and the resulting density perturbations

    NASA Astrophysics Data System (ADS)

    Tsujikawa, Shinji; Brandenberger, Robert; Finelli, Fabio

    2002-10-01

    We consider the construction of nonsingular pre-big-bang and ekpyrotic type cosmological models realized by the addition to the action of specific higher-order terms stemming from quantum corrections. We study models involving general relativity coupled to a single scalar field with a potential motivated by the ekpyrotic scenario. We find that the inclusion of the string loop and quantum correction terms in the string frame makes it possible to obtain solutions of the variational equations which are nonsingular and bouncing in the Einstein frame, even when a negative exponential potential is present, as is the case in the ekpyrotic scenario. This allows us to discuss the evolution of cosmological perturbations without the need to invoke matching conditions between two Einstein universes, one representing the contracting branch, the second the expanding branch. We analyze the spectra of perturbations produced during the bouncing phase and find that the spectrum of curvature fluctuations in the model proposed originally to implement the ekpyrotic scenario has a large blue tilt (nR=3). Except for instabilities introduced on small scales, the result agrees with what is obtained by imposing continuity of the induced metric and of the extrinsic curvature across a constant scalar field (up to k2 corrections equal to the constant energy density) matching surface between the contracting and the expanding Einstein universes. We also discuss nonsingular cosmological solutions obtained when a Gauss-Bonnet term with a coefficient suitably dependent on the scalar matter field is added to the action in the Einstein frame with a potential for the scalar field present. In this scenario, nonsingular solutions are found which start in an asymptotically flat state, undergo a period of superexponential inflation, and end with a graceful exit. The spectrum of fluctuations is also calculated in this case.

  10. General covariant Horava-Lifshitz gravity without projectability condition and its applications to cosmology

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Shu, Fu-Wen; Wu, Qiang; Wang, Anzhong

    2012-02-01

    We consider an extended theory of Horava-Lifshitz gravity with the detailed balance condition softly breaking, but without the projectability condition. With the former, the number of independent coupling constants is significantly reduced. With the latter and by extending the original foliation-preserving diffeomorphism symmetry Diff(M,F) to include a local U(1) symmetry, the spin-0 gravitons are eliminated. Thus, all the problems related to them disappear, including the instability, strong coupling, and different speeds in the gravitational sector. When the theory couples to a scalar field, we find that the scalar field is not only stable in both the ultraviolet and infrared, but also free of the strong coupling problem, because of the presence of high-order spatial derivative terms of the scalar field. Furthermore, applying the theory to cosmology, we find that due to the additional U(1) symmetry, the Friedmann-Robertson-Walker (FRW) universe is necessarily flat. We also investigate the scalar, vector, and tensor perturbations of the flat FRW universe, and derive the general linearized field equations for each kind of the perturbations.

  11. Fluids, superfluids and supersolids: dynamics and cosmology of self-gravitating media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celoria, Marco; Comelli, Denis; Pilo, Luigi, E-mail: marco.celoria@gssi.infn.it, E-mail: comelli@fe.infn.it, E-mail: luigi.pilo@aquila.infn.it

    We compute cosmological perturbations for a generic self-gravitating media described by four derivatively-coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle σ. While perfect fluids and solids are adiabatic with σ constant in time, superfluids and supersolids feature a non-trivial dynamics for σ. Special classes of isentropic media with zero σ can also be found. Tensormore » modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.« less

  12. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    NASA Astrophysics Data System (ADS)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  13. Universality of spectrum of passive scalar variance at very high Schmidt number in isotropic steady turbulence

    NASA Astrophysics Data System (ADS)

    Gotoh, Toshiyuki

    2012-11-01

    Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.

  14. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands,more » the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.« less

  15. Theoretical constraints on masses of heavy particles in Left-Right symmetric models

    NASA Astrophysics Data System (ADS)

    Chakrabortty, J.; Gluza, J.; Jeliński, T.; Srivastava, T.

    2016-08-01

    Left-Right symmetric models with general gL ≠gR gauge couplings which include bidoublet and triplet scalar multiplets are studied. Possible scalar mass spectra are outlined by imposing Tree-Unitarity, and Vacuum Stability criteria and also using the bounds on neutral scalar masses MHFCNC which assure the absence of Flavour Changing Neutral Currents (FCNC). We are focusing on mass spectra relevant for the LHC analysis, i.e., the scalar masses are around TeV scale. As all non-standard heavy particle masses are related to the vacuum expectation value (VEV) of the right-handed triplet (vR), the combined effects of relevant Higgs potential parameters and MHFCNC regulate the lower limits of heavy gauge boson masses. The complete set of Renormalization Group Evolutions for all couplings are provided at the 1-loop level, including the mixing effects in the Yukawa sector. Most of the scalar couplings suffer from the Landau poles at the intermediate scale Q ∼106.5 GeV, which in general coincides with violation of the Tree-Unitarity bounds.

  16. Fate of inflation and the natural reduction of vacuum energy

    NASA Astrophysics Data System (ADS)

    Nakamichi, Akika; Morikawa, Masahiro

    2014-04-01

    In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.

  17. Higher spin gravitational couplings: Ghosts in the Yang-Mills detour complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gover, A. R.; Hallowell, K.; Waldron, A.

    2007-01-15

    Gravitational interactions of higher spin fields are generically plagued by inconsistencies. There exists however, a simple framework that couples higher spins to a broad class of gravitational backgrounds (including Ricci flat and Einstein) consistently at the classical level. The model is the simplest example of a Yang-Mills detour complex and has broad mathematical applications, especially to conformal geometry. Even the simplest version of the theory, which couples gravitons, vectors and scalar fields in a flat background is rather rich, providing an explicit setting for detailed analysis of ghost excitations. Its asymptotic scattering states consist of a physical massless graviton, scalar,more » and massive vector along with a degenerate pair of zero norm photon excitations. Coherent states of the unstable sector do have positive norms, but their evolution is no longer unitary and amplitudes grow with time. The class of models proposed is extremely general and of considerable interest for ghost condensation and invariant theory.« less

  18. Can measurements of 2HDM parameters provide hints for high scale supersymmetry?

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Gautam; Das, Dipankar; Pérez, M. Jay; Saha, Ipsita; Santamaria, Arcadi; Vives, Oscar

    2018-05-01

    Two-Higgs-doublet models (2HDMs) are minimal extensions of the Standard Model (SM) that may still be discovered at the LHC. The quartic couplings of their potentials can be determined from the measurement of the masses and branching ratios of their extended scalar sectors. We show that the evolution of these couplings through renormalization group equations can determine whether the observed 2HDM is a low energy manifestation of a more fundamental theory, as for instance, supersymmetry, which fixes the quartic couplings in terms of the gauge couplings. At leading order, the minimal supersymmetric extension of the SM (MSSM) dictates all the quartic couplings, which can be translated into a predictive structure for the scalar masses and mixings at the weak scale. Running these couplings to higher scales, one can check if they converge to their MSSM values, and more interestingly, whether one can infer the supersymmetry breaking scale. Although we study this question in the context of supersymmetry, this strategy could be applied to any theory whose ultraviolet completion unambiguously predicts all scalar quartic couplings.

  19. Cosmic black-hole hair growth and quasar OJ287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horbatsch, M.W.; Burgess, C.P., E-mail: horbatm@mcmaster.ca, E-mail: cburgess@perimeterinstitute.ca

    An old result (astro-ph/9905303) by Jacobson implies that a black hole with Schwarzschild radius r{sub s} acquires scalar hair, Q∝r{sub s}{sup 2}μ, when the (canonically normalized) scalar field in question is slowly time-dependent far from the black hole, ∂{sub t}φ ≅ μM{sub p} with μr{sub s} << 1 time-independent. Such a time dependence could arise in scalar-tensor theories either from cosmological evolution, or due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couplesmore » to matter. We argue that Jacobson's Miracle Hair-Growth Formula{sup ©} implies, in particular, that an orbiting pair of black holes can radiate dipole radiation, provided only that the two black holes have different masses. Quasar OJ287, situated at redshift z ≅ 0.306, has been argued to be a double black-hole binary system of this type, whose orbital decay recently has been indirectly measured and found to agree with the predictions of General Relativity to within 6%. We argue that the absence of observable scalar dipole radiation in this system yields the remarkable bound |μ| < (16 days){sup −1} on the instantaneous time derivative at this redshift (as opposed to constraining an average field difference, Δφ, over cosmological times), provided only that the scalar is light enough to be radiated — i.e. m∼<10{sup −23} eV — independent of how the scalar couples to matter. This can also be interpreted as constraining (in a more model-dependent way) the binary's motion relative to any spatial variation of the scalar field within its immediate vicinity within its host galaxy.« less

  20. Greybody factor of a scalar field from Reissner-Nordström-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Ahmed, Jamil; Saifullah, K.

    2018-04-01

    In this work we derive a general expression for the greybody factor of non-minimally coupled scalar fields in Reissner-Nordström-de Sitter spacetime in low frequency approximation. Greybody factor as a characteristic of effective potential barrier, will be presented. We discuss the role of cosmological constant both, in the absence as well as in the presence of non-minimal coupling. Considering non-minimal coupling as a mass term, its effect on the greybody factor will be discussed. We also elaborate the significance of the results by giving formulae of differential energy rate and general absorption cross section. The greybody factor gives insight into the spectrum of Hawking radiations.

  1. Scalar field and time varying cosmological constant in f(R,T) gravity for Bianchi type-I universe

    NASA Astrophysics Data System (ADS)

    Singh, G. P.; Bishi, Binaya K.; Sahoo, P. K.

    2016-04-01

    In this article, we have analysed the behaviour of scalar field and cosmological constant in $f(R,T)$ theory of gravity. Here, we have considered the simplest form of $f(R,T)$ i.e. $f(R,T)=R+2f(T)$, where $R$ is the Ricci scalar and $T$ is the trace of the energy momentum tensor and explored the spatially homogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi type-I cosmological model. It is assumed that the Universe is filled with two non-interacting matter sources namely scalar field (normal or phantom) with scalar potential and matter contribution due to $f(R,T)$ action. We have discussed two cosmological models according to power law and exponential law of the volume expansion along with constant and exponential scalar potential as sub models. Power law models are compatible with normal (quintessence) and phantom scalar field whereas exponential volume expansion models are compatible with only normal (quintessence) scalar field. The values of cosmological constant in our models are in agreement with the observational results. Finally, we have discussed some physical and kinematical properties of both the models.

  2. Cosmology of non-minimal derivative coupling to gravity in Palatini formalism and its chaotic inflation

    NASA Astrophysics Data System (ADS)

    Kaewkhao, Narakorn; Gumjudpai, Burin

    2018-06-01

    We consider, in Palatini formalism, a modified gravity of which the scalar field derivative couples to Einstein tensor. In this scenario, Ricci scalar, Ricci tensor and Einstein tensor are functions of connection field. As a result, the connection field gives rise to relation, hμν = fgμν between effective metric, hμν and the usual metric gμν where f = 1 - κϕ,αϕ,α / 2. In FLRW universe, NMDC coupling constant is limited in a range of - 2 /ϕ˙2 < κ ≤ ∞ preserving Lorentz signature of the effective metric. Slowly-rolling regime provides κ < 0 forbidding graviton from traveling at superluminal speed. Effective gravitational coupling and entropy of blackhole's apparent horizon are derived. In case of negative coupling, acceleration could happen even with weff > - 1 / 3. Power-law potentials of chaotic inflation are considered. For V ∝ϕ2 and V ∝ϕ4, it is possible to obtain tensor-to-scalar ratio lower than that of GR so that it satisfies r < 0 . 12 as constrained by Planck 2015 (Ade et al., 2016). The V ∝ϕ2 case yields acceptable range of spectrum index and r values. The quartic potential's spectrum index is disfavored by the Planck results. Viable range of κ for V ∝ϕ2 case lies in positive region, resulting in less blackhole's entropy, superluminal metric, more amount of inflation, avoidance of super-Planckian field initial value and stronger gravitational constant.

  3. Ultraviolet complete dark energy model

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  4. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  5. Scaling laws of passive-scalar diffusion in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan

    2017-05-01

    Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.

  6. Evaluating the Performance of the ff99SB Force Field Based on NMR Scalar Coupling Data

    PubMed Central

    Wickstrom, Lauren; Okur, Asim; Simmerling, Carlos

    2009-01-01

    Abstract Force-field validation is essential for the identification of weaknesses in current models and the development of more accurate models of biomolecules. NMR coupling and relaxation methods have been used to effectively diagnose the strengths and weaknesses of many existing force fields. Studies using the ff99SB force field have shown excellent agreement between experimental and calculated order parameters and residual dipolar calculations. However, recent studies have suggested that ff99SB demonstrates poor agreement with J-coupling constants for short polyalanines. We performed extensive replica-exchange molecular-dynamics simulations on Ala3 and Ala5 in TIP3P and TIP4P-Ew solvent models. Our results suggest that the performance of ff99SB is among the best of currently available models. In addition, scalar coupling constants derived from simulations in the TIP4P-Ew model show a slight improvement over those obtained using the TIP3P model. Despite the overall excellent agreement, the data suggest areas for possible improvement. PMID:19651043

  7. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-08-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.

  8. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  9. Inflation from higher dimensions

    NASA Astrophysics Data System (ADS)

    Nakada, Hiroshi; Ketov, Sergei V.

    2017-12-01

    We derive the scalar potential in four spacetime dimensions from an eight-dimensional (R +γ R4-2 Λ -F42) gravity model in the presence of the 4-form F4, with the (modified gravity) coupling constant γ and the cosmological constant Λ , by using the flux compactification of four extra dimensions on a 4-sphere with the warp factor. The scalar potential depends upon two scalar fields: the scalaron and the 4-sphere volume modulus. We demonstrate that it gives rise to a viable description of cosmological inflation in the early universe, with the scalaron playing the role of inflaton and the volume modulus to be (almost) stabilized at its minimum. We also speculate about a possibility of embedding our model in eight dimensions into a modified eight-dimensional supergavity that, in its turn, arises from a modified eleven-dimensional supergravity.

  10. Quasinormal modes of asymptotically (A)dS black hole in Lovelock background

    NASA Astrophysics Data System (ADS)

    Abbasvandi, N.; Soleimani, M. J.; Abdullah, W. A. T. Wan; Radiman, Shahidan

    2017-03-01

    We study the quasinormal modes of the massless scalar field in asymptotically (A)dS black holes in Lovelock spacetime by using the sixth order of the WKB approximation. We consider the effects of the second and third order of Lovelock coupling constants on quasinormal frequencies spectrum as well as cosmological constant.

  11. Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer

    NASA Astrophysics Data System (ADS)

    Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.

    2015-11-01

    Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, D. F.; Salzano, V.; Capozziello, S.

    We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Resultsmore » show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.« less

  13. Modified gravity and the CMB

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine

    2012-01-01

    We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.

  14. A DNS study of turbulent mixing of two passive scalars

    NASA Astrophysics Data System (ADS)

    Juneja, A.; Pope, S. B.

    1996-08-01

    We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a ``triple-delta function'' jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation.

  15. Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Breitbach, Moritz; Kopp, Joachim; Mittnacht, Lukas

    2018-03-01

    The cosmological abundance of dark matter can be significantly influenced by the temperature dependence of particle masses and vacuum expectation values. We illustrate this point in three simple freeze-in models. The first one, which we call kinematically induced freeze-in, is based on the observation that the effective mass of a scalar temporarily becomes very small as the scalar potential undergoes a second order phase transition. This opens dark matter production channels that are otherwise forbidden. The second model we consider, dubbed vev-induced freeze-in, is a fermionic Higgs portal scenario. Its scalar sector is augmented compared to the Standard Model by an additional scalar singlet, S, which couples to dark matter and temporarily acquires a vacuum expectation value (a two-step phase transition or "vev flip-flop"). While < S> ≠ 0, the modified coupling structure in the scalar sector implies that dark matter production is significantly enhanced compared to the < S> = 0 phases realised at very early times and again today. The third model, which we call mixing-induced freeze-in, is similar in spirit, but here it is the mixing of dark sector fermions, induced by non-zero < S>, that temporarily boosts the dark matter production rate. For all three scenarios, we carefully dissect the evolution of the dark sector in the early Universe. We compute the DM relic abundance as a function of the model parameters, emphasising the importance of thermal corrections and the proper treatment of phase transitions in the calculation.

  16. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  17. Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, A.C.; Ray, D.

    1987-12-01

    Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.

  18. Constraints on a new post-general relativity cosmological parameter

    NASA Astrophysics Data System (ADS)

    Caldwell, Robert; Cooray, Asantha; Melchiorri, Alessandro

    2007-07-01

    A new cosmological variable is introduced to characterize the degree of departure from Einstein’s general relativity with a cosmological constant. The new parameter, ϖ, is the cosmological analog of γ, the parametrized post-Newtonian variable which measures the amount of spacetime curvature per unit mass. In the cosmological context, ϖ measures the difference between the Newtonian and longitudinal potentials in response to the same matter sources, as occurs in certain scalar-tensor theories of gravity. Equivalently, ϖ measures the scalar shear fluctuation in a dark-energy component. In the context of a vanilla, cosmological constant-dominated universe, a nonzero ϖ signals a departure from general relativity or a fluctuating cosmological constant. Using a phenomenological model for the time evolution ϖ=ϖ0ρDE/ρM which depends on the ratio of energy density in the cosmological constant to the matter density at each epoch, it is shown that the observed cosmic microwave background temperature anisotropies limit the overall normalization constant to be -0.4<ϖ0<0.1 at the 95% confidence level. Existing measurements of the cross-correlations of the cosmic microwave background with large-scale structure further limit ϖ0>-0.2 at the 95% CL. In the future, integrated Sachs-Wolfe and weak lensing measurements can more tightly constrain ϖ0, providing a valuable clue to the nature of dark energy and the validity of general relativity.

  19. Hairy Lovelock black holes and Stueckelberg mechanism for Weyl symmetry

    NASA Astrophysics Data System (ADS)

    Chernicoff, Mariano; Giribet, Gaston; Oliva, Julio

    2016-10-01

    Lovelock theory of gravity -and, in particular, Einstein theory- admits black hole solutions that can be equipped with a hair by conformally coupling the theory to a real scalar field. This is a secondary hair, meaning that it does not endow the black hole with new quantum numbers. It rather consists of a non-trivial scalar field profile of fixed intensity which turns out to be regular everywhere outside and on the horizon and, provided the cosmological constant is negative, behaves at large distance in a way compatible with the Anti-de Sitter (AdS) asymptotic. In this paper, we review the main features of these hairy black hole solutions, such as their geometrical and thermodynamical properties. The conformal coupling to matter in dimension D > 4 in principle includes higher-curvature terms. These couplings are obtained from the Lovelock action through the Stueckelberg strategy. As a consequence, the resulting scalar-tensor theory exhibits a self-duality under field redefinition that resembles T-duality. Through this field redefinition, the matter content of the theory transforms into a Lovelock action for a dual geometry. Since the hairy black holes only exist for special relations between the dual Lovelock coupling constants, it is natural to compare those relations with the causality bounds coming from AdS/CFT. We observe that, while the lower causality bound is always obeyed, the upper causality bound is violated. The latter, however, is saturated in the large D limit.

  20. Schwarzschild black holes can wear scalar wigs.

    PubMed

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  1. Tilted Bianchi type-I wet dark fluid model in Saez and Ballester theory

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Tole, T. T.; Balcha, M.

    2018-06-01

    Tilted Bianchi-I wet dark fluid cosmological model is investigated in Saez and Ballester scalar theory of gravitation. Background cosmologies are obtained for a constant deceleration parameter. We consider a linear relationship between the shear scalar and the expansion scalar. We have discussed some physical and geometrical properties of the models. In our models, equation of state of the dark energy is observed to behave like a cosmological constant at late times.

  2. Note on the initial conditions within the effective field theory approach of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Hu, Bin; Zhang, Yi

    2017-12-01

    By using the effective field theory approach, we investigate the role of initial conditions for the dark energy or modified gravity models. In detail, we consider the constant and linear parametrization of the effective Newton constant models. First, under the adiabatic assumption, the correction from the extra scalar degree of freedom in the beyond Λ CDM model is found to be negligible. The dominant ingredient in this setup is the primordial curvature perturbation originated from the inflation mechanism, and the energy budget of the matter components is not very crucial. Second, the isocurvature perturbation sourced by the extra scalar field is studied. For the constant and linear models of the effective Newton constant, no such kind of scalar mode exists. For the quadratic model, there is a nontrivial one. However, the amplitude of the scalar field is damped away very fast on all scales. Consequently, it could not support a reasonable structure formation. Finally, we study the importance of the setup of the scalar field starting time. By setting different turn-on times, namely, a =10-2 and a =10-7, we compare the cosmic microwave background radiation temperature, lensing deflection angle autocorrelation function, and the matter power spectrum in the constant and linear models. We find there is an order of O (1 %) difference in the observable spectra for constant model, while for the linear model, it is smaller than O (0.1 %).

  3. Dark energy and doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Noller, Johannes

    2017-05-01

    We analyse the late time cosmology and the gravitational properties of doubly coupled bigravity in the constrained vielbein formalism (equivalent to the metric formalism) when the mass of the massive graviton is of the order of the present Hubble rate. We focus on one of the two branches of background cosmology where the ratio between the scale factors of the two metrics is algebraically determined. We find that the late time physics depends on the mass of the graviton, which dictates the future asymptotic cosmological constant. The Universe evolves from a matter dominated epoch to a dark energy dominated era where the equation of state of dark energy can always be made close to  -1 now by appropriately tuning the graviton mass. We also analyse the perturbative spectrum of the theory in the quasi-static approximation, well below the strong coupling scale where no instability is present, and we show that there are five scalar degrees of freedom, two vectors and two gravitons. In Minkowski space, where the four Newtonian potentials vanish, the theory manifestly reduces to one massive and one massless graviton. In a cosmological FRW background for both metrics, four of the five scalars are Newtonian potentials which lead to a modification of gravity on large scales. The fifth one gives rise to a ghost which decouples from pressure-less matter in the quasi-static approximation. In this scalar sector, gravity is modified with effects on both the growth of structure and the lensing potential. In particular, we find that the Σ parameter governing the Poisson equation of the weak lensing potential can differ from one in the recent past of the Universe. Overall, the nature of the modification of gravity at low energy, which reveals itself in the growth of structure and the lensing potential, is intrinsically dependent on the couplings to matter and the potential term of the vielbeins. We also find that the time variation of Newton’s constant in the Jordan frame can easily satisfy the bound from solar system tests of gravity. Finally we show that the two gravitons present in the spectrum have a non-trivial mass matrix whose origin follows from the potential term of bigravity. This mixing leads to gravitational birefringence.

  4. Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light

    NASA Astrophysics Data System (ADS)

    Özer, Hatice; Delice, Özgür

    2018-03-01

    Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.

  5. Physical renormalization condition for de Sitter QED

    NASA Astrophysics Data System (ADS)

    Hayashinaka, Takahiro; Xue, She-Sheng

    2018-05-01

    We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.

  6. S-duality constraint on higher-derivative couplings

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.

    2014-05-01

    The Riemann curvature correction to the type II supergravity at eightderivative level in string frame is given as . For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t 2 n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  7. Cosmology with nonminimal kinetic coupling and a Higgs-like potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Jiro; Sushkov, Sergey V., E-mail: jmatsumoto@kpfu.ru, E-mail: sergey_sushkov@mail.ru

    2015-11-01

    We consider cosmological dynamics in the theory of gravity with the scalar field possessing the nonminimal kinetic coupling to curvature given as κG{sup μν}φ{sub ,μ}φ{sub ,ν}, and the Higgs-like potential . Using the dynamical system method, we analyze stationary points, their stability, and all possible asymptotical regimes of the model under consideration. We show that the Higgs field with the kinetic coupling provides an existence of accelerated regimes of the Universe evolution. There are three possible cosmological scenarios with acceleration: (i) The late-time de Sitter epoch when the Hubble parameter tends to the constant value, as t → ∞, while the scalarmore » field tends to zero, 0φ(t)→ , so that the Higgs potential reaches its local maximum . (ii) The Big Rip when H(t)∼(t{sub *}−t){sup −1} → ∞ and φ(t)∼(t{sub *}−t){sup −2} → ∞ as t →  t{sub *}. (iii) The Little Rip when H(t)∼ t{sup 1/2} → ∞ and φ(t)∼ t{sup 1/4} → ∞ as t → ∞. Also, we derive modified slow-roll conditions for the Higgs field and demonstrate that they lead to the Little Rip scenario.« less

  8. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  9. Dark energy from the motions of neutrinos

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus; Jimenez, Raul; Pena-Garay, Carlos; Verde, Licia

    2018-06-01

    Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.

  10. Fast and simultaneous determination of 1 H-1 H and 1 H-19 F scalar couplings in complex spin systems: Application of PSYCHE homonuclear broadband decoupling.

    PubMed

    Kakita, Veera Mohana Rao; Rachineni, Kavitha; Hosur, Ramakrishna V

    2017-07-21

    The present manuscript focuses on fast and simultaneous determination of 1 H- 1 H and 1 H- 19 F scalar couplings in fluorinated complex steroid molecules. Incorporation of broadband PSYCHE homonuclear decoupling in the indirect dimension of zero-quantum filtered diagonal experiments (F1-PSYCHE-DIAG) suppresses 1 H- 1 H scalar couplings; however, it retains 1 H- 19 F scalar couplings (along F1 dimension) for the 19 F coupled protons while preserving the pure-shift nature for 1 H resonances uncoupled to 19 F. In such cases, along the direct dimensions, 1 H- 1 H scalar coupling multiplets deconvolute and they appear as duplicated multiplets for the 19 F coupled protons, which facilitates unambiguous discrimination of 19 F coupled 1 H chemical sites from the others. Further, as an added advantage, data acquisition has been accelerated by invoking the known ideas of spectral aliasing in the F1-PSYCHE-DIAG scheme and experiments demand only ~10 min of spectrometer times. Copyright © 2017 John Wiley & Sons, Ltd.

  11. MSSM-inspired multifield inflation

    NASA Astrophysics Data System (ADS)

    Dubinin, M. N.; Petrova, E. Yu.; Pozdeeva, E. O.; Sumin, M. V.; Vernov, S. Yu.

    2017-12-01

    Despite the fact that experimentally with a high degree of statistical significance only a single Standard Model-like Higgs boson is discovered at the LHC, extended Higgs sectors with multiple scalar fields not excluded by combined fits of the data are more preferable theoretically for internally consistent realistic models of particle physics. We analyze the inflationary scenarios which could be induced by the two-Higgs-doublet potential of the Minimal Supersymmetric Standard Model (MSSM) where five scalar fields have non-minimal couplings to gravity. Observables following from such MSSM-inspired multifield inflation are calculated and a number of consistent inflationary scenarios are constructed. Cosmological evolution with different initial conditions for the multifield system leads to consequences fully compatible with observational data on the spectral index and the tensor-to-scalar ratio. It is demonstrated that the strong coupling approximation is precise enough to describe such inflationary scenarios.

  12. Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Nishino, Hitoshi; Rajpoot, Subhash

    2017-04-01

    In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars \\varphi _a by Φ =\\varepsilon ^{μ ν ρ σ } \\varepsilon _{abcd} (partial _{μ }\\varphi _a)(partial _{ν }\\varphi _b) (partial _{ρ }\\varphi _c) (partial _{σ }\\varphi _d). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density {√{-g}} φ ( R_{μ ν ρ σ }^2 - 4 R_{μ ν }^2 + R^2 ) we obtain a theory that is scale invariant up to a total divergence. Integration of the \\varphi _a field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the `TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy.

  13. Oscillating scalar fields in extended quintessence

    NASA Astrophysics Data System (ADS)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n <0.71 (which includes the case where the oscillating scalar field could serve as dark energy), while it can be either positive or negative for intermediate values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  14. Combining Fourier phase encoding and broadband inversion toward J-edited spectra

    NASA Astrophysics Data System (ADS)

    Lin, Yulan; Guan, Quanshuai; Su, Jianwei; Chen, Zhong

    2018-06-01

    Nuclear magnetic resonance (NMR) spectra are often utilized for gathering accurate information relevant to molecular structures and composition assignments. In this study, we develop a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks, and combine it with a pure shift experiments (PSYCHE) based J-modulated scheme, providing simple 2D J-edited spectra for accurate measurement of scalar coupling networks. Chemical shifts and J coupling constants of protons coupled to the specific protons are demonstrated along the F2 and F1 dimensions, respectively. Polychromatic pulses by Fourier phase encoding were performed to simultaneously detect several coupling networks. Proton-proton scalar couplings are chosen by a polychromatic pulse and a PSYCHE element. Axis peaks and unwanted couplings are complete eradicated by incorporating a selective COSY block as a preparation period. The theoretical principles and the signal processing procedure are laid out, and experimental observations are rationalized on the basis of theoretical analyses.

  15. Determination of long-range scalar (1)H-(1)H coupling constants responsible for polarization transfer in SABRE.

    PubMed

    Eshuis, Nan; Aspers, Ruud L E G; van Weerdenburg, Bram J A; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz (4)J coupling to p-H2 derived hydrides for their ortho protons, and a much lower (5)J coupling for their meta protons. Interestingly, the (4)J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Determination of long-range scalar 1H-1H coupling constants responsible for polarization transfer in SABRE

    NASA Astrophysics Data System (ADS)

    Eshuis, Nan; Aspers, Ruud L. E. G.; van Weerdenburg, Bram J. A.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2016-04-01

    SABRE (Signal Amplification By Reversible Exchange) nuclear spin hyperpolarization method can provide strongly enhanced NMR signals as a result of the reversible association of small molecules with para-hydrogen (p-H2) at an iridium metal complex. The conversion of p-H2 singlet order to enhanced substrate proton magnetization within such complex is driven by the scalar coupling interactions between the p-H2 derived hydrides and substrate nuclear spins. In the present study these long-range homonuclear couplings are experimentally determined for several SABRE substrates using an NMR pulse sequence for coherent hyperpolarization transfer at high magnetic field. Pyridine and pyrazine derivatives appear to have a similar ∼1.2 Hz 4J coupling to p-H2 derived hydrides for their ortho protons, and a much lower 5J coupling for their meta protons. Interestingly, the 4J hydride-substrate coupling for five-membered N-heterocyclic substrates is well below 1 Hz.

  17. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  18. Phase space analysis for a scalar-tensor model with kinetic and Gauss-Bonnet couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Loaiza, E.

    2016-09-01

    We study the phase space for a scalar-tensor string inspired model of dark energy with nonminimal kinetic and Gauss-Bonnet couplings. The form of the scalar potential and of the coupling terms is of the exponential type, which gives rise to appealing cosmological solutions. The critical points describe a variety of cosmological scenarios that go from a matter or radiation dominated universe to a dark energy dominated universe. Trajectories were found in the phase space departing from unstable or saddle fixed points and arriving at the stable scalar field dominated point corresponding to late-time accelerated expansion.

  19. Disformally self-tuning gravity

    NASA Astrophysics Data System (ADS)

    Emond, William T.; Saffin, Paul M.

    2016-03-01

    We extend a previous self-tuning analysis of the most general scalar-tensor theory of gravity in four dimensions with second order field equations by considering a generalized coupling to the matter sector. Through allowing a disformal coupling to matter we are able to extend the Fab Four model and construct a new class of theories that are able to tune away the cosmological constant on Friedmann-Lemaitre-Robertson-Walker backgrounds.

  20. Renormalization group fixed points of foliated gravity-matter systems

    NASA Astrophysics Data System (ADS)

    Biemans, Jorn; Platania, Alessia; Saueressig, Frank

    2017-05-01

    We employ the Arnowitt-Deser-Misner formalism to study the renormalization group flow of gravity minimally coupled to an arbitrary number of scalar, vector, and Dirac fields. The decomposition of the gravitational degrees of freedom into a lapse function, shift vector, and spatial metric equips spacetime with a preferred (Euclidean) "time"- direction. In this work, we provide a detailed derivation of the renormalization group flow of Newton's constant and the cosmological constant on a flat Friedmann-Robertson-Walker background. Adding matter fields, it is shown that their contribution to the flow is the same as in the covariant formulation and can be captured by two parameters d g d λ . We classify the resulting fixed point structure as a function of these parameters finding that the existence of non-Gaussian renormalization group fixed points is rather generic. In particular the matter content of the standard model and its most common extensions gives rise to one non-Gaussian fixed point with real critical exponents suitable for Asymptotic Safety. Moreover, we find non-Gaussian fixed points for any number of scalar matter fields, making the scenario attractive for cosmological model building.

  1. Extremal black holes, Stueckelberg scalars and phase transitions

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Miskovic, Olivera; Leon, Paula Quezada

    2018-02-01

    We calculate the entropy of a static extremal black hole in 4D gravity, non-linearly coupled to a massive Stueckelberg scalar. We find that the scalar field does not allow the black hole to be magnetically charged. We also show that the system can exhibit a phase transition due to electric charge variations. For spherical and hyperbolic horizons, the critical point exists only in presence of a cosmological constant, and if the scalar is massive and non-linearly coupled to electromagnetic field. On one side of the critical point, two extremal solutions coexist: Reissner-Nordström (A)dS black hole and the charged hairy (A)dS black hole, while on the other side of the critical point the black hole does not have hair. A near-critical analysis reveals that the hairy black hole has larger entropy, thus giving rise to a zero temperature phase transition. This is characterized by a discontinuous second derivative of the entropy with respect to the electric charge at the critical point. The results obtained here are analytical and based on the entropy function formalism and the second law of thermodynamics.

  2. Weakening gravity on redshift-survey scales with kinetic matter mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field asmore » well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.« less

  3. Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moderski, Rafal; Rogatko, Marek

    2001-08-15

    We investigate the late-time tails of self-interacting (massive) scalar fields in the spacetime of a dilaton black hole. Following the no hair theorem we examine the mechanism by which self-interacting scalar hair decays. We reveal that the intermediate asymptotic behavior of the considered field perturbations is dominated by an oscillatory inverse power-law decaying tail. The numerical simulations show that at very late time, massive self-interacting scalar hair decays slower than any power law.

  4. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  5. Holographic constraints on Bjorken hydrodynamics at finite coupling

    NASA Astrophysics Data System (ADS)

    DiNunno, Brandon S.; Grozdanov, Sašo; Pedraza, Juan F.; Young, Steve

    2017-10-01

    In large- N c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.

  6. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  7. Anisotropic string cosmological model in Brans–Dicke theory of gravitation with time-dependent deceleration parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage ofmore » the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.« less

  8. An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations

    NASA Astrophysics Data System (ADS)

    Bernede, Adrien; Poëtte, Gaël

    2018-02-01

    In this paper, we are interested in the resolution of the time-dependent problem of particle transport in a medium whose composition evolves with time due to interactions. As a constraint, we want to use of Monte-Carlo (MC) scheme for the transport phase. A common resolution strategy consists in a splitting between the MC/transport phase and the time discretization scheme/medium evolution phase. After going over and illustrating the main drawbacks of split solvers in a simplified configuration (monokinetic, scalar Bateman problem), we build a new Unsplit MC (UMC) solver improving the accuracy of the solutions, avoiding numerical instabilities, and less sensitive to time discretization. The new solver is essentially based on a Monte Carlo scheme with time dependent cross sections implying the on-the-fly resolution of a reduced model for each MC particle describing the time evolution of the matter along their flight path.

  9. Scale factor duality for conformal cyclic cosmologies

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.

    2016-11-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  10. On the late-time cosmology of a condensed scalar field

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-04-01

    We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.

  11. The cosmological Higgstory of the vacuum instability

    DOE PAGES

    Espinosa, José R.; Giudice, Gian F.; Morgante, Enrico; ...

    2015-09-24

    We report that the Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. From this result, we derive upper bounds on the Hubble constant during inflation, which depend on the reheating temperature and on the Higgs coupling to the scalar curvature or to the inflaton. Finallymore » we study how a speculative link between Higgs meta-stability and consistence of quantum gravity leads to a sharp prediction for the Higgs and top masses, which is consistent with measured values.« less

  12. Scalar dissipation rates in non-conservative transport systems

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2014-01-01

    This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457

  13. General dynamical properties of cosmological models with nonminimal kinetic coupling

    NASA Astrophysics Data System (ADS)

    Matsumoto, Jiro; Sushkov, Sergey V.

    2018-01-01

    We consider cosmological dynamics in the theory of gravity with the scalar field possessing the nonminimal kinetic coupling to curvature given as η Gμνphi,μphi,ν, where η is an arbitrary coupling parameter, and the scalar potential V(phi) which assumed to be as general as possible. With an appropriate dimensionless parametrization we represent the field equations as an autonomous dynamical system which contains ultimately only one arbitrary function χ (x)= 8 π | η | V(x/√8 π) with x=√8 πphi. Then, assuming the rather general properties of χ(x), we analyze stationary points and their stability, as well as all possible asymptotical regimes of the dynamical system. It has been shown that for a broad class of χ(x) there exist attractors representing three accelerated regimes of the Universe evolution, including de Sitter expansion (or late-time inflation), the Little Rip scenario, and the Big Rip scenario. As the specific examples, we consider a power-law potential V(phi)=M4(phi/phi0)σ, Higgs-like potential V(phi)=λ/4(phi2‑phi02)2, and exponential potential V(phi)=M4 e‑phi/phi0.

  14. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives.

    PubMed

    Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena

    2013-04-09

    (13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.

  15. Tensor perturbations during inflation in a spatially closed Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited tomore » the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.« less

  16. Search for light scalar dark matter with atomic gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken

    2018-04-01

    We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.

  17. Static black hole solutions with a self-interacting conformally coupled scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotti, Gustavo; Gleiser, Reinaldo J.; Martinez, Cristian

    2008-05-15

    We study static, spherically symmetric black hole solutions of the Einstein equations with a positive cosmological constant and a conformally coupled self-interacting scalar field. Exact solutions for this model found by Martinez, Troncoso, and Zanelli were subsequently shown to be unstable under linear gravitational perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of static, spherically symmetric solutions that have a regular horizon--and satisfy the weak and dominant energy conditions outside the horizon--is a singular subset of a two-dimensional space parametrized by the horizon radius and the value of the scalar field at the horizon. Themore » singularity of this space of solutions provides an explanation for the instability of the Martinez, Troncoso, and Zanelli spacetimes and leads to the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole solutions for this system that contain a cosmological horizon in the exterior of its event horizon.« less

  18. Symmetry Breaking in a random passive scalar

    NASA Astrophysics Data System (ADS)

    Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto

    2017-11-01

    We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less

  20. A proposed experimental search for chameleons using asymmetric parallel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: ed.copeland@nottingham.ac.uk, E-mail: james.stevenson@nottingham.ac.uk

    2016-08-01

    Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate howmore » experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.« less

  1. Scalar fields in black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, Paul

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  3. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald; Solà, Joan; Nunes, Rafael C.

    2017-03-01

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance Λ CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level ≳ 3σ . Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the "micro-macro connection" (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).

  4. Stability of Gauss-Bonnet black holes in anti-de Sitter space-time against scalar field condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brihaye, Yves; Hartmann, Betti

    We study the stability of static, hyperbolic Gauss-Bonnet black holes in (4+1)-dimensional anti-de Sitter (AdS) space-time against the formation of scalar hair. Close to extremality the black holes possess a near-horizon topology of AdS{sub 2}xH{sup 3} such that within a certain range of the scalar field mass one would expect that they become unstable to the condensation of an uncharged scalar field. We confirm this numerically and observe that there exists a family of hairy black hole solutions labeled by the number of nodes of the scalar field function. We construct explicit examples of solutions with a scalar field thatmore » possesses zero nodes, one node, and two nodes, respectively, and show that the solutions with nodes persist in the limit of Einstein gravity, i.e. for vanishing Gauss-Bonnet coupling. We observe that the interval of the mass for which scalar field condensation appears decreases with increasing Gauss-Bonnet coupling and/or with increasing node number.« less

  5. Interacting tachyon: Cosmological evolution for a tachyon and a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macorra, A. de la; Filobello, U.

    2008-01-15

    We study the cosmological evolution of a tachyon scalar field T with a Dirac-Born-Infeld type Lagrangian and potential V(T) coupled to a canonically normalized scalar field {phi} with an interaction term B(T,{phi}) in the presence of a barotropic fluid {rho}{sub b}, which can be matter or radiation. The force between the barotropic fluid and the scalar fields is only gravitational. We show that the dynamics is completely determined by only three parameters {lambda}{sub 1}=-V{sub T}/V{sup 3/2}, {lambda}{sub 2}=-B{sub T}/B{sup 3/2}, and {lambda}{sub 3}=-B{sub {phi}}/B. We determine analytically the conditions for {lambda}{sub i} under which the energy density of T, {phi},more » and {rho}{sub b} have the same redshift. We study the behavior of T and {phi} in the asymptotic limits for {lambda} and we show the numerical solution for different interesting cases. The effective equation of state for the tachyon field changes due to the interaction with the scalar field and we show that it is possible for a tachyon field to redshift as matter in the absence of an interaction term B and as radiation when B is turned on. This result solves then the tachyonic matter problem.« less

  6. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyaizu, Hiroaki; Hu, Wayne; Department of Astronomy and Astrophysics, University of Chicago, Chicago Illinois 60637

    2008-12-15

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if themore » background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.« less

  7. Spin connection as Lorentz gauge field in Fairchild’s action

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo

    2016-06-01

    We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.

  8. Tachyon constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  9. Weyl current, scale-invariant inflation, and Planck scale generation

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2017-02-08

    Scalar fields,more » $$\\phi$$ i, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including M P=0; (ii) the $$\\phi$$ i have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, K($$\\phi$$ i)=constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. Finally, these models are governed by a global Weyl scale symmetry and its conserved current, K μ. At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.« less

  10. Lagrangian model for the evolution of turbulent magnetic and passive scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hater, T.; Grauer, R.; Homann, H.

    2011-01-15

    In this Brief Report we present an extension of the recent fluid deformation (RFD) closure introduced by Chevillard and Meneveau [L. Chevillard and C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)] which was developed for modeling the time evolution of Lagrangian fluctuations in incompressible Navier-Stokes turbulence. We apply the RFD closure to study the evolution of magnetic and passive scalar fluctuations. This comparison is especially interesting since the stretching term for the magnetic field and for the gradient of the passive scalar are similar but differ by a sign such that the effect of stretching and compression by the turbulentmore » velocity field is reversed. Probability density functions (PDFs) of magnetic fluctuations and fluctuations of the gradient of the passive scalar obtained from the RFD closure are compared against PDFs obtained from direct numerical simulations.« less

  11. On degenerate metrics, dark matter and unification

    NASA Astrophysics Data System (ADS)

    Searight, Trevor P.

    2017-12-01

    A five-dimensional theory of relativity is presented which suggests that gravitation and electromagnetism may be unified using a degenerate metric. There are four fields (in the four-dimensional sense): a tensor field, two vector fields, and a scalar field, and they are unified with a combination of a gauge-like invariance and a reflection symmetry which means that both vector fields are photons. The gauge-like invariance implies that the fifth dimension is not directly observable; it also implies that charge is a constant of motion. The scalar field is analogous to the Brans-Dicke scalar field, and the theory tends towards the Einstein-Maxwell theory in the limit as the coupling constant tends to infinity. As there is some scope for fields to vary in the fifth dimension, it is possible for the photons to have wave behaviour in the fifth dimension. The wave behaviour has two effects: it gives mass to the photons, and it prevents them from interacting directly with normal matter. These massive photons still act as a source of gravity, however, and therefore they are candidates for dark matter.

  12. Singular cosmological evolution using canonical and ghost scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of amore » Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.« less

  13. Emergent gravity from vanishing energy-momentum tensor

    DOE PAGES

    Carone, Christopher D.; Erlich, Joshua; Vaman, Diana

    2017-03-27

    A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less

  14. Out-of-time-order correlators in finite open systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gorshkov, A. V.; Galitski, V.

    2018-04-01

    We study out-of-time-order correlators (OTOCs) of the form for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially ∝∑aie-t /τi+const to a constant value at t →∞ , in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focusing on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.

  15. When is the growth index constant?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polarski, David; Starobinsky, Alexei A.; Giacomini, Hector, E-mail: david.polarski@umontpellier.fr, E-mail: alstar@landau.ac.ru, E-mail: hector.giacomini@lmpt.univ-tours.fr

    The growth index γ is an interesting tool to assess the phenomenology of dark energy (DE) models, in particular of those beyond general relativity (GR). We investigate the possibility for DE models to allow for a constant γ during the entire matter and DE dominated stages. It is shown that if DE is described by quintessence (a scalar field minimally coupled to gravity), this behaviour of γ is excluded either because it would require a transition to a phantom behaviour at some finite moment of time, or, in the case of tracking DE at the matter dominated stage, because themore » relative matter density Ω {sub m} appears to be too small. An infinite number of solutions, with Ω {sub m} and γ both constant, are found with w {sub DE} = 0 corresponding to Einstein-de Sitter universes. For all modified gravity DE models satisfying G {sub eff} ≥ G , among them the f ( R ) DE models suggested in the literature, the condition to have a constant w {sub DE} is strongly violated at the present epoch. In contrast, DE tracking dust-like matter deep in the matter era, but with Ω {sub m} <1, requires G {sub eff} > G and an example is given using scalar-tensor gravity for a range of admissible values of γ. For constant w {sub DE} inside GR, departure from a quasi-constant value is limited until today. Even a large variation of w {sub DE} may not result in a clear signature in the change of γ. The change however is substantial in the future and the asymptotic value of γ is found while its slope with respect to Ω {sub m} (and with respect to z ) diverges and tends to −∞.« less

  16. Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-03-01

    We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.

  17. Cosmological perturbations in mimetic Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Arroja, Frederico; Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino

    2016-04-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic G3 theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  18. Darkflation-One scalar to rule them all?

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Nakonieczny, Łukasz

    2017-03-01

    The problem of explaining both inflationary and dark matter physics in the framework of a minimal extension of the Standard Model was investigated. To this end, the Standard Model completed by a real scalar singlet playing a role of the dark matter candidate has been considered. We assumed both the dark matter field and the Higgs doublet to be nonminimally coupled to gravity. Using quantum field theory in curved spacetime we derived an effective action for the inflationary period and analyzed its consequences. In this approach, after integrating out both dark matter and Standard Model sectors we obtained the effective action expressed purely in terms of the gravitational field. We paid special attention to determination, by explicit calculations, of the form of coefficients controlling the higher-order in curvature gravitational terms. Their connection to the Standard Model coupling constants has been discussed.

  19. Dispersive analysis of the scalar form factor of the nucleon

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Ditsche, C.; Kubis, B.; Meißner, U.-G.

    2012-06-01

    Based on the recently proposed Roy-Steiner equations for pion-nucleon ( πN) scattering [1], we derive a system of coupled integral equations for the π π to overline N N and overline K K to overline N N S-waves. These equations take the form of a two-channel Muskhelishvili-Omnès problem, whose solution in the presence of a finite matching point is discussed. We use these results to update the dispersive analysis of the scalar form factor of the nucleon fully including overline K K intermediate states. In particular, we determine the correction {Δ_{σ }} = σ ( {2M_{π }^2} ) - {σ_{{π N}}} , which is needed for the extraction of the pion-nucleon σ term from πN scattering, as a function of pion-nucleon subthreshold parameters and the πN coupling constant.

  20. Phantom energy mediates a long-range repulsive force.

    PubMed

    Amendola, Luca

    2004-10-29

    Scalar field models with nonstandard kinetic terms have been proposed in the context of k inflation, of Born-Infeld Lagrangians, of phantom energy and, more in general, of low-energy string theory. In general, scalar fields are expected to couple to matter inducing a new interaction. In this Letter I derive the cosmological perturbation equations and the Yukawa correction to gravity for such general models. I find three interesting results: first, when the field behaves as phantom energy (equation of state less than -1), then the coupling strength is negative, inducing a long-range repulsive force; second, the dark-energy field might cluster on astrophysical scales; third, applying the formalism to a Brans-Dicke theory with a general kinetic term it is shown that its Newtonian effects depend on a single parameter that generalizes the Brans-Dicke constant.

  1. Phenomenology of the SU(3)_c⊗ SU(3)_L⊗ U(1)_X model with right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Gutiérrez, D. A.; Ponce, W. A.; Sánchez, L. A.

    2006-05-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)_c⊗ SU(3)_L⊗ U(1)_X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  2. Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with exotic charged leptons

    NASA Astrophysics Data System (ADS)

    Salazar, Juan C.; Ponce, William A.; Gutiérrez, Diego A.

    2007-04-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  3. A novel way to determine the scale of inflation

    NASA Astrophysics Data System (ADS)

    Enqvist, Kari; Hardwick, Robert J.; Tenkanen, Tommi; Vennin, Vincent; Wands, David

    2018-02-01

    We show that in the Feebly Interacting Massive Particle (FIMP) model of Dark Matter (DM), one may express the inflationary energy scale H* as a function of three otherwise unrelated quantities, the DM isocurvature perturbation amplitude, its mass and its self-coupling constant, independently of the tensor-to-scalar ratio. The FIMP model assumes that there exists a real scalar particle that alone constitutes the DM content of the Universe and couples to the Standard Model via a Higgs portal. We consider carefully the various astrophysical, cosmological and model constraints, accounting also for variations in inflationary dynamics and the reheating history, to derive a robust estimate for H* that is confined to a relatively narrow range. We point out that, within the context of the FIMP DM model, one may thus determine H* reliably even in the absence of observable tensor perturbations.

  4. The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Adalto R.; Amendola, Luca, E-mail: argomes.ufma@gmail.com, E-mail: l.amendola@thphys.uni-heidelberg.de

    We consider the general scalar field Horndeski Lagrangian coupled to dark matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of dark matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problemmore » since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.« less

  5. Soft inflation

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  6. Soft inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  7. Holographic reconstruction of scalar fields in extended Kaluza-Klein cosmology

    NASA Astrophysics Data System (ADS)

    Korunur, Murat

    2018-01-01

    In recent years, many studies have been conducted to reconstruct the physical properties of scalar fields by establishing a connection between some energy densities and a scalar field of dark energies. In this paper, using the extended five-dimensional (5D) Kaluza-Klein model, we establish a correspondence among modified holographic dark energy and the tachyon, K-essence and dilaton scalar-field models. We also graphically illustrate the evolution of the equation-of-state parameter versus time.

  8. Gap solitons in PT-symmetric optical lattices with higher-order diffraction.

    PubMed

    Ge, Lijuan; Shen, Ming; Ma, Chunlan; Zang, Taocheng; Dai, Lu

    2014-12-01

    The existence and stability of gap solitons are investigated in the semi-infinite gap of a parity-time (PT)-symmetric periodic potential (optical lattice) with a higher-order diffraction. The Bloch bands and band gaps of this PT-symmetric optical lattice depend crucially on the coupling constant of the fourth-order diffraction, whereas the phase transition point of this PT optical lattice remains unchangeable. The fourth-order diffraction plays a significant role in destabilizing the propagation of dipole solitons. Specifically, when the fourth-order diffraction coupling constant increases, the stable region of the dipole solitons shrinks as new regions of instability appear. However, fundamental solitons are found to be always linearly stable with arbitrary positive value of the coupling constant. We also investigate nonlinear evolution of the PT solitons under perturbation.

  9. String solutions in spherically-symmetric f(R) gravity vacuum

    NASA Astrophysics Data System (ADS)

    Dil, Emre

    Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.

  10. Pure-phase selective excitation in fast-relaxing systems.

    PubMed

    Zangger, K; Oberer, M; Sterk, H

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T(2) relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90 degrees pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD). Copyright 2001 Academic Press.

  11. Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zi, Tieguang; Zhang, Hongbao

    2018-04-01

    We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T

  12. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy

    PubMed Central

    Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt

    1998-01-01

    This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668

  13. Gauge-flation confronted with Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco, E-mail: namba@physics.umn.edu, E-mail: ema@physics.umn.edu, E-mail: peloso@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strongmore » tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.« less

  14. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  15. Holographic RG flows from Quasi-Topological Gravity

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Sotkov, G. M.

    2013-09-01

    We investigate the holographic Renormalization Group (RG) flows and the critical phenomena that take place in the QFT's dual to the d-dimensional cubic Quasi-Topological Gravity coupled to scalar matter. The knowledge of the corresponding flat Domain Walls (DW's) solutions allows us to derive the explicit form of the QFT's β-functions, as well as of the trace anomalies a(l) and c(l), in terms of the matter superpotential. As a consequence we are able to determine the complete set of CFT data characterizing the universality classes of the UV and IR critical points and to follow the particular RG evolution of this data. We further analyse the dependence of the critical properties of such dual QFT's on the values of the Lovelock couplings and on the shape of the superpotential. For odd values of d, the explicit form of the "a and c-central charges" as functions of the running coupling constant, enable us to establish the conditions under which the a&c-Theorems for their decreasing are valid. The restrictions imposed on the massless holographic RG flows by the requirements of the positivity of the energy fluxes are derived. The particular case of quartic Higgs-like superpotential is studied in detail. It provides an example of unitary dual QFT's having few c≠a-critical points representing second or infinite order phase transitions. Depending on the range of the values of the coupling constant they exhibit massive and massless phases, described by a chain of distinct DW's solutions sharing common boundaries. Remember that the definition of the new maximal "h-scale" in the case of negative h<0 is given by fh=L2/(.

  16. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R., E-mail: lukas.hollenstein@cea.fr, E-mail: jain@cp3.dias.sdu.dk, E-mail: furban@ulb.ac.be

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeablemore » conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.« less

  17. Nonequilibrium evolution of scalar fields in FRW cosmologies

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Holman, R.

    1994-03-01

    We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.

  18. FRW cosmological models in Brans-Dicke theory of gravity with variable q and dynamical \\varLambda-term

    NASA Astrophysics Data System (ADS)

    Chand, Avtar; Mishra, R. K.; Pradhan, Anirudh

    2016-02-01

    Exact solution of modified Einstein's field equations are considered within the scope of spatially homogeneous and isotropic Fraidmann-Robertson-Walker (FRW) space-time filled with perfect fluid in the frame work of Brans-Dicke scalar-tensor theory of gravity. In this paper we have investigated the flat, open and closed FRW models and the effect of dynamic cosmological term on the evolution of the universe. Two types of FRW cosmological models are obtained by setting the power law between the scalar field φ and the scale factor a and deceleration parameter (DP) q as a time dependent. The concept of time dependent DP with some proper assumptions yield two type of the average scale factors (i) a(t)=[sinh(α t)]^{1/n} and (ii) a(t)=[t^{α}et]^{1/n}, α and n≠ 0 are arbitrary constants. In case (i), for 0 < n ≤ 1, it generates a class of accelerating models while for n > 1, the models of the universe exhibit phase transition from early decelerating to present accelerating phase and the transition redshift zt has been calculated and found to be in good agreement with the results from recent astrophysical observations. In case (ii), for n ≥ 2 and α = 1, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. Taking into consideration the observational data, we conclude that the cosmological constant behaves as a positive decreasing function of time. The physical and geometric properties of the models are also discussed with the help of graphical presentations.

  19. Phenomenology of fermion production during axion inflation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo

    2018-06-01

    We study the production of fermions through a derivative coupling with a pseudoscalar inflaton and the effects of the produced fermions on the scalar primordial perturbations. We present analytic results for the modification of the scalar power spectrum due to the produced fermions, and we estimate the amplitude of the non-Gaussianities in the equilateral regime. Remarkably, we find a regime where the effect of the fermions gives the dominant contribution to the scalar spectrum while the amplitude of the bispectrum is small and in agreement with observation. We also note the existence of a regime in which the backreaction of the fermions on the evolution of the zero-mode of the inflaton can lead to inflation even if the potential of the inflaton is steep and does not satisfy the slow-roll conditions.

  20. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  1. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  2. Computing the scalar field couplings in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Saidi, El Hassan

    2008-11-01

    Using non-chiral supersymmetry in 6D space-time, we compute the explicit expression of the metric the scalar manifold SO(1,1)×{SO(4,20)}/{SO(4)×SO(20)} of the ten-dimensional type IIA superstring on generic K3. We consider as well the scalar field self-couplings in the general case where the non-chiral 6D supergravity multiplet is coupled to generic n vector supermultiplets with moduli space SO(1,1)×{SO(4,n)}/{SO(4)×SO(n)}. We also work out a dictionary giving a correspondence between hyper-Kähler geometry and the Kähler geometry of the Coulomb branch of 10D type IIA on Calabi-Yau threefolds. Others features are also discussed.

  3. Superconducting dark energy

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Harko, Tiberiu

    2015-04-01

    Based on the analogy with superconductor physics we consider a scalar-vector-tensor gravitational model, in which the dark energy action is described by a gauge invariant electromagnetic type functional. By assuming that the ground state of the dark energy is in a form of a condensate with the U(1) symmetry spontaneously broken, the gauge invariant electromagnetic dark energy can be described in terms of the combination of a vector and of a scalar field (corresponding to the Goldstone boson), respectively. The gravitational field equations are obtained by also assuming the possibility of a nonminimal coupling between the cosmological mass current and the superconducting dark energy. The cosmological implications of the dark energy model are investigated for a Friedmann-Robertson-Walker homogeneous and isotropic geometry for two particular choices of the electromagnetic type potential, corresponding to a pure electric type field, and to a pure magnetic field, respectively. The time evolutions of the scale factor, matter energy density and deceleration parameter are obtained for both cases, and it is shown that in the presence of the superconducting dark energy the Universe ends its evolution in an exponentially accelerating vacuum de Sitter state. By using the formalism of the irreversible thermodynamic processes for open systems we interpret the generalized conservation equations in the superconducting dark energy model as describing matter creation. The particle production rates, the creation pressure and the entropy evolution are explicitly obtained.

  4. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan; Wardell, Barry

    2017-04-01

    If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.

  5. Dilatonic imprints on exact gravitational wave signatures

    NASA Astrophysics Data System (ADS)

    McCarthy, Fiona; KubizÅák, David; Mann, Robert B.

    2018-05-01

    By employing the moduli space approximation, we analytically calculate the gravitational wave signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several values of the dilatonic coupling constant a , and find significant departures from the Einstein-Maxwell (a =0 ) counterpart studied in [Phys. Rev. D 96, 061501 (2017), 10.1103/PhysRevD.96.061501]. For (low-energy) string theory black holes (a =1 ) there are no coalescence orbits and only a memory effect is observed, whereas for an intermediate value of the coupling (a =1 /√{3 } ) the late-time merger signature becomes exponentially suppressed, compared to the polynomial decay in the a =0 case without a dilaton. Such an imprint shows a clear difference between the case with and without a scalar field (as, for example, predicted by string theory) in black hole mergers.

  6. Constant-roll tachyon inflation and observational constraints

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  7. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    PubMed

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  8. Manifestations of Dark matter and variation of the fundamental constants in atomic and astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2016-05-01

    Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].

  9. 2PI effective theory at next-to-leading order using the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Carrington, M. E.; Friesen, S. A.; Meggison, B. A.; Phillips, C. D.; Pickering, D.; Sohrabi, K.

    2018-02-01

    We consider a symmetric scalar theory with quartic coupling in four dimensions. We show that the four-loop 2PI calculation can be done using a renormalization group method. The calculation involves one bare coupling constant which is introduced at the level of the Lagrangian and is therefore conceptually simpler than a standard 2PI calculation, which requires multiple counterterms. We explain how our method can be used to do the corresponding calculation at the 4PI level, which cannot be done using any known method by introducing counterterms.

  10. Selective Data Acquisition in NMR. The Quantification of Anti-phase Scalar Couplings

    NASA Astrophysics Data System (ADS)

    Hodgkinson, P.; Holmes, K. J.; Hore, P. J.

    Almost all time-domain NMR experiments employ "linear sampling," in which the NMR response is digitized at equally spaced times, with uniform signal averaging. Here, the possibilities of nonlinear sampling are explored using anti-phase doublets in the indirectly detected dimensions of multidimensional COSY-type experiments as an example. The Cramér-Rao lower bounds are used to evaluate and optimize experiments in which the sampling points, or the extent of signal averaging at each point, or both, are varied. The optimal nonlinear sampling for the estimation of the coupling constant J, by model fitting, turns out to involve just a few key time points, for example, at the first node ( t= 1/ J) of the sin(π Jt) modulation. Such sparse sampling patterns can be used to derive more practical strategies, in which the sampling or the signal averaging is distributed around the most significant time points. The improvements in the quantification of NMR parameters can be quite substantial especially when, as is often the case for indirectly detected dimensions, the total number of samples is limited by the time available.

  11. Vacuum structure and gravitational bags produced by metric-independent space-time volume-form dynamics

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-07-01

    We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

  12. Scalar field cosmology in f(R,T) gravity via Noether symmetry

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Nawazish, Iqra

    2018-04-01

    This paper investigates the existence of Noether symmetries of isotropic universe model in f(R,T) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular f(R,T) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes V(φ )≈ φ 2 for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.

  13. Gauge Field Localization on Deformed Branes

    NASA Astrophysics Data System (ADS)

    Tofighi, A.; Moazzen, M.; Farokhtabar, A.

    2016-02-01

    In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.

  14. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keresztes, Zoltán; Gergely, László Á., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: gergely@physx.u-szeged.hu

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates intomore » a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.« less

  15. Renormalization and radiative corrections to masses in a general Yukawa model

    NASA Astrophysics Data System (ADS)

    Fox, M.; Grimus, W.; Löschner, M.

    2018-01-01

    We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.

  16. BBN for the LHC: Constraints on lifetimes of the Higgs portal scalars

    NASA Astrophysics Data System (ADS)

    Fradette, Anthony; Pospelov, Maxim

    2017-10-01

    LHC experiments can provide a remarkable sensitivity to exotic metastable massive particles, decaying with significant displacement from the interaction point. The best sensitivity is achieved with models where the production and decay occur due to different coupling constants, and the lifetime of exotic particles determines the probability of decay within a detector. The lifetimes of such particles can be independently limited from standard cosmology, in particular, the big bang nucleosynthesis (BBN). In this paper, we analyze the constraints on the simplest scalar model coupled through the Higgs portal, where the production occurs via h →S S , and the decay is induced by the small mixing angle of the Higgs field h and scalar S . We find that throughout most of the parameter space, 2 mμ

  17. Generation of anisotropy in turbulent flows subjected to rapid distortion

    NASA Astrophysics Data System (ADS)

    Clark, Timothy T.; Kurien, Susan; Rubinstein, Robert

    2018-01-01

    A computational tool for the anisotropic time-evolution of the spectral velocity correlation tensor is presented. We operate in the linear, rapid distortion limit of the mean-field-coupled equations. Each term of the equations is written in the form of an expansion to arbitrary order in the basis of irreducible representations of the SO(3) symmetry group. The computational algorithm for this calculation solves a system of coupled equations for the scalar weights of each generated anisotropic mode. The analysis demonstrates that rapid distortion rapidly but systematically generates higher-order anisotropic modes. To maintain a tractable computation, the maximum number of rotational modes to be used in a given calculation is specified a priori. The computed Reynolds stress converges to the theoretical result derived by Batchelor and Proudman [Quart. J. Mech. Appl. Math. 7, 83 (1954), 10.1093/qjmam/7.1.83] if a sufficiently large maximum number of rotational modes is utilized; more modes are required to recover the solution at later times. The emergence and evolution of the underlying multidimensional space of functions is presented here using a 64-mode calculation. Alternative implications for modeling strategies are discussed.

  18. f(T,T) gravity and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.

    2014-12-01

    We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-dividemore » crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.« less

  19. Gravitational waves in theories with a non-minimal curvature-matter coupling

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu; Gomes, Cláudio; Lobo, Francisco S. N.

    2018-04-01

    Gravitational waves in the presence of a non-minimal curvature-matter coupling are analysed, both in the Newman-Penrose and perturbation theory formalisms. Considering a cosmological constant as a source, the non-minimally coupled matter-curvature model reduces to f( R) theories. This is in good agreement with the most recent data. Furthermore, a dark energy-like fluid is briefly considered, where the propagation equation for the tensor modes differs from the previous scenario, in that the scalar mode equation has an extra term, which can be interpreted as the longitudinal mode being the result of the mixture of two fundamental excitations δ R and δ ρ.

  20. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  1. "Big Bang" as a result result of the curvature-driven first-order phase transition in the early cold Universe

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.; Pentegov, V. I.

    We suggest that the "Big Bang" may be a result of the first-order phase transition driven by changing scalar curvature of the 4D space-time in the expanding cold Universe, filled with nonlinear scalar field φ and neutral matter with equation of state p = vɛ (where p and ɛ are pressure and energy density of matter). We consider a Lagrangian for scalar field in curved space-time with nonlinearity φ, which along with the quadratic term -ΣR|φ|2 (where Σ is interaction constant and R is scalar curvature) contains a term ΣR(φ +φ+) linear in φ. Due to this term the condition for the extrema of the potential energy of the scalar field is given by a cubic equation. Provided v > 1/3 the scalar curvature R = [κ(3v-1)ɛ - 4Γ (where κ and Γ are Einstein's gravitational and cosmological constants) decreases along with decreasing " in the process of the Universe's expansion, and at some critical value Rc < 0 a first-order phase transition occurs, driven by an "external field" parameter proportional to R. Given certain conditions the critical radius of the early Universe at the point of the first-order phase transition may reach arbitrary large values, so this scenario of unrestricted "inflation" of the Universe may be called "hyperinflation". Beyond the point of phase transition the system is rolling down into the potential minimum releasing the potential energy of scalar field with subsequent powerful heating of the Universe playing the role of "Big Bang".

  2. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  3. Heavy-to-light scalar form factors from Muskhelishvili-Omnès dispersion relations

    NASA Astrophysics Data System (ADS)

    Yao, D.-L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.-K.; Nieves, J.

    2018-04-01

    By solving the Muskhelishvili-Omnès integral equations, the scalar form factors of the semileptonic heavy meson decays D→ π \\bar{ℓ }ν _ℓ , D→ {\\bar{K}} \\bar{ℓ }ν _ℓ , {\\bar{B}}→ π ℓ \\bar{ν }_ℓ and {\\bar{B}}_s→ K ℓ \\bar{ν }_ℓ are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omnès matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q^2=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q^2=0, we obtain |V_{cd}|=0.244± 0.022, |V_{cs}|=0.945± 0.041 and |V_{ub}|=(4.3± 0.7)× 10^{-3} for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q^2=0: |f_+^{D→ η }(0)|=0.01± 0.05, |f_+^{D_s→ K}(0)|=0.50 ± 0.08, |f_+^{D_s→ η }(0)|=0.73± 0.03 and |f_+^{{\\bar{B}}→ η }(0)|=0.82 ± 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q^2-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.

  4. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  5. Support for the existence of invertible maps between electronic densities and non-analytic 1-body external potentials in non-relativistic time-dependent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mosquera, Martín A.

    2017-10-01

    Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.

  6. Quantum to classical transition in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lombardo, Fernando C.

    1998-12-01

    We study the quatum to classical transition process in the context of quantum field theory. Extending the influence functional formalism of Feynman and Vernon, we study the decoherence process for self-interacting quantum fields in flat space. We also use this formalism for arbitrary geometries to analyze the quantum to classical transition in quantum gravity. After summarizing the main results known for the quantum Brownian motion, we consider a self-interacting field theory in Minkowski spacetime. We compute a coarse grained effective action by integrating out the field modes with wavelength shorter than a critical value. From this effective action we obtain the evolution equation for the reduced density matrix (master equation). We compute the diffusion coefficients for this equation and analyze the decoherence induced on the long-wavelength modes. We generalize the results to the case of a conformally coupled scalar field in de Sitter spacetime. We show that the decoherence is effective as long as the critical wavelength is taken to be not shorter than the Hubble radius. On the other hand, we study the classical limit for scalar-tensorial models in two dimensions. We consider different couplings between the dilaton and the scalar field. We discuss the Hawking radiation process and, from an exact evaluation of the influence functional, we study the conditions by which decoherence ensures the validity of the semiclassical approximation in cosmological metrics. Finally we consider four dimensional models with massive scalar fields, arbitrary coupled to the geometry. We compute the Einstein-Langevin equations in order to study the effect of the fluctuations induced by the quantum fields on the classical geometry.

  7. Search for bosonic super-WIMP interactions with the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-12-01

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  8. Nonparametric Determination of Redshift Evolution Index of Dark Energy

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri

    We propose a nonparametric method to determine the sign of γ — the redshift evolution index of dark energy. This is important for distinguishing between positive energy models, a cosmological constant, and what is generally called ghost models. Our method is based on geometrical properties and is more tolerant to uncertainties of other cosmological parameters than fitting methods in what concerns the sign of γ. The same parametrization can also be used for determining γ and its redshift dependence by fitting. We apply this method to SNLS supernovae and to gold sample of re-analyzed supernovae data from Riess et al. Both datasets show strong indication of a negative γ. If this result is confirmed by more extended and precise data, many of the dark energy models, including simple cosmological constant, standard quintessence models without interaction between quintessence scalar field(s) and matter, and scaling models are ruled out. We have also applied this method to Gurzadyan-Xue models with varying fundamental constants to demonstrate the possibility of using it to test other cosmologies.

  9. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    NASA Astrophysics Data System (ADS)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  10. Vector boson star solutions with a quartic order self-interaction

    NASA Astrophysics Data System (ADS)

    Minamitsuji, Masato

    2018-05-01

    We investigate boson star (BS) solutions in the Einstein-Proca theory with the quartic order self-interaction of the vector field λ (AμA¯ μ)2/4 and the mass term μ A¯ μAμ/2 , where Aμ is the complex vector field and A¯μ is the complex conjugate of Aμ, and λ and μ are the coupling constant and the mass of the vector field, respectively. The vector BSs are characterized by the two conserved quantities, the Arnowitt-Deser-Misner (ADM) mass and the Noether charge associated with the global U (1 ) symmetry. We show that in comparison with the case without the self-interaction λ =0 , the maximal ADM mass and Noether charge increase for λ >0 and decrease for λ <0 . We also show that there exists the critical central amplitude of the temporal component of the vector field above which there is no vector BS solution, and for λ >0 it can be expressed by the simple analytic expression. For a sufficiently large positive coupling Λ ≔Mpl2λ /(8 π μ2)≫1 , the maximal ADM mass and Noether charge of the vector BSs are obtained from the critical central amplitude and of O [√{λ }Mpl3/μ2ln (λ Mpl2/μ2)] , which is different from that of the scalar BSs, O (√{λϕ }Mpl3/μϕ2) , where λϕ and μϕ are the coupling constant and the mass of the complex scalar field.

  11. Detecting dark energy in orbit: The cosmological chameleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2004-12-15

    We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractormore » is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.« less

  12. Scalar-tensor Theories of Gravity: Some personal history

    NASA Astrophysics Data System (ADS)

    Brans, Carl H.

    2008-12-01

    From a perspective of some 50 years or more, this paper reviews my recall of the early days of scalar-tensor alternatives to standard Einstein general relativistic theory of gravity. Of course, the story begins long before my involvement, going back to the proposals of Nordström in 1914, and that of Kaluza, Klein, et al., a few years later, sol include reviews of these seminal ideas and those that followed in the 1920's through the 1940's. This early work concerned the search for a Unified Field Theory, unifying gravity and Electromagnetism, using five dimensional manifolds. This formalism included not only the electromagnetic spacetime vector potential within the five-metric, but also a spacetime scalar as the five-five metric component. Although this was at first regarded more as a nuisance, to be set to a constant, it turned out later that Fierz, Jordan, Einstein and Bergmann noticed that this scalar could be a field, possibly related to the Newtonian gravitational constant. Relatively little theoretical and experimental attention was given to these ideas until after the second world war when Bob Dicke, motivated by the ideas of Mach, Dirac, and others, suggested that this additional scalar, coupled only to the metric and matter, could provide a reasonable and viable alternative to standard Einstein theory. This is the point of my direct involvement with these topics. However, it was Dicke's prominence and expertise in experimental work, together with the blossoming of NASA's experimental tools, that caused the explosion of interest, experimental and theoretical, in this possible alternative to standard Einstein theory. This interest has waxed and waned over the last 50 years, and we summarize some of this work.

  13. LHC constraints on color octet scalars

    NASA Astrophysics Data System (ADS)

    Hayreter, Alper; Valencia, German

    2017-08-01

    We extract constraints on the parameter space of the Manohar and Wise model by comparing the cross sections for dijet, top-pair, dijet-pair, t t ¯t t ¯ and b b ¯b b ¯ productions at the LHC with the strongest available experimental limits from ATLAS or CMS at 8 or 13 TeV. Overall we find mass limits around 1 TeV in the most sensitive regions of parameter space, and lower elsewhere. This is at odds with generic limits for color octet scalars often quoted in the literature where much larger production cross sections are assumed. The constraints that can be placed on coupling constants are typically weaker than those from existing theoretical considerations, with the exception of the parameter ηD.

  14. Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

    NASA Astrophysics Data System (ADS)

    Halnon, Theodore; Bojowald, Martin

    2017-01-01

    In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.

  15. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  16. Running of scalar spectral index in multi-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org

    We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.

  17. The observational constraint on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2018-07-01

    We discuss the constant-roll inflation with constant ɛ2 and constant \\bar η . By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of ɛ1. The model with constant ɛ2 is ruled out by the observations at the 3σ confidence level, and the model with constant \\bar η is consistent with the observations at the 1σ confidence level. The potential for the model with constant \\bar η is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be the slow-roll inflation, the n s- r results from the constant-roll inflation are not the same as those from the slow-roll inflation even when \\bar η 0.01.

  18. Scalar decay in two-dimensional chaotic advection and Batchelor-regime turbulence

    NASA Astrophysics Data System (ADS)

    Fereday, D. R.; Haynes, P. H.

    2004-12-01

    This paper considers the decay in time of an advected passive scalar in a large-scale flow. The relation between the decay predicted by "Lagrangian stretching theories," which consider evolution of the scalar field within a small fluid element and then average over many such elements, and that observed at large times in numerical simulations, associated with emergence of a "strange eigenmode" is discussed. Qualitative arguments are supported by results from numerical simulations of scalar evolution in two-dimensional spatially periodic, time aperiodic flows, which highlight the differences between the actual behavior and that predicted by the Lagrangian stretching theories. In some cases the decay rate of the scalar variance is different from the theoretical prediction and determined globally and in other cases it apparently matches the theoretical prediction. An updated theory for the wavenumber spectrum of the scalar field and a theory for the probability distribution of the scalar concentration are presented. The wavenumber spectrum and the probability density function both depend on the decay rate of the variance, but can otherwise be calculated from the statistics of the Lagrangian stretching history. In cases where the variance decay rate is not determined by the Lagrangian stretching theory, the wavenumber spectrum for scales that are much smaller than the length scale of the flow but much larger than the diffusive scale is argued to vary as k-1+ρ, where k is wavenumber, and ρ is a positive number which depends on the decay rate of the variance γ2 and on the Lagrangian stretching statistics. The probability density function for the scalar concentration is argued to have algebraic tails, with exponent roughly -3 and with a cutoff that is determined by diffusivity κ and scales roughly as κ-1/2 and these predictions are shown to be in good agreement with numerical simulations.

  19. Future evolution in a backreaction model and the analogous scalar field cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Amna; Majumdar, A.S., E-mail: amnaalig@gmail.com, E-mail: archan@bose.res.in

    We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae,more » Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.« less

  20. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  1. Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-04-01

    In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.

  2. Vacuum polarization and classical self-action near higher-dimensional defects

    NASA Astrophysics Data System (ADS)

    Grats, Yuri V.; Spirin, Pavel

    2017-02-01

    We analyze the gravity-induced effects associated with a massless scalar field in a higher-dimensional spacetime being the tensor product of (d-n)-dimensional Minkowski space and n-dimensional spherically/cylindrically symmetric space with a solid/planar angle deficit. These spacetimes are considered as simple models for a multidimensional global monopole (if n≥slant 3) or cosmic string (if n=2) with (d-n-1) flat extra dimensions. Thus, we refer to them as conical backgrounds. In terms of the angular-deficit value, we derive the perturbative expression for the scalar Green function, valid for any d≥slant 3 and 2≤slant n≤slant d-1, and compute it to the leading order. With the use of this Green function we compute the renormalized vacuum expectation value of the field square {< φ {2}(x)rangle }_{ren} and the renormalized vacuum averaged of the scalar-field energy-momentum tensor {< T_{M N}(x)rangle }_{ren} for arbitrary d and n from the interval mentioned above and arbitrary coupling constant to the curvature ξ . In particular, we revisit the computation of the vacuum polarization effects for a non-minimally coupled massless scalar field in the spacetime of a straight cosmic string. The same Green function enables to consider the old purely classical problem of the gravity-induced self-action of a classical point-like scalar or electric charge, placed at rest at some fixed point of the space under consideration. To deal with divergences, which appear in consideration of the two problems, we apply the dimensional-regularization technique, widely used in quantum field theory. The explicit dependence of the results upon the dimensionalities of both the bulk and conical submanifold is discussed.

  3. Conserved charges of minimal massive gravity coupled to scalar field

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  4. Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.

    PubMed

    Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele

    2018-03-30

    We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.

  5. Structure formation in f(T) gravity and a solution for H0 tension

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.

    2018-05-01

    We investigate the evolution of scalar perturbations in f(T) teleparallel gravity and its effects on the cosmic microwave background (CMB) anisotropy. The f(T) gravity generalizes the teleparallel gravity which is formulated on the Weitzenböck spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. For the first time, we derive the observational constraints on the modified teleparallel gravity using the CMB temperature power spectrum from Planck's estimation, in addition to data from baryonic acoustic oscillations (BAO) and local Hubble constant measurements. We find that a small deviation of the f(T) gravity model from the ΛCDM cosmology is slightly favored. Besides that, the f(T) gravity model does not show tension on the Hubble constant that prevails in the ΛCDM cosmology. It is clear that f(T) gravity is also consistent with the CMB observations, and undoubtedly it can serve as a viable candidate amongst other modified gravity theories.

  6. Charged reflecting stars supporting charged massive scalar field configurations

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-03-01

    The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.

  7. Scalar solitons and the microscopic entropy of hairy black holes in three dimensions

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Martínez, Cristián; Troncoso, Ricardo

    2011-01-01

    General Relativity coupled to a self-interacting scalar field in three dimensions is shown to admit exact analytic soliton solutions, such that the metric and the scalar field are regular everywhere. Since the scalar field acquires slow fall-off at infinity, the soliton describes an asymptotically AdS spacetime in a relaxed sense as compared with the one of Brown and Henneaux. Nevertheless, the asymptotic symmetry group remains to be the conformal group, and the algebra of the canonical generators possesses the standard central extension. For this class of asymptotic behavior, the theory also admits hairy black holes which raises some puzzles concerning a holographic derivation of their entropy à la Strominger. Since the soliton is devoid of integration constants, it has a fixed (negative) mass, and it can be naturally regarded as the ground state of the "hairy sector", for which the scalar field is switched on. This assumption allows to exactly reproduce the semiclassical hairy black hole entropy from the asymptotic growth of the number of states by means of Cardy formula. Particularly useful is expressing the asymptotic growth of the number of states only in terms of the spectrum of the Virasoro operators without making any explicit reference to the central charges.

  8. Non-minimally coupled quintessence dark energy model with a cubic galileon term: a dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Somnath; Mukherjee, Pradip; Roy, Amit Singha; Saha, Anirban

    2018-03-01

    We consider a scalar field which is generally non-minimally coupled to gravity and has a characteristic cubic Galilean-like term and a generic self-interaction, as a candidate of a Dark Energy model. The system is dynamically analyzed and novel fixed points with perturbative stability are demonstrated. Evolution of the system is numerically studied near a novel fixed point which owes its existence to the Galileon character of the model. It turns out that demanding the stability of this novel fixed point puts a strong restriction on the allowed non-minimal coupling and the choice of the self-interaction. The evolution of the equation of state parameter is studied, which shows that our model predicts an accelerated universe throughout and the phantom limit is only approached closely but never crossed. Our result thus extends the findings of Coley, Dynamical systems and cosmology. Kluwer Academic Publishers, Boston (2013) for more general NMC than linear and quadratic couplings.

  9. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Milan; Singh, C. P.

    2018-06-01

    The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.

  10. Black holes in a cubic Galileon universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A.

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two ofmore » these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.« less

  11. Dedicated clock/timing-circuit theories of time perception and timed performance.

    PubMed

    van Rijn, Hedderik; Gu, Bon-Mi; Meck, Warren H

    2014-01-01

    Scalar Timing Theory (an information-processing version of Scalar Expectancy Theory) and its evolution into the neurobiologically plausible Striatal Beat-Frequency (SBF) theory of interval timing are reviewed. These pacemaker/accumulator or oscillation/coincidence detection models are then integrated with the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture as dedicated timing modules that are able to make use of the memory and decision-making mechanisms contained in ACT-R. The different predictions made by the incorporation of these timing modules into ACT-R are discussed as well as the potential limitations. Novel implementations of the original SBF model that allow it to be incorporated into ACT-R in a more fundamental fashion than the earlier simulations of Scalar Timing Theory are also considered in conjunction with the proposed properties and neural correlates of the "internal clock".

  12. The AdS{sub 5}xS{sup 5} superstring worldsheet S matrix and crossing symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janik, Romuald A.

    2006-04-15

    An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS{sub 5}xS{sup 5} superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS{sub 5}xS{sup 5} superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of themore » parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane.« less

  13. New charged black holes with conformal scalar hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anabalon, Andres; Centro de Estudios Cientificos; Maeda, Hideki

    A new class of four-dimensional, hairy, stationary solutions of the Einstein-Maxwell-{Lambda} system with a conformally coupled scalar field is obtained. The metric belongs to the Plebanski-Demianski family and hence its static limit has the form of the charged (A)dS C metric. It is shown that, in the static case, a new family of hairy black holes arises. They turn out to be cohomogeneity-two, with horizons that are neither Einstein nor homogenous manifolds. The conical singularities in the C metric can be removed due to the backreaction of the scalar field providing a new kind of regular, radiative spacetime. The scalarmore » field carries a continuous parameter proportional to the usual acceleration present in the C metric. In the zero-acceleration limit, the static solution reduces to the dyonic Bocharova-Bronnikov-Melnikov-Bekenstein solution or the dyonic extension of the Martinez-Troncoso-Zanelli black holes, depending on the value of the cosmological constant.« less

  14. Quintessential inflation from a variable cosmological constant in a 5D vacuum

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-10-01

    We explore an effective 4D cosmological model for the universe where the variable cosmological constant governs its evolution and the pressure remains negative along all the expansion. This model is introduced from a 5D vacuum state where the (space-like) extra coordinate is considered as noncompact. The expansion is produced by the inflaton field, which is considered as nonminimally coupled to gravity. We conclude from experimental data that the coupling of the inflaton with gravity should be weak, but variable in different epochs of the evolution of the universe.

  15. Shining light on modifications of gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine

    2012-10-01

    Many modifications of gravity introduce new scalar degrees of freedom, and in such theories matter fields typically couple to an effective metric that depends on both the true metric of spacetime and on the scalar field and its derivatives. Scalar field contributions to the effective metric can be classified as conformal and disformal. Disformal terms introduce gradient couplings between scalar fields and the energy momentum tensor of other matter fields, and cannot be constrained by fifth force experiments because the effects of these terms are trivial around static non-relativistic sources. The use of high-precision, low-energy photon experiments to search for conformally coupled scalar fields, called axion-like particles, is well known. In this article we show that these experiments are also constraining for disformal scalar field theories, and are particularly important because of the difficulty of constraining these couplings with other laboratory experiments.

  16. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, David F.; Winther, Hans A.

    2011-05-20

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less

  17. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  18. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  19. Chameleon scalar fields in relativistic gravitational backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less

  20. Neutrino Oscillations as a Probe of Light Scalar Dark Matter.

    PubMed

    Berlin, Asher

    2016-12-02

    We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.

  1. Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.

    PubMed

    Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

  2. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton

    NASA Astrophysics Data System (ADS)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-01

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10-12 eV (i.e., range larger than a few 1 05 m ), we improve existing constraints by one order of magnitude to |α |<10-11 if the scalar field couples to the baryon number and to |α |<10-12 if the scalar field couples to the difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10-12 eV , the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  3. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton.

    PubMed

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-06

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10^{-12}  eV (i.e., range larger than a few 10^{5}  m), we improve existing constraints by one order of magnitude to |α|<10^{-11} if the scalar field couples to the baryon number and to |α|<10^{-12} if the scalar field couples to the difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10^{-12}  eV, the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  4. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    NASA Astrophysics Data System (ADS)

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  5. Black hole hair formation in shift-symmetric generalised scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi

    2017-03-01

    A linear coupling between a scalar field and the Gauss-Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole and a collapsing dust star described by the Oppenheimer-Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse.

  6. Phase transition of charged-AdS black holes and quasinormal modes: A time domain analysis

    NASA Astrophysics Data System (ADS)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.

    2017-10-01

    In this work, we investigate the time evolution of a massless scalar perturbation around small and large RN-AdS4 black holes for the purpose of probing the thermodynamic phase transition. We show that below the critical point the scalar perturbation decays faster with increasing of the black hole size, both for small and large black hole phases. Our analysis of the time profile of quasinormal mode reveals a sharp distinction between the behaviors of both phases, providing a reliable tool to probe the black hole phase transition. However at the critical point P=Pc, as the black hole size extends, we note that the damping time increases and the perturbation decays faster, the oscillation frequencies raise either in small and large black hole phase. In this case the time evolution approach fails to track the AdS4 black hole phase.

  7. Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs

    NASA Astrophysics Data System (ADS)

    Caetano, João; Gürdoğan, Ömer; Kazakov, Vladimir

    2018-03-01

    We consider a special double scaling limit, recently introduced by two of the authors, combining weak coupling and large imaginary twist, for the γ-twisted N = 4 SYM theory. We also establish the analogous limit for ABJM theory. The resulting non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in the planar limit. In spite of the breakdown of conformality by double-trace interactions, most of the correlators for local operators of these theories are conformal, with non-trivial anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz (ABA) equations for multi-magnon states in these theories. Each entry of the mixing matrix of local conformal operators in the simplest of these theories — the bi-scalar model in 4D and tri-scalar model in 3D — is given by a single Feynman diagram at any given loop order. The related diagrams are in principle computable, up to a few scheme dependent constants, by integrability methods (quantum spectral curve or ABA). These constants should be fixed from direct computations of a few simplest graphs. This integrability-based method is advocated to be able to provide information about some high loop order graphs which are hardly computable by other known methods. We exemplify our approach with specific five-loop graphs.

  8. Relativistic Quark Model Based Description of Low Energy NN Scattering

    NASA Astrophysics Data System (ADS)

    Antalik, R.; Lyubovitskij, V. E.

    A model describing the NN scattering phase shifts is developed. Two nucleon interactions induced by meson exchange forces are constructed starting from π, η, η‧ pseudoscalar-, the ρ, ϕ, ω vector-, and the ɛ(600), a0, f0(1400) scalar — meson-nucleon coupling constants, which we obtained within a relativistic quantum field theory based quark model. Working within the Blankenbecler-Sugar-Logunov-Tavkhelidze quasipotential dynamics, we describe the NN phase shifts in a relativistically invariant way. In this procedure we use phenomenological form factor cutoff masses and effective ɛ and ω meson-nucleon coupling constants, only. Resulting NN phase shifts are in a good agreement with both, the empirical data, and the entirely phenomenological Bonn OBEP model fit. While the quality of our description, evaluated as a ratio of our results to the Bonn OBEP model χ2 ones is about 1.2, other existing (semi)microscopic results gave qualitative results only.

  9. The screening Horndeski cosmologies

    NASA Astrophysics Data System (ADS)

    Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.

    2016-06-01

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  10. Parity-violating CMB correlators with non-decaying statistical anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolo, Nicola; Matarrese, Sabino; Shiraishi, Maresuke

    2015-07-01

    We examine the effect induced on cosmological correlators by the simultaneous breaking of parity and of statistical isotropy. As an example of this, we compute the scalar-scalar, scalar-tensor, tensor-tensor and scalar-scalar-scalar cosmological correlators in presence of the coupling L = f(φ) ( − 1/4 F{sup 2} + γ/4 F ∼F ) between the inflaton φ and a vector field with vacuum expectation value  A. For a suitably chosen function f, the energy in the vector field ρ{sub A} does not decay during inflation. This results in nearly scale-invariant signatures of broken statistical isotropy and parity. Specifically, we find that the scalar-scalar correlator of primordial curvature perturbations includes a quadrupolar anisotropy, P{submore » ζ}(k) = P(k)[1+g{sub *}( k-circumflex ⋅Â){sup 2}], and a (angle-averaged) scalar bispectrum that is a linear combination of the first 3 Legendre polynomials, B{sub ζ}(k{sub 1}, k{sub 2}, k{sub 3}) = ∑{sub L} c{sub L} P{sub L} ( k-circumflex {sub 1} ⋅  k-circumflex {sub 2}) P(k{sub 1}) P(k{sub 2}) + 2 perms , with c{sub 0}:c{sub 1}:c{sub 2}=2-3:1 (c{sub 1}≠0 is a consequence of parity violation, corresponding to the constant 0γ ≠ ). The latter is one of the main results of this paper, which provides for the first time a clear example of an inflationary model where a non-negligible c{sub 1} contribution to the bispectrum is generated. The scalar-tensor and tensor-tensor correlators induce characteristic signatures in the Cosmic Microwave Background temperature anisotropies (T) and polarization (E/B modes); namely, non-diagonal contributions to (a{sub ℓ1m1}a{sup *}{sub ℓ2m2}), with |ℓ{sub 1} − ℓ{sub 2}| = 1 in TT, TE, EE and BB, and |ℓ{sub 1} − ℓ{sub 2}| = 2 in TB and EB. The latest CMB bounds on the scalar observables (g{sub *}, c{sub 0}, c{sub 1} and c{sub 2}), translate into the upper limit ρ{sub A} / ρ{sub φ} ∼< 10{sup −9} at 0γ=. We find that the upper limit on the vector energy density becomes much more stringent as γ grows.« less

  11. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  12. Chameleons with field-dependent couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Mota, David F.

    2010-10-15

    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power runaway potentials and field-independent couplings to matter. In this paper we investigate field theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for Eoet-Wash experiments, fifth-force searches andmore » Casimir-force experiments. Requiring that the scalar field evades gravitational tests, we find that the coupling is sensitive to a mass scale which is of order of the Hubble scale today.« less

  13. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    PubMed

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Lambda-universe in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    2009-09-01

    We present a lambda-Universe, in scalar-tensor gravity, reviewing Berman and Trevisan’s inflationary case (Berman and Trevisan in Int. J. Theor. Phys., 2009) and then we find a solution for an accelerating power-law scale-factor. The negativity of cosmic pressure implies acceleration of the expansion, even with Λ<0. The cosmological term, and the coupling “constant”, are in fact, time-varying.

  15. Cosmological perturbations in antigravity

    NASA Astrophysics Data System (ADS)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  16. The Model for Final Stage of Gravitational Collapse Massless Scalar Field

    NASA Astrophysics Data System (ADS)

    Gladush, V. D.; Mironin, D. V.

    It is known that in General relativity, for some spherically symmetric initial conditions, the massless scalar field (SF) experience the gravitational collapse (Choptuik, 1989), and arise a black hole (BH). According Bekenstein, a BH has no "hair scalar", so the SF is completely under the horizon. Thus, the study of the final stage for the gravitational collapse of a SF is reduced to the construction of a solution of Einstein's equations describing the evolution of a SF inside the BH. In this work, we build the Lagrangian for scalar and gravitationalfields in the spherically symmetric case, when the metric coefficients and SF depends only on the time. In this case, it is convenient to use the methods of classical mechanics. Since the metric allows an arbitrary transformation of time, then the corresponding field variable (g00) is included in the Lagrangian without time derivative. It is a non-dynamic variable, and is included in the Lagrangian as a Lagrange multiplier. A variation of the action on this variable gives the constraint. It turns out that Hamiltonian is proportional to the constraint, and so it is zero. The corresponding Hamilton-Jacobi equation easily integrated. Hence, we find the relation between the SF and the metric. To restore of time dependence we using an equation dL / dq' = dS / dq After using a gauge condition, it allows us to find solution. Thus, we find the evolution of the SF inside the BH, which describes the final stage of the gravitational collapse of a SF. It turns out that the mass BH associated with a scalar charge G of the corresponding SF inside the BH ratio M = G/(2√ κ).

  17. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  18. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  19. On nonlocally interacting metrics, and a simple proposal for cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra

    2018-03-01

    We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.

  20. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  1. Vacuum stability in the early universe and the backreaction of classical gravity.

    PubMed

    Markkanen, Tommi

    2018-03-06

    In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  2. Vacuum stability in the early universe and the backreaction of classical gravity

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi

    2018-01-01

    In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  3. Modified Holographic Ricci Dark Energy in Chameleon Brans-Dicke Cosmology and Its Thermodynamic Consequence

    NASA Astrophysics Data System (ADS)

    Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.

    2015-04-01

    The objective of this paper is to discuss the Chameleon Brans-Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. The financial Supported from Department of Science and Technology, Govt. of India under Project Grant No. SR/FTP/PS-167/2011 is thankfully acknowledged by SC

  4. The screening Horndeski cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starobinsky, Alexei A.; Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan; Sushkov, Sergey V.

    2016-06-06

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The modelmore » also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.« less

  5. Local existence of N=1 supersymmetric gauge theory in four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.

    2015-04-16

    In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.

  6. Stable cosmology in chameleon bigravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  7. The Scalar Resonances a0/f0(980) at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buescher, M.

    2006-02-11

    Fundamental properties of the scalar resonances a0/f0(980), like their masses, widths and couplings to KK-bar, are poorly known. In particular, precise knowledge of the latter quantity would be of great importance since it can be related to the KK-bar content of these resonances.An experimental program is under way at COSY-Juelich aiming at the extraction of the isospin violating a0/f0 mixing amplitude {lambda} which is in leading order proportional to the product of the coupling constants of the a0 and f0 to kaons. a0/f0 production is studied in pp, pn and dd interactions, both for the KK-bar and the {pi}{eta}/{pi}{pi} decays,more » using the ANKE and WASA spectrometers. The latter will be available for measurements at COSY in 2007.As a first step, isovector KK-bar production has been measured in the reaction pp {yields} dK+K-bar0. The data reveal dominance of the a{sub 0}{sup +} channel, thus demonstrating the feasibility of scalar meson studies at COSY. Analyses of KK-bar- and K-bard-FSI effects yield the corresponding scattering lengths, a(KK-bar)I=1 = -(0.02 {+-} 0.03) - i(0.61 {+-} 0.05) fm and vertical bar Re a(K-bard) vertical bar {<=}1.3 fm, Im a(K-bard){<=}1.3 fm.« less

  8. Compressible turbulent mixing: Effects of Schmidt number.

    PubMed

    Ni, Qionglin

    2015-05-01

    We investigated by numerical simulations the effects of Schmidt number on passive scalar transport in forced compressible turbulence. The range of Schmidt number (Sc) was 1/25∼25. In the inertial-convective range the scalar spectrum seemed to obey the k(-5/3) power law. For Sc≫1, there appeared a k(-1) power law in the viscous-convective range, while for Sc≪1, a k(-17/3) power law was identified in the inertial-diffusive range. The scaling constant computed by the mixed third-order structure function of the velocity-scalar increment showed that it grew over Sc, and the effect of compressibility made it smaller than the 4/3 value from incompressible turbulence. At small amplitudes, the probability distribution function (PDF) of scalar fluctuations collapsed to the Gaussian distribution whereas, at large amplitudes, it decayed more quickly than Gaussian. At large scales, the PDF of scalar increment behaved similarly to that of scalar fluctuation. In contrast, at small scales it resembled the PDF of scalar gradient. Furthermore, the scalar dissipation occurring at large magnitudes was found to grow with Sc. Due to low molecular diffusivity, in the Sc≫1 flow the scalar field rolled up and got mixed sufficiently. However, in the Sc≪1 flow the scalar field lost the small-scale structures by high molecular diffusivity and retained only the large-scale, cloudlike structures. The spectral analysis found that the spectral densities of scalar advection and dissipation in both Sc≫1 and Sc≪1 flows probably followed the k(-5/3) scaling. This indicated that in compressible turbulence the processes of advection and dissipation except that of scalar-dilatation coupling might deferring to the Kolmogorov picture. It then showed that at high wave numbers, the magnitudes of spectral coherency in both Sc≫1 and Sc≪1 flows decayed faster than the theoretical prediction of k(-2/3) for incompressible flows. Finally, the comparison with incompressible results showed that the scalar in compressible turbulence with Sc=1 lacked a conspicuous bump structure in its spectrum, but was more intermittent in the dissipative range.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnov, Kirill; Shtanov, Yuri, E-mail: kirill.krasnov@nottingham.ac.uk, E-mail: shtanov@bitp.kiev.ua

    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energymore » density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity.« less

  10. Role of Möbius constants and scattering functions in Cachazo-He-Yuan scalar amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-05-01

    The integration over the Möbius variables leading to the Cachazo-He-Yuan double-color n -point massless scalar amplitude are carried out one integral at a time. Möbius invariance dictates the final amplitude to be independent of the three Möbius constants σr,σs,σt, but their choice affects integrations and the intermediate results. The effect of the Möbius constants, which will be held finite but otherwise arbitrary, the two sets of colors, and the scattering functions on each integration is investigated. A general systematic way to carry out the n -3 integrations is explained, each exposing one of the n -3 propagators of a single Feynman diagram. Two detailed examples are shown to illustrate the procedure, one a five-point amplitude, and the other a nine-point amplitude. Our procedure does not generate intermediate spurious poles, in contrast to what is common by choosing Möbius constants at 0, 1, and ∞ .

  11. Antigravity in F( R) and Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Karagiannakis, N.

    2014-12-01

    We study antigravity in F( R)-theory originating scalar-tensor theories and also in Brans-Dicke models without cosmological constant. For the F( R) theory case, we obtain the Jordan frame antigravity scalar-tensor theory by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate in detail by using some viable F( R) models, although the initial F( R) models have no antigravity, their scalar-tensor counterpart theories might or not have antigravity, a fact mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model, which we also studied numerically. In addition, regarding the Brans-Dicke model we also found some analytic cosmological solutions. Since antigravity is an unwanted feature in gravitational theories, our findings suggest that in the case of F( R) theories, antigravity does not occur in the real world described by the F( R) theory, but might occur in the Jordan frame scalar-tensor counterpart of the F( R) theory, and this happens under certain circumstances. The central goal of our study is to present all different cases in which antigravity might occur in modified gravity models.

  12. Renormalization group analysis of anisotropic diffusion in turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1991-01-01

    The renormalization group is applied to compute anisotropic corrections to the scalar eddy diffusivity representation of turbulent diffusion of a passive scalar. The corrections are linear in the mean velocity gradients. All model constants are computed theoretically. A form of the theory valid at arbitrary Reynolds number is derived. The theory applies only when convection of the velocity-scalar correlation can be neglected. A ratio of diffusivity components, found experimentally to have a nearly constant value in a variety of shear flows, is computed theoretically for flows in a certain state of equilibrium. The theoretical value is well within the fairly narrow range of experimentally observed values. Theoretical predictions of this diffusivity ratio are also compared with data from experiments and direct numerical simulations of homogeneous shear flows with constant velocity and scalar gradients.

  13. A mapping closure for turbulent scalar mixing using a time-evolving reference field

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1992-01-01

    A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.

  14. Constraints for the thawing and freezing potentials

    NASA Astrophysics Data System (ADS)

    Hara, Tetsuya; Suzuki, Anna; Saka, Shogo; Tanigawa, Takuma

    2018-01-01

    We study the accelerating present universe in terms of the time evolution of the equation of state w(z) (redshift z) due to thawing and freezing scalar potentials in the quintessence model. The values of dw/da and d^2w/da^2 at a scale factor of a = 1 are associated with two parameters of each potential. For five types of scalar potentials, the scalar fields Q and w as functions of time t and/or z are numerically calculated under the fixed boundary condition of w(z=0)=-1+Δ. The observational constraint w_obs (Planck Collaboration, arXiv:1502.01590) is imposed to test whether the numerical w(z) is in w_obs. Some solutions show thawing features in the freezing potentials. Mutually exclusive allowed regions in the dw/da vs. d^2w/da^2 diagram are obtained in order to identify the likely scalar potential and even the potential parameters for future observational tests.

  15. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  16. Bianchi type I in f(T) gravitational theories

    NASA Astrophysics Data System (ADS)

    M, I. Wanas; G, G. L. Nashed; O, A. Ibrahim

    2016-05-01

    A tetrad field that is homogeneous and anisotropic which contains two unknown functions A(t) and B(t) of cosmic time is applied to the field equations of f (T), where T is the torsion scalar, T = T μ νρ S μ νρ . We calculate the equation of continuity and rewrite it as a product of two brackets, the first is a function of f (T) and the second is a function of the two unknowns A(t) and B(t). We use two different relations between the two unknown functions A(t) and B(t) in the second bracket to solve it. Both of these relations give constant scalar torsion and solutions coincide with the de Sitter one. So, another assumption related to the contents of the matter fields is postulated. This assumption enables us to drive a solution with a non-constant value of the scalar torsion and a form of f (T) which represents ΛCDM. Project supported by the Egyptian Ministry of Scientific Research (Project No. 24-2-12).

  17. Gravitational particle production in inflation. A fresh look

    NASA Astrophysics Data System (ADS)

    Yajnik, Urjit A.

    1990-01-01

    Gravitational production of energy density in the case of a minimally coupled scalar field is treated using quantum field theory in curved spacetime. We calculate 0> of the produced particles. The results for the massless case can be applied to gravitons, but an unphysically large contribution is found from wavelengths longer than the horizon size. Gravitons of wavelengths smaller that the horizon give rise to energy density ϱgrav~H4 (H being the Hubble constant during inflation). In the case of a light scalar of mass m≪H the long wavelengths contribute ϱm~H5/m, which too can become unphysically large for sufficiently small m. We also discuss how this energy density subsequently evolves. Address after August 1989: Physics Department, Indian Institute of Technology, Bombay 400 076, India.

  18. Evolution of passive scalar statistics in a spatially developing turbulence

    NASA Astrophysics Data System (ADS)

    Paul, I.; Papadakis, G.; Vassilicos, J. C.

    2018-02-01

    We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.

  19. Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling

    NASA Astrophysics Data System (ADS)

    Schwarze, C.; Gupta, A.; Hickel, T.; Darvishi Kamachali, R.

    2017-05-01

    We investigate the evolution of large number of δ' coherent precipitates from a supersaturated Al-8 at.% Li alloy using large-scale phase-field simulations. A chemomechanical cross-coupling between mechanical relaxation and diffusion is taken into account by considering the dependence of elastic constants of the matrix phase onto the local concentration of solute atoms. The elastic constants as a function of solute concentration have been obtained using density functional theory calculations. As a result of the coupling, inverse ripening has been observed where the smaller precipitates grow at the expense of the larger ones. This is due to size-dependent concentration gradients existing around the precipitates. At the same time, precipitates rearrange themselves as a consequence of minimization of the total elastic energy of the system. It is found that the anisotropy of the chemomechanical coupling leads to the formation of new patterns of elasticity in the matrix thereby resulting in new alignments of the precipitates.

  20. Oscillon in Einstein-scalar system with double well potential and its properties.

    NASA Astrophysics Data System (ADS)

    Ikeda, Taishi; Yoo, Chul-Moon; Cardoso, Vitor

    2018-01-01

    The dynamical evolution of self-interacting scalar field has many nontrivial behaviors, which tell us many lessons in a nonlinear dynamics. On Minkowski spacetime, the scalar field with double well potential has localized, non-singular, time-dependent, long-lived solutions, which are called oscillons. The lifetime of the oscillon depends on the initial conditions. Furthermore, when the initial parameter is fine-tuned, oscillons can be infinitely, and type I critical behavior is observed. Here, we investigate the Einstein-scalar system with double well potential. We show that oscillons exist in this system, and discuss the behavior when the initial parameter is fine-tuned. Our results suggests that a new type of critical behavior appears in this theory.

  1. Further perspective on the theory of heteronuclear decoupling.

    PubMed

    Skinner, Thomas E

    2014-11-01

    An exact general theory of heteronuclear decoupling is presented for spin-1/2 IS systems. RF irradiation applied to the I spins both modifies and generates additional couplings between states of the system. The recently derived equivalence between the dynamics of any N-level quantum system and a system of classical coupled harmonic oscillators makes explicit the exact physical couplings between states. Decoupling is thus more properly viewed as a complex intercoupling. The sign of antiphase magnetization plays a fundamental role in decoupling. A one-to-one correspondence is demonstrated between ±2SyIz and the sense of the S-spin coupling evolution. Magnetization Sx is refocused to obtain the desired decoupled state when ∫2SyIzdt=0. The exact instantaneous coupling at any time during the decoupling sequence is readily obtained in terms of the system states, showing that the creation of two-spin coherence is crucial for reducing the effective scalar coupling, as required for refocusing to occur. Representative examples from new aperiodic sequences as well as standard cyclic, periodic composite-pulse and adiabatic decoupling sequences illustrate the decoupling mechanism. The more general aperiodic sequences, obtained using optimal control, realize the potential inherent in the theory for significantly improved decoupling. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Selected topics on dynamical symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldhuis, W.T.A.

    1993-12-31

    In chapter 2 the fermion number induced by nontrivial topological configurations in the O(3) nonlinear {sigma} model in 2 + 1 dimensions is studied in the presence of a parity breaking fermion mass term. We consider a scalar background configuration that adiabatically evolves from the normal vacuum to a soliton of winding number unity. The appearance of zero energy modes is analyzed as a function of the relative magnitudes of the explicit, odd parity, fermion mass, m{sub odd}, the fermion mass induced by the Yukawa coupling, m{sub Y}, and the inverse soliton width, 1/{rho}{sub s}. We find {rho}{sub c}, themore » maximum value of {rho} = {rho}{sub s}m{sub Y} for which a fermion zero energy level crossing occurs during the adiabatical evolution. We obtain that whenever the ratio M{sub f} = m{sub odd}/m{sub Y} < 1 and {rho} > {rho}{sub c}(M{sub f}) the ground state charge of the soliton is wholly determined by its topological charge. Otherwise, it vanishes. In chapter 3 the top quark mass prediction in supersymmetric top condensate models is found to be insensitive to the inclusion of the effects of higher dimensional operators. For associated coefficients of characteristically moderate strength, the supersymmetric renormalization group trajectories are strongly focused to the infrared quasi-fixed point of the top Yukawa coupling constant. In chapter 4 the sensitivity of the top quark and Higgs boson masses in the top condensate model to two loop radiative corrections is studied. Both the top quark and the Higgs boson masses vary by a few GeV with respect to their values in the one loop calculation. Finally, in chapter 5 an upper bound on the mass of the lightest neutral scalar Higgs boson is calculated in an extended version of the minimal supersymmetric standard model that contains an additional Higgs singlet.« less

  3. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  4. Search for strongly coupled Chameleon scalar field with neutron interferometry

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D.; Haun, R.; Heacock, B.; Huber, M.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C.; Skavysh, V.; Snow, M.; Young, A.

    2015-04-01

    The dark energy proposed to explain the observed accelerated expansion of the universe is not understood. A chameleon scalar field proposed as a dark energy candidate can explain the accelerated expansion and evade all current gravity experimental bounds. It features an effective range of the chameleon scalar field that depends on the local mass density. Hence a perfect crystal neutron interferometer, that measures relative phase shift between two paths, is a prefect tool to search for the chameleon field. We are preparing a two-chamber helium gas cell for the neutron interferometer. We can lower the pressure in one cell so low that the chameleon field range expands into the cell and causes a measurable neutron phase shift while keeping the pressure difference constant. We expect to set a new upper limit of the Chameleon field by at least one order of magnitude. This work is supported by NSF Grant 1205977, DOE Grant DE-FG02-97ER41042, Canadian Excellence Research Chairs program, Natural Sciences and Engineering Research Council of Canada and Collaborative Research and Training Experience Program

  5. Extended spin symmetry and the standard model

    NASA Astrophysics Data System (ADS)

    Besprosvany, J.; Romero, R.

    2010-12-01

    We review unification ideas and explain the spin-extended model in this context. Its consideration is also motivated by the standard-model puzzles. With the aim of constructing a common description of discrete degrees of freedom, as spin and gauge quantum numbers, the model departs from q-bits and generalized Hilbert spaces. Physical requirements reduce the space to one that is represented by matrices. The classification of the representations is performed through Clifford algebras, with its generators associated with Lorentz and scalar symmetries. We study a reduced space with up to two spinor elements within a matrix direct product. At given dimension, the demand that Lorentz symmetry be maintained, determines the scalar symmetries, which connect to vector-and-chiral gauge-interacting fields; we review the standard-model information in each dimension. We obtain fermions and bosons, with matter fields in the fundamental representation, radiation fields in the adjoint, and scalar particles with the Higgs quantum numbers. We relate the fields' representation in such spaces to the quantum-field-theory one, and the Lagrangian. The model provides a coupling-constant definition.

  6. On the modelling of non-reactive and reactive turbulent combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, Mohammad; So, Ronald M. C.

    1987-01-01

    A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.

  7. Single-scale renormalisation group improvement of multi-scale effective potentials

    NASA Astrophysics Data System (ADS)

    Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła

    2018-03-01

    We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.

  8. Curvature-Squared Cosmology In The First-Order Formalism

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman

    1993-01-01

    Paper presents theoretical study of some of general-relativistic ramifications of gravitational-field energy density proportional to R - alpha R(exp 2) (where R is local scalar curvature of space-time and alpha is a constant).

  9. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  10. Lee wave breaking region: the map of instability development scenarios

    NASA Astrophysics Data System (ADS)

    Yakovenko, S. N.

    2017-10-01

    Numerical study of a stably stratified flow above the two-dimensional cosine-shaped obstacle has been performed by DNS and LES. These methods were implemented to solve the three-dimensional Navier-Stokes equations in the Boussinesq approximation, together with by the scalar diffusion equation. The results of scanning in the wide ranges of physical parameters (Reynolds and Prandtl/Schmidt numbers relating to laboratory experiment cases and atmospheric or oceanic situations) are presented for instability and turbulence development scenarios in the overturning internal lee waves. The latter is generated by the obstacle in a flow with the constant inflow values of velocity and stable density gradient. Evolution of lee-wave breaking is explored by visualization of velocity and scalar (density) fields, and the analysis of spectra. Based on the numerical simulation results, the power-law dependence on Reynolds number is demonstrated for the wavelength of the most unstable perturbation.

  11. An internal variable constitutive model for the large deformation of metals at high temperatures

    NASA Technical Reports Server (NTRS)

    Brown, Stuart; Anand, Lallit

    1988-01-01

    The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.

  12. Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Chen, Juhua; Wang, Yongjiu

    2018-04-01

    We investigate the quasinormal modes and area/entropy spectrum for the noncommutative BTZ black hole. The exact expressions for QNM frequencies are presented by expanding the noncommutative parameter in horizon radius. We find that the noncommutativity does not affect conformal weights (hL, hR), but it influences the thermal equilibrium. The intuitive expressions of the area/entropy spectrum are calculated in terms of Bohr-Sommerfeld quantization, and our results show that the noncommutativity leads to a nonuniform area/entropy spectrum. We also find that the coupling constant ξ , which is the coupling between the scalar and the gravitational fields, shifts the QNM frequencies but not influences the structure of area/entorpy spectrum.

  13. Improved Limits on Spin-Mass Interactions

    NASA Astrophysics Data System (ADS)

    Lee, Junyi; Almasi, Attaallah; Romalis, Michael

    2018-04-01

    Very light particles with C P -violating couplings to ordinary matter, such as axions or axionlike particles, can mediate long-range forces between polarized and unpolarized fermions. We describe a new experimental search for such forces between unpolarized nucleons in two 250 kg Pb weights and polarized neutrons and electrons in a 3He -K comagnetometer located about 15 cm away. We place improved constraints on the products of scalar and pseudoscalar coupling constants, gpngsN<4.2 ×10-30 and gpegsN<1.7 ×10-30 (95% C.L.) for axionlike particle masses less than 10-6 eV , which represents an order of magnitude improvement over the best previous neutron laboratory limit.

  14. On the phenomenology of extended Brans-Dicke gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Nelson A.; Ferreira, Pedro G., E-mail: ndal@roe.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk

    We introduce a designer approach for extended Brans-Dicke gravity that allows us to obtain the evolution of the scalar field by fixing the Hubble parameter to that of a w CDM model. We obtain analytical approximations for ϕ as a function of the scale factor and use these to build expressions for the effective Newton's constant at the background and at the linear level and the slip between the perturbed Newtonian potentials. By doing so, we are able to explore their dependence on the fundamental parameters of the theory.

  15. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  16. Three-dimensional coupled thermoelastodynamic stress and flux induced wave propagation for isotropic half-space with scalar potential functions

    NASA Astrophysics Data System (ADS)

    Hayati, Yazdan; Eskandari-Ghadi, Morteza

    2018-02-01

    An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.

  17. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki

    2018-07-01

    The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.

  18. Constraints on secret neutrino interactions after Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo, E-mail: francesco.forastieri@unife.it, E-mail: lattanzi@fe.infn.it, E-mail: natoli@fe.infn.it

    Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at T≅ 1 MeV, but become tightly coupled again (''recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity γ{submore » νν}{sup 4}, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ΛCDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint γ{sub νν}{sup 4} ∼< 0.9× 10{sup −27} (95% C.L.), implying an upper limit on the redshift z{sub νrec} of neutrino recoupling 0∼< 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on γ{sub νν} roughly translates on a constraint g ∼< 8.2× 10{sup −7} on the Majoron-neutrino coupling constant g. In general, the data show a weak (∼ 1σ) but intriguing preference for non-zero values of γ{sub νν}{sup 4}, with best fits in the range γ{sub νν}{sup 4} = (0.15–0.35)× 10{sup −27}, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ΛCDM+γ{sub νν} and including the Planck 2013, ACT and SPT data, we report γ{sub νν}{sup 4}=(0.44{sup +0.17}{sub −0.36})×10{sup −27} (0300 ∼< z{sub νrec} ∼< 550) at 68% confidence level.« less

  19. Scalar field collapse in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  20. Weighed scalar averaging in LTB dust models: part II. A formalism of exact perturbations

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.

    2013-03-01

    We examine the exact perturbations that arise from the q-average formalism that was applied in the preceding article (part I) to Lemaître-Tolman-Bondi (LTB) models. By introducing an initial value parametrization, we show that all LTB scalars that take an FLRW ‘look-alike’ form (frequently used in the literature dealing with LTB models) follow as q-averages of covariant scalars that are common to FLRW models. These q-scalars determine for every averaging domain a unique FLRW background state through Darmois matching conditions at the domain boundary, though the definition of this background does not require an actual matching with an FLRW region (Swiss cheese-type models). Local perturbations describe the deviation from the FLRW background state through the local gradients of covariant scalars at the boundary of every comoving domain, while non-local perturbations do so in terms of the intuitive notion of a ‘contrast’ of local scalars with respect to FLRW reference values that emerge from q-averages assigned to the whole domain or the whole time slice in the asymptotic limit. We derive fluid flow evolution equations that completely determine the dynamics of the models in terms of the q-scalars and both types of perturbations. A rigorous formalism of exact spherical nonlinear perturbations is defined over the FLRW background state associated with the q-scalars, recovering the standard results of linear perturbation theory in the appropriate limit. We examine the notion of the amplitude and illustrate the differences between local and non-local perturbations by qualitative diagrams and through an example of a cosmic density void that follows from the numeric solution of the evolution equations.

  1. Stationary states of fermions in a sign potential with a mixed vector–scalar coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilho, W.M., E-mail: castilho.w@gmail.com; Castro, A.S. de, E-mail: castro@pq.cnpq.br

    2014-01-15

    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. --more » Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.« less

  2. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  3. A de Sitter tachyonic braneworld revisited

    NASA Astrophysics Data System (ADS)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  4. Topological Defects and Structures in the Early Universe

    NASA Astrophysics Data System (ADS)

    Zhu, Yong

    1997-08-01

    This thesis discusses the topological defects generated in the early universe and their contributions to cosmic structure formation. First, we investigate non-Gaussian isocurvature perturbations generated by the evolution of Goldstone modes during inflation. If a global symmetry is broken before inflation, the resulting Goldstone modes are disordered during inflation in a precise and predictable way. After inflation these Goldstone modes order themselves in a self-similar way, much as Goldstone modes in field ordering scenarios based on the Kibble mechanism. For (Hi2/Mpl2)~10- 6, through their gravitational interaction these Goldstone modes generate density perturbations of approximately the right magnitude to explain the cosmic microwave background (CMB) anisotropy and seed the structure seen in the universe today. In such a model non-Gaussian perturbations result because to lowest order density perturbations are sourced by products of Gaussian fields. We explore the issue of phase dispersion and conclude that this non-Gaussian model predicts Doppler peaks in the CMB anisotropy. Topological defects generated from quantum fluctuations during inflation are studied in chapter four. We present a calculation of the power spectrum generated in a classically symmetry-breaking O(N) scalar field through inflationary quantum fluctuations, using the large-N limit. The effective potential of the theory in de Sitter space is obtained from a gap equation which is exact at large N. Quantum fluctuations restore the O(N) symmetry in de Sitter space, but for the finite values of N of interest, there is symmetry breaking and phase ordering after inflation, described by the classical nonlinear sigma model. The scalar field power spectrum is obtained as a function of the scalar field self-coupling. In the second part of the thesis, we investigate non-Abelian topological worm-holes, obtained when winding number one texture field is coupled to Einstein gravity with a conserved global charge. This topological wormhole has the same Euclidean action as axion wormholes and charged scalar wormholes. We find that free topological wormholes are spontaneously generated in the Euclidean space-time with finite density. It is then shown that wormholes with finite density might destroy any long range order in the global fields.

  5. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE PAGES

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza; ...

    2017-05-18

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  6. Optimizing Variational Quantum Algorithms Using Pontryagin’s Minimum Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhi -Cheng; Rahmani, Armin; Shabani, Alireza

    We use Pontryagin’s minimum principle to optimize variational quantum algorithms. We show that for a fixed computation time, the optimal evolution has a bang-bang (square pulse) form, both for closed and open quantum systems with Markovian decoherence. Our findings support the choice of evolution ansatz in the recently proposed quantum approximate optimization algorithm. Focusing on the Sherrington-Kirkpatrick spin glass as an example, we find a system-size independent distribution of the duration of pulses, with characteristic time scale set by the inverse of the coupling constants in the Hamiltonian. The optimality of the bang-bang protocols and the characteristic time scale ofmore » the pulses provide an efficient parametrization of the protocol and inform the search for effective hybrid (classical and quantum) schemes for tackling combinatorial optimization problems. Moreover, we find that the success rates of our optimal bang-bang protocols remain high even in the presence of weak external noise and coupling to a thermal bath.« less

  7. Universal horizons and Hawking radiation in nonprojectable 2d Hořava gravity coupled to a nonrelativistic scalar field

    NASA Astrophysics Data System (ADS)

    Li, Bao-Fei; Bhattacharjee, Madhurima; Wang, Anzhong

    2017-10-01

    In this paper, we study the nonprojectable 2d Hořava gravity coupled with a nonrelativistic scalar field, where the coupling is, in general, nonminimal and of the form f (ϕ )R , where f (ϕ ) is an arbitrary function of the scalar field ϕ , and R denotes the 2d Ricci scalar. In particular, we first investigate the Hamiltonian structure and show that there are two first- and two second-class constraints, similar to the pure gravity case, but now the local degrees of freedom is one due to the presence of the scalar field. Then, we present various exact stationary solutions of this coupled system, and find that some of them represent black holes, but now with universal horizons as their boundaries. At these horizons, the Hawking radiation is thermal with temperatures proportional to their surface gravities, which normally depend on the nonlinear dispersion relations of the particles radiated, similar to the (3 +1 )-dimensional case.

  8. Kaluza-Klein two-brane-worlds cosmology at low energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feranie, S.; Arianto; Zen, Freddy P.

    2010-04-15

    We study two (4+n)-dimensional branes embedded in (5+n)-dimensional spacetime. Using the gradient expansion approximation, we find that the effective theory is described by (4+n)-dimensional scalar-tensor gravity with a specific coupling function. Based on this theory we investigate the Kaluza-Klein two-brane-worlds cosmology at low energy, in both the static and the nonstatic internal dimensions. In the case of the static internal dimensions, the effective gravitational constant in the induced Friedmann equation depends on the equations of state of the brane matter, and the dark radiation term naturally appears. In the nonstatic case we take a relation between the external and internalmore » scale factors of the form b(t)=a{sup {gamma}(t)} in which the brane world evolves with two scale factors. In this case, the induced Friedmann equation on the brane is modified in the effective gravitational constant and the term proportional to a{sup -4{beta}.} For dark radiation, we find {gamma}=-2/(1+n). Finally, we discuss the issue of conformal frames which naturally arises with scalar-tensor theories. We find that the static internal dimensions in the Jordan frame may become nonstatic in the Einstein frame.« less

  9. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  10. Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD

    NASA Astrophysics Data System (ADS)

    Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian

    2018-03-01

    We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the Schrödinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.

  11. Violent preheating in inflation with nonminimal coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ema, Yohei; Nakayama, Kazunori; Jinno, Ryusuke

    2017-02-01

    We study particle production at the preheating era in inflation models with nonminimal coupling ξφ{sup 2} R and quartic potential λφ{sup 4}/4 for several cases: real scalar inflaton, complex scalar inflaton and Abelian Higgs inflaton. We point out that the preheating proceeds much more violently than previously thought. If the inflaton is a complex scalar, the phase degree of freedom is violently produced at the first stage of preheating. If the inflaton is a Higgs field, the longitudinal gauge boson production is similarly violent. This is caused by a spike-like feature in the time dependence of the inflaton field, whichmore » may be understood as a consequence of the short time scale during which the effective potential or kinetic term changes suddenly. The produced particles typically have very high momenta k ∼< √λ M {sub P}. The production might be so strong that almost all the energy of the inflaton is carried away within one oscillation for ξ{sup 2}λ ∼> O(100). This may partly change the conventional understandings of the (p)reheating after inflation with the nonminimal coupling to gravity such as Higgs inflation. We also discuss the possibility of unitarity violation at the preheating stage.« less

  12. Bounce universe from string-inspired Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Makarenko, Andrey N.; Myagky, Alexandr N.

    2015-04-01

    We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal transformation between these conformal frames. It is shown that in general, the property of the bounce point in the string frame changes after the frame is movedmore » to the Einstein frame. Moreover, it is found that at the point in the Einstein frame corresponding to the point of the cosmological bounce in the string frame, the second derivative of the scale factor has an extreme value. In addition, it is demonstrated that at the time of the cosmological bounce in the Einstein frame, there is the Gauss-Bonnet coupling function of the scalar field, although it does not exist in the string frame.« less

  13. Adiabatic pumping solutions in global AdS

    NASA Astrophysics Data System (ADS)

    Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2017-05-01

    We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.

  14. z -Weyl gravity in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Taeyoon; Oh, Phillial, E-mail: dpproject@skku.edu, E-mail: ploh@skku.edu

    We consider higher dimensional gravity in which the four dimensional spacetime and extra dimensions are not treated on an equal footing. The anisotropy is implemented in the ADM decomposition of higher dimensional metric by requiring the foliation preserving diffeomorphism invariance adapted to the extra dimensions, thus keeping the general covariance only for the four dimensional spacetime. The conformally invariant gravity can be constructed with an extra (Weyl) scalar field and a real parameter z which describes the degree of anisotropy of conformal transformation between the spacetime and extra dimensional metrics. In the zero mode effective 4D action, it reduces tomore » four-dimensional scalar-tensor theory coupled with nonlinear sigma model described by extra dimensional metrics. There are no restrictions on the value of z at the classical level and possible applications to the cosmological constant problem with a specific choice of z are discussed.« less

  15. Nonperturbative derivation of the interaction potential of static nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmailov, A.F.; Kessel', A.R.; Fainberg, V.Y.

    1989-05-01

    A new approach is used to calculate the interaction potential of nucleons which describes virtual processes of exchange of scalar and pseudoscalar mesons in all orders in the nucleon{endash}meson local coupling constant. The theory contains a natural parameter---a limiting momentum {ital p}{sub {ital m}}. The nucleon{endash}nucleon potential of scalar mesodynamics for various values of {ital p}{sub {ital m}} reproduces accurately the well known phenomenological potentials, such as the Hamada{endash}Johnston potential, the Reid soft-core potential, and the de Toureil{endash}Sprung supersoft-core potential.{sup 15} In pseudoscalar mesodynamics, it has been possible to reproduce completely the behavior of the empirical tensor potential. The shapemore » of the central potential at all distances is reproduced in the states {tau}=0, {sigma}=0 and {tau}=0, {sigma}=1, and at intermediate and large distances in the states {tau}=1, {sigma}=0 and {tau}=1, {sigma}=1.« less

  16. Formation and Evolution of Target Patterns in Cahn-Hilliard Flows: An Extension of the Flux Expulsion Studies in MHD

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration

    2017-10-01

    Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  17. A transport equation for the scalar dissipation in reacting flows with variable density: First results

    NASA Technical Reports Server (NTRS)

    Mantel, T.

    1993-01-01

    Although the different regimes of premixed combustion are not well defined, most of the recent developments in turbulent combustion modeling are led in the so-called flamelet regime. The goal of these models is to give a realistic expression to the mean reaction rate (w). Several methods can be used to estimate (w). Bray and coworkers (Libby & Bray 1980, Bray 1985, Bray & Libby 1986) express the instantaneous reaction rate by means of a flamelet library and a frequency which describes the local interaction between the laminar flamelets and the turbulent flowfield. In another way, the mean reaction rate can be directly connected to the flame surface density (Sigma). This quantity can be given by the transport equation of the coherent flame model initially proposed by Marble & Broadwell 1977 and developed elsewhere. The mean reaction rate, (w), can also be estimated thanks to the evolution of an arbitrary scalar field G(x, t) = G(sub O) which represents the flame sheet. G(x, t) is obtained from the G-equation proposed by Williams 1985, Kerstein et al. 1988 and Peters 1993. Another possibility proposed in a recent study by Mantel & Borghi 1991, where a transport equation for the mean dissipation rate (epsilon(sub c)) of the progress variable c is used to determine (w). In their model, Mantel & Borghi 1991 considered a medium with constant density and constant diffusivity in the determination of the transport equation for (epsilon(sub c)). A comparison of different flamelet models made by Duclos et al. 1993 shows the realistic behavior of this model even in the case of constant density. Our objective in this present report is to present preliminary results on the study of this equation in the case of variable density and variable diffusivity. Assumptions of constant pressure and a Lewis number equal to unity allow us to significantly simplify the equation. A systematic order of magnitude analysis based on adequate scale relations is performed on each term of the equation. As in the case of constant density and constant diffusivity, the effects of stretching of the scalar field by the turbulent strain field, of local curvature, and of chemical reactions are predominant. In this preliminary work, we suggest closure models for certain terms, which will be validated after comparisons with DNS data.

  18. Chameleon induced atomic afterglow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Burrage, Clare

    2010-11-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  19. {gamma} parameter and Solar System constraint in chameleon-Brans-Dicke theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saaidi, Kh.; Mohammadi, A.; Sheikhahmadi, H.

    2011-05-15

    The post Newtonian parameter is considered in the chameleon-Brans-Dicke model. In the first step, the general form of this parameter and also effective gravitational constant is obtained. An arbitrary function for f({Phi}), which indicates the coupling between matter and scalar field, is introduced to investigate validity of solar system constraint. It is shown that the chameleon-Brans-Dicke model can satisfy the solar system constraint and gives us an {omega} parameter of order 10{sup 4}, which is in comparable to the constraint which has been indicated in [19].

  20. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidari, E., E-mail: ehphys75@iaubushehr.ac.ir; Aslaninejad, M.; Eshraghi, H.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric andmore » anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.« less

  1. Robinson-Trautman solution with scalar hair

    NASA Astrophysics Data System (ADS)

    Tahamtan, T.; Svítek, O.

    2015-05-01

    The explicit Robinson-Trautman solution with a minimally coupled free scalar field is derived and analyzed. It is shown that this solution contains curvature singularity, which is initially naked but later enveloped by the horizon. We use the quasilocal horizon definition and prove its existence in later retarded times using sub- and supersolution method combined with growth estimates. We show that the solution is generally of algebraic type II but reduces to type D in spherical symmetry.

  2. Higgs Inflation in f(Φ, r) Theory

    NASA Astrophysics Data System (ADS)

    Chakravarty, Girish Kumar; Mohanty, Subhendra; Singh, Naveen K.

    2014-02-01

    We generalize the scalar-curvature coupling model ξΦ2R of Higgs inflation to ξΦaRb to study inflation. We compute the amplitude and spectral index of curvature perturbations generated during inflation and fix the parameters of the model by comparing these with the Planck + WP data. We find that if the scalar self-coupling λ is in the range 10-5-0.1, parameter a in the range 2.3-3.6 and b in the range 0.77-0.22 at the Planck scale, one can have a viable inflation model even for ξ ≃ 1. The tensor to scalar ratio r in this model is small and our model with scalar-curvature couplings is not ruled out by observational limits on r unlike the pure (λ )/(4) Φ 4 theory. By requiring the curvature coupling parameter to be of order unity, we have evaded the problem of unitarity violation in scalar-graviton scatterings which plague the ξΦ2R Higgs inflation models. We conclude that the Higgs field may still be a good candidate for being the inflaton in the early universe if one considers higher-dimensional curvature coupling.

  3. Matter coupling in partially constrained vielbein formulation of massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Mukohyama, Shinji; Gümrükçüoğlu, A. Emir

    2016-01-01

    We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less

  4. Matter coupling in partially constrained vielbein formulation of massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia

    2016-01-04

    We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less

  5. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  6. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  7. Quantum break-time of de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less

  8. Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-02-01

    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the 'universal force' influencing the causal structure. Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlick's supposed refutation of synthetic a priori knowledge, and how Einstein's false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.

  9. Self-accelerating universe in scalar-tensor theories after GW170817

    NASA Astrophysics Data System (ADS)

    Crisostomi, Marco; Koyama, Kazuya

    2018-04-01

    The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.

  10. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a passive (i.e., chemically inert) scalar in the presence of a shock wave is thus investigated using high-resolution numerical simulations. The starting point of the analysis relies on the transport equations of the variance of the mixture fraction, i.e., a fuel inlet tracer that quantifies the mixing between fuel and oxidizer. The influence of the shock wave is investigated for three distinct values of the shock Mach number M, and the obtained results are compared to reference solutions featuring no shock wave. The computed solutions show that the shock wave significantly modifies the scalar field topology. The larger the value of M, the stronger is the amplification of the alignment of the scalar gradient with the most compressive principal direction of the strain-rate tensor, which signifies the enhancement of scalar mixing with the shock Mach number.

  11. Analysis of passive scalar advection in parallel shear flows: Sorting of modes at intermediate time scales

    NASA Astrophysics Data System (ADS)

    Camassa, Roberto; McLaughlin, Richard M.; Viotti, Claudio

    2010-11-01

    The time evolution of a passive scalar advected by parallel shear flows is studied for a class of rapidly varying initial data. Such situations are of practical importance in a wide range of applications from microfluidics to geophysics. In these contexts, it is well-known that the long-time evolution of the tracer concentration is governed by Taylor's asymptotic theory of dispersion. In contrast, we focus here on the evolution of the tracer at intermediate time scales. We show how intermediate regimes can be identified before Taylor's, and in particular, how the Taylor regime can be delayed indefinitely by properly manufactured initial data. A complete characterization of the sorting of these time scales and their associated spatial structures is presented. These analytical predictions are compared with highly resolved numerical simulations. Specifically, this comparison is carried out for the case of periodic variations in the streamwise direction on the short scale with envelope modulations on the long scales, and show how this structure can lead to "anomalously" diffusive transients in the evolution of the scalar onto the ultimate regime governed by Taylor dispersion. Mathematically, the occurrence of these transients can be viewed as a competition in the asymptotic dominance between large Péclet (Pe) numbers and the long/short scale aspect ratios (LVel/LTracer≡k), two independent nondimensional parameters of the problem. We provide analytical predictions of the associated time scales by a modal analysis of the eigenvalue problem arising in the separation of variables of the governing advection-diffusion equation. The anomalous time scale in the asymptotic limit of large k Pe is derived for the short scale periodic structure of the scalar's initial data, for both exactly solvable cases and in general with WKBJ analysis. In particular, the exactly solvable sawtooth flow is especially important in that it provides a short cut to the exact solution to the eigenvalue problem for the physically relevant vanishing Neumann boundary conditions in linear-shear channel flow. We show that the life of the corresponding modes at large Pe for this case is shorter than the ones arising from shear free zones in the fluid's interior. A WKBJ study of the latter modes provides a longer intermediate time evolution. This part of the analysis is technical, as the corresponding spectrum is dominated by asymptotically coalescing turning points in the limit of large Pe numbers. When large scale initial data components are present, the transient regime of the WKBJ (anomalous) modes evolves into one governed by Taylor dispersion. This is studied by a regular perturbation expansion of the spectrum in the small wavenumber regimes.

  12. G-bounce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander, E-mail: easson@asu.edu, E-mail: ignacy.sawicki@uni-heidelberg.de, E-mail: alexander.vikman@cern.ch

    2011-11-01

    We present a wide class of models which realise a bounce in a spatially flat Friedmann universe in standard General Relativity. The key ingredient of the theories we consider is a noncanonical, minimally coupled scalar field belonging to the class of theories with Kinetic Gravity Braiding / Galileon-like self-couplings. In these models, the universe smoothly evolves from contraction to expansion, suffering neither from ghosts nor gradient instabilities around the turning point. The end-point of the evolution can be a standard radiation-domination era or an inflationary phase. We formulate necessary restrictions for Lagrangians needed to obtain a healthy bounce and illustratemore » our results with phase portraits for simple systems including the recently proposed Galilean Genesis scenario.« less

  13. Cosmology of a covariant Galilean field.

    PubMed

    De Felice, Antonio; Tsujikawa, Shinji

    2010-09-10

    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.

  14. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  15. Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.

    2018-03-01

    Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.

  16. Dark energy in the dark ages

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2006-08-01

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or "reasonable" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of ≲2% of total energy density at z ≫ 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5% of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently σ8, and the shape and evolution of the nonlinear mass power spectrum for z < 2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z = 0-1100.

  17. J-GFT NMR for precise measurement of mutually correlated nuclear spin-spin couplings.

    PubMed

    Atreya, Hanudatta S; Garcia, Erwin; Shen, Yang; Szyperski, Thomas

    2007-01-24

    G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.

  18. Scale-invariant fluctuations from Galilean genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Brandenberger, Robert, E-mail: wangyi@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2012-10-01

    We study the spectrum of cosmological fluctuations in scenarios such as Galilean Genesis \\cite(Nicolis) in which a spectator scalar field acquires a scale-invariant spectrum of perturbations during an early phase which asymptotes in the far past to Minkowski space-time. In the case of minimal coupling to gravity and standard scalar field Lagrangian, the induced curvature fluctuations depend quadratically on the spectator field and are hence non-scale-invariant and highly non-Gaussian. We show that if higher dimensional operators (the same operators that lead to the η-problem for inflation) are considered, a linear coupling between background and spectator field fluctuations is induced whichmore » leads to scale-invariant and Gaussian curvature fluctuations.« less

  19. Supernova constraints on massive (pseudo)scalar coupling to neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heurtier, Lucien; Zhang, Yongchao, E-mail: lucien.heurtier@ulb.ac.be, E-mail: yongchao.zhang@ulb.ac.be

    2017-02-01

    In this paper we derive constraints on the emission of a massive (pseudo)scalar S from annihilation of neutrinos in the core of supernovae through the dimension-4 coupling νν S , as well as the effective dimension-5 operator 1/Λ(νν)( SS ). While most of earlier studies have focused on massless or ultralight scalars, our analysis involves scalar with masses of order eV–GeV which can be copiously produced during (the explosion of supernovae, whose core temperature is) generally of order T ∼ O O (10) MeV. From the luminosity and deleptonization arguments regarding the observation of SN1987A, we exclude a large rangemore » of couplings 10{sup −12} ∼< | g {sub αβ}|∼< 10{sup −5} for the dimension-4 case, depending on the neutrino flavours involved and the scalar mass. In the case of dimension-5 operator, for a scalar mass from MeV to 100 MeV the coupling h {sub αβ} get constrained from 10{sup −6} to 10{sup −2}, with the cutoff scale explicitly set Λ = 1 TeV. We finally show that if the neutrino burst of a nearby supernova explosion is detected by Super-Kamiokande and IceCube, the constraints will be largely reinforced.« less

  20. Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''

    NASA Astrophysics Data System (ADS)

    Bauer, Florian; Solà, Joan; Štefancić, Hrvoje

    2010-12-01

    We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.

  1. Atmospheric stability effects on wind fields and scalar mixing within and just above a subalpine forest in sloping terrain

    USGS Publications Warehouse

    Burns, Sean P.; Sun, Jielun; Lenschow, D.H.; Oncley, S.P.; Stephens, B.B.; Yi, C.; Anderson, D.E.; Hu, Jiawen; Monson, Russell K.

    2011-01-01

    Air temperature Ta, specific humidity q, CO2 mole fraction ??c, and three-dimensional winds were measured in mountainous terrain from five tall towers within a 1 km region encompassing a wide range of canopy densities. The measurements were sorted by a bulk Richardson number Rib. For stable conditions, we found vertical scalar differences developed over a "transition" region between 0.05 < Rib < 0.5. For strongly stable conditions (Rib > 1), the vertical scalar differences reached a maximum and remained fairly constant with increasing stability. The relationships q and ??c have with Rib are explained by considering their sources and sinks. For winds, the strong momentum absorption in the upper canopy allows the canopy sublayer to be influenced by pressure gradient forces and terrain effects that lead to complex subcanopy flow patterns. At the dense-canopy sites, soil respiration coupled with wind-sheltering resulted in CO2 near the ground being 5-7 ??mol mol-1 larger than aloft, even with strong above-canopy winds (near-neutral conditions). We found Rib-binning to be a useful tool for evaluating vertical scalar mixing; however, additional information (e.g., pressure gradients, detailed vegetation/topography, etc.) is needed to fully explain the subcanopy wind patterns. Implications of our results for CO2 advection over heterogenous, complex terrain are discussed. ?? 2010 Springer Science+Business Media B.V.

  2. HN(α/β-COCA-J) Experiment for Measurement of 1JC‧Cα Couplings from Two-Dimensional [15N, 1H] Correlation Spectrum

    NASA Astrophysics Data System (ADS)

    Permi, Perttu; Sorsa, Tia; Kilpeläinen, Ilkka; Annila, Arto

    1999-11-01

    Anew method for measurement of one-bond 13C‧-13Cα scalar and dipolar couplings from a two-dimensional [15N, 1H] correlation spectrum is presented. The experiment is based on multiple-quantum coherence, which is created between nitrogen and carbonyl carbon for simultaneous evolution of 15N chemical shift and coupling between 13C‧ and 13Cα. Optional subspectral editing is provided by the spin-state-selective filters. The residual dipolar dipolar contribution to the 13C‧-13Cα coupling can be measured from these simplified [15N, 1H]-HSQC-like spectra. In this way, without explicit knowledge of carbon assignments, conformational changes of proteins dissolved in dilute liquid crystals can be probed conveniently, e.g., in structure activity relationship by NMR studies. The method is demonstrated with human cardiac troponin C.

  3. On the modelling of scalar and mass transport in combustor flows

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; So, R. M. C.

    1989-01-01

    Results are presented of a numerical study of swirling and nonswirling combustor flows with and without density variations. Constant-density arguments are used to justify closure assumptions invoked for the transport equations for turbulent momentum and scalar fluxes, which are written in terms of density-weighted variables. Comparisons are carried out with measurements obtained from three different axisymmetric model combustor experiments covering recirculating flow, swirling flow, and variable-density swirling flow inside the model combustors. Results show that the Reynolds stress/flux models do a credible job of predicting constant-density swirling and nonswirling combustor flows with passive scalar transport. However, their improvements over algebraic stress/flux models are marginal. The extension of the constant-density models to variable-density flow calculations shows that the models are equally valid for such flows.

  4. Doppelgänger dark energy: modified gravity with non-universal couplings after GW170817

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Bettoni, Dario; Domènech, Guillem; Gomes, Adalto R.

    2018-06-01

    Gravitational Wave (GW) astronomy severely narrowed down the theoretical space for scalar-tensor theories. We propose a new class of attractor models {for Horndeski action} in which GWs propagate at the speed of light in the nearby universe but not in the past. To do so we derive new solutions to the interacting dark sector in which the ratio of dark energy and dark matter remains constant, which we refer to as doppelgänger dark energy (DDE). We then remove the interaction between dark matter and dark energy by a suitable change of variables. The accelerated expansion that (we) baryons observe is due to a conformal coupling to the dark energy scalar field. We show how in this context it is possible to find a non trivial subset of solutions in which GWs propagate at the speed of light only at low red-shifts. The model is an attractor, thus reaching the limit cT→1 relatively fast. However, the effect of baryons turns out to be non-negligible and severely constrains the form of the Lagrangian. In passing, we found that in the simplest DDE models the no-ghost conditions for perturbations require a non-universal coupling to gravity. In the end, we comment on possible ways to solve the lack of matter domination stage for DDE models.

  5. Hybrid metric-Palatini stars

    NASA Astrophysics Data System (ADS)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing quark matter. As a possible astrophysical application of the obtained results, we suggest that stellar mass black holes, with masses in the range of 3.8 and 6 M⊙ , respectively, could be in fact hybrid metric-Palatini gravity neutron or quark stars.

  6. Scalar-tensor linear inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artymowski, Michał; Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead tomore » linear inflation in the strong coupling limit.« less

  7. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  8. The Euclidean scalar Green function in the five-dimensional Kaluza-Klein magnetic monopole space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E.R.

    2006-01-15

    In this paper we present, in a integral form, the Euclidean Green function associated with a massless scalar field in the five-dimensional Kaluza-Klein magnetic monopole superposed to a global monopole, admitting a nontrivial coupling between the field with the geometry. This Green function is expressed as the sum of two contributions: the first one related with uncharged component of the field, is similar to the Green function associated with a scalar field in a four-dimensional global monopole space-time. The second contains the information of all the other components. Using this Green function it is possible to study the vacuum polarizationmore » effects on this space-time. Explicitly we calculate the renormalized vacuum expectation value <{phi}{sup *}(x){phi}(x)>{sub Ren}, which by its turn is also expressed as the sum of two contributions.« less

  9. Higgs boson self-coupling from two-loop analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less

  10. Glueball spectrum and hadronic processes in low-energy QCD

    NASA Astrophysics Data System (ADS)

    Frasca, Marco

    2010-10-01

    Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.

  11. Stochastic quantization of conformally coupled scalar in AdS

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Oh, Jae-Hyuk

    2013-10-01

    We explore the relation between stochastic quantization and holographic Wilsonian renormalization group flow further by studying conformally coupled scalar in AdS d+1. We establish one to one mapping between the radial flow of its double trace deformation and stochastic 2-point correlation function. This map is shown to be identical, up to a suitable field re-definition of the bulk scalar, to the original proposal in arXiv:1209.2242.

  12. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  13. Issues on 3D noncommutative electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Wotzasek, Clovis

    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter {theta}, defining a new scalar field model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both cases. Up to second order in {theta}, we find that duality interchanges the 2-form {theta} with its 1-form Hodge dual *{theta} times the gauge coupling constant, i.e., {theta}{yields}*{theta}g{sup 2} (similar to the 4D NC electromagnetic duality). We directly prove that this property is false in the third order expansion in both 3D and 4Dmore » space-times, unless the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, {theta} cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of NC theories. In particular, in this dimension, we deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in {theta}.« less

  14. Viable tensor-to-scalar ratio in a symmetric matter bounce

    NASA Astrophysics Data System (ADS)

    Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.

    2018-01-01

    Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.

  15. Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search.

    PubMed

    Skripnikov, L V

    2016-12-07

    A precise theoretical study of the electronic structure of heavy atom diatomic molecules is of key importance to interpret the experiments in the search for violation of time-reversal (T) and spatial-parity (P) symmetries of fundamental interactions in terms of the electron electric dipole moment, eEDM, and dimensionless constant, k T,P , characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction. The ACME collaboration has recently improved limits on these quantities using a beam of ThO molecules in the electronic H 3 Δ 1 state [J. Baron et al., Science 343, 269 (2014)]. We apply the combined direct relativistic 4-component and two-step relativistic pseudopotential/restoration approaches to a benchmark calculation of the effective electric field, E eff , parameter of the T,P-odd pseudoscalar-scalar interaction, W T,P , and hyperfine structure constant in Δ13 state of the ThO molecule. The first two parameters are required to interpret the experimental data in terms of the eEDM and k T,P constant. We have investigated the electron correlation for all of the 98 electrons of ThO simultaneously up to the level of the coupled cluster with single, double, and noniterative triple amplitudes, CCSD(T), theory. Contributions from iterative triple and noniterative quadruple cluster amplitudes for the valence electrons have been also treated. The obtained values are E eff = 79.9 GV/cm, W T,P = 113.1 kHz. The theoretical uncertainty of these values is estimated to be about two times smaller than that of our previous study [L. V. Skripnikov and A. V. Titov, J. Chem. Phys., 142, 024301 (2015)]. It was found that the correlation of the inner- and outer-core electrons contributes 9% to the effective electric field. The values of the molecule frame dipole moment of the Δ13 state and the H 3 Δ 1 →X 1 Σ + transition energy of ThO calculated within the same methods are in a very good agreement with the experiment.

  16. Unparticle dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. Wemore » use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.« less

  17. A nonlinear dynamics for the scalar field in Randers spacetime

    NASA Astrophysics Data System (ADS)

    Silva, J. E. G.; Maluf, R. V.; Almeida, C. A. S.

    2017-03-01

    We investigate the properties of a real scalar field in the Finslerian Randers spacetime, where the local Lorentz violation is driven by a geometrical background vector. We propose a dynamics for the scalar field by a minimal coupling of the scalar field and the Finsler metric. The coupling is intrinsically defined on the Randers spacetime, and it leads to a non-canonical kinetic term for the scalar field. The nonlinear dynamics can be split into a linear and nonlinear regimes, which depend perturbatively on the even and odd powers of the Lorentz-violating parameter, respectively. We analyze the plane-waves solutions and the modified dispersion relations, and it turns out that the spectrum is free of tachyons up to second-order.

  18. Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances

    1989-01-01

    The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.

  19. Continuous quantum error correction for non-Markovian decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089

    2007-08-15

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less

  20. Large-scale magnetic fields, non-Gaussianity, and gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2017-12-01

    We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.

  1. Hawking radiation of five-dimensional charged black holes with scalar fields

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Xu, Zhen-Ming

    2017-09-01

    We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  2. Speeds of light in Stueckelberg-Horwitz-Piron electrodynamics

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2017-05-01

    Stueckelberg-Horwitz-Piron (SHP) electrodynamics formalizes the distinction between coordinate time (measured by laboratory clocks) and chronology (temporal ordering) by defining 4D spacetime events x μ as functions of an external evolution parameter τ. As τ grows monotonically, the spacetime evolution of classical events x μ (τ) trace out particle worldlines dynamically and induce the five U(1) gauge potentials through which events interact. In analogy with the constant c that associates a unit of length x 0 with intervals of time t in standard relativity, we introduce a constant c 5 associated with the external time τ. Whereas the nonrelativistic limit of special relativity can be found by taking c → ∞, we show that 5D SHP goes over to an equilibrium state of Maxwell theory in the limit c 5 → 0. Thus, the dimensionless ratio c 5/c parameterizes the deviation of SHP from standard electrodynamics, in particular the coupling of events. Put another way, Maxwell theory can be understood as currents and fields relaxing to an equilibrium independent of chronological time as c 5 τ slows to zero. We find that taking 0 < c 5/c < 1 enables the resolution of several longstanding difficulties in SHP theory.

  3. Scalar limitations of diffractive optical elements

    NASA Technical Reports Server (NTRS)

    Johnson, Eric G.; Hochmuth, Diane; Moharam, M. G.; Pommet, Drew

    1993-01-01

    In this paper, scalar limitations of diffractive optic components are investigated using coupled wave analyses. Results are presented for linear phase gratings and fanout devices. In addition, a parametric curve is given which correlates feature size with scalar performance.

  4. Q-balls in flat potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Edmund J.; Tsumagari, Mitsuo I.

    2009-07-15

    We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

  5. Towards understanding turbulent scalar mixing

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1992-01-01

    In an effort towards understanding turbulent scalar mixing, we study the effect of molecular mixing, first in isolation and then by accounting for the effects of the velocity field. The chief motivation for this approach stems from the strong resemblance of the scalar probability density function (PDF) obtained from the scalar field evolving from the heat conduction equation that arises in a turbulent velocity field. However, the evolution of the scalar dissipation is different for the two cases. We attempt to account for these differences, which are due to the velocity field, using a Lagrangian frame analysis. After establishing the usefulness of this approach, we use the heat-conduction simulations (HCS), in lieu of the more expensive direct numerical simulations (DNS), to study many of the less understood aspects of turbulent mixing. Comparison between the HCS data and available models are made whenever possible. It is established that the beta PDF characterizes the evolution of the scalar PDF during mixing from all types of non-premixed initial conditions.

  6. Autoignition of hydrogen in shear flows

    NASA Astrophysics Data System (ADS)

    Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar

    2018-05-01

    In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.

  7. DsJ(2860) as the First Radial Excitation of Ds0*(2317)

    NASA Astrophysics Data System (ADS)

    van Beveren, Eef; Rupp, George

    2006-11-01

    A coupled-channel model previously employed to describe the narrow Ds0*(2317) and broad D0*(2400) charmed scalar mesons is generalized so as to include all ground-state pseudoscalar-pseudoscalar and vector-vector two-meson channels. All parameters are chosen fixed at published values, except for the overall coupling constant, which is fine-tuned to reproduce the Ds0*(2317) mass. Thus, the radial excitations Ds0*(2850) and D0*(2740) are predicted, both with a width of about 50 MeV. The former state appears to correspond to the new DsJ(2860) resonance decaying to DK announced by BABAR in the course of this work. Also, the D0*(2400) resonance is roughly reproduced, though perhaps with a somewhat too low central resonance peak.

  8. Hybrid Higgs inflation: The use of disformal transformation

    NASA Astrophysics Data System (ADS)

    Sato, Seiga; Maeda, Kei-ichi

    2018-04-01

    We propose a hybrid type of the conventional Higgs inflation and new Higgs inflation models. We perform a disformal transformation into the Einstein frame and analyze the background dynamics and the cosmological perturbations in the truncated model, in which we ignore the higher-derivative terms of the Higgs field. From the observed power spectrum of the density perturbations, we obtain the constraint on the nonminimal coupling constant ξ and the mass parameter M in the derivative coupling. Although the primordial tilt ns in the hybrid model barely changes, the tensor-to-scalar ratio r moves from the value in the new Higgs inflationary model to that in the conventional Higgs inflationary model as |ξ | increases. We confirm our results by numerical analysis by ADM formalism of the full theory in the Jordan frame.

  9. Group theoretical quantization of isotropic loop cosmology

    NASA Astrophysics Data System (ADS)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  10. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly andmore » rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.« less

  11. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  12. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    NASA Astrophysics Data System (ADS)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  13. Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.; Herdeiro, Carlos; Radu, Eugen

    2017-08-01

    Recent numerical relativity simulations within the Einstein-Maxwell-(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn.

  14. NLO evolution of color dipoles in N=4 SYM

    DOE PAGES

    Chirilli, Giovanni A.; Balitsky, Ian

    2009-07-04

    Here, high-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformalmore » $${\\cal N}$$=4 SYM theory. We define the "composite dipole operator" with the rapidity cutoff preserving conformal invariance.« less

  15. COSMOS-e'-soft Higgsotic attractors

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan

    2017-07-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.

  16. Orbital fingerprints of ultralight scalar fields around black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Miguel C.; Macedo, Caio F. B.; Cardoso, Vitor

    2017-10-01

    Ultralight scalars have been predicted in a variety of scenarios and advocated as a possible component of dark matter. These fields can form compact regular structures known as boson stars, or—in the presence of horizons—give rise to nontrivial time-dependent scalar hair and a stationary geometry. Because these fields can be coherent over large spatial extents, their interaction with "regular" matter can lead to very peculiar effects, most notably resonances. Here we study the motion of stars in a background describing black holes surrounded by nonaxially symmetric scalar field profiles. By analyzing the system in a weak-field approach, we find that the presence of a scalar field gives rise to secular effects akin to ones existing in planetary and accretion disks. Particularly, the existence of resonances between the orbiting stars and the scalar field may enable angular momentum exchange between them, providing mechanisms similar to planetary migration. Additionally, these mechanisms may allow floating orbits, which are stable radiating orbits. We also show, in the full relativistic case, that these effects also appear when there is a direct coupling between the scalar field and the stellar matter, which can arise due to the presence of a scalar core in the star or in alternative theories of gravity.

  17. Conformal standard model with an extended scalar sector

    NASA Astrophysics Data System (ADS)

    Latosinski, Adam; Lewandowski, Adrian; Meissner, Krzysztof A.; Nicolai, Hermann

    2015-10-01

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3) N that complements the standard U(1) B-L symmetry, and is broken explicitly only by the Yukawa interaction, of order O (10-6), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3) N symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (`softly broken conformal symmetry'). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  18. Kolmogorov and scalar spectral regimes in numerical turbulence

    NASA Technical Reports Server (NTRS)

    Kerr, R. M.

    1985-01-01

    Velocity and passive-scalar spectra for turbulent fields generated by a forced three-dimensional simulation and Taylormicroscale Reynolds numbers up to 83 are shown to have distinct spectral regimes, including a Kolmogorov inertial subrange. Both one- and three-dimensional spectra are shown for comparison with experiment and theory, respectively. When normalized by the Kolmogorov dissipation scales velocity spectra collapse to a single curve and a high-wavenumber bulge is seen. The bulge leads to an artificially high Kolmogorov constant, but is consistent with recent measurements of the velocity spectrum in the dissipation regime and the velocity-derivative skewness. Scalar spectra, when normalized by the Oboukov-Corrsin scales, collapse to curves which depend only on Prandtl number and show a universal inertial-convective subrange, independent of Prandtl number. When normalized by the Batchelor scales, the scalar spectra show a universal dissipation regime which is independent of Prandtl numbers from 0.1 to 1.0. The time development of velocity spectra is illustrated by energy-transfer spectra in which distinct pulses propagate to high wavenumbers.

  19. Complete set of essential parameters of an effective theory

    NASA Astrophysics Data System (ADS)

    Ioffe, M. V.; Vereshagin, V. V.

    2018-04-01

    The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.

  20. Renormalization group scale-setting from the action—a road to modified gravity theories

    NASA Astrophysics Data System (ADS)

    Domazet, Silvije; Štefančić, Hrvoje

    2012-12-01

    The renormalization group (RG) corrected gravitational action in Einstein-Hilbert and other truncations is considered. The running scale of the RG is treated as a scalar field at the level of the action and determined in a scale-setting procedure recently introduced by Koch and Ramirez for the Einstein-Hilbert truncation. The scale-setting procedure is elaborated for other truncations of the gravitational action and applied to several phenomenologically interesting cases. It is shown how the logarithmic dependence of the Newton's coupling on the RG scale leads to exponentially suppressed effective cosmological constant and how the scale-setting in particular RG-corrected gravitational theories yields the effective f(R) modified gravity theories with negative powers of the Ricci scalar R. The scale-setting at the level of the action at the non-Gaussian fixed point in Einstein-Hilbert and more general truncations is shown to lead to universal effective action quadratic in the Ricci tensor.

  1. Spectral methods for coupled channels with a mass gap

    NASA Astrophysics Data System (ADS)

    Weigel, H.; Quandt, M.; Graham, N.

    2018-02-01

    We develop a method to compute the vacuum polarization energy for coupled scalar fields with different masses scattering off a background potential in one space dimension. As an example we consider the vacuum polarization energy of a kinklike soliton built from two real scalar fields with different mass parameters.

  2. Dark matter relics and the expansion rate in scalar-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less

  3. Cosmologically allowed regions for the axion decay constant Fa

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Sonomoto, Eisuke; Yanagida, Tsutomu T.

    2018-07-01

    If the Peccei-Quinn symmetry is already broken during inflation, the decay constant Fa of the axion can be in a wide region from 1011GeV to 1018GeV for the axion being the dominant dark matter. In this case, however, the axion causes the serious cosmological problem, isocurvature perturbation problem, which severely constrains the Hubble parameter during inflation. The constraint is relaxed when Peccei-Quinn scalar field takes a large value ∼Mp (Planck scale) during inflation. In this letter, we point out that the allowed region of the decay constant Fa is reduced to a rather narrow region for a given tensor-to-scalar ratio r when Peccei-Quinn scalar field takes ∼Mp during inflation. For example, if the ratio r is determined as r ≳10-3 in future measurements, we can predict Fa ≃ (0.1- 1.4) ×1012GeV for domain wall number NDW = 6.

  4. WIMP dark matter and unitarity-conserving inflation via a gauge singlet scalar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlhoefer, Felix; McDonald, John, E-mail: felix.kahlhoefer@desy.de, E-mail: j.mcdonald@lancaster.ac.uk

    2015-11-01

    A gauge singlet scalar with non-minimal coupling to gravity can drive inflation and later freeze out to become cold dark matter. We explore this idea by revisiting inflation in the singlet direction (S-inflation) and Higgs Portal Dark Matter in light of the Higgs discovery, limits from LUX and observations by Planck. We show that large regions of parameter space remain viable, so that successful inflation is possible and the dark matter relic abundance can be reproduced. Moreover, the scalar singlet can stabilise the electroweak vacuum and at the same time overcome the problem of unitarity-violation during inflation encountered by Higgsmore » Inflation, provided the singlet is a real scalar. The 2-σ Planck upper bound on n{sub s} imposes that the singlet mass is below 2 TeV, so that almost the entire allowed parameter range can be probed by XENON1T.« less

  5. Perturbative stability of SFT-based cosmological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, Federico; Koshelev, Alexey S., E-mail: fgalli@tena4.vub.ac.be, E-mail: alexey.koshelev@vub.ac.be

    2011-05-01

    We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numericallymore » that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.« less

  6. A Proof of Factorization Theorem of Drell-Yan Process at Operator Level

    NASA Astrophysics Data System (ADS)

    Zhou, Gao-Liang

    2016-02-01

    An alternative proof of factorization theorem for Drell-Yan process that works at operator level is presented in this paper. Contributions of interactions after the hard collision for such inclusive processes are proved to be canceled at operator level according to the unitarity of time evolution operator. After this cancellation, there are no longer leading pinch singular surface in Glauber region in the time evolution of electromagnetic currents. Effects of soft gluons are absorbed into Wilson lines of scalar-polarized gluons. Cancelation of soft gluons is attribute to unitarity of time evolution operator and such Wilson lines. Supported by the National Natural Science Foundation of China under Grant No. 11275242

  7. Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Alessi, Roberto; Pham, Kim

    2016-02-01

    This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  9. Phenomenology in minimal theory of massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felice, Antonio De; Mukohyama, Shinji; Kavli Institute for the Physics and Mathematics of the Universe

    2016-04-15

    We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence ofmore » various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.« less

  10. Stability of disformally coupled accretion disks

    NASA Astrophysics Data System (ADS)

    Koivisto, Tomi S.; Nyrhinen, Hannu J.

    2017-10-01

    The no-hair theorem postulates that the only externally observable properties of a black hole are its mass, its electric charge, and its angular momentum. In scalar-tensor theories of gravity, a matter distribution around a black hole can lead to the so called ‘spontaneous scalarisation’ instability that triggers the development of scalar hair. In the Brans-Dicke type theories, this effect can be understood as a result of tachyonic effective mass of the scalar field. Here we consider the instability in the generalised class of scalar-theories that feature non-conformal, i.e. ‘disformal’, couplings to matter. Such theories have gained considerable interest in the recent years and have been studied in a wide variety of systems, both cosmological and astrophysical. In view of the prospects of gravitational wave astronomy, it is relevant to explore the implications of the theories in the strong-gravity regime. In this article, we concentrate on the spontaneous scalarisation of matter configurations around Schwarzschild and Kerr black holes. We find that in the more generic scalar-tensor theories, the instability of the Brans-Dicke theory can be enhanced, suggesting violations of the no-hair theorem. On the other hand, we find that, especially if the coupling is very strong, or if the gradients in the matter distribution are negligible, the disformal coupling tends to stabilise the system.

  11. The Casimir effect in rugby-ball type flux compactifications

    NASA Astrophysics Data System (ADS)

    Minamitsuji, M.

    2008-04-01

    We discuss volume stabilization in a 6D braneworld model based on 6D supergravity theory. The internal space is compactified by magnetic flux and contains codimension two 3-branes (conical singularities) as its boundaries. In general the external 4D spacetime is warped and in the unwrapped limit the shape of the internal space looks like a 'rugby ball'. The size of the internal space is not fixed due to the scale invariance of the supergravity theory. We discuss the possibility of volume stabilization by the Casimir effect for a massless, minimally coupled bulk scalar field. The main obstacle in studying this case is that the brane (conical) part of the relevant heat kernel coefficient (a6) has not been formulated. Thus as a first step, we consider the 4D analog model with boundary codimension two 1-branes. The spacetime structure of the 4D model is very similar to that of the original 6D model, where now the relevant heat kernel coefficient is well known. We derive the one-loop effective potential induced by a scalar field in the bulk by employing zeta function regularization with heat kernel analysis. As a result, the volume is stabilized for most possible choices of the parameters. Especially, for a larger degree of warping, our results imply that a large hierarchy between the mass scales and a tiny amount of effective cosmological constant can be realized on the brane. In the non-warped limit the ratio tends to converge to the same value, independently of the bulk gauge coupling constant. Finally, we will analyze volume stabilization in the original model 6D by employing the same mode-sum technique.

  12. On scalar and vector fields coupled to the energy-momentum tensor

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.

    2018-05-01

    We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.

  13. Lepton Flavor Violation Induced by a Neutral Scalar at Future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2018-06-01

    Many new physics scenarios beyond standard model often necessitate the existence of a (light) neutral scalar H , which might couple to the charged leptons in a flavor violating way, while evading all existing constraints. We show that such scalars could be effectively produced at future lepton colliders, either on shell or off shell depending on their mass, and induce lepton flavor violating (LFV) signals, i.e., e+e-→ℓα±ℓβ∓(+H ) with α ≠β . We find that a large parameter space of the scalar mass and the LFV couplings can be probed well beyond the current low-energy constraints in the lepton sector. In particular, a scalar-loop induced explanation of the long-standing muon g -2 anomaly can be directly tested in the on-shell mode.

  14. FAST TRACK COMMUNICATION: Phenomenology of the equivalence principle with light scalars

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Donoghue, John F.

    2010-10-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the 'dilaton charge' of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A-1/3. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.

  15. The structure, mixing angle, mass and couplings of the light scalar f0(500) and f0(980) mesons

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2018-06-01

    The mixing angle, mass and couplings of the light scalar mesons f0 (500) and f0 (980) are calculated in the framework of QCD two-point sum rule approach by assuming that they are tetraquarks with diquark-antidiquark structures. The mesons are treated as mixtures of the heavy | H > = ([ su ] [ s bar u bar ] + [ sd ] [ s bar d bar ]) /√{ 2 } and light | L > = [ ud ] [ u bar d bar ] scalar diquark-antidiquark components. We extract from corresponding sum rules the mixing angles φH and φL of these states and evaluate the masses and couplings of the particles f0 (500) and f0 (980).

  16. A simple analytical model for signal amplification by reversible exchange (SABRE) process.

    PubMed

    Barskiy, Danila A; Pravdivtsev, Andrey N; Ivanov, Konstantin L; Kovtunov, Kirill V; Koptyug, Igor V

    2016-01-07

    We demonstrate an analytical model for the description of the signal amplification by reversible exchange (SABRE) process. The model relies on a combined analysis of chemical kinetics and the evolution of the nuclear spin system during the hyperpolarization process. The presented model for the first time provides rationale for deciding which system parameters (i.e. J-couplings, relaxation rates, reaction rate constants) have to be optimized in order to achieve higher signal enhancement for a substrate of interest in SABRE experiments.

  17. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  18. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  19. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    NASA Astrophysics Data System (ADS)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  20. Resurrecting the Power-law, Intermediate, and Logamediate Inflations in the DBI Scenario with Constant Sound Speed

    NASA Astrophysics Data System (ADS)

    Amani, Roonak; Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2018-02-01

    We investigate the power-law, intermediate, and logamediate inflationary models in the framework of DBI non-canonical scalar field with constant sound speed. In the DBI setting, we first represent the power spectrum of both scalar density and tensor gravitational perturbations. Then, we derive different inflationary observables including the scalar spectral index n s , the running of the scalar spectral index {{dn}}s/d{ln}k, and the tensor-to-scalar ratio r. We show that the 95% CL constraint of the Planck 2015 T + E data on the non-Gaussianity parameter {f}{NL}{DBI} leads to the sound speed bound {c}s≥slant 0.087 in the DBI inflation. Moreover, our results imply that, although the predictions of the power-law, intermediate, and logamediate inflations in the standard canonical framework (c s = 1) are not consistent with the Planck 2015 data, in the DBI scenario with constant sound speed {c}s< 1, the result of the r-{n}s diagram for these models can lie inside the 68% CL region favored by Planck 2015 TT,TE,EE+lowP data. We also specify the parameter space of the power-law, intermediate, and logamediate inflations for which our models are compatible with the 68% or 95% CL regions of the Planck 2015 TT,TE,EE+lowP data. Using the allowed ranges of the parameter space of the intermediate and logamediate inflationary models, we estimate the running of the scalar spectral index and find that it is compatible with the 95% CL constraint from the Planck 2015 TT,TE,EE+lowP data.

  1. Signatures of Air-Wave Interactions Over a Large Lake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc

    2018-06-01

    The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.

  2. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    2011-06-01

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  3. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  4. Non-minimally coupled tachyon field in teleparallel gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazlpour, Behnaz; Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of thismore » point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.« less

  5. Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikhahmadi, Haidar; Saridakis, Emmanuel N.; Aghamohammadi, Ali

    2016-10-01

    In inflation with nonminimal derivative coupling there is not a conformal transformation to the Einstein frame where calculations are straightforward, and thus in order to extract inflationary observables one needs to perform a detailed and lengthy perturbation investigation. In this work we bypass this problem by performing a Hamilton-Jacobi analysis, namely rewriting the cosmological equations considering the scalar field to be the time variable. We apply the method to two specific models, namely the power-law and the exponential cases, and for each model we calculate various observables such as the tensor-to-scalar ratio, and the spectral index and its running. Wemore » compare them with 2013 and 2015 Planck data, and we show that they are in a very good agreement with observations.« less

  6. Closed-form solutions of the Wheeler-DeWitt equation in a scalar-vector field cosmological model by Lie symmetries

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Vakili, Babak

    2016-01-01

    We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler-DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann-Robertson-Walker metric having the scale factor a( t), a scalar field with potential function V(φ ) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(φ ). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler-DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.

  7. Charged boson stars and black holes with nonminimal coupling to gravity

    NASA Astrophysics Data System (ADS)

    Verbin, Y.; Brihaye, Y.

    2018-02-01

    We find new spherically symmetric charged boson star solutions of a complex scalar field coupled nonminimally to gravity by a "John-type" term of Horndeski theory, that is a coupling between the kinetic scalar term and Einstein tensor. We study the parameter space of the solutions and find two distinct families according to their position in parameter space. More widespread is the family of solutions (which we call branch 1) existing for a finite interval of the central value of the scalar field starting from zero and ending at some finite maximal value. This branch contains as a special case the charged boson stars of the minimally coupled theory. In some regions of parameter space we find a new second branch ("branch 2") of solutions which are more massive and more stable than those of branch 1. This second branch exists also in a finite interval of the central value of the scalar field, but its end points (either both or in some cases only one) are extremal Reissner-Nordström black hole solutions.

  8. Quantum gravity fluctuations flatten the Planck-scale Higgs potential

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Hamada, Yuta; Lumma, Johannes; Yamada, Masatoshi

    2018-04-01

    We investigate asymptotic safety of a toy model of a singlet-scalar extension of the Higgs sector including two real scalar fields under the impact of quantum-gravity fluctuations. Employing functional renormalization group techniques, we search for fixed points of the system which provide a tentative ultraviolet completion of the system. We find that in a particular regime of the gravitational parameter space the canonically marginal and relevant couplings in the scalar sector—including the mass parameters—become irrelevant at the ultraviolet fixed point. The infrared potential for the two scalars that can be reached from that fixed point is fully predicted and features no free parameters. In the remainder of the gravitational parameter space, the values of the quartic couplings in our model are predicted. In light of these results, we discuss whether the singlet-scalar could be a dark-matter candidate. Furthermore, we highlight how "classical scale invariance" in the sense of a flat potential of the scalar sector at the Planck scale could arise as a consequence of asymptotic safety.

  9. How changing physical constants and violation of local position invariance may occur?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V. V.; Shuryak, E. V.

    2008-04-04

    Light scalar fields very naturally appear in modern cosmological models, affecting such parameters of Standard Model as electromagnetic fine structure constant {alpha}, dimensionless ratios of electron or quark mass to the QCD scale, m{sub e,q}/{lambda}{sub QCD}. Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (redshift z{approx}0.5), from matter to dark energy domination. In a two-brane model (we use as a pedagogical example) these modifications are due to changing distance to 'the second brane', a massive companion of 'our brane'. Back from extra dimensions, massivemore » bodies (stars or galaxies) can also affect physical constants. They have large scalar charge Q{sub d} proportional to number of particles which produces a Coulomb-like scalar field {phi} = Q{sub d}/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. {delta}{alpha}/{alpha} = k{sub {alpha}}{delta}(GM/rc{sup 2}). We compare different manifestations of this effect, which is usually called violation of local position invariance. The strongest limits k{sub {alpha}}+0.17k{sub e} (-3.5{+-}6)*10{sup -7} are obtained from the measurements of dependence of atomic frequencies on the distance from Sun (the distance varies due to the ellipticity of the Earth's orbit)« less

  10. Magnetofluid dynamics in curved spacetime

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chinmoy; Das, Rupam; Mahajan, S. M.

    2015-03-01

    A grand unified field Mμ ν is constructed from Maxwell's field tensor and an appropriately modified flow field, both nonminimally coupled to gravity, to analyze the dynamics of hot charged fluids in curved background space-time. With a suitable 3 +1 decomposition, this new formalism of the hot fluid is then applied to investigate the vortical dynamics of the system. Finally, the equilibrium state for plasma with nonminimal coupling through Ricci scalar R to gravity is investigated to derive a double Beltrami equation in curved space-time.

  11. Hamiltonian of Mean Force and Dissipative Scalar Field Theory

    NASA Astrophysics Data System (ADS)

    Jafari, Marjan; Kheirandish, Fardin

    2018-04-01

    Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.

  12. Computing and visualizing time-varying merge trees for high-dimensional data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oesterling, Patrick; Heine, Christian; Weber, Gunther H.

    2017-06-03

    We introduce a new method that identifies and tracks features in arbitrary dimensions using the merge tree -- a structure for identifying topological features based on thresholding in scalar fields. This method analyzes the evolution of features of the function by tracking changes in the merge tree and relates features by matching subtrees between consecutive time steps. Using the time-varying merge tree, we present a structural visualization of the changing function that illustrates both features and their temporal evolution. We demonstrate the utility of our approach by applying it to temporal cluster analysis of high-dimensional point clouds.

  13. Phases of global AdS black holes

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  14. Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.; Zelnikov, A.

    2001-06-15

    We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.

  15. Fitting and forecasting coupled dark energy in the non-linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used tomore » test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.« less

  16. Creation and Evolution of Particle Number Asymmetry in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Morozumi, T.; Nagao, K. I.; Adam, A. S.; Takata, H.

    2017-03-01

    We introduce a model which may generate particle number asymmetry in an expanding Universe. The model includes charge parity (CP) violating and particle number violating interactions. The model consists of a real scalar field and a complex scalar field. Starting with an initial condition specified by a density matrix, we show how the asymmetry is created through the interaction and how it evolves at later time. We compute the asymmetry using non-equilibrium quantum field theory and as a first test of the model, we study how the asymmetry evolves in the flat limit.

  17. Inflation in a renormalizable cosmological model and the cosmic no hair conjecture

    NASA Technical Reports Server (NTRS)

    Maeda, Kei-Ichi; Stein-Schabes, Jaime A.; Futamase, Toshifumi

    1988-01-01

    The possibility of having inflation in a renormalizable cosmological model is investigated. The Cosmic No Hair Conjecture is proved to hold for all Bianchi types except Bianchi IX. By the use of a conformal transformation on the metric it is shown that these models are equivalent to the ones described by the Einstein-Hilbert action for gravity minimally coupled to a set of scalar fields with inflationary potentials. Henceforth, it is proven that inflationary solutions behave as attractors in solution space, making it a natural event in the evolution of such models.

  18. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  19. Q{sub 2} evolution of parton distributions at small values of x: Effective scale for combined H1 and ZEUS data on the structure function F{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotikov, A. V., E-mail: kotikov@theor.jinr.ru; Shaikhatdenov, B. G.

    2015-06-15

    An expression for the structure function F{sub 2} in the form of Bessel functions at small values of the Bjorken variable x is used. This expression was derived for a flat initial condition in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations. The argument of the strong coupling constant was chosen in such a way as to annihilate the singular part of the anomalous dimensions in the next-to-leading-order of perturbation theory. This choice, together with the frozen and analytic versions of the strong coupling constant, is used to analyze combined data of the H1 and ZEUS Collaborations obtained recently for the structure functionmore » F{sub 2}.« less

  20. Dynamics of supersymmetric chameleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk

    2013-10-01

    We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, wemore » go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.« less

  1. Observation of a group of dark rogue waves in a telecommunication optical fiber

    NASA Astrophysics Data System (ADS)

    Baronio, F.; Frisquet, B.; Chen, S.; Millot, G.; Wabnitz, S.; Kibler, B.

    2018-01-01

    Over the past decade, the rogue wave debate has stimulated the comparison of predictions and observations among different branches of wave physics, particularly between hydrodynamics and optics, in situations where analogous dynamical behaviors can be identified, thanks to the use of common universal models. Although the scalar nonlinear Schrödinger equation (NLSE) has constantly played a central role for rogue wave investigations, moving beyond the standard NLSE model is relevant and needful for describing more general classes of physical systems and applications. In this direction, the coupled NLSEs are known to play a pivotal role for the understanding of the complex wave dynamics in hydrodynamics and optics. Benefiting from the advanced technology of high-speed telecommunication-grade components, and relying on a careful design of the nonlinear propagation of orthogonally polarized optical pump waves in a randomly birefringent telecom fiber, this work explores, both theoretically and experimentally, the rogue wave dynamics governed by such coupled NLSEs. We report, for the first time, the evidence of a group of three dark rogue waves, the so-called dark three-sister rogue waves, where experiments, numerics, and analytics show a very good consistency.

  2. Minimally flavored colored scalar in and the mass matrices constraints

    NASA Astrophysics Data System (ADS)

    Doršner, Ilja; Fajfer, Svjetlana; Košnik, Nejc; Nišandžić, Ivan

    2013-11-01

    The presence of a colored scalar that is a weak doublet with fractional electric charges of | Q| = 2 /3 and | Q| = 5 /3 with mass below 1 TeV can provide an explanation of the observed branching ratios in decays. The required combination of scalar and tensor operators in the effective Hamiltonian for is generated through the t-channel exchange. We focus on a scenario with a minimal set of Yukawa couplings that can address a semitauonic puzzle and show that its resolution puts a nontrivial bound on the product of the scalar couplings to and . We also derive additional constraints posed by , muon magnetic moment, lepton flavor violating decays μ → eγ, τ → μγ, τ → eγ, and τ electric dipole moment. The minimal set of Yukawa couplings is not only compatible with the mass generation in an SU(5) unification framework, a natural environment for colored scalars, but specifies all matter mixing parameters except for one angle in the up-type quark sector. We accordingly spell out predictions for the proton decay signatures through gauge boson exchange and show that p → π0 e + is suppressed with respect to and even p → K 0 e + in some parts of available parameter space. Impact of the colored scalar embedding in 45-dimensional representation of SU(5) on low-energy phenomenology is also presented. Finally, we make predictions for rare top and charm decays where presence of this scalar can be tested independently.

  3. Chiral susceptibility and the scalar Ward identity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, L.; Liu, Y.-X.; Roberts, C. D.

    2009-03-01

    The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For themore » two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.« less

  4. Chiral susceptibility and the scalar Ward identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Lei; Liu Yuxin; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000

    2009-03-15

    The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For themore » two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.« less

  5. Anisotropic hydrodynamics with a scalar collisional kernel

    NASA Astrophysics Data System (ADS)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  6. Toward the inflationary paradigm: Lectures on inflationary cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, M.S.

    1987-02-01

    Guth's inflationary Universe scenario has revolutionized our thinking about the very early Universe. The inflationary scenario offers the possibility of explaining a handful of very fundamental cosmological facts - the homogeneity, isotropy, and flatness of the Universe, the origin of density inhomogeneities and the origin of the baryon asymmetry, while at the same time avoiding the monopole problem. It is based upon microphysical events which occurred early (t less than or equal to 10/sup -34/ sec) in the history of the Universe, but well after the planck epoc (t greater than or equal to 10/sup -43/ sec). While Guth's originalmore » model was fundamentally flawed, the variant based on the slow-rollover transition proposed by Linde, and Albrecht and Steinhardt (dubbed 'new inflation') appears viable. Although old inflation and the earliest models of new inflation were based upon first order phase transitions associated with spontaneous-symmetry breaking (SSB), it now appears that the inflationary transition is a much more generic phenomenon, being associated with the evolution of a weakly-coupled scalar field which for some reason or other was initially displaced from the minimum of its potential. Models now exist which are based on a wide variety of microphysics: SSB, SUSY/SUGR, compactification of extra dimensions, R/sup 2/ gravity, induced gravity, and some random, weakly-coupled scalar field. While there are several models which successfully implement the inflation, none is particularly compelling and all seem somewhat ad hoc. The common distasteful feature of all the successful models is the necessity of a small dimensionless number in the model - usually in the form of a dimensionless coupling of order 10/sup -15/. All inflationary scenarios rely upon the assumption that vacuum energy was once dynamically very significant, whereas today there exists every evidence that it is not. 133 refs., 17 figs.« less

  7. AdS and Lifshitz black hole solutions in conformal gravity sourced with a scalar field

    NASA Astrophysics Data System (ADS)

    Herrera, Felipe; Vásquez, Yerko

    2018-07-01

    In this paper we obtain exact asymptotically anti-de Sitter black hole solutions and asymptotically Lifshitz black hole solutions with dynamical exponents z = 0 and z = 4 of four-dimensional conformal gravity coupled with a self-interacting conformally invariant scalar field. Then, we compute their thermodynamical quantities, such as the mass, the Wald entropy and the Hawking temperature. The mass expression is obtained by using the generalized off-shell Noether potential formulation. It is found that the anti-de Sitter black holes as well as the Lifshitz black holes with z = 0 have zero mass and zero entropy, although they have non-zero temperature. A similar behavior has been observed in previous works, where the integration constant is not associated with a conserved charge, and it can be interpreted as a kind of gravitational hair. On the other hand, the Lifshitz black holes with dynamical exponent z = 4 have non-zero conserved charges, and the first law of black hole thermodynamics holds. Also, we analyze the horizon thermodynamics for the Lifshitz black holes with z = 4, and we show that the first law of black hole thermodynamics arises from the field equations evaluated on the horizon. Furthermore, we study the propagation of a conformally coupled scalar field on these backgrounds and we find the quasinormal modes analytically in several cases. We find that for anti-de Sitter black holes and Lifshitz black holes with z = 4, there is a continuous spectrum of frequencies for Dirichlet boundary condition; however, we show that discrete sets of well defined quasinormal frequencies can be obtained by considering Neumann boundary conditions.

  8. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Hu, B. L.

    2015-11-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.

  9. Solvent induced temperature dependencies of NMR parameters of hydrogen bonded anionic clusters

    NASA Astrophysics Data System (ADS)

    Golubev, Nikolai S.; Shenderovich, Ilja G.; Tolstoy, Peter M.; Shchepkin, Dmitry N.

    2004-07-01

    The solvent induced temperature dependence of NMR parameters (proton and fluorine chemical shifts, the two-bond scalar spin coupling constant across the hydrogen bridge, 2hJFF) for dihydrogen trifluoride anion, (FH) 2F -, in a polar aprotic solvent, CDF 3/CDF 2Cl, is reported and discussed. The results are interpreted in terms of a simple electrostatic model, accounting a decrease of electrostatic repulsion of two negatively charged fluorine atoms on placing into a dielectric medium. The conclusion is drawn that polar medium causes some contraction of hydrogen bonds in ionic clusters combined with a decrease of hydrogen bond asymmetry.

  10. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  11. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  12. Beta function quintessence cosmological parameters and fundamental constants - I. Power and inverse power law dark energy potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.

    2018-07-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar φ with respect to the natural log of the scale factor a, β (φ)=d φ/d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar φ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated `beta potential' is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are not calculable using only the model action. As an example, this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that Λ cold dark matter is part of the family of quintessence cosmology power-law potentials with a power of zero.

  13. A Brane Model, Its Ads-DS States and Their Agitated Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Vargas Moniz, Paulo; Zhuk, Alexander

    2006-02-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields. It is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density.

  14. Cosmic variance in inflation with two light scalars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light ( m ∼< 0.1 H ), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always hasmore » the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.« less

  15. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  16. Self-excitation of a nonlinear scalar field in a random medium

    PubMed Central

    Zeldovich, Ya. B.; Molchanov, S. A.; Ruzmaikin, A. A.; Sokoloff, D. D.

    1987-01-01

    We discuss the evolution in time of a scalar field under the influence of a random potential and diffusion. The cases of a short-correlation in time and of stationary potentials are considered. In a linear approximation and for sufficiently weak diffusion, the statistical moments of the field grow exponentially in time at growth rates that progressively increase with the order of the moment; this indicates the intermittent nature of the field. Nonlinearity halts this growth and in some cases can destroy the intermittency. However, in many nonlinear situations the intermittency is preserved: high, persistent peaks of the field exist against the background of a smooth field distribution. These widely spaced peaks may make a major contribution to the average characteristics of the field. PMID:16593872

  17. Some semiclassical structure constants for AdS 4 × CP 3

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Bozhilov, Plamen

    2018-02-01

    We compute structure constants in three-point functions of three string states in AdS 4× CP 3 in the framework of the semiclassical approach. We consider HHL correlation functions where two of the states are "heavy" string states of finite-size giant magnons carrying one or two angular momenta and the other one corresponds to such "light" states as dilaton operators with non-zero momentum, primary scalar operators, and singlet scalar operators with higher string levels.

  18. One-loop renormalization of a gravity-scalar system

    NASA Astrophysics Data System (ADS)

    Park, I. Y.

    2017-05-01

    Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.

  19. Is the standard model saved asymptotically by conformal symmetry?

    NASA Astrophysics Data System (ADS)

    Gorsky, A.; Mironov, A.; Morozov, A.; Tomaras, T. N.

    2015-03-01

    It is pointed out that the top-quark and Higgs masses and the Higgs VEV with great accuracy satisfy the relations 4 m {/H 2} = 2 m {/T 2} = v 2, which are very special and reminiscent of analogous ones at Argyres-Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings λ(0) = 1/8 and y(0) = 1 leads to the free-field stable point in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario," one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.

  20. Light dark matter, naturalness, and the radiative origin of the electroweak scale

    DOE PAGES

    Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; ...

    2015-01-09

    We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up tomore » the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.« less

  1. Cosmological abundance of the QCD axion coupled to hidden photons

    NASA Astrophysics Data System (ADS)

    Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu

    2018-06-01

    We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.

  2. A hybrid probabilistic/spectral model of scalar mixing

    NASA Astrophysics Data System (ADS)

    Vaithianathan, T.; Collins, Lance

    2002-11-01

    In the probability density function (PDF) description of a turbulent reacting flow, the local temperature and species concentration are replaced by a high-dimensional joint probability that describes the distribution of states in the fluid. The PDF has the great advantage of rendering the chemical reaction source terms closed, independent of their complexity. However, molecular mixing, which involves two-point information, must be modeled. Indeed, the qualitative shape of the PDF is sensitive to this modeling, hence the reliability of the model to predict even the closed chemical source terms rests heavily on the mixing model. We will present a new closure to the mixing based on a spectral representation of the scalar field. The model is implemented as an ensemble of stochastic particles, each carrying scalar concentrations at different wavenumbers. Scalar exchanges within a given particle represent ``transfer'' while scalar exchanges between particles represent ``mixing.'' The equations governing the scalar concentrations at each wavenumber are derived from the eddy damped quasi-normal Markovian (or EDQNM) theory. The model correctly predicts the evolution of an initial double delta function PDF into a Gaussian as seen in the numerical study by Eswaran & Pope (1988). Furthermore, the model predicts the scalar gradient distribution (which is available in this representation) approaches log normal at long times. Comparisons of the model with data derived from direct numerical simulations will be shown.

  3. Exploring the jet multiplicity in the 750 GeV diphoton excess

    DOE PAGES

    Dalchenko, Mykhailo; Dutta, Bhaskar; Gao, Yu; ...

    2016-10-01

    The recent diphoton excess at the LHC has been explained tentatively by a Standard Model (SM) singlet scalar of 750 GeV in mass, in the association of heavy particles with SM gauge charges. These new particles with various SM gauge charges induce loop-level couplings of the new scalar to WW, ZZ, Zγ, γγ, and gg. Here, we show that the strength of the couplings to the gauge bosons also determines the production mechanism of the scalar particle via WW,ZZ,Zγ,γγ,gg fusion which leads to individually distinguishable jet distributions in the final state where the statistics will be improved in the ongoingmore » run. Finally, the number of jets and the leading jet's transverse momentum distribution in the excess region of the diphoton signal can be used to determine the coupling of the scalar to the gauge bosons arising from the protons which subsequently determine the charges of the heavy particles that arise from various well-motivated models.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalchenko, Mykhailo; Dutta, Bhaskar; Gao, Yu

    The recent diphoton excess at the LHC has been explained tentatively by a Standard Model (SM) singlet scalar of 750 GeV in mass, in the association of heavy particles with SM gauge charges. These new particles with various SM gauge charges induce loop-level couplings of the new scalar to WW, ZZ, Zγ, γγ, and gg. Here, we show that the strength of the couplings to the gauge bosons also determines the production mechanism of the scalar particle via WW,ZZ,Zγ,γγ,gg fusion which leads to individually distinguishable jet distributions in the final state where the statistics will be improved in the ongoingmore » run. Finally, the number of jets and the leading jet's transverse momentum distribution in the excess region of the diphoton signal can be used to determine the coupling of the scalar to the gauge bosons arising from the protons which subsequently determine the charges of the heavy particles that arise from various well-motivated models.« less

  5. QCDNUM: Fast QCD evolution and convolution

    NASA Astrophysics Data System (ADS)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline coefficients by solving (coupled) triangular matrix equations with a forward substitution algorithm. Fast computation of convolution integrals as weighted sums of spline coefficients, with weights derived from user-given convolution kernels. Restrictions: Accuracy and speed are determined by the density of the evolution grid. Running time: Less than 10 ms on a 2 GHz Intel Core 2 Duo processor to evolve the gluon density and 12 quark densities at next-to-next-to-leading order over a large kinematic range.

  6. Large Higgs-electron Yukawa coupling in 2HDM

    NASA Astrophysics Data System (ADS)

    Dery, Avital; Frugiuele, Claudia; Nir, Yosef

    2018-04-01

    The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of O(600) . We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z 2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than O(0.01/{κ}_e) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e + e - resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

  7. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Soni, V.; Hadjadj, A.; Roussel, O.

    2017-12-01

    In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

  8. On the validity of cosmic no-hair conjecture in an anisotropic inationary model

    NASA Astrophysics Data System (ADS)

    Do, Tuan Q.

    2018-05-01

    We will present main results of our recent investigations on the validity of cosmic no-hair conjecture proposed by Hawking and his colleagues long time ago in the framework of an anisotropic inflationary model proposed by Kanno, Soda, and Watanabe. As a result, we will show that the cosmic no-hair conjecture seems to be generally violated in the Kanno-Soda- Watanabe model for both canonical and non-canonical scalar fields due to the existence of a non-trivial coupling term between scalar and electromagnetic fields. However, we will also show that the validity of the cosmic no-hair conjecture will be ensured once a unusual scalar field called the phantom field, whose kinetic energy term is negative definite, is introduced into the Kanno-Soda-Watanabe model.

  9. Green-Naghdi dynamics of surface wind waves in finite depth

    NASA Astrophysics Data System (ADS)

    Manna, M. A.; Latifi, A.; Kraenkel, R. A.

    2018-04-01

    The Miles’ quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles’ theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.

  10. Hairy black hole solutions in U(1) gauge-invariant scalar-vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2018-05-01

    In U (1) gauge-invariant scalar-vector-tensor theories with second-order equations of motion, we study the properties of black holes (BH) on a static and spherically symmetric background. In shift-symmetric theories invariant under the shift of scalar ϕ → ϕ + c, we show the existence of new hairy BH solutions where a cubic-order scalar-vector interaction gives rise to a scalar hair manifesting itself around the event horizon. In the presence of a quartic-order interaction besides the cubic coupling, there are also regular BH solutions endowed with scalar and vector hairs.

  11. Constructing neutron stars with a gravitational Higgs mechanism

    NASA Astrophysics Data System (ADS)

    Franchini, Nicola; Coates, Andrew; Sotiriou, Thomas P.

    2018-03-01

    In scalar-tensor theories, spontaneous scalarization is a phase transition that can occur in ultradense environments such as neutron stars. The scalar field develops a nontrivial configuration once the stars exceeds a compactness threshold. We recently pointed out that, if the scalar exhibits some additional coupling to matter, it could give rise to significantly different microphysics in these environments. In this work we study, at the nonperturbative level, a toy model in which the photon is given a large mass when spontaneous scalarization occurs. Our results demonstrate clearly the effectiveness of spontaneous scalarization as a Higgs-like mechanism in neutron stars.

  12. Statistics of certain models of evolution

    NASA Astrophysics Data System (ADS)

    Standish, Russell K.

    1999-02-01

    In a recent paper, Newman [J. Theo. Bio. 189, 235 (1997)] surveys the literature on power law spectra in evolution, self-organized criticality and presents a model of his own to arrive at a conclusion that self-organized criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organized critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behavior, as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organized critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species must remain constant. It turns out that the requirement of constant species number is nontrivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organize to a state where the long time average of speciations balances that of the extinctions; otherwise, the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counterexample to the presence of self-organized criticality in evolution, but does provide a simple, almost analytic model that can be used to understand more intricate models such as Ecolab.

  13. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  14. Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.

    2008-04-15

    The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK blackmore » holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.« less

  15. Study of charged stellar structures in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    2017-12-01

    This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.

  16. High-energy effective theory for matter on close Randall-Sundrum branes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rham, Claudia de; Webster, Samuel

    2005-09-15

    Extending the analysis of C. de Rham and S. Webster [Phys. Rev. D 71, 124025 (2005)], we obtain a formal expression for the coupling between brane matter and the radion in a Randall-Sundrum braneworld. This effective theory is correct to all orders in derivatives of the radion in the limit of small brane separation, and, in particular, contains no higher than second derivatives. In the case of cosmological symmetry the theory can be obtained in closed form and reproduces the five-dimensional behavior. Perturbations in the tensor and scalar sectors are then studied. When the branes are moving, the effective Newtonianmore » constant on the brane is shown to depend both on the distance between the branes and on their velocity. In the small-distance limit, we compute the exact dependence between the four-dimensional and the five-dimensional Newtonian constants.« less

  17. α-quantized Einstein masses for leptons, quarks, hadrons, gauge bosons, and Higgs constants

    NASA Astrophysics Data System (ADS)

    Mac Gregor, Malcolm

    2011-11-01

    The Einstein particle mass ɛi is defined by the equation ɛi = Ei / c^2. The basic particle ground states have unique additive Einstein masses (energies), and they interleave in α-quantized (α-1 = 137) energy plots to form distinctive excitation patterns. The ɛu,d,s,c,b,t Einstein masses are constituent-quark masses. Particle generation proceeds via ``α-boosted'' boson, fermion, and gauge-boson ``unit masses,'' which are ``bundled'' together to form particles and quarks. The Einstein mass equations extend throughout the entire range of particle masses. Lederman and HillootnotetextL. M. Lederman and C. T. Hill, Symmetry (Prometheus Books, Amherst, 2004), p. 282. note that the scalar Higgs and Fermi fields are at the 175 GeV energy scale of the top quark t, and they suggest the Higgs coupling constant equation ge=me/mt = 0.0000029, which matches the Einstein mass expression ge=α^2/18.

  18. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  19. Isocurvature constraints on portal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We thenmore » use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.« less

  20. Determination of dipole coupling constants using heteronuclear multiple quantum NMR

    NASA Astrophysics Data System (ADS)

    Weitekamp, D. P.; Garbow, J. R.; Pines, A.

    1982-09-01

    The problem of extracting dipole couplings from a system of N spins I = 1/2 and one spin S by NMR techniques is analyzed. The resolution attainable using a variety of single quantum methods is reviewed. The theory of heteronuclear multiple quantum (HMQ) NMR is developed, with particular emphasis being placed on the superior resolution available in HMQ spectra. Several novel pulse sequences are introduced, including a two-step method for the excitation of HMQ coherence. Experiments on partially oriented [1-13C] benzene demonstrate the excitation of the necessary HMQ coherence and illustrate the calculation of relative line intensities. Spectra of high order HMQ coherence under several different effective Hamiltonians achievable by multiple pulse sequences are discussed. A new effective Hamiltonian, scalar heteronuclear recoupled interactions by multiple pulse (SHRIMP), achieved by the simultaneous irradiation of both spin species with the same multiple pulse sequence, is introduced. Experiments are described which allow heteronuclear couplings to be correlated with an S-spin spreading parameter in spectra free of inhomogeneous broadening.

Top