76 FR 41783 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Commodities Group, Constellation Pwr Source Generation LLC, Constellation NewEnergy, Inc., CER Generation II..., CER Generation, LLC, Constellation Energy Commodities Group M, Constellation Mystic Power, LLC...
75 FR 2531 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... Power, LLC, Terra-Gen VG Wind, LLC, Terra-Gen 251 Wind, LLC, Chandler Wind Partners, LLC. Description... Power Source Generation, Inc., Calvert Cliffs Nuclear Power Plant LLC, Constellation Energy Commodities..., Inc., Constellation Energy Commodities Group Maine, LLC, R.E. Ginna Nuclear Power Plant, Raven One...
78 FR 42060 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... Harbor Water Power Corporation, PECO Energy Company, Michigan Wind 1, LLC, Michigan Wind 2, LLC, Harvest... Clearing, LLC, Cow Branch Wind Power, L.L.C., Constellation Power Source Generation Inc., Constellation New..., Calvert Cliffs Nuclear Power Plant, LLC, Nine Mine Point Nuclear Station, LLC. Description: Revised...
77 FR 41777 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
...., Commonwealth Edison Company, PECO Energy Company, Wind Capital Holdings, LLC, Constellation Power Source... Generation II, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Tuana Springs Energy, LLC, Harvest Windfarm, LLC, CR Clearing, LLC, Exelon Wind 4, LLC, Cow Branch Wind Power, L...
77 FR 69449 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
.... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Calvert Cliffs Nuclear Power...., Constellation Power Source Generation, Inc., Cow Branch Wind Power, L.L.C., CR Clearing, LLC, Criterion Power...
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program
NASA Technical Reports Server (NTRS)
Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.
2008-01-01
NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2281-000] Constellation... proceeding of Constellation Mystic Power, LLC's application for market-based rate authority, with an... CFR part 34, of future issuances of securities and assumptions of liability. Any person desiring to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...
An analysis of power beaming for the Moon and Mars
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.
1992-01-01
Operations on the surface of the Moon and Mars will depend on a reliable source of electrical power. At NASA Lewis Research Center, the feasibility of powering lunar and Martian surface sites by power beaming was studied. Constellations of nuclear or solar powered satellites using microwave or laser transmitters were designed to power an equatorial surface base. Additional surface assets, such as rovers, can also be powered from the same orbiting satellites, requiring only the additional mass of a receiver. However, the actual mass and power capabilities of the system are dependent on the location of the surface receiver. The masses of the beam power systems can be reduced by up to 50 percent, by using the power source of an electric propulsion vehicle to power the beam system. The important analyses results and any additional issues that remain unresolved are discussed.
77 FR 274 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
.... Applicants: Constellation Energy Commodities Group, Baltimore Gas and Electric Company, Constellation Power... that the Commission received the following electric rate filings: Docket Numbers: ER10-2172-006; ER10... Generation, LLC, Constellation NewEnergy, Inc., MXenergy Electric Inc. Description: Constellation MBR...
NASA Astrophysics Data System (ADS)
Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John
1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in combination with inverse modelling techniques will be able to provide information services, such as global quarterly 1. CO2 and CH4 regional flux updates 2. CO2 emission reporting from hot spots e.g. the power plant 3. CH4 emission reporting from hot spots e.g. the pipeline/oil and gas fields. The team led by the industry partner -OHB now promotes an internationally coordinated CarbonSat constellation to provide operational services contributing to the independent iden-tification and verification of man-made & natural CO2 and CH4 emissions and claimed carbon sinks. It is proposed that the CarbonSat Constellation will be implemented through an internation-ally coordinated constellation. Each country contributes one satellite in the constellation and establishes its own ground station to provide data for national applications. A central coordi-nation will be set up for the constellation operation, data calibration and international data distribution. The proposed approach provides independence for each partner and is financially more feasible. In addition, the CarbonSat Constellation consortium could be a bridge/forum between developed countries and developing countries in establishing common understandings of and actions on the global climate change. The world wide transparency provided by this international forum is also critical in supporting Kyoto protocol and upcoming international agreement in man-made Greenhouse emission reduction. The paper will present the CarbonSat Constellation design and the proposed products/ services to verify CO2 and CH4 sources and sinks from a constellation of five CarbonSat satellites through a multilateral collaboration.
75 FR 12533 - Combined Notice Of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-16
....; R.E. Ginna Nuclear Power Plant, LLC; Constellation Energy Commodities Group; Constellation Energy Commodities Group Maine; Raven Three, LLC; Raven Two, LLC; Raven One, LLC; Calvert Cliffs Nuclear Power Plant LLC. Description: Calvert Cliffs Nuclear Power Plant submits Substitute First Revised Sheet 1 et al...
77 FR 58120 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
.... Applicants: Constellation Energy Commodities Group, Inc., R.E. Ginna Nuclear Power Plant, LLC, PECO Energy... Point Nuclear Station, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Harvest Windfarm, LLC, Exelon Wind 4, LLC, Criterion Power Partners, LLC, Cow Branch Wind...
Constellation Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W. (Compiler)
1997-01-01
The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.
Capacity Maximizing Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Jones, Christopher
2010-01-01
Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity
NASA Astrophysics Data System (ADS)
Gao, Qian
For both the conventional radio frequency and the comparably recent optical wireless communication systems, extensive effort from the academia had been made in improving the network spectrum efficiency and/or reducing the error rate. To achieve these goals, many fundamental challenges such as power efficient constellation design, nonlinear distortion mitigation, channel training design, network scheduling and etc. need to be properly addressed. In this dissertation, novel schemes are proposed accordingly to deal with specific problems falling in category of these challenges. Rigorous proofs and analyses are provided for each of our work to make a fair comparison with the corresponding peer works to clearly demonstrate the advantages. The first part of this dissertation considers a multi-carrier optical wireless system employing intensity modulation (IM) and direct detection (DD). A block-wise constellation design is presented, which treats the DC-bias that conventionally used solely for biasing purpose as an information basis. Our scheme, we term it MSM-JDCM, takes advantage of the compactness of sphere packing in a higher dimensional space, and in turn power efficient constellations are obtained by solving an advanced convex optimization problem. Besides the significant power gains, the MSM-JDCM has many other merits such as being capable of mitigating nonlinear distortion by including a peak-to-power ratio (PAPR) constraint, minimizing inter-symbol-interference (ISI) caused by frequency-selective fading with a novel precoder designed and embedded, and further reducing the bit-error-rate (BER) by combining with an optimized labeling scheme. The second part addresses several optimization problems in a multi-color visible light communication system, including power efficient constellation design, joint pre-equalizer and constellation design, and modeling of different structured channels with cross-talks. Our novel constellation design scheme, termed CSK-Advanced, is compared with the conventional decoupled system with the same spectrum efficiency to demonstrate the power efficiency. Crucial lighting requirements are included as optimization constraints. To control non-linear distortion, the optical peak-to-average-power ratio (PAPR) of LEDs can be individually constrained. With a SVD-based pre-equalizer designed and employed, our scheme can achieve lower BER than counterparts applying zero-forcing (ZF) or linear minimum-mean-squared-error (LMMSE) based post-equalizers. Besides, a binary switching algorithm (BSA) is applied to improve BER performance. The third part looks into a problem of two-phase channel estimation in a relayed wireless network. The channel estimates in every phase are obtained by the linear minimum mean squared error (LMMSE) method. Inaccurate estimate of the relay to destination (RtD) channel in phase 1 could affect estimate of the source to relay (StR) channel in phase 2, which is made erroneous. We first derive a close-form expression for the averaged Bayesian mean-square estimation error (ABMSE) for both phase estimates in terms of the length of source and relay training slots, based on which an iterative searching algorithm is then proposed that optimally allocates training slots to the two phases such that estimation errors are balanced. Analysis shows how the ABMSE of the StD channel estimation varies with the lengths of relay training and source training slots, the relay amplification gain, and the channel prior information respectively. The last part deals with a transmission scheduling problem in a uplink multiple-input-multiple-output (MIMO) wireless network. Code division multiple access (CDMA) is assumed as a multiple access scheme and pseudo-random codes are employed for different users. We consider a heavy traffic scenario, in which each user always has packets to transmit in the scheduled time slots. If the relay is scheduled for transmission together with users, then it operates in a full-duplex mode, where the packets previously collected from users are transmitted to the destination while new packets are being collected from users. A novel expression of throughput is first derived and then used to develop a scheduling algorithm to maximize the throughput. Our full-duplex scheduling is compared with a half-duplex scheduling, random access, and time division multiple access (TDMA), and simulation results illustrate its superiority. Throughput gains due to employment of both MIMO and CDMA are observed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
.... CONSTELLATION ENERGY GROUP, INC. CALVERT CLIFFS NUCLEAR POWER PLANT, LLC. Calvert Cliffs Nuclear Power Plant... Corporation (Exelon), and Exelon Ventures Company, LLC (Exelon Ventures), and Constellation Energy Nuclear... Energy Nuclear Group, LLC, shall prepare an Annual Report regarding the status of foreign ownership...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0192; Docket Nos. 50-244 and 72-67; License No. DPR-18; Docket No. 72-67; General License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant; R.E. Ginna Independent Spent Fuel Storage Installation; Order Approving...
Flight Computer Design for the Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Speer, David; Jackson, George; Raphael, Dave; Day, John H. (Technical Monitor)
2001-01-01
As part of NASA's New Millennium Program, the Space Technology 5 mission will validate a variety of technologies for nano-satellite and constellation mission applications. Included are: a miniaturized and low power X-band transponder, a constellation communication and navigation transceiver, a cold gas micro-thruster, two different variable emittance (thermal) controllers, flex cables for solar array power collection, autonomous groundbased constellation management tools, and a new CMOS ultra low-power, radiation-tolerant, +0.5 volt logic technology. The ST-5 focus is on small and low-power. A single-processor, multi-function flight computer will implement direct digital and analog interfaces to all of the other spacecraft subsystems and components. There will not be a distributed data system that uses a standardized serial bus such as MIL-STD-1553 or MIL-STD-1773. The flight software running on the single processor will be responsible for all real-time processing associated with: guidance, navigation and control, command and data handling (C&DH) including uplink/downlink, power switching and battery charge management, science data analysis and storage, intra-constellation communications, and housekeeping data collection and logging. As a nanosatellite trail-blazer for future constellations of up to 100 separate space vehicles, ST-5 will demonstrate a compact (single board), low power (5.5 watts) solution to the data acquisition, control, communications, processing and storage requirements that have traditionally required an entire network of separate circuit boards and/or avionics boxes. In addition to the New Millennium technologies, other major spacecraft subsystems include the power system electronics, a lithium-ion battery, triple-junction solar cell arrays, a science-grade magnetometer, a miniature spinning sun sensor, and a propulsion system.
NASA Technical Reports Server (NTRS)
Fincannon, James
2009-01-01
This compilation of trade studies performed from 2005 to 2006 addressed a number of power system design issues for the Constellation Program Extravehicular Activity Spacesuit. Spacesuits were required for spacewalks and in-space activities as well as lunar and Mars surface operations. The trades documented here considered whether solar power was feasible for spacesuits, whether spacesuit power generation should be a distributed or a centralized function, whether self-powered in-space spacesuits were better than umbilically powered ones, and whether the suit power system should be recharged in place or replaced.
Drug policy constellations: A Habermasian approach for understanding English drug policy.
Stevens, Alex; Zampini, Giulia Federica
2018-07-01
It is increasingly accepted that a view of policy as a rational process of fitting evidence-based means to rationally justified ends is inadequate for understanding the actual processes of drug policy making. We aim to provide a better description and explanation of recent English drug policy decisions. We develop the policy constellation concept from the work of Habermas, in dialogue with data from two contemporary debates in English policy; on decriminalisation of drug possession and on recovery in drug treatment. We collect data on these debates through long-term participant observation, stakeholder interviews (n = 15) and documentary analysis. We show the importance of social asymmetries in power in enabling structurally advantaged groups to achieve the institutionalisation of their moral preferences as well as the reproduction of their social and economic power through the deployment of policies that reflect their material interests and normative beliefs. The most influential actors in English drug policy come together in a 'medico-penal constellation', in which the aims and practices of public health and social control overlap. Formal decriminalisation of possession has not occurred, despite the efforts of members of a challenging constellation which supports it. Recovery was put forward as the aim of drug treatment by members of a more powerfully connected constellation. It has been absorbed into the practice of 'recovery-oriented' drug treatment in a way that maintains the power of public health professionals to determine the form of treatment. Actors who share interests and norms come together in policy constellations. Strategic action within and between constellations creates policies that may not take the form that was intended by any individual actor. These policies do not result from purely rational deliberation, but are produced through 'systematically distorted communication'. They enable the most structurally favoured actors to institutionalise their own normative preferences and structural positions. Copyright © 2018. Published by Elsevier B.V.
Three Corner Sat Communications System
NASA Technical Reports Server (NTRS)
Anderson, Bobby; Horan, Stephen
2000-01-01
Three Corner Satellite is a constellation of three nanosatellites designed and built by students. New Mexico State University has taken on the design of the communications system for this constellation. The system includes the forward link, return link, and the crosslink. Due to size, mass, power, and financial constraints, we must design a small, light, power efficient, and inexpensive communications system. This thesis presents the design of a radio system to accomplish the data transmission requirements in light of the system constraints. In addition to the hardware design, the operational commands needed by the satellite's on-board computer to control and communicate with the communications hardware will be presented. In order for the hardware to communicate with the ground stations, we will examine the link budgets derived from the radiated power of the transmitters, link distance, data modulation, and data rate for each link. The antenna design for the constellation is analyzed using software and testing the physical antennas on a model satellite. After the analysis and testing, a combination of different systems will meet and exceed the requirements and constraints of the Three Corner Satellite constellation.
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1986-01-01
The studies that have been carried out on Tethered Constellations are briefly addressed. A definition of a tethered constellation is any number of masses/platforms greater that two connected by tethers in a stable configuration. Configurations and stability constraints are reviewed. Conclusions reached are: (1) The 1-D, horizontal, passively stabilized constellations have been ruled out; (2) Fishbone constellations have been also ruled out; (3) Alternative stable 2-D configurations have been devised such as the quadrangular configuration stabilized by electrodynamic forces (ESC), the quadrangular configuration stabilized by differential air drag (DSC), and the pseudo elliptical configuration stabilized by electrodynamic forces (PEC). Typical dimensions for these constellations are 10 km (horizontal) by 20 km (vertical) with balloon diameters around 100 m in the case of a DSC and a power consumption around 7 KW for an ESC or PEC.
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-09-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known "true" state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Arellano, Avelino; Gaubert, Benjamin; Da Silva, Arlindo; Lahoz, William; Anderson, Jeffrey
2016-01-01
This paper describes the second phase of an Observing System Simulation Experiment (OSSE) that utilizes the synthetic measurements from a constellation of satellites measuring atmospheric composition from geostationary (GEO) Earth orbit presented in part I of the study. Our OSSE is focused on carbon monoxide observations over North America, East Asia and Europe where most of the anthropogenic sources are located. Here we assess the impact of a potential GEO constellation on constraining northern hemisphere (NH) carbon monoxide (CO) using data assimilation. We show how cloud cover affects the GEO constellation data density with the largest cloud cover (i.e., lowest data density) occurring during Asian summer. We compare the modeled state of the atmosphere (Control Run), before CO data assimilation, with the known 'true' state of the atmosphere (Nature Run) and show that our setup provides realistic atmospheric CO fields and emission budgets. Overall, the Control Run underestimates CO concentrations in the northern hemisphere, especially in areas close to CO sources. Assimilation experiments show that constraining CO close to the main anthropogenic sources significantly reduces errors in NH CO compared to the Control Run. We assess the changes in error reduction when only single satellite instruments are available as compared to the full constellation. We find large differences in how measurements for each continental scale observation system affect the hemispherical improvement in long-range transport patterns, especially due to seasonal cloud cover. A GEO constellation will provide the most efficient constraint on NH CO during winter when CO lifetime is longer and increments from data assimilation associated with source regions are advected further around the globe.
Identifying the stars on Johann Bayer's Chart of the South Polar Sky
NASA Astrophysics Data System (ADS)
Ridpath, I.
2014-04-01
The first chart of the stars in the region around the south celestial pole was published in 1603 by Johann Bayer (1572-1625) as part of his monumental star atlas called Uranometria. This south polar chart depicted 12 entirely new constellations that had been created only a few years earlier from stars observed during the first Dutch expedition to the East Indies in 1595-97. Bayer's chart plotted 121 stars in the 12 newly invented constellations. Five more stars formed a southern extension of the existing constellation Eridanus, while another twelve stars were left 'unformed', i.e. unattached to any constellation. Whereas Bayer famously applied Greek or Roman letters to the stars in the 48 Ptolemaic constellations, he left the stars in the newly invented constellations unlabelled. This paper attempts to identify the stars plotted on Bayer's chart. It also discusses the source of Bayer's data and the origin of the 12 new southern constellations.
Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma
NASA Astrophysics Data System (ADS)
Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck
2018-04-01
One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.
A new higher performance NGO satellite for direct audio/video broadcast
NASA Astrophysics Data System (ADS)
Briskman, Robert D.; Foust, Joseph V.
2010-03-01
A three satellite constellation using non-geostationary orbits (NGO) was launched in the latter half of 2000. It is providing direct satellite broadcasting audio and video services to over 9 million mobile and fixed subscribers throughout North America. The constellation will be augmented with a geostationary satellite called FM-5 in 2009, providing increased availability to the user with this "Hybrid" constellation. Effort has recently started on replacement satellites for the original NGO satellites, the first one called FM-6. This new satellite will be placed in a different orbital plane from the original ones providing a constellation which brings further operational improvements. The paper describes the new satellite which has twice the prime and radio frequency (RF) power than the original and a 9 m diameter aperture transmit antenna whose shaped antenna beam delivers much higher effective isotropic radiated power (EIRP). Other technology advances used in the satellite such as electric propulsion, precision star sensors, and enhanced performing lithium-ion batteries are also described in the paper.
An Exploration of Software-Based GNSS Signal Processing at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Pasqual Paul, Manuel; Elosegui, Pedro; Lind, Frank; Vazquez, Antonio; Pankratius, Victor
2017-01-01
The Global Navigation Satellite System (GNSS; i.e., GPS, GLONASS, Galileo, and other constellations) has recently grown into numerous areas that go far beyond the traditional scope in navigation. In the geosciences, for example, high-precision GPS has become a powerful tool for a myriad of geophysical applications such as in geodynamics, seismology, paleoclimate, cryosphere, and remote sensing of the atmosphere. Positioning with millimeter-level accuracy can be achieved through carrier-phase-based, multi-frequency signal processing, which mitigates various biases and error sources such as those arising from ionospheric effects. Today, however, most receivers with multi-frequency capabilities are highly specialized hardware receiving systems with proprietary and closed designs, limited interfaces, and significant acquisition costs. This work explores alternatives that are entirely software-based, using Software-Defined Radio (SDR) receivers as a way to digitize the entire spectrum of interest. It presents an overview of existing open-source frameworks and outlines the next steps towards converting GPS software receivers from single-frequency to dual-frequency, geodetic-quality systems. In the future, this development will lead to a more flexible multi-constellation GNSS processing architecture that can be easily reused in different contexts, as well as to further miniaturization of receivers.
Quantifying CO2 Emissions from Individual Power Plants using OCO-2 Observations
NASA Astrophysics Data System (ADS)
Nassar, R.; Hill, T. G.; McLinden, C. A.; Wunch, D.; Jones, D. B. A.; Crisp, D.
2017-12-01
In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in select cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual mid- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for US power plants are within 1-13% of reported daily emission values enabling application of the approach to international sites that lack detailed emission information. These results affirm that a constellation of future CO2 imaging satellites, optimized for point sources, could be used for the Monitoring, Reporting and Verification (MRV) of CO2 emissions from individual power plants to support the implementation of climate policies.
Quantifying CO2 Emissions From Individual Power Plants From Space
NASA Astrophysics Data System (ADS)
Nassar, Ray; Hill, Timothy G.; McLinden, Chris A.; Wunch, Debra; Jones, Dylan B. A.; Crisp, David
2017-10-01
In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in some cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual middle- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for U.S. power plants are within 1-17% of reported daily emission values, enabling application of the approach to international sites that lack detailed emission information. This affirms that a constellation of future CO2 imaging satellites, optimized for point sources, could monitor emissions from individual power plants to support the implementation of climate policies.
Test and Verification Approach for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Strong, Edward
2008-01-01
This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.
Optimizing space constellations for mobile satellite systems
NASA Technical Reports Server (NTRS)
Roussel, T.; Taisant, J.-P.
1993-01-01
Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service.
Optimizing space constellations for mobile satellite systems
NASA Astrophysics Data System (ADS)
Roussel, T.; Taisant, J.-P.
Designing a mobile satellite system entails many complex trade-offs between a great number of parameters including: capacity, complexity of the payload, constellation geometry, number of satellites, quality of coverage, etc. This paper aims at defining a methodology which tries to split the variables to give rapidly some first results. The major input considered is the traffic assumption which would be offered by the system. A first key step is the choice of the best Rider or Walker constellation geometries - with different numbers of satellites - to insure a good quality of coverage over a selected service area. Another aspect to be addressed is the possible altitude location of the constellation, since it is limited by many constraints. The altitude ranges that seem appropriate considering the spatial environment, the launch and orbit keeping policy and the feasibility of the antenna allowing sufficient frequency reuse are briefly analyzed. To support these first considerations, some 'reference constellations' with similar coverage quality are chosen. The in-orbit capacity needed to support the assumed traffic is computed versus altitude. Finally, the exact number of satellite is determined. It comes as an optimum between a small number of satellites offering a high (and costly) power margin in bad propagation situation and a great number of less powerful satellites granting the same quality of service.
Constellation labeling optimization for bit-interleaved coded APSK
NASA Astrophysics Data System (ADS)
Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe
2016-05-01
This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.
Science with Constellation-X, Choice of Instrumentation
NASA Technical Reports Server (NTRS)
Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean
2007-01-01
The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Szczur, Martha R. (Technical Monitor)
2000-01-01
The newer types of space systems, which are planned for the future, are placing challenging demands for newer autonomy concepts and techniques. Motivating these challenges are resource constraints. Even though onboard computing power will surely increase in the coming years, the resource constraints associated with space-based processes will continue to be a major factor that needs to be considered when dealing with, for example, agent-based spacecraft autonomy. To realize "economical intelligence", i.e., constrained computational intelligence that can reside within a process under severe resource constraints (time, power, space, etc.), is a major goal for such space systems as the Nanosat constellations. To begin to address the new challenges, we are developing approaches to constellation autonomy with constraints in mind. Within the Agent Concepts Testbed (ACT) at the Goddard Space Flight Center we are currently developing a Nanosat-related prototype for the first of the two-step program.
NASA Technical Reports Server (NTRS)
Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.
2013-01-01
Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.
76 FR 7555 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
...Energy, Inc., CER Generation II, LLC, Safe Harbor Water Power Corporation, Handsome Lake Energy, LLC, Constellation Energy Commodities Group M, CER Generation, LLC, Criterion Power Partners, LLC. Description...
Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches
NASA Astrophysics Data System (ADS)
Ellery, Alex
2017-04-01
Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.
Video Games, Identity, and the Constellation of Information
ERIC Educational Resources Information Center
Martin, Crystle
2012-01-01
This article explores the identity of youth in relation to the information sources they choose in the constellation of information of video games, using the massively multiplayer online game "World of Warcraft" as an example. From this study, several identities are recognized that are combinations of the participants skill and level in the game,…
On the optimum signal constellation design for high-speed optical transport networks.
Liu, Tao; Djordjevic, Ivan B
2012-08-27
In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.
76 FR 1416 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... Wind Farm LLC; State Line Energy, LLC; Kincaid Generation, L.L.C.; Virginia Electric and Power Company...: Constellation Energy Commodities Group, R.E. Ginna Nuclear Power Plant, LLC, AES NewEnergy, Inc., Baltimore Gas..., Safe Harbor Water Power Corporation, Calvert Cliffs Nuclear Power Plant LLC, CER Generation, LLC...
Nanosat Intelligent Power System Development
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Beaman, Robert G.; Mica, Joseph A.; Truszkowski, Walter F.; Rilee, Michael L.; Simm, David E.
1999-01-01
NASA Goddard Space Flight Center is developing a class of satellites called nano-satellites. The technologies developed for these satellites will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections theme and will be of great benefit to other NASA enterprises. A major challenge for these missions is meeting significant scientific- objectives with limited onboard and ground-based resources. Total spacecraft power is limited by the small satellite size. Additionally, it is highly desirable to minimize operational costs by limiting the ground support required to manage the constellation. This paper will describe how these challenges are met in the design of the nanosat power system. We will address the factors considered and tradeoffs made in deriving the nanosat power system architecture. We will discuss how incorporating onboard fault detection and correction capability yields a robust spacecraft power bus without the mass and volume penalties incurred from redundant systems and describe how power system efficiency is maximized throughout the mission duration.
Evaluation of an Ultra-Low Power Reed Solomon Encoder for NASA's Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Li, K. E.; Xapsos, M. A.; Poivey, C.; LaBel, K. A.; Stone, R. F.; Yeh, P-S.; Gambles, J.; Hass, J.; Maki, G.; Marguia, J.
2003-01-01
This viewgraph presentation provides information on radiation tests on encoders intended for a constellation of microsatellites. The encoders use CMOS Ultra-Low Power Radiation Tolerant (CULPRiT) technology. The presentation addresses power consumption, radiation dosage, and Single Event Upset (SEU).
NASA Technical Reports Server (NTRS)
2001-01-01
Traditional spacecraft power systems incorporate a solar array energy source, an energy storage element (battery), and battery charge control and bus voltage regulation electronics to provide continuous electrical power for spacecraft systems and instruments. Dedicated power conditioning components provide limited fault isolation between systems and instruments, while a centralized power-switching unit provides spacecraft load control. Battery undervoltage conditions are detected by the spacecraft processor, which removes fault conditions and non-critical loads before permanent battery damage can occur. Cost effective operation of a micro-sat constellation requires a fault tolerant spacecraft architecture that minimizes on-orbit operational costs by permitting autonomous reconfiguration in response to unexpected fault conditions. A new micro-sat power system architecture that enhances spacecraft fault tolerance and improves power system survivability by continuously managing the battery charge and discharge processes on a cell-by-cell basis has been developed. This architecture is based on the Integrated Power Source (US patent 5644207), which integrates dual junction solar cells, Lithium Ion battery cells, and processor based charge control electronics into a structural panel that can be deployed or used to form a portion of the outer shell of a micro-spacecraft. The first generation Integrated Power Source is configured as a one inch thick panel in which prismatic Lithium Ion battery cells are arranged in a 3x7 matrix (26VDC) and a 3x1 matrix (3.7VDC) to provide the required output voltages and load currents. A multi-layer structure holds the battery cells, as well as the thermal insulators that are necessary to protect the Lithium Ion battery cells from the extreme temperatures of the solar cell layer. Independent thermal radiators, located on the back of the panel, are dedicated to the solar cell array, the electronics, and the battery cell array. In deployed panel applications, these radiators maintain the battery cells in an appropriate operational temperature range.
Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging
NASA Astrophysics Data System (ADS)
Nag, S.; Li, A.
2016-12-01
Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall-off and minimum image distortion among the satellites, using Landsat's specifications. Attitude-specific constraints such as power consumption, response time, and stability were factored into the optimality computations. The algorithm can integrate cloud cover predictions, specific ground and air assets and angular constraints.
NASA Astrophysics Data System (ADS)
Miles, D. M.; Mann, I. R.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J. R.; Pakhotin, I. P.; Kale, A.; Bruner, B.; Nokes, C. D. A.; Cupido, C.; Haluza-DeLay, T.; Elliott, D. G.; Milling, D. K.
2016-12-01
Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three-dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere-ionosphere coupling. This paper describes the design, validation, and test of a flight-ready, miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex-Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.
History of Chandra X-Ray Observatory
1999-12-01
This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The Chandra image reveals a large population of extremely bright x-ray sources in this area of intense star formation. These x-ray sources, which emit 10 to several hundred times more x-ray power than similar sources in our own galaxy, are believed to be either massive black holes, or black holes that are beaming their energy toward Earth. In this x-ray image, red represents the low energy band, green intermediate, and blue the highest observed energies. The white and yellow sources are those that emit significant amounts of both low and high energy x-rays. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the gala
Power Goals for the NASA Exploration Program
NASA Technical Reports Server (NTRS)
Jeevarajan, J.
2009-01-01
This slide presentation reviews the requirements for electrical power for future NASA exploration missions to the lunar surface. A review of the Constellation program is included as an introduction to the review of the batteries required for safe and reliable power for the ascent stage of the Altair Lunar Lander module.
The Strategic Nature of the Tactical Satellite. Part 2
2006-08-13
hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...constellation orbiting at 100 NM. The curves represent data for three mission types: SIGINT (solid), comm/BFT (dashed), and imagery (dotted). Two panes...persistent constellation orbiting at 500 km. The curves represent data for three mission types: SIGINT (solid), comm/BFT (dashed), and imagery (dotted
NASA Astrophysics Data System (ADS)
Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.
2017-12-01
Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
Dark Energy, Dark Matter and Science with Constellation-X
NASA Technical Reports Server (NTRS)
Cardiff, Ann Hornschemeier
2005-01-01
Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.
Sealed aerospace metal-hydride batteries
NASA Technical Reports Server (NTRS)
Coates, Dwaine
1992-01-01
Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.
SMM observation of a cosmic gamma-ray burst from 20 keV to 100 MeV
NASA Technical Reports Server (NTRS)
Share, G. H.; Matz, S. M.; Messina, D. C.; Nolan, P. L.; Chupp, E. L.
1986-01-01
The Solar Maximum Mission gamma-ray spectrometer has detected an intense gamma-ray burst that occurred on August 5, 1984. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence at 20 keV was 0.003 erg/sq cm. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. There is no evidence for narrow or broadened emission lines.
75 FR 4369 - Combined Notice of Filings. #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
...; ER04-485-016; ER07-244-010; ER07-245-010; ER07-247-010. Applicants: R.E. Ginna Nuclear Power Plant, LLC..., LLC, Constellation Energy Commodities Group M, Calvert Cliffs Nuclear Power Plant LLC, Raven One, LLC..., Foote Creek IV, LLC, Ridge Crest Wind Partners, LLC, Oak Creek Wind Power, LLC, Foote Creek III, LLC...
75 FR 70234 - Notice of Effectiveness of Exempt Wholesale Generator Status
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Lakefield Wind Project, LLC, EG10-57-000; Constellation Mystic Power, LLC, EG10-58-000; Pattern Gulf Wind, LLC, EG10-59-000; New Harvest Wind Project, LLC, EG10-60-000; Dry Lake Wind Power, II LLC, EG10-61-000; Learning Jupiter Wind Power...
77 FR 23710 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
..., Exelon Generation Company, LLC, Exelon Energy Company, Calvert Cliffs Nuclear Power Plant LLC, CER Generation, LLC, Commonwealth Edison Company, Constellation NewEnergy, Inc., CER Generation II, LLC...
Neronov, Andrii
2017-11-10
Cosmic rays could be produced via shock acceleration powered by supernovae. The supernova hypothesis implies that each supernova injects, on average, some 10^{50} erg in cosmic rays, while the shock acceleration model predicts a power law cosmic ray spectrum with the slope close to 2. Verification of these predictions requires measurement of the spectrum and power of cosmic ray injection from supernova population(s). Here, we obtain such measurements based on γ-ray observation of the Constellation III region of the Large Magellanic Cloud. We show that γ-ray emission from this young star formation region originates from cosmic rays injected by approximately two thousand supernovae, rather than by a massive star wind powered by a superbubble predating supernova activity. Cosmic ray injection power is found to be (1.1_{-0.2}^{+0.5})×10^{50} erg/supernova (for the estimated interstellar medium density 0.3 cm^{-3}). The spectrum is a power law with slope 2.09_{-0.07}^{+0.06}. This agrees with the model of particle acceleration at supernova shocks and provides a direct proof of the supernova origin of cosmic rays.
A New Synthesis for the Origin of the Greek Constellations
NASA Astrophysics Data System (ADS)
Schaefer, B. E.
2005-08-01
The Greek constellations constitute one of the longest enduring intellectual properties of humanity. While various papers attribute the origin of the constellations to many diverse possibilities, main stream historians view the origin as largely being in Mesopotamia after around 1350 BC with transmission to the Greeks around 500 BC or so. The evidence for this synthesis is cuneiform and iconographic records that first mention constellations from roughly 1350-500 BC. My recent research on precessional dating has added much detail to this old synthesis. The earliest surviving written description of the Greek constellations is Aratus' Phaenomenon, which is a copy of Eudoxus' lost book of the same name. Hipparchus' Commentary also extensively quotes from Eudoxus. With 172 observations from Eudoxus, I derive a precessional date of 1130 ± 80 BC and a latitude of 36.0 ± 0.9 degrees north. Further, the positioning of the southern void amongst the Greek constellations yields a date of 690 BC (with an uncertainty of 2-4 centuries) and a latitude of 33 degrees (with an uncertainty of 1-3 degrees) for the six southernmost constellations. The earliest surviving description of the Mesopotamian constellations is the MUL.APIN tablet series, with the oldest dated example from the 8th century BC. My precessional calculation gives a date of 1100 BC and a latitude of 33 north. I also see that Eudoxus and MUL.APIN share a substantial number of observations. In all, some Assyrian observer(s) between 33-36 degrees north latitude around the time of 1300-1000 BC apparently invented many of the constellations adopted by the Greeks and made a database of observations later repeated by MUL.APIN, Eudoxus, Aratus, and Hipparchus. But this is not the whole story, as this only accounts for 19 Greek constellations which are identical in stars and representation with the Mesopotamian sky. An additional 12 Greek constellations have the same star groups as the Babylonians yet have completely different mythology/names; and so these representations must have been added by the Greeks. In addition, the Bear constellations must have originated with Paleolithic hunters in northern Eurasia sometime before 11,000 BC, as shown by the widespread distribution of essentially identical myths for the asterism across Eurasia and North America. This leaves about a dozen old constellations which have no Mesopotamian roots and for which the first reference anywhere is from early Greek sources and which have characteristically Greek flavor. Thus it appears that a substantial fraction of the old Greek constellations are actually Greek in origin, with the majority being older asterisms adopted from Mesopotamia, while the Bear originates at least 13,000 years ago. This research was supported in part by the Herbert C. Pollack Award of the Dudley Observatory.
75 FR 54610 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
..., Handsome Lake Energy, LLC, Constellation Energy Commodities Group M, CER Generation, LLC, Calvert Cliffs Nuclear Power Plant, LLC, CER Generation II, LLC. Description: Notice of change in status and Q2 2010 land...
Gravity field recovery in the framework of a Geodesy and Time Reference in Space (GETRIS)
NASA Astrophysics Data System (ADS)
Hauk, Markus; Schlicht, Anja; Pail, Roland; Murböck, Michael
2017-04-01
The study ;Geodesy and Time Reference in Space; (GETRIS), funded by European Space Agency (ESA), evaluates the potential and opportunities coming along with a global space-borne infrastructure for data transfer, clock synchronization and ranging. Gravity field recovery could be one of the first beneficiary applications of such an infrastructure. This paper analyzes and evaluates the two-way high-low satellite-to-satellite-tracking as a novel method and as a long-term perspective for the determination of the Earth's gravitational field, using it as a synergy of one-way high-low combined with low-low satellite-to-satellite-tracking, in order to generate adequate de-aliasing products. First planned as a constellation of geostationary satellites, it turned out, that an integration of European Union Global Navigation Satellite System (Galileo) satellites (equipped with inter-Galileo links) into a Geostationary Earth Orbit (GEO) constellation would extend the capability of such a mission constellation remarkably. We report about simulations of different Galileo and Low Earth Orbiter (LEO) satellite constellations, computed using time variable geophysical background models, to determine temporal changes in the Earth's gravitational field. Our work aims at an error analysis of this new satellite/instrument scenario by investigating the impact of different error sources. Compared to a low-low satellite-to-satellite-tracking mission, results show reduced temporal aliasing errors due to a more isotropic error behavior caused by an improved observation geometry, predominantly in near-radial direction within the inter-satellite-links, as well as the potential of an improved gravity recovery with higher spatial and temporal resolution. The major error contributors of temporal gravity retrieval are aliasing errors due to undersampling of high frequency signals (mainly atmosphere, ocean and ocean tides). In this context, we investigate adequate methods to reduce these errors. We vary the number of Galileo and LEO satellites and show reduced errors in the temporal gravity field solutions for this enhanced inter-satellite-links. Based on the GETRIS infrastructure, the multiplicity of satellites enables co-estimating short-period long-wavelength gravity field signals, indicating it as powerful method for non-tidal aliasing reduction.
Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation
NASA Astrophysics Data System (ADS)
Nag, S.; Li, A. S. X.; Kumar, S.
2017-12-01
Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller-in-the-loop demonstration. The autonomy software can then be integrated with NASA's open source Core Flight Software, ported onto a Raspberry Pi 3.0 for a software-in-the-loop demonstration. Future use cases can be time critical events such as cloud movement, storms or other disasters, and in conjunction with other platforms in a Sensor Web.
Streamlining the Design Tradespace for Earth Imaging Constellations
NASA Technical Reports Server (NTRS)
Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
The Science Goals of the Constellation-X Mission
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Tananbaum, Harvey; Weaver, Kimberly; Petre, Robert; Bookbinder, Jay
2004-01-01
The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution spectroscopy. The mission will also perform routine high- resolution X-ray spectroscopy of faint and extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity, and ionization state for a wide range of astrophysical problems. This has enormous potential for the discovery of new unexpected phenomena. The Constellation-X mission is a high priority in the National Academy of Sciences McKee-Taylor Astronomy and Astrophysics Survey of new Astrophysics Facilities for the first decade of the 21st century.
NASA Astrophysics Data System (ADS)
Howe, Troy
Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.
J-2X concludes series of tests
2008-05-09
NASA engineers successfully complete the first series of tests in the early development of the J-2X engine that will power the Ares I and Ares V rockets, key components of NASA's Constellation Program.
NASA Astrophysics Data System (ADS)
Garrison, J. L.; Piepmeier, J. R.; Shah, R.; Lin, Y. C.; Du Toit, C. F.; Vega, M. A.; Knuble, J. J.
2016-12-01
Several recent experiments have demonstrated remote sensing by reutilizing communication satellite transmissions as sources in a bistatic radar configuration. This technique, referred to as "Signals of Opportunity Earth Reflectometry" (SoOp-ER), combines aspects of passive radiometry, active scatterometry and radar altimetry, but is essentially a new and alternative approach to microwave remote sensing. Reflectometry was first demonstrated with Global Navigation Satellite System (GNSS) signals, enabled by their use of pseudorandom noise (PRN) codes for ranging. Two decades of research in GNSS reflectometry has culminated in the upcoming launches of several satellite missions within the next few years (TechDemoSat-1, CYGNSS, and GEROS-ISS). GNSS signals, however, have low power and are confined to a few L-band frequencies allocated to radionavigation. Communication satellites, in contrast, transmit in nearly all bands penetrating the Earth's atmosphere at very high radiated powers to assure a low bit-error-rate. High transmission power and a forward scatter geometry result in a very high signal to noise ratio at the receiver. Surface resolution is determined by the signal bandwidth, not the antenna beam. In many applications, this will allow small, low gain antennas to be used to make scientifically useful measurements. These features indicate that SoOp-ER instruments would be an ideal technology for microwave remote sensing from small platforms. SoOp-ER observations are referenced at the specular point and a constellation of small satellites, evenly spaced in the same orbit, would provide global coverage through parallel specular point ground tracks. This presentation will summarize the current instrument development work by the authors on three different application of SoOp-ER: P-band (230-270 MHz) sensing of root-zone soil moisture (RZSM), S-band sensing of ocean winds and Ku/Ka-band altimetry. Potential mission scenarios using small satellite constellations using SoOp-ER at these frequencies are under study.
Cost-effective bidirectional digitized radio-over-fiber systems employing sigma delta modulation
NASA Astrophysics Data System (ADS)
Lee, Kyung Woon; Jung, HyunDo; Park, Jung Ho
2016-11-01
We propose a cost effective digitized radio-over-fiber (D-RoF) system employing a sigma delta modulation (SDM) and a bidirectional transmission technique using phase modulated downlink and intensity modulated uplink. SDM is transparent to different radio access technologies and modulation formats, and more suitable for a downlink of wireless system because a digital to analog converter (DAC) can be avoided at the base station (BS). Also, Central station and BS share the same light source by using a phase modulation for the downlink and an intensity modulation for the uplink transmission. Avoiding DACs and light sources have advantages in terms of cost reduction, power consumption, and compatibility with conventional wireless network structure. We have designed a cost effective bidirectional D-RoF system using a low pass SDM and measured the downlink and uplink transmission performance in terms of error vector magnitude, signal spectra, and constellations, which are based on the 10MHz LTE 64-QAM standard.
NASA Astrophysics Data System (ADS)
Farah, Ashraf
2018-03-01
Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.
Going Beyond Einstein with the Constellation-X Mission
NASA Technical Reports Server (NTRS)
White, Nicholas
2007-01-01
The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
NASA Technical Reports Server (NTRS)
Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver L.
2016-01-01
Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.
NASA Astrophysics Data System (ADS)
Bowman, K. W.; Lee, M.
2015-12-01
Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions
NASA Technical Reports Server (NTRS)
Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.
2004-01-01
The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Poston, David I.
2011-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.
Sampling Singular and Aggregate Point Sources of Carbon Dioxide from Space Using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, F. M.; Gunson, M. R.; Eldering, A.; Miller, C. E.; Nguyen, H.; Osterman, G. B.; Taylor, T.; O'Dell, C.; Carn, S. A.; Kahn, B. H.; Verhulst, K. R.; Crisp, D.; Pieri, D. C.; Linick, J.; Yuen, K.; Sanchez, R. M.; Ashok, M.
2016-12-01
Anthropogenic carbon dioxide (CO2) sources increasingly tip the natural balance between natural carbon sources and sinks. Space-borne measurements offer opportunities to detect and analyze point source emission signals anywhere on Earth. Singular continuous point source plumes from power plants or volcanoes turbulently mix into their proximal background fields. In contrast, plumes of aggregate point sources such as cities, and transportation or fossil fuel distribution networks, mix into each other and may therefore result in broader and more persistent excess signals of total column averaged CO2 (XCO2). NASA's first satellite dedicated to atmospheric CO2observation, the Orbiting Carbon Observatory-2 (OCO-2), launched in July 2014 and now leads the afternoon constellation of satellites (A-Train). While continuously collecting measurements in eight footprints across a narrow ( < 10 km) wide swath it occasionally cross-cuts coincident emission plumes. For singular point sources like volcanoes and coal fired power plants, we have developed OCO-2 data discovery tools and a proxy detection method for plumes using SO2-sensitive TIR imaging data (ASTER). This approach offers a path toward automating plume detections with subsequent matching and mining of OCO-2 data. We found several distinct singular source CO2signals. For aggregate point sources, we investigated whether OCO-2's multi-sounding swath observing geometry can reveal intra-urban spatial emission structures in the observed variability of XCO2 data. OCO-2 data demonstrate that we can detect localized excess XCO2 signals of 2 to 6 ppm against suburban and rural backgrounds. Compared to single-shot GOSAT soundings which detected urban/rural XCO2differences in megacities (Kort et al., 2012), the OCO-2 swath geometry opens up the path to future capabilities enabling urban characterization of greenhouse gases using hundreds of soundings over a city at each satellite overpass. California Institute of Technology
The ESA Nanosatellite Beacons for Space Weather Monitoring Study
NASA Astrophysics Data System (ADS)
Hapgood, M.; Eckersley, S.; Lundin, R.; Kluge, M.
2008-09-01
This paper will present final results from this ESA-funded study that has investigated how current and emerging concepts for nanosats may be used to monitor space weather conditions and provide improved access to data needed for space weather services. The study has reviewed requirements developed in previous ESA space weather studies to establish a set of service and measurements requirements appropriate to nanosat solutions. The output is conveniently represented as a set of five distinct classes of nanosat constellations, each in different orbit locations and which can address a specific group of measurement requirements. One example driving requirement for several of the constellations was the need for real-time data reception. Given this background, the study then iterated a set of instrument and spacecraft solutions to address each of the nanosat constellations from the requirements. Indeed, iteration has proved to be a critical aspect of the study. The instrument solutions have driven a refinement of requirements through assessment of whether or not the physical parameters to be measured dictate instrument components too large for a nanosat. In addition, the study has also reviewed miniaturization trends for instruments relevant to space weather monitoring by nanosats, looking at the near, mid and far-term timescales. Within the spacecraft solutions the study reviewed key technology trends relevant to space weather monitoring by nanosats: (a) micro and nano-technology devices for spacecraft communications, navigation, propulsion and power, and (b) development and flight experience with nanosats for science and for engineering demonstration. These requirements and solutions were then subject to an iterative system and mission analysis including key mission design issues (e.g. launch/transfer, mission geometry, instrument accommodation, numbers of spacecraft, communications architectures, de-orbit, nanosat reliability and constellation robustness) and the impact of nanosat fundamental limitations (e.g. mass, volume/size, power, communications). As a result, top-level Strawman mission concepts were developed for each constellation, and ROM costs were derived for programme development, operation and maintenance over a ten-year period. Nanosat reliability and constellation robustness were shown to be a key driver in deriving mission costs. In parallel with the mission analysis the study results have been reviewed to identify key issues that determine the prospects for a space weather nanosat programme and to make recommendations on measures to enable implementation of such a programme. As a follow-on to this study, a student MSc project was initiated by Astrium at Cranfield University to analyse a potential space weather precursor demonstration mission in GTO (one of the recommendations from this ESA study), composing of a reduced constellation of nanosats, launched on ASAP or some other low cost method. The demonstration would include: 1/ Low cost multiple manufacture techniques for a fully industrial nanosat constellation programme 2/ Real time datalinks and fully operational mission for space weather 3/ Miniaturised payloads to fit in a nanosat for space weather monitoring: 4/ Other possible demonstrations of advanced technology The aim was to comply with ESA demonstration mission (i.e. PROBA-type) requirements, to be representative on issues such as cost and risk
NASA Technical Reports Server (NTRS)
Bell, David; Estabrook, Polly; Romer, Richard
1995-01-01
A system for global inventory control of electronically tagged military hardware is achievable using a LEO satellite constellation. An equipment Tag can communicate directly to the satellite with a power of 5 watts or less at a data rate of 2400 to 50,000 bps. As examples, two proposed commercial LEO systems, IRIDIUM and ORBCOMM, are both capable of providing global coverage but with dramatically different telecom capacities. Investigation of these two LEO systems as applied to the Tag scenario provides insight into satellite design trade-offs, constellation trade-offs and signal dynamics that effect the performance of a satellite-based global inventory control system.
Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC
NASA Technical Reports Server (NTRS)
Rossoni, Peter; Panetta, Peter V.
1999-01-01
The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.
Strategies for satellite-based monitoring of CO2 from distributed area and point sources
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David
2014-05-01
Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve temporal variations. Geostationary and non-sun-synchronous low-Earth-orbits (precessing local solar time, diurnal information possible) with agile pointing have the potential to provide, comprehensive mapping of distributed area sources such as megacities with longer stare times and multiple revisits per day, at the expense of global access and spatial coverage. An ad hoc CO2 remote sensing constellation is emerging. NASA's OCO-2 satellite (launch July 2014) joins JAXA's GOSAT satellite in orbit. These will be followed by GOSAT-2 and NASA's OCO-3 on the International Space Station as early as 2017. Additional polar orbiting satellites (e.g., CarbonSat, under consideration at ESA) and geostationary platforms may also become available. However, the individual assets have been designed with independent science goals and requirements, and limited consideration of coordinated observing strategies. Every effort must be made to maximize the science return from this constellation. We discuss the opportunities to exploit the complementary spatial and temporal coverage provided by these assets as well as the crucial gaps in the capabilities of this constellation. References Burton, M.R., Sawyer, G.M., and Granieri, D. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75: 323-354. Duren, R.M., Miller, C.E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2, 560-562. Schwandner, F.M., Oda, T., Duren, R., Carn, S.A., Maksyutov, S., Crisp, D., Miller, C.E. (2013). Scientific Opportunities from Target-Mode Capabilities of GOSAT-2. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, White Paper, 6p., March 2013.
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann (Editor); Garcia, Michael (Editor)
2005-01-01
NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.
Discovery of the Lost Star Catalog of Hipparchus on the Farnese Atlas
NASA Astrophysics Data System (ADS)
Schaefer, B. E.
2004-12-01
Hipparchus was the greatest astronomer in Antiquity, with part of his reputation being based on his creation of the first star catalog around 129 BC. His star catalog has been since lost, although a few partial star positions are recorded in his only surviving work, the Commentary. Independently, a late Roman statue called the Farnese Atlas (now in Naples) has been known since the Middle Ages which records ancient Greek constellations. This marble statue shows the Titan Atlas kneeling on one knee while hold a large globe (65 cm in diameter) on one shoulder. This globe records 41 constellations accurately placed against a grid of reference circles, including the equator, tropics, colures, Arctic circle, and Antarctic circle. As the constellation positions shift over time (due to precession as discovered by Hipparchus), the position of the constellations on the Titan's globe will reveal the date of observations as ultimately used by the sculptor. Prior brief work on the globe has resulted in dates spread out over six centuries, with recent reviews only concluding that a thorough study is desperately needed. To fill this need, I have taken photographs appropriate for photogrammetry and have measured the positions of 70 points in the constellation figures and transformed these into RA and DEC in the globe's reference frame. A chi-square analysis then shows the date of the constellations to be 125 BC with a one-sigma uncertainty of 55 years. This date points directly at Hipparchus as being the observer and it strongly excludes all candidates that have been proposed over the past century (Aratus at c. 275 BC, Eudoxus at c. 366 BC, the original Assyrian observer at c. 1130 BC, and Ptolemy at AD 128). In addition, a very detailed comparison of the constellation figures and symbols on the Atlas' globe has been made with Hipparchus' Commentary, Aratus' (and Eudoxus') Phaenomena, Eratosthenes' Catasterismi, and Ptolemy's Almagest. I find essentially perfect agreement with Hipparchus' description of the sky (including many points unique to Hipparchus) with the Farnese Atlas; while all other ancient sources have many significant differences. In all, I have the very confident conclusion that the constellation figures on the Farnese Atlas are a depiction of Hipparchus' lost star catalog.
A Solar Wind Source Tracking Concept for Inner Heliosphere Constellations of Spacecraft
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Li, Yan; Arge, C. N.; Hoeksema, Todd; Zhao, Xuepu
2003-09-01
During the next decade, a number of spacecraft carrying in-situ particles and fields instruments, including the twin STEREO spacecraft, ACE, WIND, and possibly Triana, will be monitoring the solar wind in the inner heliosphere. At the same time, several suitably instrumented planetary missions, including Nozomi, Mars Express, and Messenger will be in either their cruise or orbital phases which expose them at times to interplanetary conditions and/or regions affected by the solar wind interaction. In addition to the mutual support role for the individual missions that can be gained from this coincidence, this set provides an opportunity for evaluating the challenges and tools for a future targeted heliospheric constellation mission. In the past few years the capability of estimating the solar sources of the local solar wind has improved, in part due to the ability to monitor the full-disk magnetic field of the Sun on an almost continuous basis. We illustrate a concept for a model and web-based display that routinely updates the estimated sources of the solar wind arriving at inner heliospheric spacecraft.
History of Chandra X-Ray Observatory
1999-12-01
This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The dozens of bright pointy-like sources are neutron stars or black holes pulling gas off nearby stars. The bright fuzzy patches are multimillion degree gas superbubbles, thousands of light years in diameter that were produced by the accumulated power of thousands of supernovae. The remaining glow of x-ray emission could be due to many faint x-ray sources or to clouds of hot gas in the galaxies. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the galaxies. Although it is rare for stars to hit each other during a galactic collision, clouds of dust and gas do collide. Compression of these clouds can lead to the rebirth of millions of stars, and a few million years later, to thousands of supernovae.
Ubiquitous and continuous SAR imaging for natural hazards: present and future of remote sensing
NASA Astrophysics Data System (ADS)
Monti Guarnieri, Andrea; Rocca, Fabio
2017-04-01
Constellation of optical and SAR sensors have achieved unprecedented performances: dense constellation of cubesats - like the next constellation of 88 Dove satellites (Planet labs), launched simultaneously this February - reduce the revisit time to nearly daily. This brings great value to many domains, like the assessment of risk and damage in natural hazards, post-earthquake response, real time flood monitoring. The limits to optical imaging due to cloud coverage could then be removed with drones. Alternatively, decades of coherent exploitation of Synthetic Aperture Radars have demonstrated their unique capabilities in precise deformation monitoring, penetration in canopies and subsurfaces (glacier and deserts), 3D imaging of volumes, sensitivity to soil moisture and generation of water vapor maps. Thanks to these capabilities, for one, early warning was possible for a landslide at Bingham Canyon Mine (one of the largest in history), whereas monitoring of infrastructures, natural gas and carbon dioxide storage reservoirs, dams, mines is already an established business. Many of these applications are made possible by the Sentinel-1 SAR constellation, the first to provide systematic coherent acquisitions and free and open data. More than 50000 products are downloaded daily. Nonetheless, the present revisit times of this constellation (1-3 days), or the future 6 hours of Cosmo-SKYmed I and II constellations, will leave a gap that cannot be fruitfully exploited for early warning of landslides, real time mapping of flooding, hydrometeor forecasts, real-time regional alerts of collapse, continuous soil moisture mapping for precision farming. On the other side, the limited penetration capabilities of C-band (Sentinel-1) and X band (Cosmo, TerraSAR constellations) would not allow sufficient penetration to monitor volumes, like ice, sands and forests. In order to fill these gaps, two novel SAR systems are under study and will possibly appear in the next decades: geosynchronous systems and bistatic constellations. The geosynchronous SAR exploits the geostationary orbit to create a hundred kilometers wide real antenna, fixed in the sky, if relative to the ground. If one satellite is exploited, the full antenna would be spanned in twelve hours, and images of medium resolution (ten meter or so) could be got every one-two hours, and finally coarse resolution products, like water vapor or soil moisture maps for flash-flood now-casting, could be generated every fifteen minutes. However, thanks to the intrinsic possibility of phase coherence of the microwaves, a constellation of mini or microsatellites could be deployed to act as a single instrument. Power and resolution would improve with the number of satellites squared, and the revisit would be reduced to minutes. This would be a unique system to provide day-and-night, all-weather imaging capabilities with the additional coherent Radar capabilities to monitor deformations, water-vapor, volumes, soil moisture. The bistatic SAR companion is a passive satellite (or a constellation of) flying in close formation with an active one. Such a system would provide the same capabilities of present TanDEM-X constellation, but enhanced to 3D volume penetration if L band is used.
Power System Simulations For The Globalstar2 Mission Using The PowerCap Software
NASA Astrophysics Data System (ADS)
Defoug, S.; Pin, R.
2011-10-01
The Globalstar system aims to enable customers to communicate all around the world thanks to its constellation of 48 LEO satellites. Thales Alenia Space is in charge of the design and manufacturing of the second generation of the Globalstar satellites. For such a long duration mission (15 years) and with a payload power consumption varying incessantly, the optimization of the solar arrays and battery has to be consolidated by an accurate power simulation tool. After a general overview of the Globalstar power system and of the PowerCap software, this paper presents the dedicated version elaborated for the GlobalStar2 mission, the simulations results and their correlation with the tests.
2008-02-15
SHOWN IS A CONCEPT IMAGE OF THE ARES V EARTH DEPARTURE STAGE AND LUNAR SURFACE ACCESS MODULE DOCKED WITH THE ORION CREW EXPLORATION VEHICLE IN EARTH ORBIT. THE DEPARTURE STAGE, POWERED BY A J-2X ENGINE, IS NEEDED TO ESCAPE EARTH'S GRAVITY AND SEND THE CREW VEHICLE AND LUNAR MODULE ON THEIR JOURNEY TO THE MOON.
NASA Technical Reports Server (NTRS)
2007-01-01
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
2007-06-13
Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.
Preliminary Design of Nano Satellite for Regional Navigation System
NASA Astrophysics Data System (ADS)
Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.
2018-04-01
A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.
Method for star identification using neural networks
NASA Astrophysics Data System (ADS)
Lindsey, Clark S.; Lindblad, Thomas; Eide, Age J.
1997-04-01
Identification of star constellations with an onboard star tracker provides the highest precision of all attitude determination techniques for spacecraft. A method for identification of star constellations inspired by neural network (NNW) techniques is presented. It compares feature vectors derived from histograms of distances to multiple stars around the unknown star. The NNW method appears most robust with respect to position noise and would require a smaller database than conventional methods, especially for small fields of view. The neural network method is quite slow when performed on a sequential (serial) processor, but would provide very high speed if implemented in special hardware. Such hardware solutions could also yield lower low weight and low power consumption, both important features for small satellites.
CONSTELL: NASA's Satellite Constellation Model
NASA Technical Reports Server (NTRS)
Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)
1999-01-01
The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.
Space Technology 5: Pathfinder for Future Micro-Sat Constellations
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Finnegan, Eric
2004-01-01
The Space Technology 5 (ST-5) Project, currently in the implementation phase, is part of the National Aeronautics and Space Administration (NASA) s New Millennium Program (NMP). ST-5 will consist of a constellation of three miniature satellites, each with mass less than 25 kg and size approximately 60 cm by 30 cm. ST-5 addresses technology challenges, as well as fabrication, assembly, test and operations strategies for future micro-satellite missions. ST-5 will be deployed into a highly eccentric, geo-transfer orbit (GTO). This will expose the spacecraft to a high radiation environment as well as provide a low level magnetic background. A three-month flight demonstration phase is planned to validate the technologies and demonstrate concepts for future missions. Each ST-5 spacecraft incorporates NMP competitively-selected breakthrough technologies. These include Cold Gas Micro-Thrusters for propulsion and attitude control, miniature X-band transponder for space-ground communications, Variable Emittance Coatings for dynamic thermal control, and CULPRiT ultra low power logic chip used for Reed-Solomon encoding. The ST-5 spacecraft itself is a technology that can be infused into future missions. It is a fully functional micro-spacecraft built within tight volume and mass constraints. It is built to withstand a high radiation environment, large thermal variations, and high launch loads. The spacecraft power system is low-power and low-voltage, and is designed to turn on after separation &om the launch vehicle. Some of the innovations that are included in the ST-5 design are a custom spacecraft deployment structure, magnetometer deployment boom, nutation damper, X-band antenna, miniature spinning sun sensor, solar array with triple junction solar cells, integral card cage assembly containing single card Command and Data Handling and Power System Electronics, miniature magnetometer, and lithium ion battery. ST-5 will demonstrate the ability of a micro satellite to perform research-quality science. Each ST-5 spacecraft will deploy a precision magnetometer to be used both for attitude determination and as a representative science instrument. The spacecraft has been developed with a low magnetic signature to avoid interference with the magnetometer. The spacecraft will be able to detect and respond autonomously to science events, i.e. significant changes in the magnetic field measurements. The three spacecraft will be a pathfinder for future constellation missions. They will be deployed to demonstrate an appropriate geometry for scientific measurements as a constellation. They will be operationally managed as a constellation, demonstrating automation and communication strategies that will be useful for future missions. The technologies and future mission concepts will be validated both on the ground and in space. Technologies will be validated on the ground by a combination of component level and system level testing of the flight hardware in a thermal vacuum environment. In flight, specific validation runs are planned for each of the technologies. Each validation run consists of one or more orbits with a specific validation objective. This paper will describe the ST-5 mission, and the applicability of the NMP technologies, spacecraft, and mission concepts to future missions. It will also discuss the validation approach for the ST-5 technologies and mission concepts.
Combined trellis coding with asymmetric MPSK modulation: An MSAT-X report
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
1985-01-01
Traditionally symmetric, multiple phase-shift-keyed (MPSK) signal constellations, i.e., those with uniformly spaced signal points around the circle, have been used for both uncoded and coded systems. Although symmetric MPSK signal constellations are optimum for systems with no coding, the same is not necessarily true for coded systems. This appears to show that by designing the signal constellations to be asymmetric, one can, in many instances, obtain a significant performance improvement over the traditional symmetric MPSK constellations combined with trellis coding. The joint design of n/(n + 1) trellis codes and asymmetric 2 sup n + 1 - point MPSK is considered, which has a unity bandwidth expansion relative to uncoded 2 sup n-point symmetric MPSK. The asymptotic performance gains due to coding and asymmetry are evaluated in terms of the minimum free Euclidean distance free of the trellis. A comparison of the maximum value of this performance measure with the minimum distance d sub min of the uncoded system is an indication of the maximum reduction in required E sub b/N sub O that can be achieved for arbitrarily small system bit-error rates. It is to be emphasized that the introduction of asymmetry into the signal set does not effect the bandwidth of power requirements of the system; hence, the above-mentioned improvements in performance come at little or no cost. MPSK signal sets in coded systems appear in the work of Divsalar.
Meteoroid Impact Ejecta Detection by Nanosatellites for Asteroid Surface Characterization
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Goel, A.
2015-12-01
Asteroids are constantly bombarded by much smaller meteoroids at extremely high speeds, which results in erosion of the material on the asteroid surface. Some of this material is vaporized and ionized, forming a plasma that is ejected into the environment around the asteroid where it can be detected by a constellation of closely orbiting nanosatellites. We present a concept to leverage this natural phenomenon and to analyze this excavated material using low-power plasma sensors on nanosatellites in order to determine the composition of the asteroid surface. This concept would enable a constellation of nanosatellites to provide useful data complementing existing techniques such as spectroscopy, which require larger and more power-hungry sensors. Possible mission architectures include precursor exploratory missions using nanosatellites to survey and identify asteroid candidates worthy of further study by a large spacecraft, or simultaneous exploration by a nanosatellite constellation with a larger parent spacecraft to decrease the time required to cover the entire asteroid surface. The use of meteoroid impact plasma to analyze the surface composition of asteroids will not only produce measurements that have not been previously obtained, including the molecular composition of the surface, but will also yield a better measurement of the meteoroid flux in the vicinity of the asteroid. Current meteoroid models are poorly constrained beyond the orbit of Mars, due to scarcity of data. If this technology is used to survey asteroids in the main belt, it will offer a dramatic increase in the availability of meteoroid flux measurements in deep space, identifying previously unknown meteoroid streams and providing additional data to support models of solar system dust dynamics.
Mehta, M D; Simpson-Housley, P
1994-12-01
This study examined the correlations of ratings of expectation of a future disaster in a nuclear power plant and estimation of its consequences in a random sample of 150 adults who lived within two kilometers of a nuclear power plant. Analysis suggested a significant positive but low relation. This finding indicates that risk perception might be explored using constellations of beliefs and attitudes toward hazards without invoking personality characteristics like trait anxiety or demographic variables such as gender.
Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng
This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.
Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2016-01-01
Design Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellation Abstract Communication systems are described that use geometrically PSK shaped constellations that have increased capacity compared to conventional PSK constellations operating within a similar SNR band. The geometrically shaped PSK constellation is optimized based upon parallel decoding capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.
The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations
NASA Astrophysics Data System (ADS)
Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.
2016-12-01
BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).
NASA Astrophysics Data System (ADS)
Matossian, Mark G.
1997-01-01
Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."
2008-09-30
Atlantic Bight (MAB). The surveys will be positioned adaptively using real-time data collected with the international constellation of ocean color...and onshore waters. A unique acoustic scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod
Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel
NASA Technical Reports Server (NTRS)
Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)
2015-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e., `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR (signal to noise ratio). In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d (sub min) (i.e. minimum distance between constellations) are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... licenses for nuclear power plants and spent fuel storage facilities from the current holder, Constellation... Independent Spent Fuel Storage Installation (ISFSI) Materials License No. SNM-2505; Nine Mile Point Nuclear.... A request for a hearing must be filed by January 15, 2014. Any potential party as defined in Sec. 2...
ERIC Educational Resources Information Center
Koza, Julia, Eklund
2005-01-01
In this response to Gould, the author has two goals: first, to forward another, not necessarily competing, postmodern understanding of feminism and power; and second, to expand Gould's project of examining professional climate. Koza defines feminism as a constellation of dynamic political positions that address and attempt to change the unequal…
ERIC Educational Resources Information Center
Barnes, Benita J.
2010-01-01
The high attrition rate from doctoral programs has been called a "hidden crisis" in graduate education (Lovitts & Nelson, 2000). Previous research has identified a constellation of factors that may contribute to doctoral attrition. However, the literature suggests that one of the most powerful influences on doctoral persistence is the relationship…
The NASA Beyond Einstein Program
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2006-01-01
Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.
Centaurus A galaxy, type EO peculiar elliptical, also radio source
NASA Technical Reports Server (NTRS)
2002-01-01
Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories
NASA Astrophysics Data System (ADS)
Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc
Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation, telecommunication and multimedia satellite systems. In particular, a new design pattern with very efficient properties in terms of robustness to satellite failures is presented and compared with classical Walker patterns.
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
The power of inexpensive satellite constellations
NASA Astrophysics Data System (ADS)
Dyrud, Lars P.; La Tour, Rose; Swartz, William H.; Nag, Sreeja; Lorentz, Steven R.; Hilker, Thomas; Wiscombe, Warren J.; Papadakis, Stergios J.
2014-06-01
Two thematic drivers are motivating the science community towards constellations of small satellites, the revelation that many next generation system science questions are uniquely addressed with sufficient numbers of simultaneous space based measurements, and the realization that space is historically expensive, and in an environment of constrained costs, we must innovate to ―do more with less‖. We present analysis that answers many of the key questions surrounding constellations of scientific satellites, including research that resulted from the GEOScan community based effort originally intended as hosted payloads on Iridium NEXT. We present analysis that answers the question how many satellites does global system science require? Perhaps serendipitously, the analyses show that many of the key science questions independently converge towards similar results, i.e. that approximately 60+ satellites are needed for transformative, as opposed to incremental capability in system science. The current challenge is how to effectively transition products from design to mass production for space based instruments and vehicles. Ideally, the lesson learned from past designs and builds of various space products should pave the way toward a better manufacturing plan that utilizes just a fraction of the prototype`s cost. Using the commercial products industry implementations of mass customization as an example, we will discuss about the benefits of standardization in design requirements for space instruments and vehicles. For example, the instruments (payloads) are designed to have standardized elements, components, or modules that interchangeably work together within a linkage system. We conclude with a discussion on implementation plans and the new paradigms for community and international cooperation enabled by small satellite constellations.
NASA Technical Reports Server (NTRS)
Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn
2008-01-01
The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.
2009-01-01
As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.
Constellations: A New Paradigm for Earth Observations
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.
2009-01-01
The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have a replenishment strategy as some satellites age and eventually leave the constellation. This will ensure overlap of observations, thus providing continuous, calibrated science data over a much longer time period. Thoughts on the evolution of the A-Train will also be presented.
NASA Astrophysics Data System (ADS)
Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico
2017-02-01
Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is analysed.
Methods and Apparatuses for Signaling with Geometric Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2018-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Methods and apparatuses for signaling with geometric constellations
NASA Technical Reports Server (NTRS)
Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)
2012-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Civil Applications of National Satellites
NASA Astrophysics Data System (ADS)
Killam, Dudley B.
2002-01-01
For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.
On localizing a capsule endoscope using magnetic sensors.
Moussakhani, Babak; Ramstad, Tor; Flåm, John T; Balasingham, Ilangko
2012-01-01
In this work, localizing a capsule endoscope within the gastrointestinal tract is addressed. It is assumed that the capsule is equipped with a magnet, and that a magnetic sensor network measures the flux from this magnet. We assume no prior knowledge on the source location, and that the measurements collected by the sensors are corrupted by thermal Gaussian noise only. Under these assumptions, we focus on determining the Cramer-Rao Lower Bound (CRLB) for the location of the endoscope. Thus, we are not studying specific estimators, but rather the theoretical performance of an optimal one. It is demonstrated that the CRLB is a function of the distance and angle between the sensor network and the magnet. By studying the CRLB with respect to different sensor array constellations, we are able to indicate favorable constellations.
Non-terrestrial resources of economic importance to earth
NASA Technical Reports Server (NTRS)
Lewis, John S.
1991-01-01
The status of research on the importation of energy and nonterrestrial materials is reviewed, and certain specific directions for new research are proposed. New technologies which are to be developed include aerobraking, in situ propellant production, mining and beneficiation of extraterresrrial minerals, nuclear power systems, electromagnetic launch, and solar thermal propulsion. Topics discussed include the system architecture for solar power satellite constellations, the return of nonterrestrial He-3 to earth for use as a clean fusion fuel, and the return to earth of platinum-group metal byproducts from processing of nonterrestrial native ferrous metals.
Places to Go: Sakai|http://www.sakaiproject.org/
ERIC Educational Resources Information Center
Downes, Stephen
2006-01-01
Stephen Downes continues his examination of open source learning management systems (LMSs) with a visit to Sakai's Web site. While Sakai's Web site is not particularly easy to navigate, it provides access to a large community and constellation of related online learning products and initiatives. Visitors can visit discussion forums to ask…
2007-09-30
adaptively using real-time data collected with the international constellation of ocean color satellites, a nested grid of HF radars, and an...scattering source was identified during the experiment as dense, monotypic aggregations of a pelagic gastropod were located during a 2-day period. These
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorpe, J. I.; Livas, J.; Maghami, P.
Arm locking is a proposed laser frequency stabilization technique for the Laser Interferometer Space Antenna (LISA), a gravitational-wave observatory sensitive in the milliHertz frequency band. Arm locking takes advantage of the geometric stability of the triangular constellation of three spacecraft that compose LISA to provide a frequency reference with a stability in the LISA measurement band that exceeds that available from a standard reference such as an optical cavity or molecular absorption line. We have implemented a time-domain simulation of a Kalman-filter-based arm-locking system that includes the expected limiting noise sources as well as the effects of imperfect a priorimore » knowledge of the constellation geometry on which the design is based. We use the simulation to study aspects of the system performance that are difficult to capture in a steady-state frequency-domain analysis such as frequency pulling of the master laser due to errors in estimates of heterodyne frequency. We find that our implementation meets requirements on both the noise and dynamic range of the laser frequency with acceptable tolerances and that the design is sufficiently insensitive to errors in the estimated constellation geometry that the required performance can be maintained for the longest continuous measurement intervals expected for the LISA mission.« less
Dynamics of tethered constellations in Earth orbit
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1986-01-01
Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.
Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2017-01-01
Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
Global Coverage from Ad-Hoc Constellations in Rideshare Orbits
NASA Technical Reports Server (NTRS)
Ellis, Armin; Mercury, Michael; Brown, Shannon
2012-01-01
A promising area of small satellite development is in providing higher temporal resolution than larger satellites. Traditional constellations have required specific orbits and dedicated launch vehicles. In this paper we discuss an alternative architecture in which the individual elements of the constellation are launched as rideshare opportunities. We compare the coverage of such an ad-hoc constellation with more traditional constellations. Coverage analysis is based on actual historical data from rideshare opportunities. Our analysis includes ground coverage and temporal revisits for Polar, Tropics, Temperate, and Global regions, comparing ad-hoc and Walker constellation.
Safe delivery of optical power from space.
Smith, M; Fork, R L; Cole, S
2001-05-07
More than a billion gigawatts of sunlight pass through the area extending from Earth out to geostationary orbit. A small fraction of this clean renewable power appears more than adequate to satisfy the projected needs of Earth, and of human exploration and development of space far into the future. Recent studies suggest safe and efficient access to this power can be achieved within 10 to 40 years. Light, enhanced in spatial and temporal coherence, as compared to natural sunlight, offers a means, and probably the only practical means, of usefully transmitting this power to Earth. We describe safety standards for satellite constellations and Earth based sites designed, respectively, to transmit, and receive this power. The spectral properties, number of satellites, and angle subtended at Earth that are required for safe delivery are identified and discussed.
Making every gram count - Big measurements from tiny platforms (Invited)
NASA Astrophysics Data System (ADS)
Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.
2013-12-01
The most significant advances in Earth, solar, and space physics over the next decades will originate from new, system-level observational techniques. The most promising technique to still be fully developed and exploited requires conducting multi-point or distributed constellation-based observations. This system-level observational approach is required to understand the 'big picture' coupling between disparate regions such as the solar-wind, magnetosphere, ionosphere, upper atmosphere, land, and ocean. The national research council, NASA science mission directorate, and the larger heliophysics community have repeatedly identified the pressing need for multipoint scientific investigations to be implemented via satellite constellations. The NASA Solar Terrestrial Probes Magnetospheric Multiscale (MMS) mission and NASA Earth Science Division's 'A-train', consisting of the AQUA, CloudSat, CALIPSO and AURA satellites, are examples of such constellations. However, the costs to date of these and other similar proposed constellations have been prohibitive given the 'large satellite' architectures and the multiple launch vehicles required for implementing the constellations. Financially sustainable development and deployment of multi-spacecraft constellations can only be achieved through the use of small spacecraft that allow for multiple hostings per launch vehicle. The revolution in commercial mobile and other battery powered consumer technology has helped enable researchers in recent years to build and fly very small yet capable satellites, principally CubeSats. A majority of the CubeSat activity and development to date has come from international academia and the amateur radio satellite community, but several of the typical large-satellite vendors have developed CubeSats as well. Recent government-sponsored CubeSat initiatives, such as the NRO Colony, NSF CubeSat Space Weather, NASA Office of Chief Technologist Edison and CubeSat Launch Initiative (CSLI) Educational Launch of Nanosatellites Educational Launch of Nano-satellites (ELaNa), the Air Force Space Environmental NanoSat Experiment (SENSE), and the ESA QB50 programs have spurred the development of very proficient miniature space sensors and technologies that enable technology demonstration, space and earth science research, and operational CubeSat based missions. In this paper we will review many of the small, low cost sensor and instrumentation technologies that have been developed to date as part of the CubeSat movement and examine how these new CubeSat based technologies are helping us do more with less.
Scheduling algorithms for rapid imaging using agile Cubesat constellations
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Li, Alan S.; Merrick, James H.
2018-02-01
Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that optimality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for agile constellations.
The 2-D lattice theory of Flower Constellations
NASA Astrophysics Data System (ADS)
Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele
2013-08-01
The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.
NASA Astrophysics Data System (ADS)
Yue, X.; Schreiner, W. S.; Kuo, Y. H.
2014-12-01
Since the pioneer GPS/MET mission, low Earth orbit (LEO) based global navigation satellite system (GNSS) Radio Occultation (RO) technique has been a powerful technique in ionosphere monitoring. After that, many LEO satellites were launched with RO payload, include: CHAMP , GRACE, SAC-C/D, COSMIC, C/NOFS, Metop-A/B, TerraSAR-X/TanDEM-X, and etc. COSMIC was the first constellation of satellites dedicated primarily to RO and delivering RO data in near real time. Currently in UCAR CDAAC, we process most of these missions' RO data for the community. Due to the success of COSMIC mission, a follow on mission called COSMIC-2 will be launched in 2016 and 2018, respectively. The COSMIC-2 RO data will be 4-6 times of COSMIC due to the doubled satellite and GNSS signals. In this paper we will describe: (1) Data process and quality in UCAR/CDAAC; (2) Ionospheric data assimilation results based on COSMIC data; (3) OSSE study for COSMIC-2.
Methodology and Method and Apparatus for Signaling With Capacity Optimized Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2014-01-01
Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.
NASA Astrophysics Data System (ADS)
Borgstrom, Sven; Del Gaudio, Carlo; De Martino, Prospero; Siniscalchi, Valeria; Prats-Iraola, Pau; Nannini, Matteo; Yague-Martinez, Nestor; Pinheiro, Muriel; Kim, Jun-Su; Vecchioli, Francesco; Minati, Federico; Costantini, Mario; Foumelis, Michael; Desnos, Yves-Louis
2017-04-01
The contribution focuses on the current status of the ESA study entitled "INSARAP Sentinel-1 Constellation Study" and investigates the interferometric performance of the S1A/S1B units. In particular, we refer to the Vesuvius/Campi Flegrei (Southern Italy) volcanic test site, where the continuous inflation (about 35 cm from 2011 to date) and the huge availability of ground-based geodetic data (continuous GPS - cGPS - leveling, tiltmetric, gravimetric, etc.) from the INGV-Osservatorio Vesuviano monitoring networks have allowed to get a clear deformation signal, besides the comparison between S1A/S1B and geodetic data. In this regard, the integration between InSAR and geodetic measurements is crucial for a continuous and extended monitoring of such an active volcanic area, as InSAR investigations allow to get an information on wide areas, whereas permanent networks (e.g., cGPS), allow to provide a continuous information complementing InSAR, which is limited by its revisiting time. Comparisons between S1 constellation data and geodetic measurements, with a particular focus on cGPS, will be presented, exploiting both LOS and inverted (E-W and vertical inversion) InSAR data starting from October, 2014. In addition, as a next step we are planning to model the deformation source of the area by exploiting the S1 time series results. Ultimately, very encouraging results suggest for a continuation of this activity also for the future, showing the great potential of S1 constellation data for monitoring active volcanic areas and, in general, to retrieve a very high quality deformation signal.
Methodology and method and appartus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2012-01-01
Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.
Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2017-01-01
Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.
Advanced platform technologies for Earth science
NASA Astrophysics Data System (ADS)
Lemmerman, Loren; Raymond, Carol; Shotwell, Robert; Chase, James; Bhasin, Kul; Connerton, Robert
2005-01-01
Historically, Earth science investigations have been independent and highly focused. However, the Earth's environment is a very dynamic and interrelated system and to understand it, significant improvements in spatial and temporal observations will be required. Science needs to document the need for constellations to achieve desired spatial and temporal observations. A key element envisioned for accomplishing these difficult challenges is the idea of a distributed, heterogeneous, and adaptive observing system or sensor web. This paper focuses on one possible approach based on a LEO constellation composed of 100 spacecraft. A cost analysis has been done to indicate the financial pressures of each mission phase and conclusions are drawn suggesting that new technology investments are needed, directed toward lowering production costs; that operations costs will need to be reduced through autonomy; and that, of the on-board subsystems considered, advanced power generation and management may be the most enabling of new technologies.
Electric Propulsion for Low Earth Orbit Constellations
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Sankovic, John M.
1998-01-01
Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.
Electric Propulsion for Low Earth Orbit Constellations
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Sankovic, John M.
1998-01-01
Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-08
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
ARGOS - the Laser Star Adaptive Optics for LBT
NASA Astrophysics Data System (ADS)
Rabien, S.; Barl, L.; Beckmann, U.; Blümchen, T.; Bonaglia, M.; Borelli, J. L.; Brynnel, J.; Busoni, L.; Carbonaro, L.; Conot, C.; Davies, R.; Deysenroth, M.; Durney, O.; Elberich, M.; Esposito, S.; Gasho, V.; Gässler, W.; Gemperlein, H.; Genzel, R.; Green, R.; Haug, M.; Lloyd Hart, M.; Hubbard, P.; Kanneganti, S.; Kulas, M.; Noenickx, J.; Peter, D.; Quirrenbach, A.; Rademacher, M.; Rix, H. W.; Salinari, P.; Schwab, C.; Storm, J.; Strüder, L.; Thiel, M.; Weigelt, G.; Ziegleder, J.; Orban de Xivry, G.
2011-09-01
We will present the design and status of ARGOS - the Laser Guide Star adaptive optics facility for the Large Binocular Telescope. By projecting a constellation of multiple laser guide stars above each of the 8.4m primary mirrors of the LBT, ARGOS in its ground layer mode will enable a wide field adaptive optics correction for multi object spectroscopy. ARGOS implements high power pulsed green lasers and makes use of Rayleigh scattering for the guide star creation. The geometric relations of this setup in guide star height vs. primary diameter are quite comparable to an ELT with sodium guide stars. The use of LBT's adaptive secondary mirror, gated wavefront sensors, a prime focus calibration system and the laser constellation shows several aspects that may be used as pathfinding technology for the planned ELTs. In already planned upgrade steps with a hybrid Sodium-Rayleigh combination ARGOS will enable MCAO and MOAO implementations at LBT allowing unique astronomical observations.
Meng, Zhijun; Yang, Jun; Guo, Xiye; Zhou, Yongbin
2017-01-01
Global Navigation Satellite System performance can be significantly enhanced by introducing inter-satellite links (ISLs) in navigation constellation. The improvement in position, velocity, and time accuracy as well as the realization of autonomous functions requires ISL distance measurement data as the original input. To build a high-performance ISL, the ranging consistency among navigation satellites is an urgent problem to be solved. In this study, we focus on the variation in the ranging delay caused by the sensitivity of the ISL payload equipment to the ambient temperature in space and propose a simple and low-power temperature-sensing ranging compensation sensor suitable for onboard equipment. The experimental results show that, after the temperature-sensing ranging compensation of the ISL payload equipment, the ranging consistency becomes less than 0.2 ns when the temperature change is 90 °C. PMID:28608809
Spacecraft Impacts with Advanced Power and Electric Propulsion
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Oleson, Steven R.
2000-01-01
A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.
78 FR 3042 - J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Management Inc. (``BSAM''), Bear Stearns Health Innoventures Management, L.L.C. (``BSHIM''), BSCGP Inc. (``BSGCP''), Constellation Growth Capital LLC (``Constellation''), Constellation Ventures Management II, LLC (``Constellation II''), Highbridge Capital Management, LLC (``Highbridge''), JF International...
Risk Informed Design as Part of the Systems Engineering Process
NASA Technical Reports Server (NTRS)
Deckert, George
2010-01-01
This slide presentation reviews the importance of Risk Informed Design (RID) as an important feature of the systems engineering process. RID is based on the principle that risk is a design commodity such as mass, volume, cost or power. It also reviews Probabilistic Risk Assessment (PRA) as it is used in the product life cycle in the development of NASA's Constellation Program.
Measuring the Orbital Period of the Moon Using a Digital Camera
ERIC Educational Resources Information Center
Hughes, Stephen W.
2006-01-01
A method of measuring the orbital velocity of the Moon around the Earth using a digital camera is described. Separate images of the Moon and stars taken 24 hours apart were loaded into Microsoft PowerPoint and the centre of the Moon marked on each image. Four stars common to both images were connected together to form a "home-made" constellation.…
An Investigation into Establishing a Formation of Small Satellites in a Lunar Flower Constellation
NASA Astrophysics Data System (ADS)
McManus, Lauren
Lunar science missions such as LADEE and GRAIL achieved unprecedented measurements of the Lunar exosphere and gravity field. These missions were performed with one (LADEE) or two (GRAIL) traditional satellites. The global coverage achieved by these missions could have been greatly enhanced with the use of a constellation of satellites. A constellation of communication satellites at the Moon would also be necessary if a Lunar human base were to be established. Constellations with many satellites are expensive with traditional technology, but have become feasible through the technological advancements and affordability of cubesats. Cubesat constellations allow for full surface coverage in science or communication missions at a reasonable mission cost. Repeat ground track orbits offer interesting options for science or communication constellations, since they provide repeat coverage of the surface at a fixed time between sequential visits. Flower constellations are a family of constellations being studied primarily by Daniele Mortari at Texas A&M; University that make use of repeat ground tracks. Orbital parameters are selected such that the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on the number of days and the number of revolutions to repeat the ground track. All orbits in a flower constellation have identical orbital elements, with the exception of the right ascension of the ascending node (RAAN) and the initial mean anomaly, which are determined based on the desired phasing scheme desired. Flower constellations have thus far primarily been studied at Earth. A flower constellation at the Moon could be quite useful for science or communication purposes. In this scenario, the flower constellation satellites would be small satellites, which introduces many unique challenges. The cubesats would have limited propulsion capability and would need to be deployed from a mothercraft. Orbital maintenance would then be required after deployment to retain the repeat ground track nature of flower constellations. The limited fuel on the cubesats and the maneuvers required determine the lifetime of the constellation. The communications range of the cubesats will also be limited; following a successful deployment, the mothercraft must move into a long-term communications orbit where it can see both the children craft and Earth, to act as a communications relay. This work investigates the differences in flower constellations at the Moon versus at Earth. It is found that due to the longer rotation period of the Moon, the number of petals in the flower constellation must be quite large in order to produce reasonable orbit sizes. Two types of flower constellations are investigated: a single-petal and multi-petal constellation. The single-petal constellation consists of a string-of-pearls formation within one inertial flower constellation orbit. The multi-petal configuration has one satellite per inertial orbit, with the orbits spaced symmetrically within a 360 degree RAAN distribution. Optimal methods for deployment are explored for both configurations. Phasing orbits are used to deploy the single-petal constellation. This is found to be a simple and low-cost deployment scheme. The multi-petal configuration requires larger plane change maneuvers, and three-burn transfer orbit solutions that are optimal over single impulsive burn maneuvers are found. The mothercraft maneuver into the long-term communications orbit is also investigated. This maneuver is once again just a phase orbit maneuver for the single-petal constellation and is low cost. A polar mothercraft orbit is desired for the multi-petal configuration, again requiring a large and expensive plane change maneuver. As was the case with the deployment maneuver, a three-burn transfer orbit series is found to be cost optimal over a series of impulsive burns for this maneuver. Finally, once the constellation is established, orbit maintenance maneuvers are calculated. A 4 kg cubesat with 1 kg of fuel is assumed, and various thruster types are used to correlate required maintenance Delta-Vs to propellant mass required. It is found that the flower constellations at the Moon can be maintained for between 100 and 800 days, depending on the eciency of the thruster system used. Ultimately, a small satellite constellation at the Moon is found to be feasible to establish and maintain for a science or communication mission.
Observations of volcanic hotspots with TET-1
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Hort, Matthias; Lorenz, Eckehard
2016-04-01
The most important source of uncertainties in thermal monitoring of active volcanoes from space stems from the lack of dedicated satellite instruments. Considering the currently available technology, we usually have to make a compromises between spatial and temporal resolution - if the data is available at high temporal resolution (from geostationary instruments), it is impossible to provide high spatial resolution data. The most promising solution seems to be a constellation of small satellites, for they can provide data at high spatial resolution and provide a short revisit time as there is a high number of satellites in the constellation. It is also difficult to provide narrow spectral channels at high radiometric accuracy for monitoring high and low temperatures at the same time. Instruments designed for meteorological applications are usually used in remote sensing of volcanic thermal anomalies. These instruments contain a mid-infrared channel, which provides crucial data for monitoring active volcanoes. However, the settings of meteorological instruments are optimized for monitoring low temperatures, which results in often saturated data over active volcanoes. The volcanological community can partially overcome the gap between the available meteorological satellites and its requirements with the small satellite TET-1 German abbreviation for "Technologie-Erprobungsträger 1" meaning Technology Experiment Carrier). TET-1 is the first satellite within the FireBird constellation. This consists of two small satellites which are predominantly dedicated to investigating high temperature events. They were built and are operated by the German Aerospace Center. TET-1 was launched in June 2012. Here we present the first results obtained from TET-1 data. The data were retrieved over several volcanoes: Etna, Stromboli, Bárdarbunga, etc. We show that using TET-1 data, it is possible to better constrain the time averaged lava discharge from other satellite data sources.
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
Armenian Names of Sky Constellations
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.; Farmanyan, S. V.; Mikayelyan, A. A.
2016-12-01
The work is devoted to the correction and recovery of the Armenian names of the sky constellations, as they were forgotten or distorted during the Soviet years, mainly due to the translation from Russian. A total of 34 constellation names have been corrected. A brief overview of the history of the division of the sky into constellations and their naming is also given. At the end, the list of all 88 constellations is given with the names in Latin, English, Russian and Armenian.
The elusive constellations of poverty.
Breugelmans, Seger M; Plantinga, Arnoud; Zeelenberg, Marcel; Poluektova, Olga; Efremova, Maria
2017-01-01
Pepper & Nettle describe possible processes underlying what they call a behavioral constellation of deprivation (BCD). Although we are certain about the application of evolutionary models to our understanding of poverty, we are less certain about the utility of behavioral constellations. The empirical record on poverty-related behaviors is much more divergent and broad than such constellations suggest.
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Paul, Heather L.; Conger, Bruce C.
2009-01-01
This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial electrochemical sensor was not suitable for the Cx space suit for surface exploration. Finally, the paper identifies a number of techniques currently under development that offer significant advantages for EVA applications. These include miniaturized, room temperature, solid electrolyte systems and advanced optical detectors.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Kummerow, C.; Chandra, C. V.; Berg, W. K.; Brown, S. T.; Pallas, M.; Radhakrishnan, C.
2017-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class satellites observing storms at 5 millimeter-wave frequencies with 5-10 minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. Such a small satellite mission would enable the first global measurements of clouds and precipitation on the time scale of tens of minutes and the corresponding spatial scale of a few km. TEMPEST is designed to improve the understanding of cloud processes by providing critical information on temporal signatures of precipitation and helping to constrain one of the largest sources of uncertainty in cloud models. TEMPEST millimeter-wave radiometers are able to perform remote observations of the cloud interior to observe microphysical changes as the cloud begins to precipitate or ice accumulates inside the storm. The TEMPEST technology demonstration (TEMPEST-D) mission is in progress to raise the TRL of the instrument and spacecraft systems from 6 to 9 as well as to demonstrate radiometer measurement and differential drag capabilities required to deploy a constellation of 6U-Class satellites in a single orbital plane. The TEMPEST-D millimeter-wave radiometer instrument provides observations at 89, 165, 176, 180 and 182 GHz using a single compact instrument designed for 6U-Class satellites. The direct-detection topology of the radiometer receiver substantially reduces both its power consumption and design complexity compared to heterodyne receivers. The TEMPEST-D instrument performs precise, end-to-end calibration using a cross-track scanning reflector to view an ambient blackbody calibration target and cosmic microwave background every scan period. The TEMPEST-D radiometer instrument has been fabricated and successfully tested under environmental conditions (vibration, thermal cycling and vacuum) expected in low-Earth orbit. TEMPEST-D began in Aug. 2015, with a rapid 2.5-year development to deliver a complete spacecraft with integrated payload by Feb. 2018. TEMPEST-D has been manifested by NASA CSLI planned for launch on ELaNa-23 on Cygnus Antares II to the ISS in Mar. 2018. The TEMPEST-D satellite is expected to be deployed into a 400-km orbit at 51.6° inclination a few months after arrival at ISS.
NASA Astrophysics Data System (ADS)
Reising, Steven C.; Gaier, Todd C.; Kummerow, Christian D.; Padmanabhan, Sharmila; Lim, Boon H.; Brown, Shannon T.; Heneghan, Cate; Chandra, Chandrasekar V.; Olson, Jon; Berg, Wesley
2016-04-01
TEMPEST-D will reduce the risk, cost and development time of a future constellation of 6U-Class nanosatellites to directly observe the time evolution of clouds and study the conditions that control the transition from non-precipitating to precipitating clouds using high-temporal resolution observations. TEMPEST-D provides passive millimeter-wave observations using a compact instrument that fits well within the size, weight and power (SWaP) requirements of the 6U-Class satellite architecture. TEMPEST-D is suitable for launch through NASA's CubeSat Launch Initiative (CSLI), for which it was selected in February 2015. By measuring the temporal evolution of clouds from the moment of the onset of precipitation, a TEMPEST constellation mission would improve our understanding of cloud processes and help to constrain one of the largest sources of uncertainty in climate models. Knowledge of clouds, cloud processes and precipitation is essential to our understanding of climate change. Uncertainties in the representation of key processes that govern the formation and dissipation of clouds and, in turn, control the global water and energy budgets lead to substantially different predictions of future climate in current models. TEMPEST millimeter-wave radiometers with five frequencies from 89 GHz to 182 GHz penetrate into the cloud to observe key changes as precipitation begins or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction and a key factor in Earth's radiation budget. TEMPEST is designed to provide critical information on the time evolution of cloud and precipitation, yielding a first-order understanding of assumptions and uncertainties in current cloud parameterizations in general circulation models in diverse climate regimes. For a potential future one-year operational mission, five identical 6U-Class satellites would be deployed in the same orbital plane with 5- to 10-minute spacing deployed in an orbit similar to the International Space Station resupply missions, i.e. at ~400 km altitude and ~51° inclination. A one-year mission would capture 3 million observations of precipitation greater than 1 mm/hour rain rate, including at least 100,000 deep convective events. Passive drag-adjusting maneuvers would separate the five CubeSats in the same orbital plane by 5-10 minutes each, similar to deployment techniques to be used by NASA's Cyclone Global Navigation Satellite Systems (CYGNSS) mission.
ERIC Educational Resources Information Center
Grimminger, Elke
2013-01-01
Background: Being recognized as a competent and accepted member in the peer group is one of the most important basic human needs for children and youth. However, it is the peer group itself that decides which competencies are estimated and which are not, and through this process, a social order as well as peer power constellations is created.…
Asbestosis, laryngeal carcinoma, and malignant peritoneal mesothelioma in an insulation worker.
Fischbein, A; Luo, J C; Pinkston, G R
1991-01-01
Asbestos associated diseases consist of both benign and malignant conditions. A rare constellation of asbestosis, laryngeal carcinoma, and malignant peritoneal mesothelioma occurring in a patient with long term occupational exposure to airborne asbestos fibres is presented. The observation illustrates the powerful disease-causing potential of occupational exposure to asbestos. A brief discussion of multiple primary neoplasms associated with exposure to asbestos is also presented. Images PMID:2039746
High Resolution X-Band SAR Constallation for Risk Management
2000-10-01
polarisation has been specified to two unique, alternative SAR-satellite designs which as no specific requirement exists for dual- polarisation combine...dispersion while Fig. 4a). beam -scanning; 5 azimuth power splitters which feed the sub- 2. An architecture borrowed from modem panels...resolution SAR constellation therefore forms an essential Polarisation HH (or VV) component of such an observation system which shall Mean/max revisit < 12/24
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William
2015-01-01
By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements.
Origins of the "Western" Constellations
NASA Astrophysics Data System (ADS)
Frank, Roslyn M.
The development of the 48 Greek constellations is analyzed as a complex mixture of cognitive layers deriving from different cultural traditions and dating back to different epochs. The analysis begins with a discussion of the zodiacal constellations, goes on to discuss the stellar lore in Homer and Hesiod, and then examines several theories concerning the origins of the southern non-zodiacal constellations. It concludes with a commentary concerning the age and possible cultural significance of stars of the Great Bear constellation in light of ethnohistorical documentation, folklore, and beliefs related to European bear ceremonialism.
Liu, Tao; Djordjevic, Ivan B
2014-12-29
In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.
CloudSat Anomaly Recovery and Operational Lessons Learned
NASA Technical Reports Server (NTRS)
Witkowski, Mona; Vane, Deborah; Livermore, Thomas; Rokey, Mark; Barthuli, Marda; Gravseth, Ian J.; Pieper, Brian; Rodzinak, Aaron; Silva, Steve; Woznick, Paul;
2012-01-01
In April 2011, NASA's pioneering cloud profiling radar satellite, CloudSat, experienced a battery anomaly that placed it into emergency mode and rendered it operations incapable. All initial attempts to recover the spacecraft failed as the resultant power limitations could not support even the lowest power mode. Originally part of a six-satellite constellation known as the "A-Train", CloudSat was unable to stay within its assigned control box, posing a threat to other A-Train satellites. CloudSat needed to exit the constellation, but with the tenuous power profile, conducting maneuvers was very risky. The team was able to execute a complex sequence of operations which recovered control, conducted an orbit lower maneuver, and returned the satellite to safe mode, within one 65 minute sunlit period. During the course of the anomaly recovery, the team developed several bold, innovative operational strategies. Details of the investigation into the root-cause and the multiple approaches to revive CloudSat are examined. Satellite communication and commanding during the anomaly are presented. A radical new system of "Daylight Only Operations" (DO-OP) was developed, which cycles the payload and subsystem components off in tune with earth eclipse entry and exit in order to maintain positive power and thermal profiles. The scientific methodology and operational results behind the graduated testing and ramp-up to DO-OP are analyzed. In November 2011, the CloudSat team successfully restored the vehicle to consistent operational collection of cloud radar data during sunlit portions of the orbit. Lessons learned throughout the six-month return-to-operations recovery effort are discussed and offered for application to other R&D satellites, in the context of on-orbit anomaly resolution efforts.
Constellation Stick Figures Convey Information about Gravity and Neutrinos
NASA Astrophysics Data System (ADS)
Mc Leod, David Matthew; Mc Leod, Roger David
2008-10-01
12/21/98, at America's Stonehenge, DMM detected, and drew, the full stick-figure equivalent of Canis Major, CM, as depicted by our Wolf Clan leaders, and many others. Profound, foundational physics is implied, since this occurred in the Watch House there, hours before the ``model rose.'' Similar configurations like Orion, Osiris of ancient Egypt, show that such figures are projected through solid parts of the Earth, as two-dimensional equivalents of the three-dimensional star constellations. Such ``sticks'' indicate that ``line equivalents'' connect the stars, and the physical mechanism projects outlines detectable by traditional cultures. We had discussed this ``flashlight'' effect, and recognized some of its implications. RDM states that the flashlight is a strong, distant neutrino source; the lines represent neutrinos longitudinally aligned in gravitational excitation, opaque, to earthbound, transient, transversely excited neutrinos. ``Sticks'' represent ``graviton'' detection. Neutrinos' longitudinal alignment accounts for the weakness of gravitational force.
The CEOS constellation for land surface imaging
Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.
2007-01-01
A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.
The Solar system.Stars and constellations
NASA Astrophysics Data System (ADS)
Horia Minda, Octavian
2017-04-01
It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.
A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology
NASA Technical Reports Server (NTRS)
Mason, Lee; Poston, Dave
2010-01-01
Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.
A study of catasterisms in the 'phaenomena' of Aratus
NASA Astrophysics Data System (ADS)
Rousseau, A.; Dimitrakoudis, S.
We provide a fresh analysis of the constellations in Aratos Phenomena by using the astronomical program Cybersky (by Stephen Schimpf) to check each reference of constellations within the poem for validity in 2800 BCE and 300 BCE (the later accounting for the broader period of time covering Eudoxus of Cnidus and Aratus of Soli). In each case, the latitude of observation was chose to be 36 North in agreement with the area of the sky that is not covered in the descriptions of Aratus (and contains the unseen constellations for a particular latitude). Each constellation was traced back to its Greek mythological origin through tha various writers of antiquity. Our results are collected in a table of the constellations mentioned by Aratus in his epic poem, with respect to the ancient authors who have mentioned each constellation shaping its myth, the locations on the earth each constellation is associated with and the most likely date of observation according to Aratus description and taking into account precession and the proper motion of stars.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.
2016-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to achieve relative positioning in a constellation of 6U-Class nanosatellites. The TEMPEST-D 6U-Class satellite is planned to be delivered in July 2017 for launch through NASA CSLI no later than March 2018.
Detecting small scale CO2 emission structures using OCO-2
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Eldering, Annmarie; Verhulst, Kristal R.; Miller, Charles E.; Nguyen, Hai M.; Oda, Tomohiro; O'Dell, Christopher; Rao, Preeti; Kahn, Brian; Crisp, David; Gunson, Michael R.; Sanchez, Robert M.; Ashok, Manasa; Pieri, David; Linick, Justin P.; Yuen, Karen
2016-04-01
Localized carbon dioxide (CO2) emission structures cover spatial domains of less than 50 km diameter and include cities and transportation networks, as well as fossil fuel production, upgrading and distribution infra-structure. Anthropogenic sources increasingly upset the natural balance between natural carbon sources and sinks. Mitigation of resulting climate change impacts requires management of emissions, and emissions management requires monitoring, reporting and verification. Space-borne measurements provide a unique opportunity to detect, quantify, and analyze small scale and point source emissions on a global scale. NASA's first satellite dedicated to atmospheric CO2 observation, the July 2014 launched Orbiting Carbon Observatory (OCO-2), now leads the afternoon constellation of satellites (A-Train). Its continuous swath of 2 to 10 km in width and eight footprints across can slice through coincident emission plumes and may provide momentary cross sections. First OCO-2 results demonstrate that we can detect localized source signals in the form of urban total column averaged CO2 enhancements of ~2 ppm against suburban and rural backgrounds. OCO-2's multi-sounding swath observing geometry reveals intra-urban spatial structures reflected in XCO2 data, previously unobserved from space. The transition from single-shot GOSAT soundings detecting urban/rural differences (Kort et al., 2012) to hundreds of soundings per OCO-2 swath opens up the path to future capabilities enabling urban tomography of greenhouse gases. For singular point sources like coal fired power plants, we have developed proxy detections of plumes using bands of imaging spectrometers with sensitivity to SO2 in the thermal infrared (ASTER). This approach provides a means to automate plume detection with subsequent matching and mining of OCO-2 data for enhanced detection efficiency and validation. © California Institute of Technology
X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall
2003-01-01
In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.
A mars communication constellation for human exploration and network science
NASA Astrophysics Data System (ADS)
Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle
2010-01-01
This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two Zenith Sea Launch rockets in March 2021 and carrying four satellites each. After the entrance in Mars sphere of influence, the single spacecrafts separate and spiral-down with Hall effect thrusters until they reach the final operational orbits in April 2025, at 17,030 km of altitude and 37 deg of inclination. The preliminary design includes 105 kg and 577 W of mass and power margin for each satellite, that can be allocated for scientific payloads. The main challenges of the proposed design are represented by the optical technology development and the connected strict pointing constraints satisfaction, as well as by the Martian constellation operations management. This mission study has therefore shown the possibility of deploying an effective communication infrastructure in Mars orbit employing a small amount of the resources needed for the human exploration programme, additionally providing the chance of performing important scientific research either from orbit or with a network of small rovers carried on-board and deployed on the surface.
2017-03-01
2016.7485263.] 14. SUBJECT TERMS parameter estimation; matched- filter detection; QPSK; radar; interference; LSE, cyber, electronic warfare 15. NUMBER OF...signal is routed through a maximum-likelihood detector (MLD), which is a bank of four filters matched to the four symbols of the QPSK constellation... filters matched for each of the QPSK symbols is used to demodulate the signal after cancellation. The matched filters are defined as the complex
NASA Astrophysics Data System (ADS)
Zhu, Yi-Jun; Liang, Wang-Feng; Wang, Chao; Wang, Wen-Ya
2017-01-01
In this paper, space-collaborative constellations (SCCs) for indoor multiple-input multiple-output (MIMO) visible light communication (VLC) systems are considered. Compared with traditional VLC MIMO techniques, such as repetition coding (RC), spatial modulation (SM) and spatial multiplexing (SMP), SCC achieves the minimum average optical power for a fixed minimum Euclidean distance. We have presented a unified SCC structure for 2×2 MIMO VLC systems and extended it to larger MIMO VLC systems with more transceivers. Specifically for 2×2 MIMO VLC, a fast decoding algorithm is developed with decoding complexity almost linear in terms of the square root of the cardinality of SCC, and the expressions of symbol error rate of SCC are presented. In addition, bit mappings similar to Gray mapping are proposed for SCC. Computer simulations are performed to verify the fast decoding algorithm and the performance of SCC, and the results demonstrate that the performance of SCC is better than those of RC, SM and SMP for indoor channels in general.
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
2014-09-30
Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type
The CEOS/GEO Constellation Concept
NASA Technical Reports Server (NTRS)
Cramer, Bryant; Ungar, Stephen
2007-01-01
The Constellation concept was first proposed during a discussion at the 19th CEOS Plenary, in London, in November 2005. The first Paper of the Constellation Concept was presented at the CEOS Strategic Implementation Team meeting (SIT-18), in Frascati, in March 2006, and strongly endorsed by the CEOS Principals. The concept attempts to provide agencies with tools for implementation of the elements that have been previously discussed in international forums (GEO Work Plan, GCOS Implementation Plan). This provides a solid foundation from the community providing requirements. Though agency spending is governed by national requirements, CEOS seeks synergies among member agency programs to fulfil GEOSS requirements, defining guidelines and standards to help agencies to determine from the outset what can be achieved. The constellations concept will allow the development of a commonalties approach among different agencies. At the heart of the application of the Constellations concept is the definition of a series of standards (specific to each Constellation) - required to be satisfied for any mission to be included in the constellation - and a process of recognition/acceptance, whereby an agency applies to SIT to have one or more of its missions (ideally from the outset of planning) recognised as meeting the constellation standards and thereby satisfying the relevant user community needs.
Best Practices for Operations of Satellite Constellations
NASA Technical Reports Server (NTRS)
Howard, Joseph; Oza, Dipak; Smith, Danford S.
2006-01-01
This paper presents the best practices used by several commercial and government operators of satellite constellations. These best practices were identified through a series of seminars and discussions held at NASA Goddard Space Flight Center (GSFC). The best practices are arrived through many years of experience and improvements made in the operations procedures and the operational systems with the primary drivers as mission safety and cost effectiveness. This paper discusses the operational aspects associated with how different organizations manage complexities of constellation operations. For the purposes of this paper, satellite constellations are groups of similar spacecraft with more than one spacecraft needed to fully accomplish the constellation's mission
Constellation Program Press Conference
2006-06-04
Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Life Support Technology Challenges for NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn; Bagdigian, Robert; Ewert, Michael
2007-01-01
The presentation is for the ECLSS session of the Constellation Technology Exchange Conference and is to describe what new technology challenges the Constellation mission presents for the ECLSS, in order to communicate these needs with industry.
Constellation Pharmacology: A new paradigm for drug discovery
Schmidt, Eric W.; Olivera, Baldomero M.
2015-01-01
Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646
Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories
NASA Technical Reports Server (NTRS)
Spangelo, Sara; Dalle, Derek; Longmier, Ben
2014-01-01
The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.
Modulating Retro-Reflectors: Technology, Link Budgets and Applications
NASA Technical Reports Server (NTRS)
Salas, Alberto Guillen; Stupl, Jan; Mason, James
2012-01-01
Satellite communications systems today -- usually radio frequency (RF) -- tend to have low data rates and use a lot of on-board power. For CubeSats, communications often dominate the power budget. We investigate the use of modulating retro-reflectors (MRRs), previously demonstrated on the ground, for high data-rate communication downlinks from small satellites. A laser ground station would illuminate a retro-reflector on-board the satellite while an element in the retro-reflector modulates the intensity of the reflected signal, thereby encoding a data stream on the returning beam. A detector on the ground receives the data, keeping the complex systems and the vast majority of power consumption on the ground. Reducing the power consumption while increasing data rates would relax constraints on power budgets for small satellites, leaving more power available for payloads. In the future, this could enable the use of constellations of nano-satellites for a variety of missions, possibly leading to a paradigm shift in small satellite applications.
The Space Technology 5 Power System Design
NASA Technical Reports Server (NTRS)
Stewart, Karen D.; Hernandez-Pellerano, Amri I.
2005-01-01
The Space Technology 5 (ST5) mission is a NASA New Millennium Program (NMP) project that was developed to validate new technologies for future missions and to demonstrate the feasibility of building and launching multiple, miniature spacecraft that can operate as science probes, collecting research quality measurements. The three satellites in the ST5 constellation will be launched into a sun synchronous LEO (Low Earth Orbit) in early 2006. ST5 fits in the 25 kilogram and 24 Watt class of miniature but fully capable spacecraft. The power system design features the use of new technology components and a low voltage power bus. In order to hold the mass and volume low and to qualify new technologies for future use in space, high efficiency triple junction solar cells and a lithium ion battery were baselined into the design. The Power System Electronics (PSE) was designed for a high radiation environment and uses hybrid microcircuits for power switching and over current protection. The ST5 power system architecture and technologies will be presented.
RaInCube: a proposed constellation of precipitation profiling Radars In Cubesat
NASA Astrophysics Data System (ADS)
Peral, E.; Tanelli, S.; Haddad, Z. S.; Stephens, G. L.; Im, E.
2014-12-01
Precipitation radars in Low-Earth-Orbit provide vertically resolved profiles of rain and snow on a global scale. With the recent advances in miniaturized radar and CubeSat/SmallSat technologies, it would now be feasible to launch multiple copies of the same radar instrument in desirable formations to allow measurements of short time scale evolution of atmospheric processes. One such concept is the novel radar architecture compatible with the 6U CubeSat class that is being developed at JPL by exploiting simplification and miniaturization of the radar subsystems. The RaInCube architecture would significantly reduce the number of components, power consumption and mass with respect to existing spaceborne radars. The baseline RaInCube instrument configuration would be a fixed nadir-pointing profiler at Ka-band with a minimum detectable reflectivity better than +10 dBZ at 250m range resolution and 5 km horizontal resolution. The low cost nature of the RaInCube platform would enable deployment of a constellation of identical copies of the same instrument in various relative positions in LEO to address specific observational gaps left open by the current missions that require high-resolution vertical profiling capability. A constellation of only four RaInCubes would populate the precipitation statistics in a distributed fashion across the globe and across the times of day, and therefore, would enable substantially better sampling of the diurnal cycle statistics. One could extend this scheme by adding more RaInCubes in each of the orbital planes, and phase them once in orbit so that they would be separated by an arbitrary amount of time among them. Wide separations (say 20-30 min) would further extend the sampling of the diurnal cycle to sub-hourly scales. Narrower time separations between RaInCubes would allow studying the evolution of convective systems at the convective time scale in each region of interest and would reveal the dominant modes of evolution of each corresponding climatological regime. A constellation of RaInCubes would also be a natural complement to other resources aiming at monitoring the evolution of weather systems, for example the Geostationary IR/VIS imagers, the NEXRAD network, and the GPM constellation.
2006-06-04
Jeff Hanley, Constellation Program Manager, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
2006-06-04
Jeff Hanley, Constellation Program Manager, right, listens to a question during a NASA Update outlining responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Coordination and Cooperation to Achieve the GEOSS Space Segment: A Systems Approach
NASA Technical Reports Server (NTRS)
Killough, Brian D., Jr.
2007-01-01
Established in April 2007, the SEO has made significant accomplishments in the support of CEOS and the virtual constellations. These accomplishments include (1) constellation trade studies for Atmospheric Composition and Land Surface Imaging, (2) a new engineering framework for requirements definition, assessment and architecture planning, (3) completion of a draft requirements document and gap analysis for the Atmospheric Composition Virtual Constellation, and (4) the development of a DVD video highlighting CEOS and the Virtual Constellation concept.
Analysis For Monitoring the Earth Science Afternoon Constellation
NASA Technical Reports Server (NTRS)
Demarest, Peter; Richon, Karen V.; Wright, Frank
2005-01-01
The Earth Science Afternoon Constellation consists of Aqua, Aura, PARASOL, CALIPSO, Cloudsat, and the Orbiting Carbon Observatory (OCO). The coordination of flight dynamics activities between these missions is critical to the safety and success of the Afternoon Constellation. This coordination is based on two main concepts, the control box and the zone-of-exclusion. This paper describes how these two concepts are implemented in the Constellation Coordination System (CCS). The CCS is a collection of tools that enables the collection and distribution of flight dynamics products among the missions, allows cross-mission analyses to be performed through a web-based interface, performs automated analyses to monitor the overall constellation, and notifies the missions of changes in the status of the other missions.
Constellation Space Suit System Development Status
NASA Technical Reports Server (NTRS)
Ross, Amy; Aitchison, Lindsay; Daniel, Brian
2007-01-01
The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.
Learning the Constellations: From Junior High to Undergraduate Descriptive Astronomy Class
NASA Astrophysics Data System (ADS)
Stephens, Denise C.; Hintz, Eric G.; Hintz, Maureen; Lawler, Jeannette; Jones, Michael; Bench, Nathan
2015-01-01
As part of two separate studies we have examined the ability of students to learn and remember a group of constellations, bright stars, and deep sky objects. For a group of junior high students we tested their knowledge of only the constellations by giving them a 'constellation quiz' without any instruction. We then provided the students with a lab session, and retested. We also tested a large number of undergraduate students in our descriptive astronomy classes, but in this case there were the same 30 constellations, 17 bright stars, and 3 deep sky objects. The undergraduate students were tested in a number of ways: 1) pre-testing without instruction, 2) self-reporting of knowledge, 3) normal constellation quizzes as part of the class, and 4) retesting students from previous semesters. This provided us with a set of baseline measurements, allowed us to track the learning curve, and test retention of the material. We will present our early analysis of the data.
“You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO
NASA Astrophysics Data System (ADS)
Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin
2005-07-01
Small satellites have historically been forced to use low cost propulsion, or to do without in order to maintain low cost. Since 1999 an increasing number of SSTL's customers have demanded the capability to precisely position and subsequently manoeuvre their satellites, driven largely by the current attraction of small satellite constellations such as Disaster Monitoring (DMC), which require propulsion for launcher injection error correction, drag compensation, constellation phasing and proximity manoeuvring and rendezvous. SSTL has successfully flight qualified a simple, low cost propulsion system based on a low power (15-100 W) resistojet employing green propellants such as butane and xenon, and demonstrated key constellation manoeuvres. The system is capable of up to 60 m/s deltaV and will be described here. The SSTL low power resistojet is however limited by a low Isp ( ˜50s for Xenon in the present design, and ˜100s with nitrogen and butane) and a slow reaction time ( 10min warm-up required). An increasing desire to apply small satellite technology to high deltaV missions while retaining the low cost aspect demands new solutions. 'Industry standard' solutions based on cryogenic propulsion, or toxic, carcinogenic storable propellants such as hydrazine/nitrogen oxides combination are not favourable for small satellite missions developed within SSTL's low cost engineering environment. This paper describes a number of strawman missions with high deltaV and/or precision manoeuvring requirements and some low cost propulsion solutions which have been explored at the Surrey Space Centre to meet future needs: Deployment of a complex constellation of nano- or pico-satellites from a secondary launch to a new orbit. The S3TV concept has been developed to allow deployment up to 12 payloads from an 'off-the-shelf' thrust tube, using a restartable nitrous oxide hybrid engine, operating in a dual mode with resistojets for attitude control. Orbit transfer of an enhanced microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.
Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.
Zhao, Jian; Chen, Lian-Kuan
2017-04-17
We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.
Science Discoveries Enabled by Hosting Optical Imagers on Commercial Satellite Constellations
NASA Astrophysics Data System (ADS)
Erlandson, R. E.; Kelly, M. A.; Hibbitts, C.; Kumar, C.; Dyrud, L. P.
2012-12-01
The advent of commercial space activities that utilize large space-based constellations provide a new and cost effective opportunity to acquire multi-point observations. Previously, a custom designed space-based constellation, while technically feasible, would require a substantial monetary investment. However, commercial industry has now been entertaining the concept of hosting payloads on their space-based constellations resulting in low-cost access to space. Examples, include the low Earth orbit Iridium Next constellation as well as communication satellites in geostationary. In some of these constellations data distribution can be provided in real time, a feature relevant to applications in the areas of space weather and disaster monitoring. From the perspective of new scientific discoveries enabled by low cost access to space, the cost and thus value proposition is dramatically changed. For example, a constellation of sixty-six satellites (Iridium Next), hosting a single band or multi-spectral imager can now provide observations of the aurora with a spatial resolution of a few hundred meters at all local times and in both hemispheres simultaneously. Remote sensing of clouds is another example where it is now possible to acquire global imagery at resolutions between 100-1000m. Finally, land use imagery is another example where one can use either imaging or spectrographic imagers to solve a multitude of problems. In this work, we will discuss measurement architectures and the multi-disciplinary scientific discoveries that are enable by large space based constellations.
Modeling Single-Event Transient Propagation in a SiGe BiCMOS Direct-Conversion Receiver
NASA Astrophysics Data System (ADS)
Ildefonso, Adrian; Song, Ickhyun; Tzintzarov, George N.; Fleetwood, Zachary E.; Lourenco, Nelson E.; Wachter, Mason T.; Cressler, John D.
2017-08-01
The propagation of single-event transient (SET) signals in a silicon-germanium direct-conversion receiver carrying modulated data is explored. A theoretical analysis of transient propagation, verified by simulation, is presented. A new methodology to characterize and quantify the impact of SETs in communication systems carrying modulated data is proposed. The proposed methodology uses a pulsed radiation source to induce distortions in the signal constellation. The error vector magnitude due to SETs can then be calculated to quantify errors. Two different modulation schemes were simulated: QPSK and 16-QAM. The distortions in the constellation diagram agree with the presented circuit theory. Furthermore, the proposed methodology was applied to evaluate the improvements in the SET response due to a known radiation-hardening-by-design (RHBD) technique, where the common-base device of the low-noise amplifier was operated in inverse mode. The proposed methodology can be a valid technique to determine the most sensitive parts of a system carrying modulated data.
Generation and coherent detection of QPSK signal using a novel method of digital signal processing
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Hu, Bingliang; He, Zhen-An; Xie, Wenjia; Gao, Xiaohui
2018-02-01
We demonstrate an optical quadrature phase-shift keying (QPSK) signal transmitter and an optical receiver for demodulating optical QPSK signal with homodyne detection and digital signal processing (DSP). DSP on the homodyne detection scheme is employed without locking the phase of the local oscillator (LO). In this paper, we present an extracting one-dimensional array of down-sampling method for reducing unwanted samples of constellation diagram measurement. Such a novel scheme embodies the following major advantages over the other conventional optical QPSK signal detection methods. First, this homodyne detection scheme does not need strict requirement on LO in comparison with linear optical sampling, such as having a flat spectral density and phase over the spectral support of the source under test. Second, the LabVIEW software is directly used for recovering the QPSK signal constellation without employing complex DSP circuit. Third, this scheme is applicable to multilevel modulation formats such as M-ary PSK and quadrature amplitude modulation (QAM) or higher speed signals by making minor changes.
Lunar Navigation Architecture Design Considerations
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael
2009-01-01
The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).
The Origin of Our Constellations.
ERIC Educational Resources Information Center
Ridpath, Ian
1990-01-01
Reviewed is the history of the naming of the constellations which appear in the sky. The roles of many ancient peoples through the astronomers of the eighteenth century up to the adoption of the official list of 88 constellations produced in 1922 by the International Astronomical Union are discussed. (CW)
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William
2015-07-01
By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the ;instrument simulator; step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up paper (Part 2 of this study).
Internet-Protocol-Based Satellite Bus Architecture Designed
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2004-01-01
NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.
76 FR 66054 - Exelon Corporation Constellation Energy Group, Inc.; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EC11-83-001] Exelon Corporation Constellation Energy Group, Inc.; Notice of Filing Take notice that, on October 11, 2011, Exelon Corporation and Constellation Energy Group, Inc. (Merger Applicants) submitted a filing styled as an answer in...
Global Precipitation Measurement Poster
NASA Technical Reports Server (NTRS)
Azarbarzin, Art
2010-01-01
This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, looks on as Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, center, speaks as Jeff Hanley, Constellation Program Manager, right, looks on during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
System Constellations as a Tool Supporting Organisational Learning and Change Processes
ERIC Educational Resources Information Center
Birkenkrahe, Marcus
2008-01-01
Originally developed in the context of family therapy, system constellations are introduced using an organisational learning and system theoretical framework. Constellations are systemic group interventions using a spatial representation of the system elements. They correspond to deutero-learning processes and use higher-order systemic thinking.…
Teaching through Trade Books: Seeing Stars
ERIC Educational Resources Information Center
Royce, Christine Anne
2008-01-01
The winter months are a great time to make observations of several familiar constellations. While there is no scientific reason to "know" the constellations--they are simply imaginative pictures imposed on stars--studying constellations can help students connect with culture in a fun way and develop the awareness that stars are different in…
Methodology and method and apparatus for signaling with capacity optimized constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)
2011-01-01
Communication systems having transmitter, includes a coder configured to receive user bits and output encoded bits at an expanded output encoded bit rate, a mapper configured to map encoded bits to symbols in a symbol constellation, a modulator configured to generate a signal for transmission via the communication channel using symbols generated by the mapper. In addition, the receiver includes a demodulator configured to demodulate the received signal via the communication channel, a demapper configured to estimate likelihoods from the demodulated signal, a decoder that is configured to estimate decoded bits from the likelihoods generated by the demapper. Furthermore, the symbol constellation is a capacity optimized geometrically spaced symbol constellation that provides a given capacity at a reduced signal-to-noise ratio compared to a signal constellation that maximizes d.sub.min.
Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010
NASA Technical Reports Server (NTRS)
Dory, Jonathan
2010-01-01
The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.
Constellation Operations: Lessons Learned For Future Exploration
NASA Technical Reports Server (NTRS)
Kelly, Angelita C.; Case, Warren F.
2006-01-01
The Earth science community has long advocated placing numerous instruments in space to study the Earth and its environment. Space agencies from many countries have responded to this call with a wide range of orbiting satellites. Scientists also envisioned placing some satellites in constellations, to enable diverse remote sensing instruments to observe the same part of the Earth (or its atmosphere) at about the same time, thereby increasing the opportunities for coincident science observations. The Earth Science Afternoon Constellation is answering this call, but there have been unique challenges on the way to its deployment. Currently, the Afternoon Constellation is to comprise six satellites. Three are currently on orbit: NASA's Earth Observing System (EOS)-Aqua (2002) and EOS-Aura (2004), and CNES's Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) (2004). Two more satellites, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Cloudsat, are to be jointly launched in late 2005, followed by the Orbiting Carbon Observatory (OCO) in 2008. The Afternoon Constellation is unlike most satellite constellations in that: 1) It is not a homogenous mix of identical satellites; rather it comprises several satellites with complementary observational capabilities; 2) The satellites are not spaced around the Earth to provide instantaneous, global coverage (as for a communications satellite constellation); rather they orbit in close proximity so observations occur at about the same time over approximately the same region; and 3) Lastly, the satellites are not managed and controlled by one organization; rather the list of organizations is diverse: CNES in France, NASA Centers at Goddard, Langley, and the Jet Propulsion Laboratory, and the US Air Force facility in New Mexico. The PARASOL launch and early orbit (L&EO) phase proved to be a learning experience for constellation members (including Constellation management). Prior to launch, all members signed an operations coordination document that spelled out basic requirements for keeping the constellation safe and resolving non-nominal events. Once PARASOL reached orbit and the mission teams gained experience using the newly-developed constellation monitoring tools, it became clear that some of the guidelines in the signed agreements had to be adjusted. This paper presents the L&EO lessons learned and how they were used to prepare for the next phase - the period following the CloudSat/CALIPSO launch.
2009-09-11
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Vehicle Assembly Building High Bay 3, NASA's Ares I-X rocket is ready to undergo its first power-up. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I, which is the essential core of a space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. The Ares I-X flight test is targeted for Oct. 31. Photo credit: NASA/Cory Huston
2009-09-11
CAPE CANAVERAL, Fla. – In NASA Kennedy Space Center's Vehicle Assembly Building High Bay 3, NASA's Ares I-X rocket undergoes its first power-up. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I, which is the essential core of a space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. The Ares I-X flight test is targeted for Oct. 31. Photo credit: NASA/Cory Huston
2006-06-05
Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Constellation Program Press Conference
2006-06-04
Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
The Borderline/Schizoid Marriage: The Holding Environment as an Essential Treatment Construct.
ERIC Educational Resources Information Center
McCormack, Charles C.
1989-01-01
Discusses the borderline/schizoid marital constellation as the prominent constellation among borderline patients on a long-term inpatient unit. Contends that treatment of this marital constellation requires application of the concept of the holding environment as an essential treatment construct with the therapist as manager of the holding…
Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A
1983-01-07
By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.
NASA Astrophysics Data System (ADS)
Zwintz, Konstanze; Poretti, Ennio
2017-09-01
In 2016 the BRITE-Constellation mission had been operational for more than two years. At that time, several hundreds of bright stars of various types had been observed successfully in the two BRITE lters and astonishing new discoveries had been made. Therefore, the time was ripe to host the Second BRITE-Constellation Science Conference: Small satellites | big science" from August 22 to 26, 2016, in the beautiful Madonnensaal of the University of Innsbruck, Austria. With this conference, we brought together the scientic community interested in BRITE-Constellation, pro- vided an update on the status of the mission, presented and discussed latest scientic results, shared our experiences with the data, illustrated successful cooperations between professional and amateur ground-based observers and BRITE scientists, and explored new ideas for future BRITE-Constellation observations.
The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer
NASA Technical Reports Server (NTRS)
Slavin, James A.
1999-01-01
NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.
A walk through the heavens : a guide to stars and constellations and their legends
NASA Astrophysics Data System (ADS)
Heifetz, Milton D.; Tirion, Wil
What star is that? Where's the Great Bear? Who was Andromeda? A Walk through the Heavens is your guide to the pathways of the night sky, answering the commonest questions about what you can see up there. There are simplified maps of the constellations, together with instructions on how to gauge their sizes and the distances between them. With this information you can find the constellations easily, and make a journey by eye from one constellation to the next. Ancient myths surrounding the constellations are retold, enriching our understanding of how historical peoples saw the awe-inspiring spectacle of a sky sprinkled with stars. This book, magically illustrated by Wil Tirion, does not require any instrument or telescope. It is an ideal introduction to launch a young astronomer on a journey across starlit skies.
The ARGOS laser system: green light for ground layer adaptive optics at the LBT
NASA Astrophysics Data System (ADS)
Raab, Walfried; Rabien, Sebastian; Gässler, Wolfgang; Esposito, Simone; Barl, Lothar; Borelli, Jose; Daysenroth, Matthias; Gemperlein, Hans; Kulas, Martin; Ziegleder, Julian
2014-07-01
We report on the development of the laser system of ARGOS, the multiple laser guide star adaptive optics system for the Large Binocular Telescope (LBT). The system uses a total of six high powered, pulsed Nd:YAG lasers frequency-doubled to a wavelength of 532 nm to generate a set of three guide stars above each of the LBT telescopes. The position of each of the LGS constellations on sky as well as the relative position of the individual laser guide stars within this constellation is controlled by a set of steerable mirrors and a fast tip-tilt mirror within the laser system. The entire opto-mechanical system is housed in two hermetically sealed and thermally controlled enclosures on the SX and DX side of the LBT telescope. The laser beams are propagated through two refractive launch telescopes which focus the beams at an altitude of 12 km, creating a constellation of laser guide stars around a 4 arcminute diameter circle by means of Rayleigh scattering. In addition to the GLAO Rayleigh beacon system, ARGOS has also been designed for a possible future upgrade with a hybrid sodium laser - Rayleigh beacon combination, enabling diffraction limited operation. The ARGOS laser system was successfully installed at the LBT in April 2013. Extensive functional tests have been carried out and have verified the operation of the systems according to specifications. The alignment of the laser system with respect to the launch telescope was carried out during two more runs in June and October 2013, followed by the first propagation of laser light on sky in November 2013.
Advanced Lithium-Ion Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.
2008-01-01
The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Serpent-bearer; abbrev. Oph, gen. Ophiuchi; area 948 sq. deg.) An equatorial constellation which lies between Hercules and Scorpius, and culminates at midnight in mid-June. The ecliptic cuts across the southern part of Ophiuchus, but the constellation is not included among the constellations of the zodiac. Ophiuchus is usually said to represent Asclepius, the Greek god of medicine, and is sh...
2006-06-04
NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Skeberdis, Daniel
2016-01-01
This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.
Constellation Program Press Conference
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Tabitha's One Teacher Rural School: Insights into the Arts through the Use of a Story Constellation
ERIC Educational Resources Information Center
Garvis, Susanne
2011-01-01
This paper presents a story constellation about a beginning teacher (who is also the principal) located in a one-teacher school in an isolated community in Queensland, Australia. The constellation documents the teacher's self-efficacy for teaching the arts (music, dance, drama, visual arts and media). Tabitha, the participant, shares insights…
NASA Technical Reports Server (NTRS)
Guit, Bill
2017-01-01
This presentation at the Earth Science Constellation Mission Operations Working Group meeting at KSC in December 2017 to discuss EOS (Earth Observing System) Aqua Earth Science Constellation status. Reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.
Launch Vehicle Assessment for Space Solar Power
NASA Technical Reports Server (NTRS)
Olds, John R.
1998-01-01
A recently completed study at Georgia Tech examined various launch vehicle options for deploying a future constellation of Space Solar Power satellites of the Suntower configuration. One of the motivations of the study was to determine whether the aggressive $400/kg launch price goal established for SSP package delivery would result in an attractive economic scenario for a future RLV developer. That is, would the potential revenue and traffic to be derived from a large scale SSP project be enough of an economic "carrot" to attract an RLV company into developing a new, low cost launch vehicle to address this market. Preliminary results presented in the attached charts show that there is enough economic reward for RLV developers, specifically in the case of the latest large GEO-based Suntower constellations (over 15,500 MT per year delivery for 30 years). For that SSP model, internal rates of return for the 30 year economic scenario exceed 22%. However, up-front government assistance to the RLV developer in terms of ground facilities, operations technologies, guaranteed low-interest rate loans, and partial offsets of some vehicle development expenses is necessary to achieve these positive results. This white paper is meant to serve as a companion to the data supplied in the accompanying charts. It's purpose is to provide more detail on the vehicles and design processes used, to highlight key decisions and issues, and to emphasize key results from each phase of the Georgia Tech study.
New Magneto-Inductive DC Magnetometer for Space Missions
NASA Astrophysics Data System (ADS)
Moldwin, M.; Bronner, B.; Regoli, L.; Thoma, J.; Shen, A.; Jenkins, G.; Cutler, J.
2017-12-01
A new magneto-inductive DC magnetometer is being developed at the University of Michigan that provides fluxgate quality measurements in a low mass, volume, power and cost package. The magnetometer enables constellation-class missions not only due to its low-resource requirements, but also its potential for commercial integrated circuit fabrication. The magneto-inductive operating principle is based on a simple resistance-inductor (RL) circuit and involves measurement of the time it takes to charge and discharge the inductor between an upper and lower threshold by means of a Schmitt trigger oscillator. This time is proportional to the inductance that in turn is proportional to the field strength. We have modeled the operating principle in the circuit simulator SPICE and have built a proto-type using modified commercial sensors. The performance specifications include a dynamic range over the full-Earth's field, sampling rates up to 80 Hz, sensor and electronics mass of about 30 g, circuit board and sensor housing volume of < 100 cm3, and power consumption of about 5 mW. This system's noise levels are predicted to be about 100 pT /√Hz @ 1 Hz with a precision of about 100 pT. Due to the simple circuit design, lack of an analog-to-digital converter, and choice of oscillator, we anticipate that it will be extremely temperature stable and radiation tolerant. This presentation will describe the constellation mission enabling design, the development status and the testing results of this new magnetometer.
Alaska Athabascan stellar astronomy
NASA Astrophysics Data System (ADS)
Cannon, Christopher M.
2014-01-01
Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.
Origins of the ancient constellations: I. The Mesopotamian traditions
NASA Astrophysics Data System (ADS)
Rogers, J. H.
1998-02-01
In the sky-map of ancient Babylon, constellations had two different roles, and thus developed into two overlapping traditions. One set of constellations represented the gods and their symbols; the other set represented rustic activities and provided a farming calendar. Many constellations were shared by the two traditions, but in some regions of sky there were alternative divine and rustic figures. These figures developed in stages from ~3200 BC to ~500 BC. Of the divine set, the most important (although the last to be finalised) were the twelve zodiacal signs, plus several associated animals (the serpent, crow, eagle, and fish), which were all transmitted to the classical Greek sky-map that we still use today. Conversely, the rustic constellations of workers and tools and animals were not transmitted to the West. However, a few of them may have survived in Bedouin Arab sky-maps of the first millennium AD.
Multiple Autonomous Discrete Event Controllers for Constellations
NASA Technical Reports Server (NTRS)
Esposito, Timothy C.
2003-01-01
The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.
FAST TRACK COMMUNICATION: Affine constellations without mutually unbiased counterparts
NASA Astrophysics Data System (ADS)
Weigert, Stefan; Durt, Thomas
2010-10-01
It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations. The observed discrepancies make a deeper relation between the two existence problems unlikely.
2006-06-04
Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)
2006-06-04
NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)
Analytical investigation of the dynamics of tethered constellations in Earth orbit (phase 2)
NASA Technical Reports Server (NTRS)
Lorenzini, E.; Arnold, D. A.; Grossi, M. D.; Gullahorn, G. E.
1985-01-01
The deployment maneuver of three axis vertical constellations with elastic tethers is analyzed. The deployment strategy devised previously was improved. Dampers were added to the system. Effective algorithms for damping out the fundamental vibrational modes of the system were implemented. Simulations of a complete deployment and a subsequent station keeping phase of a three mass constellation is shown.
Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation
NASA Technical Reports Server (NTRS)
Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.
2012-01-01
Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teller, E; Leith, C; Canavan, G
2001-11-13
We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}more » $$10{sup 2} B annual savings dwarf the <$$1 B costs of operating a rational, long-range weather prediction system of the type proposed.« less
DOE R&D Accomplishments Database
Teller, E.; Leith, C.; Canavan, G.; Wood, L.
2001-11-13
We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.
Early Calibration Results of CYGNSS Mission
NASA Astrophysics Data System (ADS)
Balasubramaniam, R.; Ruf, C. S.; McKague, D. S.; Clarizia, M. P.; Gleason, S.
2017-12-01
The first of its kind, GNSS-R complete orbital mission, CYGNSS was successfully launched on Dec 15 2016. The goal of this mission is to accurately forecast the intensification of tropical cyclones by modelling its inner core. The 8 micro observatories of CYGNSS carry a passive instrument called Delay Doppler Mapping Instrument (DDMI). The DDMIs form a 2D representation called the Delay-Doppler Map (DDM) of the forward scattered power signal. Each DDMI outputs 4 DDMs per second which are compressed and sent to the ground resulting in a total of 32 sea-surface measurements produced by the CYGNSS constellation per second. These are subsequently used in the Level-2 wind retrieval algorithm to extract wind speed information. In this paper, we perform calibration and validation of CYGNSS measurements for accurate extraction of wind speed information. The calibration stage involves identification and correction for dependence of the CYGNSS observables namely Normalised Bistatic Radar Cross Section and Leading Edge Slope of the Integrated Delay Waveform over instrument parameters, geometry etc. The validation stage involves training of the Geophysical Model Function over a multitude of ground truth sources during the Atlantic hurricane season and also refined validation of high wind speed data products.
Earthquake history of the Republic of Ragusa (today Dubrovnik, Croatia) (Invited)
NASA Astrophysics Data System (ADS)
Albini, P.; Rovida, A.; Locati, M.
2009-12-01
Among the towns constellating the Dalmatian coast, Ragusa (today Dubrovnik, Croatia), stands out, both because of its location in the middle of the Eastern Adriatic coast and its long-lasting, independent history of a Modern Age town and its small coastal territory. An important intelligence crossroads, squeezed as it was in between powerful and influential neighbours, such as the Ottoman Empire and the Republic of Venice, in its history (1358-1808) the Republic of Ragusa did experience heavily damaging earthquakes. We narrate the story of these earthquakes, which were recorded in the historical documentation of the Republic (today stored at the State Archives of Dubrovnik - Drzavni arhiv u Dubrovniku) as well as in documents from officers of other Mediterranean countries and letters of individuals. Of special note is the 6 April 1667 earthquake, which inflicted a permanent scar on the Republic. The earthquake's direct effects and their consequences caused a serious financial crisis, so critical that it took over 50 years for Ragusa to recover. This large earthquake is reappraised on the basis of newly investigated sources, and effects of the damage within the city walls are detailed. A seismic history of Ragusa is finally proposed, supported by full-text coeval records.
A Multi-Wavelength View of Radio Galaxy Hercules A
2017-12-08
Spectacular jets powered by the gravitational energy of a super massive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico. To view a video of this go to: bit.ly/Ue2ypS Some two billion light-years away, the yellowish elliptical galaxy in the center of the image appears quite ordinary as seen by Hubble in visible wavelengths of light. The galaxy is roughly 1,000 times more massive than the Milky Way and harbors a 2.5-billion-solar-mass central black hole that is 1,000 times more massive than the black hole in the Milky Way. But the innocuous-looking galaxy, also known as 3C 348, has long been known as the brightest radio-emitting object in the constellation Hercules. Emitting nearly a billion times more power in radio wavelengths than our Sun, the galaxy is one of the brightest extragalactic radio sources in the entire sky. Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA) To read more about this image go to: 1.usa.gov/Yu7uvX NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Dependency of geodynamic parameters on the GNSS constellation
NASA Astrophysics Data System (ADS)
Scaramuzza, Stefano; Dach, Rolf; Beutler, Gerhard; Arnold, Daniel; Sušnik, Andreja; Jäggi, Adrian
2018-01-01
Significant differences in time series of geodynamic parameters determined with different Global Navigation Satellite Systems (GNSS) exist and are only partially explained. We study whether the different number of orbital planes within a particular GNSS contributes to the observed differences by analyzing time series of geocenter coordinates (GCCs) and pole coordinates estimated from several real and virtual GNSS constellations: GPS, GLONASS, a combined GPS/GLONASS constellation, and two virtual GPS sub-systems, which are obtained by splitting up the original GPS constellation into two groups of three orbital planes each. The computed constellation-specific GCCs and pole coordinates are analyzed for systematic differences, and their spectral behavior and formal errors are inspected. We show that the number of orbital planes barely influences the geocenter estimates. GLONASS' larger inclination and formal errors of the orbits seem to be the main reason for the initially observed differences. A smaller number of orbital planes may lead, however, to degradations in the estimates of the pole coordinates. A clear signal at three cycles per year is visible in the spectra of the differences between our estimates of the pole coordinates and the corresponding IERS 08 C04 values. Combinations of two 3-plane systems, even with similar ascending nodes, reduce this signal. The understanding of the relation between the satellite constellations and the resulting geodynamic parameters is important, because the GNSS currently under development, such as the European Galileo and the medium Earth orbit constellation of the Chinese BeiDou system, also consist of only three orbital planes.
The brazilian indigenous planetary-observatory
NASA Astrophysics Data System (ADS)
Afonso, G. B.
2003-08-01
We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.
Human Systems Integration (HSI) Case Studies from the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban
2009-01-01
The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.
Tracking Clouds with low cost GNSS chips aided by the Arduino platform
NASA Astrophysics Data System (ADS)
Hameed, Saji; Realini, Eugenio; Ishida, Shinya
2016-04-01
The Global Navigation Satellite System (GNSS) is a constellation of satellites that is used to provide geo-positioning services. Besides this application, the GNSS system is important for a wide range of scientific and civilian applications. For example, GNSS systems are routinely used in civilian applications such as surveying and scientific applications such as the study of crustal deformation. Another important scientific application of GNSS system is in meteorological research. Here it is mainly used to determine the total water vapour content of the troposphere, hereafter Precipitable Water Vapor (PWV). However, both GNSS receivers and software have prohibitively high price due to a variety of reasons. To overcome this somewhat artificial barrier we are exploring the use of low-cost GNSS receivers along with open source GNSS software for scientific research, in particular for GNSS meteorology research. To achieve this aim, we have developed a custom Arduino compatible data logging board that is able to operate together with a specific low-cost single frequency GNSS receiver chip from NVS Technologies AG. We have also developed an open-source software bundle that includes a new Arduino core for the Atmel324p chip, which is the main processor used in our custom logger. We have also developed software code that enables data collection, logging and parsing of the GNSS data stream. Additionally we have comprehensively evaluated the low power characteristics of the GNSS receiver and logger boards. Currently we are exploring the use of several openly source or free to use for research software to map GNSS delays to PWV. These include the open source goGPS (http://www.gogps-project.org/) and gLAB (http://gage.upc.edu/gLAB) and the openly available GAMIT software from Massachusetts Institute of Technology (MIT). We note that all the firmware and software developed as part of this project is available on an open source license.
A Central Source in the Supernova Remnant Kes 79
NASA Astrophysics Data System (ADS)
Seward, F.; Slane, P.; Smith, R.; Sun, M.
2002-04-01
Kes 79 (G33.6+0.1) was observed 31 July 2001 for 30 ks with the Chandra ACIS-I instrument. This remnant, in the constellation Aquila, lies in the galactic plane at a distance of ~10 kpc. The 11^' angular diameter implies an age of a few thousand years. The morphology shows faint outer and bright inner shells. The Chandra image reveals, for the first time, a point-like source at the center of the remnant. This source has a black body spectrum with kT = 0.5 keV. No regular pulsations were found at periods greater than 6.4 s (the ACIS integration time is 3.2 s). No surrounding synchrotron emission wass detected. The X-ray luminosity is 7 × 10^33 erg/s, about 1% the luminosity of the entire remnant. The source may be similar to the one at the center of Cas A.
2014-11-01
Approved for public release. OPERATIONALIZING THE JOINT INFORMATION ENVIRONMENT: ACHIEVING INFORMATION DOMINANCE WITH THE UNDERSEA CONSTELLATION* Captain...SUBTITLE Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation (U) 5a. CONTRACT NUMBER...predict what is over the horizon, faster than the adversary. As noted in the U.S. Navy’s Vision for Information Dominance , “The Navy will create a
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
This Quarterly Report deals with the deployment maneuver of a single-axis, vertical constellation with three masses. A new, easy to handle, computer code that simulates the two-dimensional dynamics of the constellation has been implemented. This computer code is used for designing control laws for the deployment maneuver that minimizes the acceleration level of the low-g platform during the maneuver.
GLADIS: GLobal AIS & Data-X International Satellite Constellation
2008-01-01
1Approved for public release; distribution is unlimited GLADIS : GLobal AIS & Data-X International Satellite Constellation Space-Based System for...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE GLADIS : GLobal AIS & Data-X International Satellite Constellation 5a. CONTRACT NUMBER 5b...Maritime & Technology Challenges • GLADIS Mission Objective • AIS & Data-X capabilities • GLADIS Architecture • International Strategy – MSSIS as Model
Infusing Stretch Goal Requirements into the Constellation Program
NASA Technical Reports Server (NTRS)
Lee, Young H.; Galpin, Roger A.; Ingoldsby, Kevin
2008-01-01
In 2004, the Vision for Space Exploration (VSE) was announced by the United States President's Administration in an effort to explore space and to extend a human presence across our solar system. Subsequently, the National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop a constellation of new capabilities, supporting technologies, and foundational research that allows for the sustained and affordable exploration of space. Then, ESMD specified the primary mission for the Constellation Program to carry out a series of human expeditions, ranging from Low Earth Orbit (LEO) to the surface of Moon, Mars, and beyond for the purposes of conducting human exploration of space. Thus, the Constellation Program was established at the Lyndon B. Johnson Space Center (JSC) to manage the development of the flight and ground infrastructure and systems that can enable continued and extended human access to space. Constellation Program's "Design Objectives" call for an early attention to the program's life cycle costs management through the Program's Need, Goals, and Objectives (NGO) document, which provides the vision, scope, and key areas of focus for the Program. One general policy of the Constellation Program, found in the Constellation Architecture Requirements Document (CARD), states: "A sustainable program hinges on how effectively total life cycle costs are managed. Developmental costs are a key consideration, but total life cycle costs related to the production, processing, and operation of the entire architecture must be accounted for in design decisions sufficiently to ensure future resources are available for ever more ambitious missions into the solar system....It is the intent of the Constellation Program to aggressively manage this aspect of the program using the design policies and simplicity." To respond to the Program's strong desire to manage the program life cycle costs, special efforts were established to identify operability requirements to influence flight vehicle and ground infrastructure design in order to impact the life cycle operations costs, and stretch goal requirements were introduced to the Program. This paper will describe how these stretch goal requirements were identified, developed, refined, matured, approved, and infused into the CARD. The paper will also document several challenges encountered when infusing the stretch goal requirements into the Constellation Program.
Yang, Yuan-Zheng; Chang, Yu; Hu, Yuan-Man; Liu, Miao; Li, Yue-Hui
2011-06-01
To timely and accurately acquire the spatial distribution pattern of wetlands is of significance for the dynamic monitoring, conservation, and sustainable utilization of wetlands. The small remote sensing satellite constellations A/B stars (HJ-1A/1B stars) for environmental hazards were launched by China for monitoring terrestrial resources, which could provide a new data source of remote sensing image acquisition for retrieving wetland types. Taking Liaohe Delta as a case, this paper compared the accuracy of wetland classification map and the area of each wetland type retrieved from CCD data (HJ CCD data) and TM5 data, and validated and explored the applicability and the applied potential of HJ CCD data in wetland resources dynamic monitoring. The results showed that HJ CCD data could completely replace Landsat TM5 data in feature extraction and remote sensing classification. In real-time monitoring, due to its 2 days of data acquisition cycle, HJ CCD data had the priority to Landsat TM5 data (16 days of data acquisition cycle).
A Case Study Using Modeling and Simulation to Predict Logistics Supply Chain Issues
NASA Technical Reports Server (NTRS)
Tucker, David A.
2007-01-01
Optimization of critical supply chains to deliver thousands of parts, materials, sub-assemblies, and vehicle structures as needed is vital to the success of the Constellation Program. Thorough analysis needs to be performed on the integrated supply chain processes to plan, source, make, deliver, and return critical items efficiently. Process modeling provides simulation technology-based, predictive solutions for supply chain problems which enable decision makers to reduce costs, accelerate cycle time and improve business performance. For example, United Space Alliance, LLC utilized this approach in late 2006 to build simulation models that recreated shuttle orbiter thruster failures and predicted the potential impact of thruster removals on logistics spare assets. The main objective was the early identification of possible problems in providing thruster spares for the remainder of the Shuttle Flight Manifest. After extensive analysis the model results were used to quantify potential problems and led to improvement actions in the supply chain. Similarly the proper modeling and analysis of Constellation parts, materials, operations, and information flows will help ensure the efficiency of the critical logistics supply chains and the overall success of the program.
BRITE-Constellation reveals evidence for pulsations in the enigmatic binary η Carinae
NASA Astrophysics Data System (ADS)
Richardson, Noel D.; Pablo, Herbert; Sterken, Christiaan; Pigulski, Andrzej; Koenigsberger, Gloria; Moffat, Anthony F. J.; Madura, Thomas I.; Hamaguchi, Kenji; Corcoran, Michael F.; Damineli, Augusto; Gull, Theodore R.; Hillier, D. John; Weigelt, Gerd; Handler, Gerald; Popowicz, Adam; Wade, Gregg A.; Weiss, Werner W.; Zwintz, Konstanze
2018-04-01
η Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is contaminated by several sources including the Homunculus nebula and neighbouring stars, including the eclipsing binary CPD -59°2628. However, we found two coherent oscillations in the light curve. These may represent pulsations that are not yet understood but we postulate that they are related to tidally excited oscillations of η Car's primary star, and would be similar to those detected in lower mass eccentric binaries. In particular, one frequency was previously detected by van Genderen et al. and Sterken et al. through the time period of 1974-1995 through timing measurements of photometric maxima. Thus, this frequency seems to have been detected for nearly four decades, indicating that it has been stable in frequency over this time span. These pulsations could help provide the first direct constraints on the fundamental parameters of the primary star if confirmed and refined with future observations.
Constellation Program Lessons Learned in the Quantification and Use of Aerodynamic Uncertainty
NASA Technical Reports Server (NTRS)
Walker, Eric L.; Hemsch, Michael J.; Pinier, Jeremy T.; Bibb, Karen L.; Chan, David T.; Hanke, Jeremy L.
2011-01-01
The NASA Constellation Program has worked for the past five years to develop a re- placement for the current Space Transportation System. Of the elements that form the Constellation Program, only two require databases that define aerodynamic environments and their respective uncertainty: the Ares launch vehicles and the Orion crew and launch abort vehicles. Teams were established within the Ares and Orion projects to provide repre- sentative aerodynamic models including both baseline values and quantified uncertainties. A technical team was also formed within the Constellation Program to facilitate integra- tion among the project elements. This paper is a summary of the collective experience of the three teams working with the quantification and use of uncertainty in aerodynamic environments: the Ares and Orion project teams as well as the Constellation integration team. Not all of the lessons learned discussed in this paper could be applied during the course of the program, but they are included in the hope of benefiting future projects.
End-of-Mission Planning Challenges for a Satellite in a Constellation
NASA Technical Reports Server (NTRS)
Boain, Ronald J.
2013-01-01
At the end of a mission, satellites embedded in a constellation must first perform propulsive maneuvers to safely exit the constellation before they can begin with the usual end-of-mission activities: deorbit, passivation, and decommissioning. The target orbit for these exit maneuvers must be sufficiently below the remaining constellation satellites such that, once achieved, there is no longer risk of close conjunctions. Yet, the exit maneuvers must be done based on the spacecraft's state of health and operational capability when the decision to end the mission is made. This paper focuses on the recently developed exit strategy for the CloudSat mission to highlight problems and issues, which forced the discarding of CloudSat's original EoM Plan and its replacement with a new plan consistent with changes to the spacecraft's original operational mode. The analyses behind and decisions made in formulating this new exit strategy will be of interest to other missions in a constellation currently preparing to update their End-of-Mission Plan.
Constellation Program Press Conference
2006-06-04
NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)
Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan
2010-01-01
The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.
Design and implementation of satellite formations and constellations
NASA Technical Reports Server (NTRS)
Folta, David; Newman, Lauri Kraft; Quinn, David
1998-01-01
The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(TM) and FreeFlyer(TM) with various fidelity levels of modeling and algorithms are presented.
Design and Implementation of Satellite Formations and Constellations
NASA Technical Reports Server (NTRS)
Folta, David; Newman, Lauri Kraft; Quinn, David
1998-01-01
The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(Trademark) and FreeFlyer(Trademark) with various fidelity levels of modeling and algorithms are presented.
GEOScan: A GEOScience Facility From Space
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.
2012-12-01
GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for operational weather, climate, and land-imaging.
Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation
NASA Astrophysics Data System (ADS)
Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.
2014-12-01
TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one-year mission. TEMPEST provides critical information on the time evolution of cloud and precipitation microphysics, thereby yielding a first-order understanding of how assumptions in current cloud-model parameterizations behave in diverse climate regimes.
Electric Propulsion for Low Earth Orbit Communication Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steven R.
1997-01-01
Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.
NASA Astrophysics Data System (ADS)
Rolland, Lucie M.; Vergnolle, Mathilde; Nocquet, Jean-Mathieu; Sladen, Anthony; Dessa, Jean-Xavier; Tavakoli, Farokh; Nankali, Hamid Reza; Cappa, FréDéRic
2013-06-01
It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.
NASA Astrophysics Data System (ADS)
Rolland, L. M.; Vergnolle, M.; Nocquet, J.; Sladen, A.; Dessa, J.; Tavakoli, F.; Nankali, H.; Cappa, F.
2013-12-01
It has previously been suggested that ionospheric perturbations triggered by large dip-slip earthquakes might offer additional source parameter information compared to the information gathered from land observations. Based on 3D modeling of GPS- and GLONASS-derived total electron content signals recorded during the 2011 Van earthquake (thrust, intra-plate event, Mw = 7.1, Turkey), we confirm that coseismic ionospheric signals do contain important information about the earthquake source, namely its slip mode. Moreover, we show that part of the ionospheric signal (initial polarity and amplitude distribution) is not related to the earthquake source, but is instead controlled by the geomagnetic field and the geometry of the Global Navigation Satellite System satellites constellation. Ignoring these non-tectonic effects would lead to an incorrect description of the earthquake source. Thus, our work emphasizes the added caution that should be used when analyzing ionospheric signals for earthquake source studies.
The NASA Constellation Program Procedure System
NASA Technical Reports Server (NTRS)
Phillips, Robert G.; Wang, Lui
2010-01-01
NASA has used procedures to describe activities to be performed onboard vehicles by astronaut crew and on the ground by flight controllers since Apollo. Starting with later Space Shuttle missions and the International Space Station, NASA moved forward to electronic presentation of procedures. For the Constellation Program, another large step forward is being taken - to make procedures more interactive with the vehicle and to assist the crew in controlling the vehicle more efficiently and with less error. The overall name for the project is the Constellation Procedure Applications Software System (CxPASS). This paper describes some of the history behind this effort, the key concepts and operational paradigms that the work is based upon, and the actual products being developed to implement procedures for Constellation
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.
2002-01-01
Two of the large EOS observatories, Aqua (formerly EOS-PM) and Aura (formerly EOS-CHEM) will fly is nearly the same inclination with 1:30 PM -15 min ascending node equatorial crossing times. Between Aura and Aqua a series of smaller satellites will be stationed: Cloudsat, CALYPSO (formerly PICASSO-CENA), and PARASOL. This constellation of low earth orbit satellites will provide an unprecedented opportunity to make near simultaneous atmospheric cloud and aerosol observations. This paper will provide details of the science opportunity and describe the sensor types for the afternoon constellation. This constellation by accretion provides a prototype for the Earth Science Vision sensor web and represent the building books for a future web structure.
Lunar Human Research Requirements (LHRR)
NASA Technical Reports Server (NTRS)
Denkins, Pamela
2009-01-01
Biomedical research will be conducted during transit and on the surface of the Moon to prepare for extended stays on the Moon and to prepare for the exploration of Mars. The objective of the Human Research Program (HRP) is to preserve the health and enhance performance of astronaut explorers. Specific objectives of the HRP include developing the knowledge, capabilities, and necessary countermeasures and technologies in support of human space exploration; focusing on mitigating the highest risks to crew health and performance; and defining and improving human spaceflight medical, environmental, behavioral, and human factors standards. This document contains a detailed description of the resource accommodations, interfaces, and environments to be provided by the Constellation Program (CxP) to support the HRP research in transit and on the lunar surface. Covered, specifically, are the requirements for mass and volume transport; crew availability; ground operations, baseline data collection, and payload processing; power, and data. Volumes and mass are given for transport of conditioned samples only. They do not account for the engineering solution that the Constellation Program will implement (refrigerator/freezer volume/mass). This document does not account for requirements on the Orion vehicle for transportation to and from the International Space Station (ISS). The ISS Program has supplied requirements for this mission.
Constellation Architecture Team-Lunar Scenario 12.0 Habitation Overview
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne
2010-01-01
This paper will describe an overview of the Constellation Architecture Team Lunar Scenario 12.0 (LS-12) surface habitation approach and concept performed during the study definition. The Lunar Scenario 12 architecture study focused on two primary habitation approaches: a horizontally-oriented habitation module (LS-12.0) and a vertically-oriented habitation module (LS-12.1). This paper will provide an overview of the 12.0 lunar surface campaign, the associated outpost architecture, habitation functionality, concept description, system integration strategy, mass and power resource estimates. The Scenario 12 architecture resulted from combining three previous scenario attributes from Scenario 4 "Optimized Exploration", Scenario 5 "Fission Surface Power System" and Scenario 8 "Initial Extensive Mobility" into Scenario 12 along with an added emphasis on defining the excursion ConOps while the crew is away from the outpost location. This paper will describe an overview of the CxAT-Lunar Scenario 12.0 habitation concepts and their functionality. The Crew Operations area includes basic crew accommodations such as sleeping, eating, hygiene and stowage. The EVA Operations area includes additional EVA capability beyond the suitlock function such as suit maintenance, spares stowage, and suit stowage. The Logistics Operations area includes the enhanced accommodations for 180 days such as enhanced life support systems hardware, consumable stowage, spares stowage, interconnection to the other habitation elements, a common interface mechanism for future growth, and mating to a pressurized rover or Pressurized Logistics Module (PLM). The Mission & Science Operations area includes enhanced outpost autonomy such as an IVA glove box, life support, medical operations, and exercise equipment.
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
NASA Astrophysics Data System (ADS)
Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.
2009-04-01
Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when deploying several identical speceborne platforms). Moreover, the micro-satellite solution clearly addresses the choice of small passive sensors with small size, low weight and power consumption, features which cannot be usually satisfied by active sensors. In this respect, MMW technology is the most compatible with the specifications and constraints of micro-satellites. In this work, we will discuss the numerical results of a feasibility study aimed at designing a Flower elliptical constellation of 3 micro-satellite millimeter-wave radiometers for pseudo-geostationary atmospheric observations over the Mediterranean region. The Flower constellation will be optimized in such a way to simulate a pseudo-geostationary observation of the Mediterranean area with an observation repetition time less than 2 hours. The mission requirements request the retrieval of thermodinamical and hydrological properties of the troposphere, specifically temperature profiles, integrated water vapor and cloud liquid content, rainfall and snowfall. Several configurations of the MMW radiometer multi-band channels will be discussed, pointing out the trade-off between performances and complexity. Integrated estimation algorithms, based on a Bayesian approache, will be illustrated to retrieve the requested atmospheric parameters, discussing its sensitivity to sensor radiometric precision and accuracy within each frequency-set configuration. After this numerical study, a review of the mission requirements and specifications will be also proposed.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
NASA Technical Reports Server (NTRS)
Foreman, Veronica; Le Moigne, Jacqueline; de Weck, Oliver
2016-01-01
Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the shortcomings of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-the-art in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority weaknesses within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities must exist; this paper offers insights critical to the future development and implementation of DSM cost estimating tools.
A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions
NASA Technical Reports Server (NTRS)
Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver
2016-01-01
Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities must exist; this paper offers insights critical to the future development and implementation of DSM cost estimating tools.
Meares, Russell; Gerull, Friederike; Stevenson, Janine; Korner, Anthony
2011-03-01
To determine which constellation of clinical features constitutes the core of borderline personality disorder (BPD). The criterion of endurance was used to identify the constellation of features which are most basic, or core, in borderline personality disorder. Two sets of constellations of DSM-III features were tested, each consisting of three groupings. The first set of constellations was constructed according to Clarkin's factor analysis; the second was theoretically derived. Broadly speaking, the three groupings concerned 'self', 'emotional regulation', and 'impulse'. Changes of these constellations were charted over one year in a comparison of the effect of treatment by the Conversational Model (n = 29) with treatment as usual (n = 31). In addition, measures of typical depression (Zung) were scored before and after the treatment period. The changes in the constellations were considered in relation to authoritative opinion. The changes in the two sets of constellations were similar. In the treatment as usual (TAU) group, 'self' endured unchanged, while 'emotional regulation' and 'impulse' improved. In the Conversational Model cohort, 'self' improved, 'emotional regulation' improved more greatly than the TAU group, while 'impulse' improved but not more than the treatment as usual group. Depression scores were not particularly associated with any grouping. A group of features including self/identity disturbance, emptiness and fear of abandonment may be at the core of BPD. Correlations between the three groupings and Zung scores favoured the view that the core affect is not typical depression. Rather, the central state may be 'painful incoherence'. It is suggested that the findings have implications for the refinement and elaboration of treatment methods in borderline personality disorder.
A study on making a Honsang using the star catalogue from 『Seong Gyeong』
NASA Astrophysics Data System (ADS)
Ham, Seon Young; Kim, Sang Hyuk; Lee, Yong Sam
2016-01-01
The first record of Honsang (Celestial globe) was found in 『Sejong Sillok』 in Korea. Since then, there were records that Honsang was restored during the reign of King Jungjong and King Myungjong, and then restored again in the reign of King Seonjo. The only existing Honsang was made by Yi Hwang (1501-1570) in the 16th century for education of his followers. After then, Hong Dae Yong's (1731-1783) Honsangui, which was made in 18th century, had been passed down only through the literature. The constellations in Honsang and the scale system of each ring changed after 17th century when Western science began to affect Joseon dynasty. Since that time, the constellations, realized on Honsang globe, changed from constellations in the old method to ones in the new method. Furthermore, the scale system of rings on Honsang was changed from 365.25 Do, Jucheondo (Celestial globe circumference), to 360°. In this study, Honsang with constellations in the new method was made using star catalogue from 『Seong Gyeong』 published in 1861, which represented the constellations in the new method of Joseon dynasty. In order to realized the constellations from the star catalogue in 『Seong Gyeong』 on Honsang globe, the plane star chart and circular star chart of the area near the South and North Poles were drawn using spherical trigonometry. Using these star charts, the constellations in whole sky including stars near the South Pole were realized on Honsang globe. Also, equatorial coordinates and ecliptic coordinates were realized on Honsang globe simultaneously, and scales of Honsang's rings were marked as 360°.
Effectiveness of GNSS disposal strategies
NASA Astrophysics Data System (ADS)
Alessi, E. M.; Rossi, A.; Valsecchi, G. B.; Anselmo, L.; Pardini, C.; Colombo, C.; Lewis, H. G.; Daquin, J.; Deleflie, F.; Vasile, M.; Zuiani, F.; Merz, K.
2014-06-01
The management of the Global Navigation Satellite Systems (GNSS) and of the Medium Earth Orbit (MEO) region as a whole is a subject that cannot be deferred, due to the growing exploitation and launch rate in that orbital regime. The advent of the European Galileo and the Chinese Beidou constellations significantly added complexity to the system and calls for an adequate global view on the four constellations present in operation. The operation procedures, including maintenance and disposal practices, of the constellations currently deployed were analyzed in order to asses a proper reference simulation scenario. The complex dynamics of the MEO region with all the geopotential and lunisolar resonances was studied to better identify the proper end-of-life orbit for every proposed strategy, taking into account and, whenever possible, exploiting the orbital dynamics in this peculiar region of space. The possibility to exploit low thrust propulsion or non gravitational perturbations with passive de-orbiting devices (and a combination of the two) was analyzed, in view of possible applications in the design of the future generations of the constellations satellites. Several upgrades in the long-term evolution software SDM and DAMAGE were undertaken to properly handle the constellation simulations in every aspect from constellation maintenance to orbital dynamics. A thorough approach considering the full time evolving covariance matrix associated with every object was implemented in SDM to compute the collision risk and associated maneuver rate for the constellation satellites. Once the software upgrades will be completed, the effectiveness of the different disposal strategies will be analyzed in terms of residual collision risk and avoidance maneuvers rate. This work was performed under the ESA/GSP Contract no. 4000107201/12/F/MOS.
NASA Astrophysics Data System (ADS)
Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.
2017-12-01
The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.
1999-03-01
expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S...a satellite constellation through a policy of launching a new satellite at the first on-orbit failure. Increasing satellite design life is a common...alternatives consisted of the current constellation with the addition of various servicing architectures. We assumed no radical shift in GPS management policy
Flying the ST-5 Constellation with "Plug and Play" Autonomy Components and the GMSEC Bus
NASA Technical Reports Server (NTRS)
Shendock, Bob; Witt, Ken; Stanley, Jason; Mandl, Dan; Coyle, Steve
2006-01-01
The Space Technology 5 (ST5) Project, part of NASA's New Millennium Program, will consist of a constellation of three micro-satellites. This viewgraph document presents the components that will allow it to operate in an autonomous mode. The ST-5 constellation will use the GSFC Mission Services Evolution Center (GMSEC) architecture to enable cost effective model based operations. The ST-5 mission will demonstrate several principles of self managing software components.
Lessons learned from the 705-km fleet
NASA Astrophysics Data System (ADS)
Vincent, Mark A.
2012-10-01
The scientific benefits generated from the synergy of the satellites in the AM and PM (A-Train) Constellations are unprecedented. Constellation Flying in this context refers to each satellite flying independently in their own control box with acceptable minimum buffers ensuring that the control boxes do not intersect each other. Recently it is has been realized that rather than two separate constellations, they should be considered as one entity called the "705-km Fleet" named for their common nominal altitude over the equator. This realization partly comes from the recent events with the USGS satellite Landsat-5 which is in the AM Constellation, but for a period of time was overlapping with the A-Train. A fundamental concept is the Triad consisting of Alongtrack Phasing, Groundtrack and Mean Local Time of Ascending Node. Another related lesson learned is that to maintain the buffers, phasing at the two intersection points where each pair of orbits cross near the poles should be considered, as opposed to the relative phasing of the times they cross the equator. These types of geometric considerations are presented after presenting an introduction and history of the constellations. Other topics include: reference ground tracks, the process of handling the growing concern of conjunctions with other orbiting bodies, CloudSat and CALIPSO satellites performing Formation Flying, and the general ascent and exit methods for satellites entering/leaving a constellation.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
The COSMO-SkyMed ground and ILS and OPS segments upgrades for full civilian capacity exploitation
NASA Astrophysics Data System (ADS)
Fasano, L.; De Luca, G. F.; Cardone, M.; Loizzo, R.; Sacco, P.; Daraio, M. G.
2015-10-01
COSMO-SkyMed (CSK), is an Earth Observation joint program between Agenzia Spaziale Italiana (Italian Space Agency, ASI) and Italian Ministry of Defense (It-MoD). It consists of a constellation of four X Band Synthetic Aperture Radar (SAR) whose first satellite of has been launched on June 2007. Today the full constellation is fully qualified and is in an operative phase. The COSMO-SkyMed System includes 3 Segments: the Space Segment, the Ground Segment and the Integrated Logistic Support and Operations Segment (ILS and OPS) As part of a more complex re-engineering process aimed to improve the expected constellation lifetime, to fully exploit several system capabilities, to manage the obsolescence, to reduce the maintenance costs and to exploit the entire constellation capability for Civilian users a series of activities have been performed. In the next months these activities are planned to be completed and start to be operational so that it will be possible the programming, planning, acquisition, raw processing and archiving of all the images that the constellation can acquire.
Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects
NASA Technical Reports Server (NTRS)
Wiscombe, W.; Chiu, C. J-Y.
2012-01-01
Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.
NASA Astrophysics Data System (ADS)
Lazreg, Nissen; Ben Bahri, Omar; Besbes, Kamel
2018-02-01
Costal monitoring is focused on fast response to illegal immigration and illegal ship traffic. Especially, the illegal ship traffic has been present in media since April 2015, as the number of reported deaths of immigrants crossing the Mediterranean significantly increased. Satellite images provide a possibility to at least partially control both types of events. This paper defines the principal criteria to select the best satellite constellation architecture for maritime and coastal monitoring, filling the gaps of imagery techniques in term of real-time control. The primary purpose of a constellation is to obtain global measurement improving the temporal resolution. The small size and low-cost are the main factors, which make CubeSats ideal for use in constellations. We propose a constellation of 9 Cubesats distributed evenly in 3 different planes. This reduces the revisit time enhancing the coverage duration. In addition, it also allows observing fire, damage on building and similar disasters. In this analysis, the performance criteria were reported such as the revisit time, the vision duration and the area coverage.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Nanosatellite Architectures for Improved Study of the Hydrologic Cycle
NASA Astrophysics Data System (ADS)
Blackwell, W. J.; Osaretin, I.; Cahoy, K.
2012-12-01
The need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors that meet stringent performance requirements pervades the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. To address these challenges, we present nanosatellite constellation architectures that would profoundly improve both the performance and cost/risk/schedule profiles of NASA Earth and Space Science missions by leveraging recent technology advancements. As a key enabling element, we describe a scalable and mission-flexible 6U CubeSat-based self-organizing constellation architecture (the Distributed Observatory for Monitoring of Earth, henceforth "DOME") that will achieve state-of-the-art performance (and beyond) relative to current systems with respect to spatial, spectral, and radiometric resolution. A focus of this presentation is an assessment of the viability of a cross-linked CubeSat constellation with onboard propulsion systems for high-fidelity Earth and Space Science research. Such architecture could provide game-changing advances by reducing costs by at least an order of magnitude while increasing robustness to launch and sensor failures, allowing fast-track insertion of new technologies, and improving science performance. High-resolution passive microwave atmospheric sounding is an ideal sensing modality for nanosatellite implementation due to rapidly advancing microwave and millimeterwave receiver technology. The DOME constellation would nominally comprise 6U CubeSat Microwave Atmospheric Sounder (CMAS) satellites. Each CMAS satellite would host a complete 6U CubeSat atmospheric sounder, including a radiometer payload module with passive microwave receivers operating near atmospheric absorption lines near 60 and 183.31 GHz, and a spacecraft bus with attitude determination and control, avionics, power, cross-linked communications (spacecraft-to-spacecraft and spacecraft-to-ground), and propulsion systems. A spacecraft spinning mechanism provides a 60 RPM cross-track scan as the satellite orbits the earth. Spatial, spectral, and radiometric performance is comparable to present state-of-the-art systems with costs exceeding $100M. The propulsion systems would be used to achieve formation flight (the satellites would be separated by approximately 500 ± 5 km) and to facilitate de-orbit. The cross-linked communication would provide: 1) reduced communications latency to ground, a key performance attribute that is currently lacking in present systems leading to suboptimal utilization of observations of dynamic meteorological events such as tropical cyclones and hurricanes, and 2) data-driven sensing whereby the lead sensor observes dynamic meteorological phenomena and sends a message to the following sensor to temporarily enable a very high resolution sensing mode (a higher sample rate, for example) to better capture the interesting event and preserve spacecraft resources for when they are most needed. The DOME constellation would allow global, high-resolution, persistent observations of the Earth's surface and atmosphere for studies of the hydrologic cycle and climate feedback processes.
How to Enter, Fly In, and Exit the A-Train Constellation
NASA Technical Reports Server (NTRS)
Vincent, Mark A.
2015-01-01
The collaborative science obtained from the satellites in the A-Train is an unparalleled success. The constellation framework that has evolved is well-formulated and documented by its international members. Communication between teams is enhanced by a web-based Constellation Coordination System. Safety and correlated observations are ensured by defining independent control boxes with buffers in between. Each mission stays within its control box by regular drag makeup maneuvers. Annual inclination adjustments are coordinated by all missions to maintain their absolute and relative Mean Local Time of Ascending Node (MLTAN). Since the satellites are in different orbit planes their separation involves a three-dimensional triad made up of the along track separations, reference groundtracks and MLTAN's. For further safety, a Constellation Envelope has been defined to determine safe entry and exit orbits.
The Earth Science Afternoon Constellation Contingency Procedures
NASA Technical Reports Server (NTRS)
Case, Warren F.; Richon, Karen
2005-01-01
The Earth Science Afternoon Constellation comprises NASA missions Aqua, Aura, CloudSat and the Orbiting Carbon Observatory (OCO), the joint NASA/CNES mission CALIPSO and the CNES mission PARASOL. Both NASA and CNES offices are responsible for ensuring that contingency plans or other arrangements exist to cope with contingencies within their respective jurisdictions until the conclusion of all Afternoon Constellation operations. The Mission Operations Working Group, comprised of members from each of the missions, has developed the high-level procedures for maintaining the safety of this constellation. Each contingency situation requires detailed analyses before any decisions are made. This paper describes these procedures, and includes defining what constitutes a contingency situation, the pertinent parameters involved in the contingency analysis and guidelines for the actions required, based on the results of the contingency analyses.
Optimal Constellation Design for Maximum Continuous Coverage of Targets Against a Space Background
2012-05-31
constellation is considered with the properties shown in Table 13. The parameter hres refers to the number of equally spaced offset planes in which cross...mean anomaly 180 ◦ M0i mean anomaly of lead satellite at epoch 0 ◦ R omni-directional sensor range 5000 km m initial polygon resolution 50 PPC hres ...a Walker Star. Idealized parameters for the Iridium constellation are shown in Table 14. The parameter hres refers to the number of equally spaced
NASA Astrophysics Data System (ADS)
Cole, M.
2017-12-01
Advanced technology plays a key role in enabling future Earth-observing missions needed for global monitoring and climate research. Rapid progress over the past decade and anticipated for the coming decades have diminished the size of some satellites while increasing the amount of data and required pace of integration and analysis. Sensor web developments provide correlations to constellations of smallsats. Reviewing current advances in sensor webs and requirements for constellations will improve planning, operations, and data management for future architectures of multiple satellites with a common mission goal.
2006-06-04
NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)
Management of the Reflection Grating Spectrometer on the Constellation-X Mission
NASA Technical Reports Server (NTRS)
2004-01-01
As RGS Integrated Product Team Lead, normal coordination and management efforts in the past year have involved setting and overseeing budgets and schedules, regular status reporting to the Program Manager at Goddard Space Flight Center (GSFC), interacting with Constellation-X groups at GSFC, Smithsonian Astrophysical Observatory (SAO), and RGS team institutions, and supporting the program needs of Constellation-X. In addition to the management aspects described above, there are four significant areas of direct contribution that were accomplished.
Zhang, Lijia; Liu, Bo; Xin, Xiangjun
2015-06-15
A secure optical generalized filter bank multi-carrier (GFBMC) system with carrier-less amplitude-phase (CAP) modulation is proposed in this Letter. The security is realized through cubic constellation-masked method. Large key space and more flexibility masking can be obtained by cubic constellation masking aligning with the filter bank. An experiment of 18 Gb/s encrypted GFBMC/CAP system with 25-km single-mode fiber transmission is performed to demonstrate the feasibility of the proposed method.
A Review of NASA's Radiation-Hardened Electronics for Space Environments Project
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.
2008-01-01
NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.
The RAVAN CubeSat Mission: A Pathfinder for a New Measurement of Earth's Radiation Budget
NASA Astrophysics Data System (ADS)
Swartz, W.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Deglau, D.; Reynolds, E.; Carvo, J.; Papadakis, S.; Wu, D. L.; Wiscombe, W. J.; Dyrud, L. P.
2016-12-01
The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat is a pathfinder for a constellation to measure the Earth's radiation imbalance (ERI), which is the single most important quantity for predicting the course of climate change over the next century. RAVAN demonstrates a small, accurate radiometer that measures top-of-the-atmosphere Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, a constellation of such measurements would aim to determine ERI directly. Our objective with RAVAN is to establish that a compact radiometer that is absolutely calibrated to climate accuracy can be built and operated in space for low cost. The radiometer, hosted on a 3U CubeSat, relies on two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as the radiometer absorber. VACNT forests are some of the blackest materials known and have an extremely flat spectral response over a wide wavelength range. The second key technology is a gallium fixed-point blackbody calibration source, embedded in RAVAN's sensor head contamination cover, that serves as a stable and repeatable reference to track the long-term degradation of the sensor. Absolute calibration is also maintained by regular solar and deep space views. We present the scientific motivation for the NASA-funded mission, design and characterization of the spacecraft, and mission operations concept. Pending a successful launch in fall 2016, we will also present the first results on-orbit. RAVAN will help enable the development of an Earth radiation budget constellation mission that can provide the measurements needed for superior predictions of future climate change.
The Role and Quality of Software Safety in the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.
2010-01-01
In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.
Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO
NASA Astrophysics Data System (ADS)
Dai, Xiaolei
2014-05-01
In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi-constellation POD orbit and clock products, and analyzed the contribution of these POD products to PPP. Keywords: Multi-GNSS, Precise Orbit Determination, Inter-frequency bias, Inter-system bias, Precise Point Positioning
History of Hubble Space Telescope (HST)
1997-09-08
This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.
PCM Thermal Control of Nickel-Hydrogen Batteries
1993-06-01
Iridium , Global Star, etc - The new satellite mobile telephone systems under development call for constellations of LEO satellites. A thermal problem unique...C6H4CI2 -16.7 88 2 4,6-dimethylindan C11H14 -16.7 88 3 2,2-dimethylpropane C5H12 -16.6 45 4 arsenic trichloride AsCl3 -16 56 5 quinoline C9H7N -15.6 84 6...discharge are: 0 SPACE-BASED RADAR - SBR is expected to have a surge power lasting about 9 minutes. 0 IRIDIUM - The high traffic associated with
NASA Technical Reports Server (NTRS)
1997-01-01
This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.
EOS Terra: Mission Status Constellation MOWG
NASA Technical Reports Server (NTRS)
Mantziaras, Dimitrios
2016-01-01
This EOS Terra Mission Status Constellation MOWG will discuss mission summary; spacecraft subsystems summary, recent and planned activities; inclination adjust maneuvers, conjunction history, propellant usage and lifetime estimate; and end of mission plan.
New Satellite Constellation Uses Radio Occultation to Monitor Space Weather
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2006-05-01
A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.
Launching Science: Science Opportunities Provided by NASA's Constellation System
NASA Technical Reports Server (NTRS)
2008-01-01
In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science mission concepts that could take advantage of Constellation s unique capabilities are likely to be prohibitively expensive. Several times in the past NASA has begun ambitious space science missions that ultimately proved too expensive for the agency to pursue. Examples include the Voyager-Mars mission and the Prometheus program and its Jupiter Icy Moons Orbiter spacecraft (both examples are discussed in Chapter 1). Finding: The scientific missions reviewed by the committee as appropriate for launch on an Ares V vehicle fall, with few exceptions, into the "flagship" class of missions. The preliminary cost estimates, based on mission concepts that at this time are not very detailed, indicate that the costs of many of the missions analyzed will be above $5 billion (in current dollars). The Ares V costs are not included in these estimates. All of the costs discussed in this report are presented in current-year (2008) dollars, not accounting for potential inflation that could occur between now and the decade in which these missions might be pursued. In general, preliminary cost estimates for proposed missions are, for many reasons, significantly lower than the final costs. Given the large cost estimates for many of the missions assessed in this report, the potentially large impacts on NASA's budget by many of these missions are readily apparent.
Development of Power Electronics for a 0.2kW-Class Ion Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Patterson, Michael J.; Bowers, Glen E.
1997-01-01
Applications that might benefit from low power ion propulsion systems include Earth-orbit magnetospheric mapping satellite constellations, low Earth-orbit satellites, geosynchronous Earth-orbit satellite north-south stationkeeping, and asteroid orbiters. These spacecraft are likely to have masses on the order of 50 to 500 kg with up to 0.5 kW of electrical power available. A power processing unit for a 0.2 kW-class ion thruster is currently under development for these applications. The first step in this effort is the development and testing of a 0.24 kW beam power supply. The design incorporates a 20 kHz full bridge topology with multiple secondaries connected in series to obtain outputs of up to 1200 V(sub DC). A current-mode control pulse width modulation circuit built using discrete components was selected for this application. An input voltage of 28 +/- 4 V(sub DC) was assumed, since the small spacecraft for which this system is targeted are anticipated to have unregulated low voltage busses. Efficiencies in excess of 91 percent were obtained at maximum output power. The total mass of the breadboard was less than 1.0 kg and the component mass was 0.53 kg. It is anticipated that a complete flight power processor could weigh about 2.0 kg.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
.... Div., Back Office Customer Support, Primary Services & Inceed. 81,972 Pharmetrics, An IMS Health... Constellation Homebuilder Redmond, WA September 14, 2011. Systems, Fast Division, Constellation Software, Inc...
Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Leahy, Frank
2008-01-01
The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.
Point pattern match-based change detection in a constellation of previously detected objects
Paglieroni, David W.
2016-06-07
A method and system is provided that applies attribute- and topology-based change detection to objects that were detected on previous scans of a medium. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, detection strength, size, elongation, orientation, etc. The locations define a three-dimensional network topology forming a constellation of previously detected objects. The change detection system stores attributes of the previously detected objects in a constellation database. The change detection system detects changes by comparing the attributes and topological consistency of newly detected objects encountered during a new scan of the medium to previously detected objects in the constellation database. The change detection system may receive the attributes of the newly detected objects as the objects are detected by an object detection system in real time.
Error Reduction Analysis and Optimization of Varying GRACE-Type Micro-Satellite Constellations
NASA Astrophysics Data System (ADS)
Widner, M. V., IV; Bettadpur, S. V.; Wang, F.; Yunck, T. P.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) mission has been a principal contributor in the study and quantification of Earth's time-varying gravity field. Both GRACE and its successor, GRACE Follow-On, are limited by their paired satellite design which only provide a full map of Earth's gravity field approximately every thirty days and at large spatial resolutions of over 300 km. Micro-satellite technology has presented the feasibility of improving the architecture of future missions to address these issues with the implementation of a constellations of satellites having similar characteristics as GRACE. To optimize the constellation's architecture, several scenarios are evaluated to determine how implementing this configuration affects the resultant gravity field maps and characterize which instrument system errors improve, which do not, and how changes in constellation architecture affect these errors.
NASA Astrophysics Data System (ADS)
Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.
2014-11-01
Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.
Prehistory of Zodiac Dating: Three Strata of Upper Paleolithic Constellations
NASA Astrophysics Data System (ADS)
Gurshtein, Alex A.
A pattern of archaic proto-constellations is extracted from Aratus' "The Phaenomena" didactic poem list according to a size criterion elaborated earlier, and their symbolism is analyzed. As a result of this approach three celestial symbolical strata are discovered to be probably a reflection of the symbols for the Lower, the Middle and the Upper Worlds; the Under-World creatures have a water character, the Middle World ones are mostly anthropomorphic and flying beings are for the Upper World. The strata excerpted from Aratus' sky seems to be in agreement with the well-known Babylonian division into three god pathways for Ea (Enki), Anu and Enlil. There is a possibility of dating the pattern discovered because of precession's strong influence as far back as 16 thousand years, the result being supported by the comparison of different star group mean sizes. The archaic constellation pattern under consideration is a reasonable background of symbolical meanings for the first Zodiacal generation quartet (7.5 thousand years old) examined by the author previously. The enormous size of the Argo constellation (Ship of Argo and his Argonauts) as well as the large sizes of other southern constellations are explained as due to the existence of an accumulation zone near the South celestial pole. Some extra correlations between the reconstruction proposed and cultural data available are discussed. The paper is the second part of the investigation "On the Origin of the Zodiacal constellations" published in Vistas in Astronomy, vol.36, pp.171-190, 1993.
Robust GPS autonomous signal quality monitoring
NASA Astrophysics Data System (ADS)
Ndili, Awele Nnaemeka
The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and multipath. Results are presented which verify the effectiveness of these proposed methods. The benefits of pseudolites in reducing service outages due to interference are demonstrated. Pseudolites also enhance the geometry of the GPS constellation, improving overall system accuracy. Designs for pseudolites signals, to reduce the near-far problem associated with pseudolite use, are also presented.
GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen
2015-01-01
GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.
Low-Power Ion Propulsion for Small Spacecraft
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Oleson, Steven R.
1997-01-01
Analyses were conducted which indicate that sub kW-class ion thrusters may provide performance benefits for near-Earth space commercial and science missions. Small spacecraft applications with masses ranging from 50 to 500 kg and power levels less than 0.5 kW were considered. To demonstrate the efficacy of propulsion systems of this class, two potential missions were chosen as examples; a geosynchronous north-south station keeping application, and an Earth orbit magnetospheric mapping satellite constellation. Xenon ion propulsion system solutions using small thrusters were evaluated for these missions. A payload mass increase of more than 15% is provided by a 300-W ion system for the north-south station keeping mission. A launch vehicle reduction from four to one results from using the ion thruster for the magnetospheric mapping mission. Typical projected thruster performance over the input power envelope of 100-300 W range from approximately 40% to 54% efficiency and approximately 2000 to 3000 seconds specific impulse. Thruster technologies required to achieve the mission-required performance and lifetime are identified.
The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System
NASA Astrophysics Data System (ADS)
Hilsenrath, E.; Langen, J.; Zehner, C.
2008-05-01
The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the participating space agencies. These include 1) Time of day changes in NO2 using Aura/OMI and Metop/GOME-2. 2) Near-real-time fire detection and smoke forecasts using multiple satellites (A-Train, GOES, GOME-2, MSG, etc) and trajectory model, and 3) Improved volcanic ash alerts for aviation hazard avoidance from satellite SO2 and ash data from SCIAMACHY, OMI, GOME-2, AIRS and SEVIRI. Each of the three projects will address the GEO SBAs with consideration to discovery and interoperability of their data products. The status of the ACC studies will be reviewed with a progress report on the above three projects.
NASA Astrophysics Data System (ADS)
Amiri, N.; Bertiger, W. I.; Lu, W.; Miller, M. A.; David, M. W.; Ries, P.; Romans, L.; Sibois, A. E.; Sibthorpe, A.; Sakumura, C.
2017-12-01
Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions Authors: Nikta Amiri, Willy Bertiger, Wenwen Lu, Mark Miller, David Murphy, Paul Ries, Larry Romans, Carly Sakumura, Aurore Sibois, Anthony Sibthorpe All at the Jet Propulsion Laboratory, California Institute of Technology Multiple Global Navigation Satellite Systems (GNSS) are now in various stages of completion. The four current constellations (GPS, GLONASS, BeiDou, Galileo) comprise more than 80 satellites as of July 2017, with 120 satellites expected to be available when all four constellations become fully operational. We investigate the impact of simultaneous observations to these four constellations on global network precise orbit determination (POD) solutions, and compare them to available sets of orbit and clock products submitted to the Multi-GNSS Experiment (MGEX). Using JPL's GipsyX software, we generate orbit and clock products for the four constellations. The resulting solutions are evaluated based on a number of metrics including day-to-day internal and external orbit and/or clock overlaps and estimated constellation biases. Additionally, we examine estimated station positions obtained from precise point positioning (PPP) solutions by comparing results generated from multi-GNSS and GPS-only orbit and clock products.
Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program
NASA Technical Reports Server (NTRS)
Nelson, R. A.; Brodsky, B.; Oria, A. J.; Connolly, J. W.; Sands, O. S.; Welch, B. W.; Ely T.; Orr, R.; Schuchman, L.
2006-01-01
The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper.
Extraction of volatiles and metals from extraterrestrial materials
NASA Technical Reports Server (NTRS)
Lewis, J. S.
1992-01-01
Recent progress in defining the physical, orbital, and chemical properties of the Earth-crossing asteroid and comet population was integrated into an elaborate Monte Carlo model of the fluxes of bodies in the inner Solar System. This model is of use in projecting flight opportunities to as-yet undiscovered near-Earth objects and in assessing the impact hazard to life on Earth and the evolutionary consequences of impacts on the other terrestrial planets. Further progress was made in defining desirable transportation system architectures for the use of non-terrestrial volatiles and metals, including the delivery of propellants to near-Earth space for fueling of space exploration initiative (SEI) type expeditions, the construction and resupply of Solar Power Satellite constellations in various Earth orbits (including geosynchronous earth orbit (GEO) and Highly Eccentric Earth Orbit (HEEO)), and retrieval of He-3 for use as a clean fusion fuel on Earth. These studies suggest a greater future role for SERC in the exploration of space energy sources to meet Earth's 21st-century energy requirements. Laboratory studies of volatilization and deposition of ferrous metal alloys demonstrated deposition of strong iron films from carbonyl chemical vapor deposition (CVD), showing the crucial role of additive gases in governing the CVD process, and pointing the way to specific experiments on extraction and deposition of ferrous metals from nonterrestrial materials.
Vytra Healthcare forms a frequent user plan focusing on wellness.
Herreria, J
1998-01-01
Vytra Healthcare's "Constellation Club" marks the first time the concept of wellness has been applied to health plans. The Constellation Club is comparable to a frequent flier club in the airline industry.
Improved satellite constellations for CONUS ATC coverage
DOT National Transportation Integrated Search
1974-05-01
The report examines the problem of designing a constellation of orbiting satellites capable of supporting an aircraft navigation/surveillance service over CONUS. It is assumed that the aircraft positions are determined by hyperbolic multilateration u...
NASA Astrophysics Data System (ADS)
Metzger, W.
2011-06-01
The European Middle Ages inherited star names and constellations from Roman antiquity, mostly via Latin literary texts. When, from the 11th century onwards, Arabic texts and instruments became available, figures and vocabulary at first where not compatible with this tradition. The example of an excerpt from Pseudo-Hyginus De Astronomia shows, how a Roman text on the constellations was revised and supplemented with the names of the astrolabe-stars to combine the two different traditions.
A Case Study: Using Delmia at Kennedy Space Center to Support NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Kickbusch, Tracey; Humeniuk, Bob
2010-01-01
The presentation examines the use of Delmia (Digital Enterprise Lean Manufacturing Interactive Application) for digital simulation in NASA's Constellation Program. Topics include an overview of the Kennedy Space Center (KSC) Design Visualization Group tasks, NASA's Constellation Program, Ares 1 ground processing preliminary design review, and challenges and how Delmia is used at KSC, Challenges include dealing with large data sets, creating and maintaining KSC's infrastructure, gathering customer requirements and meeting objectives, creating life-like simulations, and providing quick turn-around on varied products,
APM for a Constellation Intersatellite Link - EM Qualification and Lessons Learned
NASA Technical Reports Server (NTRS)
Hartel, Frank; Kozilek, Horst
2016-01-01
For an Intersatellite Link (ISL) of a future constellation program, a study phase was initiated by ESA to design a mechanism for Radio Frequency communication. Airbus DS Friedrichshafen (ADSF) proposed a design based on the Antenna Pointing Mechanism (APM) family with modifications that met the stated needs of the constellation. A qualification program was started beginning in September 2015 to verify the launch and thermal loads and the equipment performance (Radio Frequency, Pointing, Microvibration and Magnetic Moment). Technical challenges identified with the Engineering Model will be discussed within this paper.
NanoSat Constellation Mission Design
NASA Technical Reports Server (NTRS)
Concha, Marco; DeFazio, Robert
1998-01-01
The NanoSat constellation concept mission proposes simultaneous operation of multiple swarms of as many as 22 identical 10 kg spacecraft per swarm. The various orbits in a NanoSat swarm vary from 3x12 to 3x42 R(sub e) in geometry. In this report the unique flight dynamics issues of this constellation satellite mission design are addressed. Studies include orbit design, orbit determination, and error analysis. A preliminary survey determined the orbital parameters that would limit the maximum shadow condition while providing adequate ground station access for three ground stations.
Global Precipitation Measurement (GPM) Mission Development Status
NASA Technical Reports Server (NTRS)
Azarbarzin, Ardeshir Art
2011-01-01
Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.
Ultra high frequency follow-on communications satellite system
NASA Astrophysics Data System (ADS)
Hassien, Michael J.
1992-03-01
The existing constellation of UHF communications satellites (LEASAT and FLTSAT) provide key command and control links for mobile forces of the DoD and other government agencies. The UHF Follow-On satellite program will provide for a new generation of communications satellites to replace the existing ones as they reach the end of their life cycle beginning in 1992. Continued coverage is required for both peacetime and crisis environments, and must be maintained indefinitely. An eight-satellite UFO constellation (two per coverage area) will replenish the existing FLTSATCOM constellation.
Hyperspectral Cubesat Constellation for Rapid Natural Hazard Response
NASA Astrophysics Data System (ADS)
Mandl, D.; Huemmrich, K. F.; Ly, V. T.; Handy, M.; Ong, L.; Crum, G.
2015-12-01
With the advent of high performance space networks that provide total coverage for Cubesats, the paradigm for low cost, high temporal coverage with hyperspectral instruments becomes more feasible. The combination of ground cloud computing resources, high performance with low power consumption onboard processing, total coverage for the cubesats and social media provide an opprotunity for an architecture that provides cost-effective hyperspectral data products for natural hazard response and decision support. This paper provides a series of pathfinder efforts to create a scalable Intelligent Payload Module(IPM) that has flown on a variety of airborne vehicles including Cessna airplanes, Citation jets and a helicopter and will fly on an Unmanned Aerial System (UAS) hexacopter to monitor natural phenomena. The IPM's developed thus far were developed on platforms that emulate a satellite environment which use real satellite flight software, real ground software. In addition, science processing software has been developed that perform hyperspectral processing onboard using various parallel processing techniques to enable creation of onboard hyperspectral data products while consuming low power. A cubesat design was developed that is low cost and that is scalable to larger consteallations and thus can provide daily hyperspectral observations for any spot on earth. The design was based on the existing IPM prototypes and metrics that were developed over the past few years and a shrunken IPM that can perform up to 800 Mbps throughput. Thus this constellation of hyperspectral cubesats could be constantly monitoring spectra with spectral angle mappers after Level 0, Level 1 Radiometric Correction, Atmospheric Correction processing. This provides the opportunity daily monitoring of any spot on earth on a daily basis at 30 meter resolution which is not available today.
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
2007-08-01
NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager
ERIC Educational Resources Information Center
Mayer, Ben
1987-01-01
Discusses the use of astrological signs as a vehicle for getting students interested in astronomy. Describes the construction and use of simple stellaphane starframes that can be used to locate astrological constellations. Provides instructions for photographing constellations with a 35 millimeter camera. (TW)
Constellation Program Press Conference
2006-06-04
NASA Administrator Michael Griffin, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)
Tracing the Energetics of the Universe with Constellation-X: Example Scientific Investigations
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2008-01-01
Constellation-X will enable us to trace the energetics of a broad range of astrophysical phenomena owing to its capabilities for high spectral resolution X-ray spectroscopy. The dominant baryonic component of galaxy clusters and groups resides in the X-ray bandpass, and the hot phase of the ISM in galaxies harbors the heavy metal production from previous generation of stars. This talk will focus on a few example science questions that are expected to be important during the Constellation-X era. These include the nature of the missing baryons expected to reside in the hot portion of the Warm Hot Intergalactic Medium, which Constellation-X will address via absorption spectroscopy studies of background AGN. We will also discuss spatially resolved spectroscopy of metal enrichment and the effects of turbulence in clusters & groups and of starburst galaxy winds which deposit energy & metals into the Intergalactic Medium.
Realistic Covariance Prediction for the Earth Science Constellation
NASA Technical Reports Server (NTRS)
Duncan, Matthew; Long, Anne
2006-01-01
Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. One component of the risk assessment process is computing the collision probability between two space objects. The collision probability is computed using Monte Carlo techniques as well as by numerically integrating relative state probability density functions. Each algorithm takes as inputs state vector and state vector uncertainty information for both objects. The state vector uncertainty information is expressed in terms of a covariance matrix. The collision probability computation is only as good as the inputs. Therefore, to obtain a collision calculation that is a useful decision-making metric, realistic covariance matrices must be used as inputs to the calculation. This paper describes the process used by the NASA/Goddard Space Flight Center's Earth Science Mission Operations Project to generate realistic covariance predictions for three of the Earth Science Constellation satellites: Aqua, Aura and Terra.
Spatial Sense and Perspective: A 3-D Model of the Orion Constellation
NASA Astrophysics Data System (ADS)
Heyer, I.; Slater, T. F.; Slater, S. J.
2012-08-01
Building a scale model of the Orion constellation provides spatial perspective for students studying astronomy. For this activity, students read a passage from literature that refers to stars being strange when seen from a different point of view. From a data set of the seven major stars of Orion they construct a 3-D distance scale model. This involves the subject areas of astronomy, mathematics, literature and art, as well as the skill areas of perspective, relative distances, line-of-sight, and basic algebra. This model will appear from one side exactly the way we see it from Earth. But when looking at it from any other angle the familiar constellation will look very alien. Students are encouraged to come up with their own names and stories to go with these new constellations. This activity has been used for K-12 teacher professional development classes, and would be most suitable for grades 6-12.
Risk to space sustainability from large constellations of satellites
NASA Astrophysics Data System (ADS)
Bastida Virgili, B.; Dolado, J. C.; Lewis, H. G.; Radtke, J.; Krag, H.; Revelin, B.; Cazaux, C.; Colombo, C.; Crowther, R.; Metz, M.
2016-09-01
The number of artificial objects in orbit continues to increase and, with it, a key threat to space sustainability. In response, space agencies have identified a set of mitigation guidelines aimed at enabling space users to reduce the generation of space debris by, for example, limiting the orbital lifetime of their spacecraft and launcher stages after the end of their mission. Planned, large constellations of satellites in low Earth orbit (LEO), though addressing the lack of basic internet coverage in some world regions, may disrupt the sustainability of the space environment enabled by these mitigation practices. We analyse the response of the space object population to the introduction of a large constellation conforming to the post-mission disposal guideline with differing levels of success and with different disposal orbit options. The results show that a high success rate of post-mission disposal by constellation satellites is a key driver for space sustainability.
CubeSat constellation design for air traffic monitoring
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Rios, Joseph L.; Gerhardt, David; Pham, Camvu
2016-11-01
Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring. It thereby provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data were obtained from NASA's Future ATM Concepts Evaluation Tool, for the Alaskan airspace over one day. The results presented were driven by MATLAB and the satellites propagated and coverage calculated using AGI's Satellite Tool. While Ad-hoc and precession spread constellations have been quantitatively evaluated, Walker constellations show the best performance in simulation. Sixteen satellites in two perpendicular orbital planes are shown to provide more than 99% coverage over representative Alaskan airspace and the maximum time gap where any airplane in Alaska is not covered is six minutes, therefore meeting the standard set by the International Civil Aviation Organization to monitor every airplane at least once every fifteen minutes. In spite of the risk of signal collision when multiple packets arrive at the satellite receiver, the proposed constellation shows 99% cumulative probability of reception within four minutes when the airplanes are transmitting every minute, and at 100% reception probability if transmitting every second. Data downlink can be performed using any of the three ground stations of NASA Earth Network in Alaska.
The NASA EV-2 CYGNSS Small Satellite Constellation Mission
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.
2012-12-01
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.
Temporal X-ray astronomy with a pinhole camera. [cygnus and scorpius constellation
NASA Technical Reports Server (NTRS)
Holt, S. S.
1975-01-01
Preliminary results from the Ariel-5 all-sky X-ray monitor are presented, along with sufficient experiment details to define the experiment sensitivity. Periodic modulation of the X-ray emission was investigated from three sources with which specific periods were associated, with the results that the 4.8 hour variation from Cyg X-3 was confirmed, a long-term average 5.6 day variation from Cyg X-1 was discovered, and no detectable 0.787 day modulation of Sco X-1 was observed. Consistency of the long-term Sco X-1 emission with a shot-noise model is discussed, wherein the source behavior is shown to be interpretable as approximately 100 flares per day, each with a duration of several hours. A sudden increase in the Cyg X-1 intensity by almost a factor of three on 22 April 1975 is reported, after 5 months of relative source constancy. The light curve of a bright nova-like transient source in Triangulum is presented, and compared with previously observed transient sources. Preliminary evidence for the existence of X-ray bursts with duration less than 1 hour is offered.
Döös, Marianne; Vinell, Helene; von Knorring, Mia
2017-12-01
To explore nurse manager experiences of working in leadership constellations where more than two managers share leadership, and to compare this multilateral sharing form to what is known about experiences of working in joint leadership in pairs. A qualitative design based on semi-structured interviews with nurse managers in two multilaterally shared leadership constellations at two intensive care units at an emergency hospital in Sweden. Data were analysed using a thematic and comparative approach. The comparative analysis identified four aspects that differ decisively from the positive picture in the literature on joint pair leadership: the perception of mandate with reduced decision-making power and reduced access to forums, the way of working with a strict division of tasks and a rotating schedule, a need to cope with the increasing number of internal relations and a feeling of doubt concerning trust. Shared leadership between nurse managers has gone from being a tight collaboration based on a feeling of "two-getherness", to being an organisational solution multilateral in character. In this transformation, a weakening of leadership qualities has occurred. Further research is necessary on how this new organisational solution impacts the nurse managers, their staff and the care provided in healthcare organisations generally. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Volume Pulsed EPC for T/R Modules in Satellite Constellation
NASA Astrophysics Data System (ADS)
Notarianni, Michael; Maynadier, Paul; Marin, Marc
2014-08-01
In the frame of Iridium Next business, a mobile satellite service, Thales Alenia Space (TAS) has to produce more than 2400 x 65W and 162 x 250W pulsed Electronic Power Conditioners (EPC) to supply the RF transmit/receive modules that compose the active antenna of the satellites.The company has to deal with mass production constraints where cost, volume and performances are crucial factors. Compared to previous constellations realized by TAS, the overall challenge is to make further improvements in a short time:- Predictable electrical models- Deeper design-to-cost approach- Streamlining improvements and test coverageAs the active antenna drives the consumption of the payload, accurate performances have been evaluated early owing to the use of simulation (based on average model) and breadboard tests at the same time.The necessary cost reduction has been done owing to large use of COTS (Components Off The Shelf). In order to secure cost and schedule, each manufacturing step has been optimized to maximize test coverage in order to guarantee high reliability.At this time, more than 200 flight models have already been manufactured, validating this approach.This paper is focused on the 65W EPC but the same activities have been led on the 250W EPC.
Fortin, Marc-Antoine; Landry, René
2016-05-02
This paper presents a universal GNSS receiver channel capable of tracking any civil GNSS signal. This fundamentally differs from dedicated channels, each customized for a given signal. A mobile device could integrate fewer universal channels to harvest all available signals. This would allow securing signal availability, while minimizing power consumption and chip size, thus maximizing battery lifetime. In fact, the universal channel allows sequential acquisition and tracking of any chipping rate, carrier frequency, FDMA channel, modulation, or constellation, and is totally configurable (any integration time, any discriminator, etc.). It can switch from one signal to another in 1.07 ms, making it possible for the receiver to rapidly adapt to its sensed environment. All this would consume 3.5 mW/channel in an ASIC implementation, i.e., with a slight overhead compared to the original GPS L1 C/A dedicated channel from which it was derived. After extensive surveys on GNSS signals and tracking channels, this paper details the implementation strategies that led to the proposed universal channel architecture. Validation is achieved using GNSS signals issued from different constellations, frequency bands, modulations and spreading code schemes. A discussion on acquisition approaches and conclusive remarks follow, which open up a new signal selection challenge, rather than satellite selection.
Fortin, Marc-Antoine; Landry, René
2016-01-01
This paper presents a universal GNSS receiver channel capable of tracking any civil GNSS signal. This fundamentally differs from dedicated channels, each customized for a given signal. A mobile device could integrate fewer universal channels to harvest all available signals. This would allow securing signal availability, while minimizing power consumption and chip size, thus maximizing battery lifetime. In fact, the universal channel allows sequential acquisition and tracking of any chipping rate, carrier frequency, FDMA channel, modulation, or constellation, and is totally configurable (any integration time, any discriminator, etc.). It can switch from one signal to another in 1.07 ms, making it possible for the receiver to rapidly adapt to its sensed environment. All this would consume 3.5 mW/channel in an ASIC implementation, i.e., with a slight overhead compared to the original GPS L1 C/A dedicated channel from which it was derived. After extensive surveys on GNSS signals and tracking channels, this paper details the implementation strategies that led to the proposed universal channel architecture. Validation is achieved using GNSS signals issued from different constellations, frequency bands, modulations and spreading code schemes. A discussion on acquisition approaches and conclusive remarks follow, which open up a new signal selection challenge, rather than satellite selection. PMID:27144569
ONLINE WATER MONITORING UTILIZING AN AUTOMATED MICROARRAY BIOSENSOR INSTRUMENT - PHASE I
Constellation Technology Corporation (Constellation) proposes the use of an integrated recovery and detection system for online water supply monitoring. The integrated system is designed to efficiently capture and recover pathogens such as bacteria, viruses, parasites, an...
NASA Technical Reports Server (NTRS)
2001-01-01
Magnetospheric Constellation Dynamic Response and Coupling Observatory (DRACO) is the Solar Terrestrial Probe (STP) designed to understand the nonlinear dynamics, responses, and connections within the Earth's structured magnetotail, using a constellation of approximately 50 to 100 distributed vector measurement spacecraft. DRACO will reveal magnetotail processes operating within a domain extending 20 Earth radii (R(sub E)) across the tail and 40 R(sub E)down the tail, on spatial and time scales accessible to global circulation models, i.e., approximately 2 R(sub E) and 10 seconds.
The Lunar Mapping and Modeling Project
NASA Technical Reports Server (NTRS)
Noble, Sarah; French, Raymond; Nall, Mark; Muery, Kimberly
2009-01-01
LMMP was initiated in 2007 to help in making the anticipated results of the LRO spacecraft useful and accessible to Constellation. The LMMP is managing and developing a suite of lunar mapping and modeling tools and products that support the Constellation Program (CxP) and other lunar exploration activities. In addition to the LRO Principal Investigators, relevant activities and expertise that had already been funded by NASA was identified at ARC, CRREL (Army Cold Regions Research & Engineering Laboratory), GSFC, JPL, & USGS. LMMP is a cost capped, design-to-cost project (Project budget was established prior to obtaining Constellation needs)
2010-01-19
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, preparations are under way to install the ninth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, on the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. For information on the Constellation Program, visit http://www.nasa.gov/constellation. Photo credit: NASA/Jack Pfaller
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Optimizing Spacecraft Placement for Liaison Constellations
NASA Technical Reports Server (NTRS)
Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.
2011-01-01
A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.
MacLaren, Julie-Ann
2018-01-01
Supervised practice as a mentor is currently an integral component of nurse mentor education. However, workplace education literature tends to focus on dyadic mentor-student relationships rather than developmental relationships between colleagues. This paper explores the supportive relationships of nurses undertaking a mentorship qualification, using the novel technique of constellation development to determine the nature of workplace support for this group. Semi-structured interviews were conducted with three recently qualified nurse mentors. All participants developed a mentorship constellation identifying colleagues significant to their own learning in practice. These significant others were also interviewed alongside practice education, and nurse education leads. Constellations were analysed in relation to network size, breadth, strength of relationships, and attributes of individuals. Findings suggest that dyadic forms of supervisory mentorship may not offer the range of skills and attributes that developing mentors require. Redundancy of mentorship attributes within the constellation (overlapping attributes between members) may counteract problems caused when one mentor attempts to fulfil all mentorship roles. Wider nursing teams are well placed to provide the support and supervision required by mentors in training. Where wider and stronger networks were not available to mentorship students, mentorship learning was at risk. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
An integrated hyperspectral and SAR satellite constellation for environment monitoring
NASA Astrophysics Data System (ADS)
Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo
2017-09-01
A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.
Global Earth Outgoing Radiation From A Constellation Of Satellites: Proof-Of-Concept Study
NASA Astrophysics Data System (ADS)
Gristey, J. J.; Chiu, J. Y. C.; Gurney, R. J.; Han, S. C.; Morcrette, C. J.
2017-12-01
The flux of radiation exiting at the top of the atmosphere, referred to as Earth Outgoing Radiation (EOR), constitutes a vital component of the Earth's energy budget. Since EOR is inherently connected to the rapidly evolving scene from which the radiation originates and exhibits large regional variations, it is of paramount importance that we can monitor EOR at a sufficient frequency and spatial scale for weather and climate studies. Achieving these criteria remains challenging using traditional measurement techniques. However, explosive development in small satellite technology and sensor miniaturisation has paved a viable route for measurements to be made from a constellation of satellites in different orbits. This offers an exciting new opportunity to make observations of EOR with both global coverage and high temporal resolution for the first time. To assess the potential of the constellation approach for observing EOR we perform a series of observing system simulation experiments. We will outline a baseline constellation configuration capable of sampling the Earth with unprecedented temporal resolution. Using this configuration and a sophisticated deconvolution technique, we demonstrate how to recover synoptic-scale global EOR to the accuracy required to understand Earth's global energy budget. Finally, we will reveal the impact of various modifications to the constellation configuration and provide recommendations for the community.
NASA Astrophysics Data System (ADS)
Capo-Lugo, Pedro A.
Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.
NASA Astrophysics Data System (ADS)
Gupta, Om Prakash; Thoma, Donald; Chaloner, Chris; Russell, Jacqueline; Simpson, Bill; Spilling, David; Morris, Nigel; Caldwell, Martin; Oneill, Alan
The WMO called for "bringing new missions to operational status" and that "ERB should be measured through a constellation of sensors". A unique opportu-nity exists to host a set of Earth Radiation Budget (ERB) sensors on the Iridium NEXT (NEXT) LEO constellation in a cost effective manner that can deliver these requirements. The NEXT constellation, with 66 interconnected satellites in 6 near polar orbiting planes, provides a unique platform for hosting a variety of Earth observation missions including ERB. Launches are planned to begin in 2014 through 2016. The ERB both drives and responds to global climate and monitoring it can provide much insight into the climate system and how it might be changing. A climate quality measurement of the ERB requires high absolute accuracy and excellent stability and a long-term (decades) data record in order to inform the debate about global warming. Measurement of the ERB in terms of the broadband reflected solar (0.3 to 4 µm) and emitted thermal (4 to 200 µm) components have been identified as high priority by the WMO for climate observations. High temporal resolution is the key advantage offered by the NEXT platform and can provide a great step forward in accurately monitoring the energy balance of the planet. The sensor we propose will consist of a broad band instrument and associated imager for scene identification and cloud classification. There is the chance to place two such sensors in each of six different orbital planes this will improve the product refresh time from currently 12 hours to 3 hours. The increased temporal resolution will allow direct measure-ment of the changes to the broadband radiances that result from rapidly varying components of the climate such as cloud and aerosol, and avoid the need of relying on narrow band sensors to infer such changes. Considering that the prediction of cloud response to climate change is still a major source of uncertainty; improved measurement of the cloud effect and possible changes in this quantity are of particular interest. This proposed configuration of twelve ERB sensors on NEXT has been analyzed in a detailed study by this team and demonstrated to have compatibility with proposed NEXT satellites. This study has also demonstrated the following: 1. Full globe coverage, including the poles, and 3 hourly temporal resolution even at the equator 2. Spatial coverage with a swath of each sensor of 1000 km and resolution of 10 km at nadir 3. LEO orbits which are not sun-synchronous so aliasing effects, which are always a concern with single sensors in sun-synchronous orbits, are no longer of concern 4. Twelve sensors in orbit simultaneously, with frequent near-coincidences at high latitudes, so cross-calibration will become a normal part of the system operation. Cross-calibration will also be possible against current sensors such as CERES in LEO and GERB in GEO and offers the possibly of combined products with the sensors. 5. The data stream will be in real-time via the NEXT communications network 6. System robustness is assured since loss of a sensor or satellite is not mission critical 7. Low risk and short lead times because heritage sensors are to be deployed 8. Low chance of launch delays or mission creep, since timing is crucial to the Iridium's business 9. Planned long constellation design life reduces long term cost and continuity problems 10. Near-certain continuity missions as follow-on constellations are part of the host's business plans 11. A move to truly operational observations using real, rather than virtual, constellation 12. A significantly lower cost alternative to traditional methods for collecting this data.
Orion Post-Landing Crew Thermal Control Modeling and Analysis Results
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Bue, Grant; Rains, George E.
2009-01-01
In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
NASA Technical Reports Server (NTRS)
Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich
1995-01-01
The results of an airborne measurement campaign aimed at the characterization of the mobile satellite link are presented in this paper. The experimental tests were carried out at 1.8 GHz. The objective of the campaign was to obtain results applicable to all proposed satellite constellations: LEO, HEO, and GEO. Therefore, the measurements were performed for elevation angles from 10 deg...80 deg using a light aircraft. A set of different environments and operational scenarios have been investigated, typically for hand-held and car-mounted applications. We present a survey of wide- and narrowband results for a wide range of elevation angles and environments. For the wideband characterization, the power delay profiles of the channel impulse response are presented and discussed. Figures for the delay spread versus elevation and for the carrier-to-multipath ratio versus time are also given. The narrowband behaviour of the channel is described by power series.
Analysis of Water Surplus at the Lunar Outpost
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.
2010-01-01
This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.
In Vogue: North American and British representations of women smokers in Vogue, 1920s-1960s.
Warsh, Cheryl Krasnick; Tinkler, Penny
2007-01-01
The image of a cigarette in a woman's hand symbolizes independence, non-conformity and personal power, despite widespread awareness that smoking has serious health risks. Through a content analysis of North American and British editions of Vogue, we trace the representation of women smokers from the 1920s-1960s. Vogue located the cigarette within the culture of the feminine elite. We explore the place of cigarette smoking within the constellation of behaviours and appearances presented as desirable characteristics of elitism, through the themes of lifestyle, "the look," and feminine confidence. We chart these themes' transformations over time and national contexts.
NASA Planning for Orion Multi-Purpose Crew Vehicle Ground Operations
NASA Technical Reports Server (NTRS)
Letchworth, Gary; Schlierf, Roland
2011-01-01
The NASA Orion Ground Processing Team was originally formed by the Kennedy Space Center (KSC) Constellation (Cx) Project Office's Orion Division to define, refine and mature pre-launch and post-landing ground operations for the Orion human spacecraft. The multidisciplined KSC Orion team consisted of KSC civil servant, SAIC, Productivity Apex, Inc. and Boeing-CAPPS engineers, project managers and safety engineers, as well as engineers from Constellation's Orion Project and Lockheed Martin Orion Prime contractor. The team evaluated the Orion design configurations as the spacecraft concept matured between Systems Design Review (SDR), Systems Requirement Review (SRR) and Preliminary Design Review (PDR). The team functionally decomposed prelaunch and post-landing steps at three levels' of detail, or tiers, beginning with functional flow block diagrams (FFBDs). The third tier FFBDs were used to build logic networks and nominal timelines. Orion ground support equipment (GSE) was identified and mapped to each step. This information was subsequently used in developing lower level operations steps in a Ground Operations Planning Document PDR product. Subject matter experts for each spacecraft and GSE subsystem were used to define 5th - 95th percentile processing times for each FFBD step, using the Delphi Method. Discrete event simulations used this information and the logic network to provide processing timeline confidence intervals for launch rate assessments. The team also used the capabilities of the KSC Visualization Lab, the FFBDs and knowledge of the spacecraft, GSE and facilities to build visualizations of Orion pre-launch and postlanding processing at KSC. Visualizations were a powerful tool for communicating planned operations within the KSC community (i.e., Ground Systems design team), and externally to the Orion Project, Lockheed Martin spacecraft designers and other Constellation Program stakeholders during the SRR to PDR timeframe. Other operations planning tools included Kaizen/Lean events, mockups and human factors analysis. The majority of products developed by this team are applicable as KSC prepares 21st Century Ground Systems for the Orion Multi-Purpose Crew Vehicle and Space Launch System.
NASA Technical Reports Server (NTRS)
Olsen, R. C.; Thompson, G. C.
1989-01-01
A practical operational system for communicating with submarines located at high latitudes, particularly those under the ice cap, is described. A 10-20-km dipole is deployed which utilized tether technology and which operated at 1-3 kHz. A pair of hollow-cathode-based plasma sources, establishing contact between the ends of the tether system and the ambient plasma, allows utilization of the natural dynamo effect of the tether. It is suggested that a 12-satellite constellation in quasi-polar orbit at 500-1000 km altitude could provide coverage for a 4 million sq km area at 75 percent duty cycle.
β Lup, δ Lup, and τ^1 Lup observed by BRITE-Constellation
NASA Astrophysics Data System (ADS)
Cugier, H.; Pigulski, A.
2017-09-01
Time-series analysis of BRITE-Constellation photometry of β Lup, δ Lup and τ^1 Lup revealed 16, 22 and four pulsation modes, respectively. An attempt to constrain internal structure of these stars via seismic modelling was also made.
JPRS Report, Science & Technology, USSR: Space
1988-02-26
data on short-wave length radiation of galaxies. Areas in the constellations Puppis and Andromeda have been selected as objects of observations...the days just past, and photographing of individual sections of the constellation Triangulum and the Andromeda Nebula is planned for today. Both
[The therapeutics of Paracelsus with reference to natural philosophy, alchemy and psychology].
Schott, H
1993-01-01
The controversial reception of Paracelsus is still going on. The crucial question is whether he is a man of the Middle Ages or of modern times. It is not possible to give a simple answer. We have to study the writings of Paracelsus within the scientific and cultural context of the Renaissance. This period is characterized by a new concept of natural philosophy. The theory of signature tries to read or translate certain constellations within the natural environment as a secret code. The idea of a sympathetic correspondence between natural bodies or substances implies the possibility of magical healing. A wellknown example is the preparation of the 'weapon salve'. There are two realities of spiritual powers at the same time: demons from the outside of the human body and powers of the mind from its inside which influence the body functions. The natural philosophy of the Renaissance tries to 'naturalize' the demons as a complement of matter. Paracelsus reflects the ideas of his time. The human being has got two bodies: a visible one which belongs to earth and an invisible one which belongs to heaven. The 'philosopher' as a pharmacist and a doctor has to detect the invisible body corresponding with the celestial world (stars, planets) by analysing the manifest astrological signs. The alchemical preparation of remedies has to purify the specific healing substances ('arcana') from the crude material. The pharmacist and doctor just imitates artificially the quasi alchemical metabolic process of nature itself continuing and finishing it. Paracelsus' concept of imagination ('imaginatio') implies a psychosomatic model how far spiritual powers can influence the body functions. Paracelsus stresses radically the importance of suggestions as a source of illness. The synchronical concepts are confusing today. Knowledge and superstition, scientific rationality and irrational speculations come together and can hardly be separated. Nevertheless, at the end of the 20th century we may have more mental relations to this scenario than we are able to realize it at the moment.
GPM Mission, its Scientific Agenda, and its Ground Validation Program
NASA Technical Reports Server (NTRS)
Smith Eric A.
2004-01-01
The GPM mission is currently planned for start in the late 2010 time frame. From the perspective of NASA s Earth Science Enterprise (ESE) and within the framework of ESE's global water and energy cycle (GWEC) research program, its main scientific goal is to help answer pressing scientific problems concerning how global and regional water cycle processes and precipitation fluctuations and trends influence the variability intrinsic to climate, weather, and hydrology. These problems cut across a hierarchy of space-time scales and include improving understanding of climate-water cycle interactions, developing better techniques for incorporating satellite precipitation measurements into weather and climate predictions, and demonstrating that more accurate, more complete, and better sampled observations of precipitation and other water budget variables used as inputs can improve the ability of prognostic hydrometeorological models in the prediction of hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource stores. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar (DPR) and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination (GMI). The other constellation members will include a combination of new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of calibration-quality rainrates, plus cloud-precipitation microphysical processes, to be used in conjunction with more basic rain retrievals from the other constellation satellites to ensure bias-free constellation coverage.
Aquarius-Pisces Constellation Boundary Update
NASA Astrophysics Data System (ADS)
Durst, Steve
2017-06-01
Observation, mapping and study of Galaxy Stars has provided humanity direction, foundation, clarity and understanding through the ages.Human civilization advances itself using increasing intelligence and knowledge to develop tools and know how, the science of constellation star maps included: All that has been created by humanity, is to serve humanity.When people continue to use constellation star maps that no longer serve people effectively, the maps are updated, as is now the Aquarius-Pisces Constellation Boundary Update (APCBU), which marks 2000 as the year the Sun is in Aquarius at the vernal equinox.The 21st Century APCBU accounts for and incorporates science factors of precession, relativity and galacticity for professional astronomers, and social imperatives of increasing freedom, liberation and egalitarian culture for the 7.5 billion people of Earth.Twenty years into this first century of a new millennium and a new age is an effective time for an APCBU of such elegant simplicity that it changes less than 0.1% of the area of the IAU 1930 official constellation map, which marks 2597 about the year the Sun is in Aquarius at the time of the vernal equinox.The 21st Century APCBU results provide clarity and direction for humanity's next 2,000 years, if not 10,000 or 12,000 years, and advance the official astronomy / science start of the Aquarius Age -- long anticipated, desired, and imperative, especially in America -- by some 600 years.How much attention is increasingly focused on this region of the sky -- such as the recent discovery of 7 Earth-like worlds orbiting the Trappist-1 star in the Aquarius constellation -- will be an epochal 21st Century phenomenon of human science, society, and starlife.
Human Systems Integration in Practice: Constellation Lessons Learned
NASA Technical Reports Server (NTRS)
Zumbado, Jennifer Rochlis
2012-01-01
NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.
Small Satellite Constellations for Geospace Sciences
NASA Astrophysics Data System (ADS)
Spence, H. E.
2016-12-01
The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific return with comparatively low investments in small satellite missions.
Constellation Program Life-cycle Cost Analysis Model (LCAM)
NASA Technical Reports Server (NTRS)
Prince, Andy; Rose, Heidi; Wood, James
2008-01-01
The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.
Commanding Constellations (Pipeline Architecture)
NASA Technical Reports Server (NTRS)
Ray, Tim; Condron, Jeff
2003-01-01
Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
Government and Governance of Regional Triple Helix Interactions
ERIC Educational Resources Information Center
Danson, Mike; Todeva, Emanuela
2016-01-01
This conceptual paper contributes to the discussion of the role of regional government and regional Triple Helix constellations driving economic development and growth within regional boundaries. The impact of regionalism and subsidiarity on regional Triple Helix constellations, and the questions of governmentality, governance and institutional…
EOS Terra Terra Constellation Exit/Future Maneuver Plans Update
NASA Technical Reports Server (NTRS)
Mantziaras, Dimitrios
2016-01-01
This EOS Terra Constellation Exit/Future Maneuver Plans Update presentation will discuss brief history of Terra EOM work; lifetime fuel estimates; baseline vs. proposed plan origin; resultant exit orbit; baseline vs. proposed exit plan; long term orbit altitude; revised lifetime proposal and fallback options.
The Base 32 Method: An Improved Method for Coding Sibling Constellations.
ERIC Educational Resources Information Center
Perfetti, Lawrence J. Carpenter
1990-01-01
Offers new sibling constellation coding method (Base 32) for genograms using binary and base 32 numbers that saves considerable microcomputer memory. Points out that new method will result in greater ability to store and analyze larger amounts of family data. (Author/CM)
Analysis of a Constellation Lab Cooperative Learning Activity
NASA Astrophysics Data System (ADS)
Gauthier, A. J.
2001-12-01
A cooperative learning activity was designed for use in the undergraduate laboratory course Introduction to Astronomical Observation. This group exercise enhances the student's learning of constellations and will hopefully increase retention of the material throughout the semester. It also serves as an "ice-breaker" during the first week of lab, promoting student involvement and vested interest in the course. To gain some insight into the student mind, a survey was conducted to evaluate the usefulness and overall opinion of this method. The students who completed the survey had previously been enrolled in a pre-requisite astronomy course that also required a constellation lab. In this previous course they "learned" the constellations from an instructor and a flashlight beam, studied them on their own, and then promptly took a quiz. Both methods are analyzed from an instructional designer's point of view and suggestions for future activities are presented. The preliminary results and accompanying activity will be discussed in poster and hand-out medium.
Learning Curve for Teaching Constellations in a Planetarium
NASA Astrophysics Data System (ADS)
Hintz, Eric G.; Smith, N.; Moody, J. W.; Stephens, D. C.; Joner, M. D.; Hintz, M.; Lawler, J.; Jones, M.; Bench, N.
2014-01-01
As part of a larger project we have examined how students learn constellations in a planetarium environment. Students in our introductory descriptive astronomy class were given a 50 object quiz before any instruction. This quiz includes 30 constellations, 17 bright stars, two star clusters, and the Orion Nebula. In addition we gathered a small set of demographic information. After the initial quiz we tracked student scores through the semester to see how long it took for them to learn all 50 objects. We also plan to give a follow-up constellation quiz to students who have previously taken the quiz to test for retention. This will cover a time line for 6 months up to 4 years. We will present our early results from this study. This data will also be used as a baseline for a study of Head Mounted Displays to teach a deaf audience in a planetarium. This work is partially supported by funding from the National Science Foundation grant IIS-1124548 and the Sorenson Foundation.
Imaging sensor constellation for tomographic chemical cloud mapping.
Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J
2009-04-01
A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.
Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations
NASA Astrophysics Data System (ADS)
Hitomi, N.; Selva, D.; Blackwell, W. J.
2014-12-01
MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can better satisfy stakeholder needs compared to the PATH mission. Well-architected constellations have increased coverage, improved horizontal resolution from lower orbits, and improved temporal resolution. Furthermore, this improved performance can be achieved at a lower cost than what is estimated for the PATH mission.
Small satellite space operations
NASA Technical Reports Server (NTRS)
Reiss, Keith
1994-01-01
CTA Space Systems has played a premier role in the development of the 'lightsat' programs of the 80's and 90's. The high costs and development times associated with conventional LEO satellite design, fabrication, launch, and operations continue to motivate the development of new methodologies, techniques, and generally low cost and less stringently regulated satellites. These spacecraft employ low power 'lightsat' communications (versus TDRSS for NASA's LEO's) and typically fly missions with payload/experiment suites that can succeed, for example, without heavily redundant backup systems and large infrastructures of personnel and ground support systems. Such small yet adaptable satellites are also typified by their very short contract-to-launch times (often one to two years). This paper reflects several of the methodologies and perspectives of our successful involvement in these innovative programs and suggests how they might relieve NASA's mounting pressures to reduce the cost of both the spacecraft and their companion mission operations. It focuses on the use of adaptable, sufficiently powerful yet inexpensive PC-based ground systems for wide ranging user terminal (UT) applications and master control facilities for mission operations. These systems proved themselves in successfully controlling more than two dozen USAF, USN, and ARPA satellites at CTA/SS. UT versions have linked with both GEO and LEO satellites and functioned autonomously in relay roles often in remote parts of the world. LEO applications particularly illustrate the efficacy of these concepts since a user can easily mount a lightweight antenna, usually an omni or helix with light duty rotors and PC-based drivers. A few feet of coax connected to a small transceiver module (the size of a small PC) and a serial line to an associated PC establishes a communications link and together with the PC constitute a viable ground station. Applications included geomagnetic mapping; spaceborne solid state recorder validation; global store-and-forward data communications for both scientific and military purposes such as Desert Storm; UHF transponder services for both digital data and voice using a constellation; remote sensor monitoring of weather and oceanographic conditions; classified payloads; and UHF spectrum surveillance. Ground processing has been accomplished by automatic unattended or manual operation. Management of multiple assets highlights the relative ease with which two constellations totaling nine satellites were controlled from one system including constellation station keeping. Our experience in small end-to-end systems including concurrent design, development, and testing of the flight and operational ground systems offers low cost approaches to NASA scientific satellite operations of the 1990's.
Böttrich, Marcel; Tanskanen, Jarno M A; Hyttinen, Jari A K
2017-06-26
Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. We propose the application of electromagnetic lead field theory and reciprocity for MEA design and measurement result interpretation. Further, we simulated impedance spectroscopy (IS) with two- and four-electrode setups and a biological cell to illustrate the tool in the assessment of the capabilities of given MEA electrode constellations for detecting cells on or in the vicinity of the microelectrodes. The results show the power of the lead field theory in electromagnetic simulations of cell-microelectrode systems depicting the fundamental differences of two- and four-electrode IS measurement configurations to detect cells. Accordingly, the use in MEA system design is demonstrated by assessing the differences between the two- and four-electrode IS configurations. Further, our results show how cells affect the lead fields in these MEA system, and how we can utilize the differences of the two- and four-electrode setups in cell detection. The COMSOL simulator model is provided freely in public domain as open source. Lead field theory can be successfully applied in MEA design for the IS based assessment of biological cells providing the necessary visualization and insight for MEA design. The proposed method is expected to enhance the design and usability of automated cell and tissue manipulation systems required for bioreactors, which are intended for the automated production of cell and tissue grafts for medical purposes. MEA systems are also intended for toxicology to assess the effects of chemicals on living cells. Our results demonstrate that lead field concept is expected to enhance also the development of such methods and devices.
[Appearance of psychopathic tendencies among children and adolescents].
Pataky, Nóra; Körmendi, Attila
2010-01-01
There has been a growing body of researches about psychopathic tendencies appearing among children and adolescents. First generation studies differentiated psychopathic constellation from conduct problems in childhood and pointed out that the presence of these traits predict unpleasant therapeutic prognosis and is partly independent from quality of parenting. The factor structure of constellation is similar to the factor structure of adult psychopaths. Surveying the structure became clear that C/U traits are the core of the child and adolescent psychopathic constellation. This paper summarize results of empirical studies connected to C/U traits among children and adolescents. We introduce debatable questions about child and adolescent psychopathic traits and connected empirical studies.
Small Satellite Constellations: The Future for Operational Earth Observation
NASA Technical Reports Server (NTRS)
Stephens, J. Paul
2007-01-01
Nanosat, microsat and minisat are low-cost, rapid-response small-satellites built from advanced terrestrial technology. SSTL delivers the benefits of affordable access to space through low-cost, rapid response, small satellites designed and built with state-of-the-art COTS technologies by: a) reducing the cost of entry into space; b) Achieving more missions within fixed budgets; c) making constellations and formation flying financially viable; d) responding rapidly from initial concept to orbital operation; and e) bringing the latest industrial COTS component advances to space. Growth has been stimulated in constellations for high temporal revisit&persistent monitoring and military responsive space assets.
NASA Technical Reports Server (NTRS)
Jennings, Mallory A.; Paul, Heather L.; Waguespack, Glenn M.
2010-01-01
This presentation summarized the results of a trade study that evaluated whether trace contaminant control within the Constellation Spacesuit PLSS could be achieved without a Trace Contaminant Control System (TCCS) by relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Mallory Jennings and Dr. Glenn Waguespack studied trace contaminant generation rates to verify that values reflected the latest designs for Constellation spacesuit system pressure garment materials and PLSS hardware. They also calculated TCCS sizing and conducted a literature survey to review the latest developments in trace contaminant technologies.
Leo Satellite Communication through a LEO Constellation using TCP/IP Over ATM
NASA Technical Reports Server (NTRS)
Foore, Lawrence R.; Konangi, Vijay K.; Wallett, Thomas M.
1999-01-01
The simulated performance characteristics for communication between a terrestrial client and a Low Earth Orbit (LEO) satellite server are presented. The client and server nodes consist of a Transmission Control Protocol /Internet Protocol (TCP/IP) over ATM configuration. The ATM cells from the client or the server are transmitted to a gateway, packaged with some header information and transferred to a commercial LEO satellite constellation. These cells are then routed through the constellation to a gateway on the globe that allows the client/server communication to take place. Unspecified Bit Rate (UBR) is specified as the quality of service (QoS). Various data rates are considered.
ERIC Educational Resources Information Center
Felsager, Bjorn
2001-01-01
Describes a mathematics and science project designed to help students gain some familiarity with constellations and trigonometry by using the TI-83 calculator as a tool. Specific constellations such as the Big Dipper (Plough) and other sets of stars are located using stereographic projection and graphed using scatterplots. (MM)
Connect the Dots and Pinhole Constellations.
ERIC Educational Resources Information Center
Kominski, John
1991-01-01
Identifies a variety of methods to introduce constellations and asterisms to students in the classroom and planetarium prior to their study of the night sky. Materials used include transparencies, oatmeal boxes, photographic slides, and tracing paper. Exercises incorporate storytelling and prediction of location, movement, and seasonal patterns of…
Relationships between Social Cognition and Sibling Constellations.
ERIC Educational Resources Information Center
Goebel, Barbara L.
1985-01-01
First and second born college students (N=178) responded to measures of four social cognition factors. Multivariate analysis of variance identified relationships of social cognition factors with five sibling constellation components: subject's sex, subject's birth order (first or second), adjacent first or second born sibling's sex, spacing…
2006-06-04
Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
2006-06-04
NASA Administrator Michael Griffin addresses NASA employees and members of the media about the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration during a NASA Update on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Weaver, Kim; Wanjek, Christopher
2004-01-01
This document provides an overview of the Contellation X-Ray Observatory and its mission. The observatory consists of four x-ray telescopes borne on a satellite constellation at the Earth-Sun L2 point.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.
2014-12-01
The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.
a Study of Sasin-Animal Sky Map on Chonmunryucho
NASA Astrophysics Data System (ADS)
Yang, Hong-Jin; Park, Myeong-Gu
2003-03-01
Chon-Mun-Ryu-Cho, written (edited) by Lee Sun-Ji during the period of King Se-Jong, is a representative astronomy book of Cho-Sun (A.D. 1392 -1910) Dynasty. We find and study in the first page of the book; the description of 28 oriental constellations as a Sasin (four mythical oriental animals)-animal sky map which is not widely known yet. The map consists of four groups of constellations, each of which represents the Sasin: Chang-Ryong (dragon), Baek-Ho (tigers with Ki-Rin [Oriental giraffe]), Ju-Jak (Chinese phoenix), Hyun-Mu (a tortoise interwined with a snake). Each group (animals) spans 2˜7 of 28 oriental constellations As we know from the illustration of the Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do a representative sky map of Cho-Sun Dynasty, astronomy in Cho-Sun Dynasty is closely related to that in Go-Gu-Ryer (B.C. 37 -A.D. 668) Dynasty. Since these Sasin-animals appear in most mural paintings of Go-Gu-Ryer tombs, visualization of sky with these animal constellations could have been established as early as in Go-Gu-Ryer Dynasty. We also reconstruct this ''A Sasin-animal Korean sky map'' based on the shapes of the Sasin and Ki-Rin from Go-Gu-Ryer paintings and 28 oriental constellations in Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do.
Regional positioning using a low Earth orbit satellite constellation
NASA Astrophysics Data System (ADS)
Shtark, Tomer; Gurfil, Pini
2018-02-01
Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.
Implementation of a Collision Probability Prediction Technique for Constellation Maneuver Planning
NASA Technical Reports Server (NTRS)
Concha, Marco a.
2007-01-01
On March 22, 2006, the Space Technology 5 (ST5) constellation spacecraft were successfully delivered to orbit by a Pegasus XI, launch vehicle. An unexpected relative motion experienced by the constellation after orbit insertion brought about a problem. Soon after launch the observed relative position of the inert rocket body was between the leading and the middle spacecraft within the constellation. The successful planning and execution of an orbit maneuver that would create a fly-by of the rocket body was required to establish the.formation. This maneuver would create a close approach that needed to conform to predefined collision probability requirements. On April 21, 2006, the ST5 "155" spacecraft performed a large orbit maneuver and successfully passed the inert Pegasus 3rd Stage Rocket Body on April 30, 2006 15:20 UTC at a distance of 2.55 km with a Probability of Collision of less than 1.0E-06. This paper will outline the technique that was implemented to establish the safe planning and execution of the fly-by maneuver. The method makes use of Gaussian distribution models of state covariance to determine underlying probabilities of collision that arise under low velocity encounters. Specific numerical examples used for this analysis are discussed in detail. The mechanics of this technique are explained to foster deeper understanding of the concepts presented and to improve existing processes for use in future constellation maneuver planning.
Assessing Terra Disposal Orbit Candidates from an Orbital Debris Perspective
NASA Technical Reports Server (NTRS)
Abraham, Andrew J.; Thompson, Roger C.; Mantziaras, Dimitrios C.
2016-01-01
The NASA Terra satellite is reaching the end of its mission life. Because the satellite resides in the 705 km Earth Science Constellation, disposal strategies need to be considered to remove it from this densely populated operational orbit. Of critical importance was the need to examine the future potential risk to other satellite residents of the 705 km constellation due to an unexpected breakup event of the Terra satellite post-disposal. This study quantifies the comparative risk of debris impacts associated with the two leading candidate disposal orbits (701 km vs. 686 km) and characterizes the suitability of each orbit for the purpose of long-term spacecraft disposal. The increase in collision risk to any member of the 705 km Earth Science Constellation is very modest. The long-term, average, total risk (including the ambient background risk) due to a Terra breakup at a disposal of -19 km (i.e., 686 km) relative to the 705 km constellation is 9.7 × 10(exp -6) impacts/day versus 1.0 × 10(exp -5) impacts/day for a disposal of only -4 km (i.e., 701 km). For perspective, note that the nominal space background risk to the 705 km constellation is 9.2 × 10(exp -6) impacts/day which implies a very modest increase in risk (approximately 3% difference between the two cases) due to a Terra breakup in either disposal orbit.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
Low Power Ground-Based Laser Illumination for Electric Propulsion Applications
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.; Oleson, Steven R.
1994-01-01
A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.
Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith
2009-01-01
The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full
Lovallo, William R.
2012-01-01
Altered reactivity to stress, either in the direction of exaggerated reactivity or diminished reactivity, may signal a dysregulation of systems intended to maintain homeostasis and a state of good health. Evidence has accumulated that diminished reactivity to psychosocial stress may signal poor health outcomes. One source of diminished cortisol and autonomic reactivity is the experience of adverse rearing during childhood and adolescence. The Oklahoma Family Health Patterns Project has examined a cohort of 426 healthy young adults with and without a family history of alcoholism. Regardless of family history, persons who had experienced high degrees of adversity prior to age 16 had a constellation of changes including reduced cortisol and heart rate reactivity, diminished cognitive capacity, and unstable regulation of affect, leading to behavioral impulsivity and antisocial tendencies. We present a model whereby this constellation of physiological, cognitive, and affective tendencies is consistent with altered central dopaminergic activity leading to changes in brain function that may foster impulsive and risky behaviors. These in turn may promote greater use of alcohol other drugs along with adopting poor health behaviors. This model provides a pathway from early life adversity to low stress reactivity that forms a basis for risky behaviors and poor health outcomes. PMID:23085387
Low Cost Micro-Mini-Satellite Remote Sensing Capabilities: in-Orbit Results &Imminent Missions
NASA Astrophysics Data System (ADS)
Stephens, Paul; Sun, Wei; Sweeting, Martin, , Sir
Micro- and mini-satellites are in the process or revolutionising the economics of Earth observation. This will jointly affect the space super-powers who have, since the dawn of the space age, enjoyed an effective monopoly of Earth observation from the high vantage-point of space and also the commercial provision of EO data to value added information producers. The monopoly has been due to the enormous cost hitherto required to build, launch and operate EO satellites. SSTL (UK) has pioneered the development of successful micro and mini-satellites which have demonstrated highly capable Earth Observation functions at a mission cost at least an order of magnitude less than conventional such missions. This dramatic development has brought independent ownership of Earth observation satellites within the affordable reach of every developing nation and even medium-sized commercial concerns. Indeed, the performance of these tiny satellites now exceeds the capability of many of the civil EO satellites in operation only 5 years ago. In 2002, SSTL will launch the first satellite in a constellation that will deliver the first routine 24-hour revisit EO data released into the commercial marketplace. This paper describes the in-orbit EO image data produced by typical micro and minisatellites including the latest imagery from the UoSAT-12 mini satellite launched in April 1999 which carries a 32-metre ground sampling distance multispectral imager and a 10-metre GSD panchromatic camera. In addition, data is presented from the TiungSat-1 and Tsinghua-1 microsatellites launched in 2000, and AlSat-1 (launch scheduled in September 2002). AlSat-1 carries a unique imaging system designed as part of the innovative Disaster Monitoring Constellation providing 32-metre GSD multispectral images with a 600km swath width - together with its five companion microsatellites, the Disaster Monitoring Constellation can provide daily revisit imaging world-wide from orbit. The paper also describes the latest advances in imaging using two new low cost small satellites being built at Surrey. The commercial RapidEye constellation of 4-6 microsatellites is designed to provide daily imaging at 6.5-metre GSD in 6 spectral band over Europe for precision farming applications. At a higher resolution, TopSat is a pilot mission for the UK Ministry of Defence carrying a 2.5-metre GSD panchromatic camera on a highly agile microsatellite, designed to deliver images direct to mobile groundstations in the field.
Development of a Cryogen-Free Continuous ADR for the Constellation-X Mission
NASA Technical Reports Server (NTRS)
Shirron, Peter; Canavan, Ed; DiPirro, Michael; Francis, John; Jackson, Michael; Tuttle, James; King, Todd; Grabowski, Matt
2003-01-01
Constellation-X is a multi-satellite x-ray astronomy mission presently being planned for launch in the 2010 time frame. Each of 4 identical satellites will contain a telescope and instruments for imaging and spectroscopic analysis of both hard and soft x-rays. The X- ray Microcalorimeter Spectrometer (XMS) instrument will use arrays of microcalorimeters to detect X-rays with energies from 0.2 to 6 keV. The technologies under development for this instrument include Transition-Edge Sensors (TES) with multiplexed SQUID readouts and NTD-Ge detectors with JFET readouts. Both will be operated at temperatures in the 50-60 mK range and both have a projected cooling power requirement of approximately 5 microwatts. In addition, in order to meet the lifetime requirement of 6 years (with a goal of 10 years), a mechanical cryocooler will be used to provide a heat sink for the low temperature cooler. The required performance is 20 mW at 6 K, with a goal of 4 K operation. In this paper we present the development status of an adiabatic demagnetization refigerator (ADR) that meets the cooling requirements of the X M S instrument. At present we have demonstrated a 4-stage ADR that operates continuously at 50 mK using a 4.2 K helium bath as a heat sink. The cooling power is 21 microwatts at 100 mK and 6 microwatts at 50 mK. Its efficiency when operating at 50 mK is 1 1 % of Carnot (accounting for all dissipation at 4.2 K and below, but not including power dissipation in the room temperature electronics), but this is expected to rise to 25% in the next generation system in which active gas-gap heat switches are replaced with passive devices. This will reduce the peak heat rejection rate of the ADR to less than 7 mW at 6 K. Details of the ADR s design and operation, as well as the development program leading up to a flight-qualified instrument, will be discussed.
NASA Technical Reports Server (NTRS)
Kennedy, Carolyn D.
2007-01-01
This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a test stand for use in testing the J-2X rocket engine at simulated altitude conditions in support of NASA's Constellation Program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of... Independent Spent Fuel Storage Installation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of license..., Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety and Safeguards, U.S...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Cup; abbrev. Crt, gen. Crateris; area 282 sq. deg.) A southern constellation which lies to the south-west of Virgo, and culminates at midnight in mid-March. It represents the cup of the god Apollo in Greek mythology (see Corvus). Its brightest stars were cataloged by Ptolemy (c. AD 100-175) in the Almagest....
2006-06-04
Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Eason, Oliver
Myths and tales from around the world about constellations and facts about stars in the constellations are presented. Most of the stories are from Greek and Roman mythology; however, a few Chinese, Japanese, Polynesian, Arabian, Jewish, and American Indian tales are also included. Following an introduction, myths are presented for the following 32…
The More You Can Get the Better: Mentoring Constellations and Intrinsic Career Success
ERIC Educational Resources Information Center
van Emmerik, I. J. Jetty
2004-01-01
This study focused on the relationship between mentoring constellations and intrinsic career success. Hierarchical regression analyses on the data of 416 female and 594 male university members showed that mentoring was positively associated with intrinsic career success i.e., career satisfaction and intrinsic job satisfaction. Several…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. IN12-7-000] Constellation Energy Commodities Group, Inc.; Notice of Designation of Certain Commission Personnel as Non-Decisional... advisory capacity in the Commission's review of any future filings in the above-referenced docket...
The Constellation-X Mission: Science Prospects and Technology Challenges
NASA Technical Reports Server (NTRS)
Petre, Robert
2007-01-01
This talk will describe the Constellation-X mission. It will present the key scientific goals, relating to strong gravity, dark energy, ultra-dense matter and cosmic structure. The mission configuration will be described. Emphasis will be placed on the design and anticipated implementation of the X-ray mirror system.
ERIC Educational Resources Information Center
Nuttall, Ena Vazquez; And Others
1976-01-01
Family constellation variables such as family size, birth order, spacing of children, and crowding were significantly associated with academic achievement when IQ was controlled. The effects of family constellation variables were found to be sex specific. (RC)
The Family Constellation Scale.
ERIC Educational Resources Information Center
Lemire, David
The Family Constellation Scale (FC Scale) is an instrument that assesses perceived birth order in families. It can be used in counseling to help initiate conversations about various traits and assumptions that tend to characterize first-born, middle-born children, youngest-born, and only children. It provides both counselors and clients insights…
Mission Status for Earth Science Constellation MOWG Meeting at KSC: EOS Aura
NASA Technical Reports Server (NTRS)
Fisher, Dominic
2017-01-01
This will be presented at the Earth Science Constellation Mission Operations Working Group (MOWG) meeting at KSC (Kennedy Space Center) in December 2017 to discus EOS (Earth Observing System) Aura status. Reviewed and approved by Eric Moyer, ESMO (Earth Sciences Mission Operations) Deputy Project Manager.
The Earth Gravitational Observatory (EGO): Nanosat Constellations For Advanced Gravity Mapping
NASA Astrophysics Data System (ADS)
Yunck, T.; Saltman, A.; Bettadpur, S. V.; Nerem, R. S.; Abel, J.
2017-12-01
The trend to nanosats for space-based remote sensing is transforming system architectures: fleets of "cellular" craft scanning Earth with exceptional precision and economy. GeoOptics Inc has been selected by NASA to develop a vision for that transition with an initial focus on advanced gravity field mapping. Building on our spaceborne GNSS technology we introduce innovations that will improve gravity mapping roughly tenfold over previous missions at a fraction of the cost. The power of EGO is realized in its N-satellite form where all satellites in a cluster receive dual-frequency crosslinks from all other satellites, yielding N(N-1)/2 independent measurements. Twelve "cells" thus yield 66 independent links. Because the cells form a 2D arc with spacings ranging from 200 km to 3,000 km, EGO senses a wider range of gravity wavelengths and offers greater geometrical observing strength. The benefits are two-fold: Improved time resolution enables observation of sub-seasonal processes, as from hydro-meteorological phenomena; improved measurement quality enhances all gravity solutions. For the GRACE mission, key limitations arise from such spacecraft factors as long-term accelerometer error, attitude knowledge and thermal stability, which are largely independent from cell to cell. Data from a dozen cells reduces their impact by 3x, by the "root-n" averaging effect. Multi-cell closures improve on this further. The many closure paths among 12 cells provide strong constraints to correct for observed range changes not compatible with a gravity source, including accelerometer errors in measuring non-conservative forces. Perhaps more significantly from a science standpoint, system-level estimates with data from diverse orbits can attack the many scientifically limiting sources of temporal aliasing.
Modeling Ionosphere Environments: Creating an ISS Electron Density Tool
NASA Technical Reports Server (NTRS)
Gurgew, Danielle N.; Minow, Joseph I.
2011-01-01
The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.
Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.
2007-10-02
A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.
Can We Power Future Mars Missions?
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Sturm, Erick J., II; Woolley, Ryan C.; Jordan, James F.
2006-01-01
The Vision for Space Exploration identified the exploration of Mars as one of the key pathways. In response, NASAs Mars Program Office is developing a detailed mission lineup for the next decade that would lead to future explorations. Mission architectures for the next decade include both orbiters and landers. Existing power technologies, which could include solar panels, batteries, radioisotope power systems, and in the future fission power, could support these missions. Second and third decade explorations could target human precursor and human in-situ missions, building on increasingly complex architectures. Some of these could use potential feed forward from earlier Constellation missions to the Moon, discussed in the ESAS study. From a potential Mars Sample Return mission to human missions the complexity of the architectures increases, and with it the delivered mass and power requirements also amplify. The delivered mass at Mars mostly depends on the launch vehicle, while the landed mass might be further limited by EDL technologies, including the aeroshell, parachutes, landing platform, and pinpoint landing. The resulting in-situ mass could be further divided into payload elements and suitable supporting power systems. These power systems can range from tens of watts to multi-kilowatts, influenced by mission type, mission configuration, landing location, mission duration, and season. Regardless, the power system design should match the power needs of these surface assets within a given architecture. Consequently, in this paper we will identify potential needs and bounds of delivered mass and architecture dependent power requirements to surface assets that would enable future in-situ exploration of Mars.
Constellation crew exploration vehicle, or CEV, is being prepare
2007-11-27
In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars.
The New Millennium Program Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.
Strategy for Mitigating Collision Between Landsat-5 and the Afternoon Constellation
NASA Technical Reports Server (NTRS)
Levi, Joshua A.; Palmer, Eric J.
2011-01-01
The NASA Goddard Space Flight Center Earth Science Mission Operations project, the French space agency Centre National d tudes Spatiales, the Argentinian space agency Comisi n Nacional de Actividades Espaciales, and the United States Geological Survey all operate spacecraft in sun-synchronous frozen orbits. The orbits are planned to not place any of the spacecraft at risk of colliding with another. However, evolution of these orbits over time has com-promised the safe interaction between Landsat-5 and the Afternoon Constella-tion. This paper analyzes the interactions between the Landsat-5 spacecraft and the Afternoon Constellation members over a period of 6 years, describing the current risk and plan to mitigate collisions in the future.
Liu, Bo; Zhang, Lijia; Xin, Xiangjun
2018-03-19
This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua's circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.
Attribute and topology based change detection in a constellation of previously detected objects
Paglieroni, David W.; Beer, Reginald N.
2016-01-19
A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.
Coverage and control of constellations of elliptical inclined frozen lunar orbits
NASA Technical Reports Server (NTRS)
Ely, Todd A.
2005-01-01
A great deal of scientific interest exists regarding the permanently shadowed craters near the poles of the Moon where there may be frozen volatiles. These regions, particularly the Moon's South Pole, have been proposed for extensive robotic and human exploration. Unfortunately, they are typically not in view of Earth, and would require some form of communication relay to facilitate exploration via robotic and/or human missions. One solution for such a relay is a long-lived constellation of lunar telecommunication orbiters providing focused coverage at the pole of interest. Robust support requires this coverage to be continuous, redundant, and, in order to minimize costs, this constellation should consist of 3 satellites or fewer.
Restrictive loads powered by separate or by common electrical sources
NASA Technical Reports Server (NTRS)
Appelbaum, J.
1989-01-01
In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.
Improving geomagnetic observatory data in the South Atlantic Anomaly
NASA Astrophysics Data System (ADS)
Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia
2016-04-01
The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.
NASA Technical Reports Server (NTRS)
Stefanski, Philip L.
2015-01-01
Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Moreau, M. C.; Dahle-Melsaether, M. E.; Petrofski, W. P.; Stanton, B. J.; Thomason, S.; Harris, G. A.; Sena, R. P.; Temple, L. Parker, III
2006-01-01
Prior to the advent of artificial satellites, the concept of navigating in space and the desire to understand and validate the laws of planetary and satellite motion dates back centuries. At the initiation of orbital flight in 1957, space navigation was dominated by inertial and groundbased tracking methods, underpinned by the laws of planetary motion. It was early in the 1980s that GPS was first explored as a system useful for refining the position, velocity, and timing (PVT) of other spacecraft equipped with GPS receivers. As a result, an entirely new GPS utility was developed beyond its original purpose of providing PVT services for land, maritime, and air applications. Spacecraft both above and below the GPS constellation now receive the GPS signals, including the signals that spill over the limb of the Earth. The use of radionavigation satellite services for space navigation in High Earth Orbits is in fact a capability unique to GPS. Support to GPS space applications is being studied and planned as an important improvement to GPS. This paper discusses the formalization of PVT services in space as part of an overall GPS improvement effort. It describes the GPS Space Service Volume (SSV) and compares it to the Terrestrial Service Volume (TSV). It also discusses SSV coverage with the current GPS constellation, coverage characteristics as a function of altitude, expected power levels, and coverage figures of merit.
ARES I Upper Stage Subsystems Design and Development
NASA Technical Reports Server (NTRS)
Frate, David T.; Senick, Paul F.; Tolbert, Carol M.
2011-01-01
From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.
Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative
NASA Technical Reports Server (NTRS)
Belov, K.; Ellison, D.; Fraeman, A.
2017-01-01
As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report.
A revolution in Distributed Virtual Globes creation with e-CORCE space program
NASA Astrophysics Data System (ADS)
Antikidis, Jean-Pierre
2010-05-01
Space applications are to-day participating to our everyday life on a continuous fashion and most of the time in an invisible way. Meteorology, telecom and more recently GPS driven applications are these days fully participating to our modern and comfortable way of life. Therefore a new revolution is underway by which Space Remote Sensing technology will bring the full of the Earth available in a digital form. Present requirements for digital Earth creation at high resolution requirement are pushing space technology to a new technological frontier that could be called the: 1 day to one week, 1 meter, 1 Earth, challenge.The e-CORCE vision (e-Constellation d'Observation Recurrente Cellulaire) relies on a complete new avenue to create a full virtual earth with the help of small satellite constellation and make them operated as sensors connected to a powerful internet based ground network. To handle this incredibly high quantity of information (10 000 Billions metric pixel ), maximum use of psycho-visual compression associated to over-simplified platforms considered as space IP nodes and a massive World-wide Grid-based system composed of more than 40 receiving and processing nodes is contemplated. The presentation will introduce the technological hurdles and the way modern upcoming cyber-infrastructure technologies called WAG (Wide Area Grid) may open a practical and economically sound solution to this never attempted challenge.
NASA Astrophysics Data System (ADS)
Gardner, Sara Lee
Astronomical images are found on monumental structures and decorative art, and metaphorically in seasonal myths, and are documented by calendars. In Israel and the southern Levant, images of the sun, the moon, and the stars were common decorating motifs. They were found on walls, pottery, and seals and date to as early as the Chalcolithic period; for example, the wall painting of a star at Teleilat Ghassul (North 1961). This dissertation establishes that the people of the Levant were aware of the apparent movement of the sun, and this will be discussed in Chapter 4. They began recording through representation drawings, astronomical phenomena no later than the Chalcolithic/Early Bronze Age and continued to do so late into the Middle Bronze Age. The argument moves beyond the simple use of symbols to the use of images to represent constellations, with the focus on the constellation Leo in Chapter 5. Furthermore, the use of astronomy as a power and political tool is also suggested in Chapter 6. Nonetheless, the primary purpose that is addressed here is the tendency in Syro-Palestinian archaeology has been to attribute technological evidence found in the northern and southern Levant as diffused from Egypt or Assyria, particularly astronomy. This dissertation firmly establishes that astronomy was used in the southern Levant before any significant contact with the civilizations of Egypt or Assyria.
77 FR 11434 - Safety Zone; Patapsco River, Northwest and Inner Harbors, Baltimore, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... and Historic Shrine in Baltimore, Maryland, and its return. This action will restrict vessel traffic... Historic Shrine, Baltimore, Maryland. After being turned-around, the USS CONSTELLATION will be returned to... of the historic sloop-of-war USS CONSTELLATION on May 25, 2012. This action is necessary to provide...
NASA Technical Reports Server (NTRS)
Killough, Brian D., Jr.
2008-01-01
The CEOS Systems Engineering Office will present a 2007 status report of the CEOS constellation process, present a new systems engineering framework, and analysis results from the GEO Societal Benefit Area (SBA) assessment and the OST constellation requirements assessment.
Origins Rock Art and Calendar in Armenia and Anania Shirakatsi
NASA Astrophysics Data System (ADS)
Tokhatyan, Karen
2014-10-01
A review on the origin of rock art and calendars in Armenia, as well as Anania Shirakatsi's views are given. Astronomy and calendar, formation of the constellations, types of calendars, the Armenian ancient calendar, Armenian Hayk/Orion constellation and corresponding mythological heroes, and further phases of the Armenian calendar are discussed.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
International Earth Science Constellation (ESC) Introduction
NASA Technical Reports Server (NTRS)
Guit, William J.; Machado, Michael J.
2016-01-01
This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.
BRITE nanosatellite serendipitously captures oscillatory rise and fall of ASASSN-18fv
NASA Astrophysics Data System (ADS)
Kuschnig, R.; Pigulski, A.; Moffat, A. F. J.; Matthews, J. M.; Zwintz, K.; Baade, D.; Handler, G.; Weiss, W. W.; Wade, G. A.; Rucinski, S. M.; Pablo, H.; Koudelka, O.; Smolec, R.; Popowicz, A.; Neiner, C.; Daszynska-Daszkiewicz, J.; Lovekin, C.; St-Louis, N.; Pamyatnykh, A. A.; Rowe, J.; Orleanski, P.; Mochnacki, S.; Schwarzenberg-Czerny, A.
2018-04-01
One of the five satellites in BRITE-Constellation (http://www.brite-constellation.at/) was obtaining time-series optical photometry of the star HD 92063, only 2 arcmin from the 'Possible, Very Bright Galactic Nova ASASSN-18fv' reported on 21 March 2018 (2018-03-20.32) by ATel #11454.
78 FR 296 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
... Due: 5 p.m. ET 1/4/13. Docket Numbers: ER12-2178-003; ER10-2172-014; ER11-2016-009; ER10- 2184-014... Solar Ranch 1, LLC, Baltimore Gas and Electric Company, Cassia Gulch Wind Park, CER Generation, LLC, CER Generation II, LLC, Commonwealth Edison Company, Constellation Energy Commodities Group, Inc, Constellation...
Understanding and Implementing the CLT (Communicative Language Teaching) Paradigm
ERIC Educational Resources Information Center
Jacobs, George M.; Farell, Thomas S. C.
2003-01-01
The call to change seems to be a constant in education. In second language education, a constellation of changes have been proposed and, to some extent, implemented. This constellation of interconnected changes can perhaps best be termed a paradigm shift, with this paradigm fitting under the general umbrella of Communicative Language Teaching…
Top Level Summary of Technologies
NASA Technical Reports Server (NTRS)
Craig, Douglas, A.
2009-01-01
This document is a chart that reviews the technology of various NASA projects. Included in the chart is the title, a brief description of the technology, the funding status, a statement of the benefits, the date required, how the element connects to the Constellation project architecture, and how critical the technology is to the Constellation project.
Constellation Lessons Learned Executive Summary
NASA Technical Reports Server (NTRS)
Thomas, L. Dale; Neubek, Deb
2011-01-01
This slide presentation reviews the lessons learned from the Constellation Program (CxP) and identified several factors that contributed to the inability of the CxP to meet the cost and schedule commitments. The review includes a significant section on the context in which the CxP operated since new programs are likely to experience the same constraints.
NASA Astrophysics Data System (ADS)
Masson, A.; Nykyri, K.
2017-12-01
The Cluster and the Themis missions have shed a total new light on the Kelvin-Helmholtz Instability (KHI) mechanism at the magnetopause. To name a few, these missions have enabled the observation of KHI rolled-up vortices, for the first time with four spacecraft (Hasegawa et al., 2004). They revealed its presence under any Interplanetary Magnetic Field (IMF) conditions (Hwang et al., 2011, 2012). They also revealed that their occurence may have been largely underestimated (Kavosi and Raeder, 2015). Very recently, the presence of ion magnetosonic waves with sufficient energy to account for the observed level of ion heating within a KHI vortex may be the first evidence of cross-scale energy transport (Moore et al., 2016). After presenting some the main highlights of Cluster and Themis on this phenomenon, we will present upcoming new observations with MMS, Cluster and Themis in 2017-2020 timeframe. Together, they will form a unique constellation of spacecraft constellations to study this phenomenon for the first time. We will present some of the key scientific questions these new data will enable to tackle.
Science Opportunities Enabled by NASA's Constellation System: Interim Report
NASA Astrophysics Data System (ADS)
Committee On Science Opportunities Enabled By Nasa'S Constellation System, National Research Council
To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.
The Global Positioning System constellation as a space weather monitor
NASA Astrophysics Data System (ADS)
Morley, S.; Henderson, M. G.; Woodroffe, J. R.; Brito, T. V.
2016-12-01
The Global Positioning System (GPS) satellites are distributed across six orbital planes and follow near-circular orbits, with a 12 hour period, at an altitude of approximately 20200 km. The six orbital planes are distributed around the Earth and are nominally inclined at 55 degrees. Energetic particle detectors have been flown on the GPS constellation for more than two decades; by February 2016 there were 23 GPS satellites equipped with energetic particle instrumentation. The Combined X-ray Dosimeter (CXD), which is flown on 21 GPS satellites, has recently been cross-calibrated against electron data from the Van Allen Probes mission, demonstrating its utility for scientific research and radiation environment specification. Recently electron and proton flux data from these instruments, for the month of January 2014, have been publicly released. We will describe the GPS constellation from the perspective of its use as a monitor for space weather, review some of the key scientific results enabled by these instruments and show some recent observations from the constellation, including the 2015 St. Patrick's Day storm. Using data from multiple satellite missions we describe the dynamics of this storm in detail.
Powering Exploration: The Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2008-01-01
The National Aeronautics and Space Administration (NASA)'s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. The Ares Projects continue to make progress toward design, component testing, and early flight testing of the Ares I crew launch vehicle, as well as early design work for Ares V cargo launch vehicle. Ares I and Ares V will form the core space launch capabilities the United States needs to continue its pioneering tradition as a spacefaring nation. This paper will discuss programmatic, design, fabrication, and testing progress toward building these new launch vehicles.
Technical draft study report for TOPEX satellite options study, volume 1
NASA Technical Reports Server (NTRS)
1981-01-01
The use of two spacecraft for adaptation to the TOPEX mission, namely the P80-1 and the GPS phase 2 are considered. The mission involved three mission options, each option varying in payload definition, payload weight, orbital altitude and payload power requirements. The P80-1 spacecraft is an Air Force Space Test Program satellite which carries a number of payloads to an orbital altitude of 400 n.mi. at a minimum inclination of 72.5 deg, and which has an orbital life capability of three years. The GPS phase 2 spacecraft is the operational satellite for the Global Positioning NAVSTAR navigation constellation provided for all service (and commercial) use.
Tinsley, C H
2001-08-01
Individualism, hierarchy, polychronicity, and explicit-contracting values explain why managers from Germany, Japan, and the United States use a different mix of strategies to negotiate workplace conflict. Hypotheses extend prior research in showing that conflict behavior is multiply determined and that each culture uses a variety of interests, regulations, and power-based conflict management strategies. Results of actual (rather than survey-based) conflict resolution behavior suggest several fruitful avenues for future research, including examining the inferred meaning of negotiation arguments, analyzing interaction effects of cultural value dimensions, studying the effectiveness of different strategies across cultures, and examining whether strategic adjustments are made during intercultural conflict management.
NASA Technical Reports Server (NTRS)
Korde-Patel, Asmita (Inventor); Barry, Richard K.; Mohsenin, Tinoosh
2016-01-01
Compressive Sensing is a technique for simultaneous acquisition and compression of data that is sparse or can be made sparse in some domain. It is currently under intense development and has been profitably employed for industrial and medical applications. We here describe the use of this technique for the processing of astronomical data. We outline the procedure as applied to exoplanet gravitational microlensing and analyze measurement results and uncertainty values. We describe implications for on-spacecraft data processing for space observatories. Our findings suggest that application of these techniques may yield significant, enabling benefits especially for power and volume-limited space applications such as miniaturized or micro-constellation satellites.
NASA Astrophysics Data System (ADS)
Gaab, Hans
The first astronomical card game was issued in Nuremberg in 1656. Its author was the lawyer, writer and literary theoretican Georg Philipp Harsdouml;rffer (1607-1658), who is primarily remembered as the inventor of the “Nuremberg funnel”. It is possible that a second card game was issued in the same year, but the sources are ambiguous. After some preliminaries on the history of card games, Harsdörffer's pack of cards is presented. In addition, general remarks about the history of sky maps are given.
Measurements of the hard-x-ray reflectivity of iridium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romaine, S.; Bruni, R.; Gorenstein, P.
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
Measurements of the hard-x-ray reflectivity of iridium.
Romaine, S; Bruni, R; Gorenstein, P; Zhong, Z
2007-01-10
In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.
Autonomous interplanetary constellation design
NASA Astrophysics Data System (ADS)
Chow, Cornelius Channing, II
According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.
VISTA - A Constellation for Real Time Regional Imaging
NASA Astrophysics Data System (ADS)
Meerman, Max; Boland, Lee; da Silva Curiel, Alex; Sweeting, Martin, , Sir
2002-01-01
The role of satellites in medium and high-resolution reconnaissance of the Earth's surface has been well demonstrated in recent years through missions such as Landsat, SPOT, IKONOS, ImageSat and Quickbird. The market for such data products is well served and likely to become more competitive with further very-high-resolution missions. Whereas commercial markets have concentrated on enhancing resolution, the small satellite sector has concentrated on reducing the cost of data products, and the development of systems providing niche services. One such EO requirement that can be well met by smaller satellites is the need for higher temporal resolution, as this typically requires a large number of satellites to operate as a constellation - thus far financially impractical using conventional EO satellites. Surrey is currently engaged in building its first constellation that will provide daily global coverage at moderate resolution (32-metre GSD and 600km swath) in three spectral bands. Targeted at providing timely quick-look data products for disaster mitigation and monitoring, the constellation comprises 7 satellites in a single orbital plane. Each satellite has a wide swath so that successive satellites progressively cover the entire globe in a single day. The Vista constellation takes this concept a step further, and is proposed for applications requiring near-continuous surveillance of regional activity. By introducing a multiple plane constellation of small Earth observation satellites, it is possible to monitor continuously selected regions anywhere on the globe. The paper describes the system trades and outlines the scope of the performance that could be obtained from such a system. A cost model illustrates that the balance between launch and space segment costs must be reached by considering suitable replacement strategies, and that the system is highly sensitive to requirement creep. Finally, it is shown that the use of cost effective, small satellites leads to solutions previously thought to be financially beyond sensible reach.
Micro-satellite constellations for monitoring cryospheric processes and related natural hazards
NASA Astrophysics Data System (ADS)
Kaeaeb, A.; Altena, B.; Mascaro, J.
2016-12-01
Currently, several micro-satellite constellations for earth-observation are planned or under build-up. Here, we assess the potential of the well-advanced Planet satellite constellation for investigating cryospheric processes. In its final stage, the Planet constellation will consist of 150 free-flying micro-satellites in near-polar and ISS orbits. The instruments carry RGB+NIR frame cameras that image the Earth surface in nadir direction with resolutions of 3-5 m, covering 20 x 13 km per image. In its final set-up, the constellation will be able to image the (almost) entire land surface at least once per day, under the limitation of cloud cover. Here, we explore new possibilities for insight into cryospheric processes that this very high repeat cycle combined with high image resolution offer. Based on repeat Planet imagery we derive repeat glacier velocity fields for example glaciers in the northern and southern hemispheres. We find it especially useful to monitor the ice velocities near calving fronts and simultaneously detect changes of the front, pointing to calving events. We also explore deformation fields over creeping mountain permafrost, so-called rockglaciers. As a second, very promising cryospheric application we suggest monitoring of glacier and permafrost related natural hazards. In cases such as temporary lakes, lake outbursts, landslides, rock avalanches, visual information over remote areas and at high frequencies are crucial for hazard assessment, early warning or disaster management. Based on several examples, we demonstrate that massive micro-satellite constellations such Planet's are exactly able to provide this type of information. As a third promising example, we show how such high-repeat optical satellite data are useful to monitor river ice and related jams and flooding. At certain latitudes, the repeat frequency of the data is even high enough to track river ice floes and thus water velocities.
Slaug, Björn; Schilling, Oliver; Iwarsson, Susanne; Carlsson, Gunilla
2015-09-02
Making the built environment accessible for all regardless of functional capacity is an important goal for public health efforts. Considerable impediments to achieving this goal suggest the need for valid measurements of acccessibility and for greater attention to the complexity of person-environment fit issues. To address these needs, this study aimed to provide a methodological platform, useful for further research and instrument development within accessibility research. This was accomplished by the construction of a typology of problematic person-environment fit constellations, utilizing an existing methodology developed to assess and analyze accessibility problems in the built environment. By means of qualitative review and statistical methods we classified the person-environment fit components covered by an existing application which targets housing accessibility: the Housing Enabler (HE) instrument. The International Classification of Functioning, Disability and Health (ICF) was used as a conceptual framework. Qualitative classification principles were based on conceptual similarities and for quantitative analysis of similarities, Principal Component Analysis was carried out. We present a typology of problematic person-environment fit constellations classified along three dimensions: 1) accessibility problem range and severity 2) aspects of functioning 3) environmental context. As a result of the classification of the HE components, 48 typical person-environment fit constellations were recognised. The main contribution of this study is the proposed typology of person-environment fit constellations. The typology provides a methodological platform for the identification and quantification of problematic person-environment fit constellations. Its link to the globally accepted ICF classification system facilitates communication within the scientific and health care practice communities. The typology also highlights how relations between aspects of functioning and physical environmental barriers generate typical accessibility problems, and thereby furnishes a reference point for research oriented to how the built environment may be designed to be supportive for activity, participation and health.
NASA Astrophysics Data System (ADS)
Berg, W. K.
2016-12-01
The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high-temporal resolution global dataset for use in a wide variety of weather and climate research applications.
Frazer, G S; Bucci, D M; Brooks, C L
1996-11-01
One of the problems encountered with two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is the streaking of proteins so that individual spot identification is compromised. This study was conducted to determine whether a low loading dose (50 microg) of protein would permit resolution of more discrete protein spots using megapixel camera technology, and if so, to present a nomenclature for future comparisons of the identified proteins. If the major proteins could be identified in a 50-microg sample we aimed to determine whether they could be identified in the supernatant (seminal plasma plus extender) of cryopreserved semen. Two ejaculates were obtained from each of 6 bulls and bovine seminal plasma (BSP) protein concentration was standardized to 50 microg/10 microl. Isoelectric points (pI) and molecular weights (MWt) of BSP proteins were determined by measuring spot mobility on 2-D PAGE (15% polyacrylamide). Three distinct protein spot constellations (a,b,c) could be readily seen by the naked eye and a faintly stained constellation "d" was identified by the megapixel camera. The image analysis software located 6 protein spots in both constellation "a" (MWt 26 kDa; pI 4.2 to 4.8) and "b" ( MWt 27 kDa; pI 6.6 to 8.0). Constellation "c" contained 13 protein spots distributed in a right-angled triangle with its base towards the acidic end of the gel (MWt 14.7 to 18.8 kDa; pI 5.3 to 7.4). Only spots c(2), c(3), c(5), c(8), and c(13) were present in all 12 samples. Streaking can be eliminated by using 50 microg protein for 2-D PAGE, and the major protein spots are readily identified by megapixel camera technology. Protein spots c(3), c(5), c(13) and constellation "a" appear to correspond with Manjunath's proteins (BSP-A(1), -A(2); -A(3); -30 kDa). Killian's 2 low fertility proteins may lie in the "c" constellation, and 1 of the high fertility proteins may lie in the "b" constellation. The 3 major BSP proteins can be visualized in the supernatant of cryopreserved semen. We believe that the technique may prove useful for retrospective analysis of processed semen batches that achieve less than satisfactory results in the field.
2010-01-01
Background The biological dimensions of genes are manifold. These include genomic properties, (e.g., X/autosomal linkage, recombination) and functional properties (e.g., expression level, tissue specificity). Multiple properties, each generally of subtle influence individually, may affect the evolution of genes or merely be (auto-)correlates. Results of multidimensional analyses may reveal the relative importance of these properties on the evolution of genes, and therefore help evaluate whether these properties should be considered during analyses. While numerous properties are now considered during studies, most work still assumes the stereotypical solitary gene as commonly depicted in textbooks. Here, we investigate the Drosophila melanogaster genome to determine whether deviations from the stereotypical gene architecture correlate with other properties of genes. Results Deviations from the stereotypical gene architecture were classified as the following gene constellations: Overlapping genes were defined as those that overlap in the 5-prime, exonic, or intronic regions. Chromatin co-clustering genes were defined as genes that co-clustered within 20 kb of transcriptional territories. If this scheme is applied the stereotypical gene emerges as a rare occurrence (7.5%), slightly varied schemes yielded between ~1%-50%. Moreover, when following our scheme, paired-overlapping genes and chromatin co-clustering genes accounted for 50.1 and 42.4% of the genes analyzed, respectively. Gene constellation was a correlate of a number of functional and evolutionary properties of genes, but its statistical effect was ~1-2 orders of magnitude lower than the effects of recombination, chromosome linkage and protein function. Analysis of datasets on male reproductive proteins showed these were biased in their representation of gene constellations and evolutionary rate Ka/Ks estimates, but these biases did not overwhelm the biologically meaningful observation of high evolutionary rates of male reproductive genes. Conclusion Given the rarity of the solitary stereotypical gene, and the abundance of gene constellations that deviate from it, the presence of gene constellations, while once thought to be exceptional in large Eukaryote genomes, might have broader relevance to the understanding and study of the genome. However, according to our definition, while gene constellations can be significant correlates of functional properties of genes, they generally are weak correlates of the evolution of genes. Thus, the need for their consideration would depend on the context of studies. PMID:20497561
BASKET on-board software library
NASA Astrophysics Data System (ADS)
Luntzer, Armin; Ottensamer, Roland; Kerschbaum, Franz
2014-07-01
The University of Vienna is a provider of on-board data processing software with focus on data compression, such as used on board the highly successful Herschel/PACS instrument, as well as in the small BRITE-Constellation fleet of cube-sats. Current contributions are made to CHEOPS, SAFARI and PLATO. The effort was taken to review the various functions developed for Herschel and provide a consolidated software library to facilitate the work for future missions. This library is a shopping basket of algorithms. Its contents are separated into four classes: auxiliary functions (e.g. circular buffers), preprocessing functions (e.g. for calibration), lossless data compression (arithmetic or Rice coding) and lossy reduction steps (ramp fitting etc.). The "BASKET" has all functionality that is needed to create an on-board data processing chain. All sources are written in C, supplemented by optimized versions in assembly, targeting popular CPU architectures for space applications. BASKET is open source and constantly growing
NASA Technical Reports Server (NTRS)
Dickey, J. M.
2010-01-01
In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.
ERIC Educational Resources Information Center
Cevik, Ebru Ezberci; Kurnaz, Mehmet Altan
2017-01-01
The purpose of this study is to reveal preservice science teachers' perceptions related to the sun, star, comet and constellation concepts. The research was carried out by 56 preservice science teachers (4th grade) at Kastamonu University taking astronomy course in 2014-2015 academic year. For data collection open-ended questions that required…
ERIC Educational Resources Information Center
Fishman, Joshua A.
On the basis of detailed analyses of 10 threatened language-in-society constellations and three formerly endangered but now secure constellations, this book develops a closely argued theory of worldwide efforts on behalf of reversing language shift (RLS). It also applies this same line of reasoning to the problems of maintaining the…
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Compass; abbrev. Pyx, gen. Pyxidis; area 221 sq. deg.) A southern constellation which lies between Puppis and Antlia, and culminates at midnight in early February. It was introduced as Pyxis Nautica (the Mariner's Compass) by the French astronomer Nicolas L de Lacaille (1713-62), who charted the southern sky in 1751-2, from stars that formed the mast of the ancient constellation of Argo Navi...
Equal-Curvature X-ray Telescope Designs for Constellation-X Mission
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Content, David A.; Zhang, William W.
2003-01-01
We study grazing incidence Equal-Curvature telescope designs for the Constellation-X mission. These telescopes have nearly spherical axial surfaces. The telescopes are designed so that the axial curvature is the same on the primary and secondary. The optical performance of these telescopes is for all practical purposes identical to the equivalent Wolter telescopes.
ERIC Educational Resources Information Center
Brown, Daniel
2013-01-01
Visualizing the three-dimensional distribution of stars within a constellation is highly challenging for both students and educators, but when carried out in an interactive collaborative way, it can create an ideal environment to explore common misconceptions about size and scale within astronomy. We present how the common tabletop activities…
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Scorpion; abbrev. Sco., gen. Scorpii; area 497 sq. deg.) A southern zodiacal constellation which lies between Ophiuchus and Ara, and culminates at midnight in early June. Its origin dates back to Sumerian times, when it was called Girtab, `the stinger', but today it is associated with the scorpion that, in Greek mythology, killed Orion the hunter—and the two constellations lie on opposite sid...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Lyre; abbrev. Lyr, gen. Lyrae; area 286 sq. deg.) A northern constellation which lies between Hercules and Cygnus, and culminates at midnight in early July. It is an ancient constellation pattern, which was associated with an eagle or vulture in the Indian subcontinent and Arab countries, and with the mythical lyre invented by Hermes and given by Apollo to Orpheus in ancient Greece. Its brig...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Sea Goat; abbrev. Cap, gen. Capricorni; area 414 sq. deg.) A southern zodiacal constellation which lies between Sagittarius and Aquarius, and culminates at midnight in early August. The origin of the unusual constellation figure, which comprises the head and forelimbs of a goat and tail of a fish, dates back to Babylonian times and has also been associated in Greek mythology with Pan, who ha...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The star α Lyrae, the only bright star in the constellation. Its name, formerly Wega, derives from the Arabic Al Waki, `the Swooping (or Falling) Eagle', hence the form Alvaka used on some seventeenth century celestial globes. In ancient Greek and Latin writings it sometimes shared the constellation name Lyra, and consequently appears as `the Harp Star' in some later texts. It is the dominant com...
NASA Technical Reports Server (NTRS)
Thorpe, James I.
2009-01-01
An overview of LISA Long-Arm Interferometry is presented. The contents include: 1) LISA Interferometry; 2) Constellation Design; 3) Telescope Design; 4) Constellation Acquisition; 5) Mechanisms; 6) Optical Bench Design; 7) Phase Measurement Subsystem; 8) Phasemeter Demonstration; 9) Time Delay Interferometry; 10) TDI Limitations; 11) Active Frequency Stabilization; 12) Spacecraft Level Stabilization; 13) Arm-Locking; and 14) Embarassment of Riches.
ERIC Educational Resources Information Center
Forsman, Mats; Larsson, Henrik; Andershed, Henrik; Lichtenstein, Paul
2007-01-01
This study tested if persistent externalizing behaviour and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) in childhood are associated with personality and behavioural aspects of the psychopathic personality constellation in adolescence. The target sample consisted of all 1,480 twin pairs born in Sweden between 1985 and 1986.…
A BRITE view on δ Scuti and γ Doradus stars
NASA Astrophysics Data System (ADS)
Zwintz, K.
2017-09-01
BRITE-Constellation has obtained data for a few δ; Scuti and γ Doradus type stars. A short overview of the pulsational content found in five stars - β Cassiopeiae, ɛ Cephei, M Velorum, β Pictoris and QW Puppis - is given and the potential of BRITE-Constellation observations of δ Scuti and γ Doradus pulsators is discussed.
Reach for the Stars: A Constellational Approach to Ethnographies of Elite Schools
ERIC Educational Resources Information Center
Prosser, Howard
2014-01-01
This paper offers a method for examining elite schools in a global setting by appropriating Theodor Adorno's constellational approach. I contend that arranging ideas and themes in a non-deterministic fashion can illuminate the social reality of elite schools. Drawing on my own fieldwork at an elite school in Argentina, I suggest that local and…
ERIC Educational Resources Information Center
Matthews, Nicole L.; Goldberg, Wendy A.
2018-01-01
The two prior studies that have examined associations between the sibling constellation and theory of mind in autism spectrum disorder yielded discrepant findings. Thus, efforts to better understand the sibling-theory of mind link in autism spectrum disorder are necessary. This study examined a sample of prekindergarten- and kindergarten-aged…
Participants' Experiences in Hellinger's Family Constellation Work: A Grounded Theory Study
ERIC Educational Resources Information Center
Georgiadou, Sofia
2012-01-01
As a recently introduced to the U.S. model of intergenerational systemic therapy from Germany, Bert Hellinger's Family Constellation Work (FCW) has very limited research support. Hellinger himself has authored a number of publications referencing hundreds of cases, where he implemented his method to approach a broad array of physical,…
Orion Spacecraft MMOD Protection Design and Assessment
NASA Technical Reports Server (NTRS)
Bohl, W.; Miller, J.; Deighton, K.; Yasensky, J.; Foreman C.; Christiansen, Eric; Hyde, J.; Nahra, H.
2010-01-01
The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Jennings, Mallory A.; Waguespack, Glenn
2010-01-01
The Trace Contaminant Control System (TCCS), located within the ventilation loop of the Constellation Space Suit Portable Life Support System (PLSS), is responsible for removing hazardous trace contaminants from the space suit ventilation flow. This paper summarizes the results of a trade study that evaluated if trace contaminant control could be accomplished without a TCCS, relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Trace contaminant generation rates were revisited to verify that values reflect the latest designs for Constellation Space Suit System (CSSS) pressure garment materials and PLSS hardware. Additionally, TCCS sizing calculations were performed and a literature survey was conducted to review the latest developments in trace contaminant technologies.
First Crewed Flight: Rationale, Considerations and Challenges from the Constellation Experience
NASA Technical Reports Server (NTRS)
Noriega, Carlos; Arceneaux, William; Williams, Jeffrey A.; Rhatigan, Jennifer L.
2011-01-01
NASA's Constellation Program has made the most progress in a generation towards building an integrated human-rated spacecraft and launch vehicle. During that development, it became clear that NASA's human-rating requirements lacked the specificity necessary to defend a program plan, particularly human-rating test flight plans, from severe budget challenges. This paper addresses the progress Constellation achieved, problems encountered in clarifying and defending a human-rating certification plan, and discusses key considerations for those who find themselves in similar straits with future human-rated spacecraft and vehicles. We assert, and support with space flight data, that NASA's current human-rating requirements do not adequately address "unknown-unknowns", or the unexpected things the hardware can reveal to the designer during test.
NASA Technical Reports Server (NTRS)
Matossian, Mark G.
1994-01-01
The Archimedes Project is a joint effort of the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA). The primary goal of the Archimedes project is to perform a technical feasibility analysis and preliminary design of a highly inclined multisatellite constellation for direct broadcast and mobile communications services for Europe, Japan and much of North America. This report addresses one aspect of this project, specifically an analysis of continuous satellite coverage using multiregional highly elliptical orbits (M-HEO's). The analysis methodology and ensuing software tool, named SPIFF, were developed specifically for this project by the author during the summer of 1992 under the STA/NSF Summer Institute in Japan Program at Tsukuba Space Center.
Research on power source structure optimization for East China Power Grid
NASA Astrophysics Data System (ADS)
Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da
2017-05-01
The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.
Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
Dynamic positioning configuration and its first-order optimization
NASA Astrophysics Data System (ADS)
Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu
2014-02-01
Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the symmetrical cone configuration and helical curve configuration are still D-optimal. It shows that the given total observation time determines the optimal frequency (repeatability) of moving known points and vice versa, and one way to improve the repeatability is to increase the rotational speed. Under the Newton's law of motion, the frequency of satellite motion determines the orbital altitude. Furthermore, we study three kinds of complex dynamic configurations, one of which is the combination of D-optimal cone configurations and a so-called Walker constellation composed of D-optimal helical configuration, the other is the nested cone configuration composed of n cones, and the last is the nested helical configuration composed of n orbital planes. It shows that an effective way to achieve high coverage is to employ the configuration composed of a certain number of moving known points instead of the simplex configuration (such as D-optimal helical configuration), and one can use the D-optimal simplex solutions or D-optimal complex configurations in any combination to achieve powerful configurations with flexile coverage and flexile repeatability. Alternately, how to optimally generate and assess the discrete configurations sampled from the continuous one is discussed. The proposed configuration optimization framework has taken the well-known regular polygons (such as equilateral triangle and quadrangular) in two-dimensional space and regular polyhedrons (regular tetrahedron, cube, regular octahedron, regular icosahedron, or regular dodecahedron) into account. It shows that the conclusions made by the proposed technique are more general and no longer limited by different sampling schemes. By the conditional equation of D-optimal nested helical configuration, the relevance issues of GNSS constellation optimization are solved and some examples are performed by GPS constellation to verify the validation of the newly proposed optimization technique. The proposed technique is potentially helpful in maintenance and quadratic optimization of single GNSS of which the orbital inclination and the orbital altitude change under the precession, as well as in optimally nesting GNSSs to perform global homogeneous coverage of the Earth.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.
2011-01-01
The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
High-density arrays of x-ray microcalorimeters for Constellation-X
NASA Astrophysics Data System (ADS)
Kilbourne, C. A.; Bandler, S. R.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Saab, T.; Sadleir, J.
2005-12-01
We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu absorbers. We have achieved a resolution of 4.9 eV FWHM at 6 keV in such devices. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25 mm pixels our existing absorber design is adequate to avoid line-broadening from position dependence caused by thermal diffusion. In order to push closer to the 4-eV requirement and 2-eV goal at 6 keV, we are refining the design of the TES and the interface to the absorber. For the 32x32 arrays ultimately needed for Constellation-X, signal lead routing and heatsinking will drive the design. We have had early successes with experiments in electroplating electrical vias and thermal busses into micro-machined features in silicon substrates. The next steps will be fabricating arrays that have all of the essential features of the required flight design, testing, and then engineering a prototype array for optimum performance.
Radiometric and geometric assessment of data from the RapidEye constellation of satellites
Chander, Gyanesh; Haque, Md. Obaidul; Sampath, Aparajithan; Brunn, A.; Trosset, G.; Hoffmann, D.; Roloff, S.; Thiele, M.; Anderson, C.
2013-01-01
To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface using imagery acquired from multiple spaceborne imaging sensors. The RapidEye (RE) satellite constellation acquires high-resolution satellite images covering the entire globe within a very short period of time by sensors identical in construction and cross-calibrated to each other. To evaluate the RE high-resolution Multi-spectral Imager (MSI) sensor capabilities, a cross-comparison between the RE constellation of sensors was performed first using image statistics based on large common areas observed over pseudo-invariant calibration sites (PICS) by the sensors and, second, by comparing the on-orbit radiometric calibration temporal trending over a large number of calibration sites. For any spectral band, the individual responses measured by the five satellites of the RE constellation were found to differ <2–3% from the average constellation response depending on the method used for evaluation. Geometric assessment was also performed to study the positional accuracy and relative band-to-band (B2B) alignment of the image data sets. The position accuracy was assessed by comparing the RE imagery against high-resolution aerial imagery, while the B2B characterization was performed by registering each band against every other band to ensure that the proper band alignment is provided for an image product. The B2B results indicate that the internal alignments of these five RE bands are in agreement, with bands typically registered to within 0.25 pixels of each other or better.
2008-03-01
Society, Washington DC, 1999. 11. Ferringer, Matthew P. and David B. Spencer . “Satellite Constellation Design Optimization Via Multiple-Objective...5 GA Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . 5 HEO Highly Elliptical Orbit...and their phasing relationship. He analyzed different combinations of GEO, Highly Elliptical Orbit (HEO)1 and Tundra2 orbits to create a global
Mobile User Objective System (MUOS)
2015-12-01
the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management system, and a new...MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will continue to support legacy...Antecedent Information The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Poop or Stern; abbrev. Pup, gen. Puppis; area 673 sq. deg.) A southern constellation which lies between Canis Major and Vela, and culminates at midnight in early January. It was introduced by the French astronomer Nicolas L de Lacaille (1713-62), who charted the southern sky in 1751-2, from stars that formed part of the ancient constellation of Argo Navis (the Ship), which had been included ...
Constructing lightning towers for the Constellation Program and
2007-11-09
On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... historic sloop-of-war USS CONSTELLATION. This regulation applies to a recurring event that takes place in... Ships in Baltimore is planning to conduct its turn-around ceremony involving the sloop-of-war USS... Monument and Historic Site. Beginning at 3 p.m., the historic Sloop-of-War USS CONSTELLATION will be towed...
Using Problem-Based Learning: New Constellations for the 21st Century
ERIC Educational Resources Information Center
Savin-Baden, Maggi
2014-01-01
The author argues that there is still too much teaching to the test, and the consequence is growing "constellations" of problem-based learning (PBL), some of which are useful, and some of which are not. Today, what passes for PBL practice often seems more like guidelines than any kind of reasoned pedagogy. While at one level the range of…
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Dragon; abbrev. Dra, gen. Draconis; area 1083 sq. deg.) A northern constellation which lies between Ursa Major and Cepheus, and encloses Ursa Minor on three sides. The center of the constellation culminates at midnight in May, though part of it is on the meridian from mid-February to late July. Draco represents the dragon Ladon in Greek mythology, which guarded the golden apple tree that was...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Bull; abbrev. Tau, gen. Tauri; area 797 sq. deg.) A northern zodiacal constellation which lies between Aries and Orion, and culminates at midnight in late November. It is one of the oldest constellations, dating back to when the Sun was in that part of the sky at the vernal (spring) equinox, between about 4000 and 1800 BC. Later, in Greek mythology, it was identified with the form assumed by...
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
(the Water-snake; abbrev. Hya, gen. Hydrae; area 1303 sq. deg.) A predominantly southern constellation which winds its way around almost one-third of the sky between Canis Minor and Libra. The center of the constellation culminates at midnight in mid-March, though part of it is on the meridian from late January to early May. It represents, in Greek mythology, either the multi-headed Lernaean Hydr...