Sample records for constellation program extravehicular

  1. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  2. Compilation of Trade Studies for the Constellation Program Extravehicular Activity Spacesuit Power System

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2009-01-01

    This compilation of trade studies performed from 2005 to 2006 addressed a number of power system design issues for the Constellation Program Extravehicular Activity Spacesuit. Spacesuits were required for spacewalks and in-space activities as well as lunar and Mars surface operations. The trades documented here considered whether solar power was feasible for spacesuits, whether spacesuit power generation should be a distributed or a centralized function, whether self-powered in-space spacesuits were better than umbilically powered ones, and whether the suit power system should be recharged in place or replaced.

  3. Extravehicular Activity (EVA) 101: Constellation EVA Systems

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole C.

    2007-01-01

    A viewgraph presentation on Extravehicular Activity (EVA) Systems is shown. The topics include: 1) Why do we need space suits? 2) Protection From the Environment; 3) Primary Life Support System (PLSS); 4) Thermal Control; 5) Communications; 6) Helmet and Extravehicular Visor Assy; 7) Hard Upper Torso (HUT) and Arm Assy; 8) Display and Controls Module (DCM); 9) Gloves; 10) Lower Torso Assembly (LTA); 11) What Size Do You Need?; 12) Boot and Sizing Insert; 13) Boot Heel Clip and Foot Restraint; 14) Advanced and Crew Escape Suit; 15) Nominal & Off-Nominal Landing; 16) Gemini Program (mid-1960s); 17) Apollo EVA on Service Module; 18) A Bold Vision for Space Exploration, Authorized by Congress; 19) EVA System Missions; 20) Configurations; 21) Reduced Gravity Program; and 22) Other Opportunities.

  4. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  5. Lessons Learned From The EMU Fire and How It Impacts CxP Suit Element Development and Testing

    NASA Technical Reports Server (NTRS)

    Metts, Jonathan; Hill, Terry

    2008-01-01

    During testing a Space Shuttle Extravehicular Mobility Unit (EMU) pressure garment and life-support backpack was destroyed in a flash fire in the Johnson Space Center's Crew systems laboratory. This slide presentation reviews the accident, probable causes, the lessons learned and the effect this has on the testing and the environment for testing of the Space Suit for the Constellation Program.

  6. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  7. ECLSS and Thermal Systems Integration Challenges Across the Constellation Architecture

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2010-01-01

    As the Constellation Program completes its initial capability Preliminary Design Review milestone for the Initial Capability phase, systems engineering of the Environmental Control and Life Support (ECLS) and Thermal Systems for the various architecture elements has progressed from the requirements to design phase. As designs have matured for the Ares, Orion, Ground Systems, and Extravehicular (EVA) System, a number of integration challenges have arisen requiring analyses and trades, resulting in changes to the design and/or requirements. This paper will address some of the key integration issues and results, including the Orion-to-Ares shared compartment venting and purging, Orion-to-EVA suit loop integration issues with the suit system, Orion-to-ISS and Orion-to-Altair intermodule ventilation, and Orion and Ground Systems impacts from post-landing environments.

  8. Effective Presentation of Metabolic Rate Information for Lunar Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Mackin, Michael A.; Gonia, Philip; Lombay-Gonzalez, Jose

    2010-01-01

    During human exploration of the lunar surface, a suited crewmember needs effective and accurate information about consumable levels remaining in their life support system. The information must be presented in a manner that supports real-time consumable monitoring and route planning. Since consumable usage is closely tied to metabolic rate, the lunar suit must estimate metabolic rate from life support sensors, such as oxygen tank pressures, carbon dioxide partial pressure, and cooling water inlet and outlet temperatures. To provide adequate warnings that account for traverse time for a crewmember to return to a safe haven, accurate forecasts of consumable depletion rates are required. The forecasts must be presented to the crewmember in a straightforward, effective manner. In order to evaluate methods for displaying consumable forecasts, a desktop-based simulation of a lunar Extravehicular Activity (EVA) has been developed for the Constellation lunar suite s life-support system. The program was used to compare the effectiveness of several different data presentation methods.

  9. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Chappell, Steve P.; Gernhardt, Michael L.

    2009-01-01

    Center of gravity (CG) is likely to be an important variable in astronaut performance during partial gravity extravehicular activity (EVA). The Apollo Lunar EVA experience revealed challenges with suit stability and control. The EVA Physiology, Systems and Performance Project (EPSP) in conjunction with the Constellation EVA Systems Project Office have developed plans to systematically understand the role of suit weight, CG and suit pressure on astronaut performance in partial gravity environments. This presentation based upon CG studies seeks to understand the impact of varied CG on human performance in lunar gravity.

  10. Results and Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.

    2009-01-01

    NASA's Constellation Program has plans to return to the Moon within the next 10 years. Although reaching the Moon during the Apollo Program was a remarkable human engineering achievement, fewer than 20 extravehicular activities (EVAs) were performed. Current projections indicate that the next lunar exploration program will require thousands of EVAs, which will require spacesuits that are better optimized for human performance. Limited mobility and dexterity, and the position of the center of gravity (CG) are a few of many features of the Apollo suit that required significant crew compensation to accomplish the objectives. Development of a new EVA suit system will ideally result in performance close to or better than that in shirtsleeves at 1 G, i.e., in "a suit that is a pleasure to work in, one that you would want to go out and explore in on your day off." Unlike the Shuttle program, in which only a fraction of the crew perform EVA, the Constellation program will require that all crewmembers be able to perform EVA. As a result, suits must be built to accommodate and optimize performance for a larger range of crew anthropometry, strength, and endurance. To address these concerns, NASA has begun a series of tests to better understand the factors affecting human performance and how to utilize various lunar gravity simulation environments available for testing.

  11. Habitation Concepts and Tools for Asteroid Missions and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2010-01-01

    In 2009 studies were initiated in response to the Augustine Commission s review of the Human Spaceflight Program to examine the feasibility of additional options for space exploration beyond the lunar missions planned in the Constellation Program. One approach called a Flexible Path option included possible human missions to near-Earth asteroids. This paper presents an overview of possible asteroid missions with emphasis on the habitation options and vehicle configurations conceived for the crew excursion vehicles. One launch vehicle concept investigated for the Flexible Path option was to use a dual launch architecture that could serve a wide variety of exploration goals. The dual launch concept used two medium sized heavy lift launch vehicles for lunar missions as opposed to the single Saturn V architecture used for the Apollo Program, or the one-and-a-half vehicle Ares I / Ares V architecture proposed for the Constellation Program. This dual launch approach was studied as a Flexible Path option for lunar missions and for possible excursions to other destinations like geosynchronous earth orbiting satellites, Lagrange points, and as presented in this paper, asteroid rendezvous. New habitation and exploration systems for the crew are presented that permit crew sizes from 2 to 4, and mission durations from 100 to 360 days. Vehicle configurations are presented that include habitation systems and tools derived from International Space Station (ISS) experience and new extra-vehicular activity tools for asteroid exploration, Figure 1. Findings from these studies and as presented in this paper indicate that missions to near-Earth asteroids appear feasible in the near future using the dual launch architecture, the technologies under development from the Constellation Program, and systems derived from the current ISS Program. In addition, the capabilities derived from this approach that are particularly beneficial to the commercial sector include human access to geosynchronous orbit and the Lagrange points with new tools for satellite servicing and in-space assembly.

  12. The Skylab Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Polk, James D.; Duncan, James M.; Davis, Jeffrey R.; Williams, Richard S.; Lindgren, Kjell N.; Mathes, Karen L.; Gillis, David B.; Scheuring, Richard A.

    2009-01-01

    From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the Skylab and SMEAT participants.

  13. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  14. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  15. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well underway, and integrated flight testing will begin in 2009. This white paper summarizes 3 years of Constellation Program progress and accomplishments, and it describes the foundation set for human lunar return in 2020.

  16. Life Support Systems for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Anderson, Molly

    2008-01-01

    Engineers designing life support systems for NASA s next Lunar Landers face unique challenges. As with any vehicle that enables human spaceflight, the needs of the crew drive most of the lander requirements. The lander is also a key element of the architecture NASA will implement in the Constellation program. Many requirements, constraints, or optimization goals will be driven by interfaces with other projects, like the Crew Exploration Vehicle, the Lunar Surface Systems, and the Extravehicular Activity project. Other challenges in the life support system will be driven by the unique location of the vehicle in the environments encountered throughout the mission. This paper examines several topics that may be major design drivers for the lunar lander life support system. There are several functional requirements for the lander that may be different from previous vehicles or programs and recent experience. Some of the requirements or design drivers will change depending on the overall Lander configuration. While the configuration for a lander design is not fixed, designers can examine how these issues would impact their design and be prepared for the quick design iterations required to optimize a spacecraft.

  17. Battery and Fuel Cell Development for NASA's Constellation Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  18. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    NASA Technical Reports Server (NTRS)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts as well as performing major probabilistic assessments used to support flight rationale and help establish program requirements. During 2008, the Analysis Group performed more than 70 assessments. Although all these assessments were important, some were instrumental in the decisionmaking processes for the Shuttle and Constellation Programs. Two of the more significant tasks were the Space Transportation System (STS)-122 Low Level Cutoff PRA for the SSP and the Orion Pad Abort One (PA-1) PRA for the CxP. These two activities, along with the numerous other tasks the Analysis Group performed in 2008, are summarized in this report. This report also highlights several ongoing and upcoming efforts to provide crucial statistical and probabilistic assessments, such as the Extravehicular Activity (EVA) PRA for the Hubble Space Telescope service mission and the first fully integrated PRAs for the CxP's Lunar Sortie and ISS missions.

  19. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.

  20. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  1. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, listens to a question during a NASA Update outlining responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Extravehicular Crewman Work System (ECWS) study program. Volume 2: Construction

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The construction portion of the Extravehicular Crewman Work System Study defines the requirements and selects the concepts for the crewman work system required to support the construction of large structures in space.

  4. Test and Verification Approach for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Strong, Edward

    2008-01-01

    This viewgraph presentation is a test and verification approach for the NASA Constellation Program. The contents include: 1) The Vision for Space Exploration: Foundations for Exploration; 2) Constellation Program Fleet of Vehicles; 3) Exploration Roadmap; 4) Constellation Vehicle Approximate Size Comparison; 5) Ares I Elements; 6) Orion Elements; 7) Ares V Elements; 8) Lunar Lander; 9) Map of Constellation content across NASA; 10) CxP T&V Implementation; 11) Challenges in CxP T&V Program; 12) T&V Strategic Emphasis and Key Tenets; 13) CxP T&V Mission & Vision; 14) Constellation Program Organization; 15) Test and Evaluation Organization; 16) CxP Requirements Flowdown; 17) CxP Model Based Systems Engineering Approach; 18) CxP Verification Planning Documents; 19) Environmental Testing; 20) Scope of CxP Verification; 21) CxP Verification - General Process Flow; 22) Avionics and Software Integrated Testing Approach; 23) A-3 Test Stand; 24) Space Power Facility; 25) MEIT and FEIT; 26) Flight Element Integrated Test (FEIT); 27) Multi-Element Integrated Testing (MEIT); 28) Flight Test Driving Principles; and 29) Constellation s Integrated Flight Test Strategy Low Earth Orbit Servicing Capability.

  5. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  6. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, looks on as Jeff Hanley, Constellation Program Manager, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  7. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, center, speaks as Jeff Hanley, Constellation Program Manager, right, looks on during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  8. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Scott Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  9. Infusing Stretch Goal Requirements into the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lee, Young H.; Galpin, Roger A.; Ingoldsby, Kevin

    2008-01-01

    In 2004, the Vision for Space Exploration (VSE) was announced by the United States President's Administration in an effort to explore space and to extend a human presence across our solar system. Subsequently, the National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop a constellation of new capabilities, supporting technologies, and foundational research that allows for the sustained and affordable exploration of space. Then, ESMD specified the primary mission for the Constellation Program to carry out a series of human expeditions, ranging from Low Earth Orbit (LEO) to the surface of Moon, Mars, and beyond for the purposes of conducting human exploration of space. Thus, the Constellation Program was established at the Lyndon B. Johnson Space Center (JSC) to manage the development of the flight and ground infrastructure and systems that can enable continued and extended human access to space. Constellation Program's "Design Objectives" call for an early attention to the program's life cycle costs management through the Program's Need, Goals, and Objectives (NGO) document, which provides the vision, scope, and key areas of focus for the Program. One general policy of the Constellation Program, found in the Constellation Architecture Requirements Document (CARD), states: "A sustainable program hinges on how effectively total life cycle costs are managed. Developmental costs are a key consideration, but total life cycle costs related to the production, processing, and operation of the entire architecture must be accounted for in design decisions sufficiently to ensure future resources are available for ever more ambitious missions into the solar system....It is the intent of the Constellation Program to aggressively manage this aspect of the program using the design policies and simplicity." To respond to the Program's strong desire to manage the program life cycle costs, special efforts were established to identify operability requirements to influence flight vehicle and ground infrastructure design in order to impact the life cycle operations costs, and stretch goal requirements were introduced to the Program. This paper will describe how these stretch goal requirements were identified, developed, refined, matured, approved, and infused into the CARD. The paper will also document several challenges encountered when infusing the stretch goal requirements into the Constellation Program.

  10. Constellation Program Update

    NASA Image and Video Library

    2006-06-05

    Jeff Hanley, Constellation Program Manager, right, and Scott J. Horowitz, NASA Associate Administrator for Exploration Systems announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  11. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  12. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Members of the media listen during a press conference with NASA Administrator Michael Griffin, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  13. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, left, and Jeff Hanley, Constellation Program Manager, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  14. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, announce to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, moderates a press conference with NASA Administrator Michael Griffin Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  16. Human Systems Integration (HSI) Case Studies from the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban

    2009-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.

  17. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, seated left, Scott Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, are seen during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit (NASA/Bill Ingalls)

  18. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Jeff Hanley, Constellation Program Manager, right, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Hanley is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and NASA Administrator Michael Griffin, left. Photo Credit: (NASA/Bill Ingalls)

  19. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, left, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. He is joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Photo Credit: (NASA/Bill Ingalls)

  20. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, center, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Horowitz was joined by NASA Administrator Michael Griffin, left, and Jeff Hanley, Constellation Program Manager. Photo Credit: (NASA/Bill Ingalls)

  1. Extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1973-01-01

    The analytical methods, thermal model, and user's instructions for the SIM bay extravehicular mobility unit (EMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the crewman performing a command module extravehicular activity during transearth coast. It accounts for conductive, convective, and radiative heat transfer as well as fluid flow and associated flow control components. The program is a derivative of the Apollo lunar surface EMU digital simulator. It has the operational flexibility to accept card or magnetic tape for both the input data and program logic. Output can be tabular and/or plotted and the mission simulation can be stopped and restarted at the discretion of the user. The program was developed for the NASA-JSC Univac 1108 computer system and several of the capabilities represent utilization of unique features of that system. Analytical methods used in the computer routine are based on finite difference approximations to differential heat and mass balance equations which account for temperature or time dependent thermo-physical properties.

  2. Constellation Program Lessons Learned in the Quantification and Use of Aerodynamic Uncertainty

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Hemsch, Michael J.; Pinier, Jeremy T.; Bibb, Karen L.; Chan, David T.; Hanke, Jeremy L.

    2011-01-01

    The NASA Constellation Program has worked for the past five years to develop a re- placement for the current Space Transportation System. Of the elements that form the Constellation Program, only two require databases that define aerodynamic environments and their respective uncertainty: the Ares launch vehicles and the Orion crew and launch abort vehicles. Teams were established within the Ares and Orion projects to provide repre- sentative aerodynamic models including both baseline values and quantified uncertainties. A technical team was also formed within the Constellation Program to facilitate integra- tion among the project elements. This paper is a summary of the collective experience of the three teams working with the quantification and use of uncertainty in aerodynamic environments: the Ares and Orion project teams as well as the Constellation integration team. Not all of the lessons learned discussed in this paper could be applied during the course of the program, but they are included in the hope of benefiting future projects.

  3. Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010

    NASA Technical Reports Server (NTRS)

    Dory, Jonathan

    2010-01-01

    The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.

  4. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin is seen through a television camera at a NASA Update announcing to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Griffin was joined by Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right. Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, far left, moderates the program. Photo Credit: (NASA/Bill Ingalls)

  5. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  6. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  7. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  8. Desert Research and Technology Studies 2005 Report

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.; Kosmo, Joseph J.; Janoiko, Barbara A.; Bernard, Craig; Splawn, Keith; Eppler, Dean B.

    2006-01-01

    During the first two weeks of September 2005, the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Advanced Extravehicular Activity (AEVA) team led the field test portion of the 2005 Research and Technology Studies (RATS). The Desert RATS field test activity is the culmination of the various individual science and advanced engineering discipline areas year-long technology and operations development efforts into a coordinated field test demonstration under representative (analog) planetary surface terrain conditions. The purpose of the RATS is to drive out preliminary exploration concept of operations EVA system requirements by providing hands-on experience with simulated planetary surface exploration extravehicular activity (EVA) hardware and procedures. The RATS activities also are of significant importance in helping to develop the necessary levels of technical skills and experience for the next generation of engineers, scientists, technicians, and astronauts who will be responsible for realizing the goals of the Constellation Program. The 2005 Desert RATS was the eighth RATS field test and was the most systems-oriented, integrated field test to date with participants from NASA field centers, the United States Geologic Survey (USGS), industry partners, and research institutes. Each week of the test, the 2005 RATS addressed specific sets of objectives. The first week focused on the performance of surface science astro-biological sampling operations, including planetary protection considerations and procedures. The second week supported evaluation of the Science, Crew, Operations, and Utility Testbed (SCOUT) proto-type rover and its sub-systems. Throughout the duration of the field test, the Communications, Avionics, and Infomatics pack (CAI-pack) was tested. This year the CAI-pack served to provide information on surface navigation, science sample collection procedures, and EVA timeline awareness. Additionally, 2005 was the first year since the Apollo program that two pressurized suited test subjects have worked together simultaneously. Another first was the demonstration of recharge of cryogenic life support systems while in-use by the suited test subjects. The recharge capability allowed the simulated EVA test duration to be doubled, facilitating SCOUT proto-type rover testing. This paper summarizes Desert RATS 2005 test hardware, detailed test objectives, test operations and test results.

  9. Extravehicular Activity Probabilistic Risk Assessment Overview for Thermal Protection System Repair on the Hubble Space Telescope Servicing Mission

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Canga, Michael A.; Duncan, Gary

    2010-01-01

    The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.

  10. Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Leahy, Frank

    2008-01-01

    The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.

  11. Life Support Technology Challenges for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn; Bagdigian, Robert; Ewert, Michael

    2007-01-01

    The presentation is for the ECLSS session of the Constellation Technology Exchange Conference and is to describe what new technology challenges the Constellation mission presents for the ECLSS, in order to communicate these needs with industry.

  12. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  13. A Case Study: Using Delmia at Kennedy Space Center to Support NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Kickbusch, Tracey; Humeniuk, Bob

    2010-01-01

    The presentation examines the use of Delmia (Digital Enterprise Lean Manufacturing Interactive Application) for digital simulation in NASA's Constellation Program. Topics include an overview of the Kennedy Space Center (KSC) Design Visualization Group tasks, NASA's Constellation Program, Ares 1 ground processing preliminary design review, and challenges and how Delmia is used at KSC, Challenges include dealing with large data sets, creating and maintaining KSC's infrastructure, gathering customer requirements and meeting objectives, creating life-like simulations, and providing quick turn-around on varied products,

  14. Implications of Operational Pressure on CSSE PGS Design

    NASA Technical Reports Server (NTRS)

    Lee, Ryan

    2008-01-01

    The Constellation Spacesuit Element (CSSE) was required to support crew survival (CS); launch, entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and contingency); and planetary EVA. Operation of the CSSE in all of these capacities required a pressure garment subsystem (PGS) that would operate efficiently through various pressure profiles. The PGS team initiated a study to determine the appropriate operational pressure profile of the CSSE and how this selection would affect the design of the CSSE PGS. This study included an extensive review of historical PGS operational pressure selection and the operational effects of those pressures, the presentation of four possible pressure paradigm options for use by the CSSE, the risks and design impacts of these options, and the down-selected pressure option.

  15. Constellation Program Press Conference

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin, speaks during a press conference outlining specific center responsibilities associated with the Constellation Program for robotic and human Moon and Mars exploration, Monday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit (NASA/Bill Ingalls)

  16. The New Millenium Program ST-5 Mission: Nanosatellite Constellation Trailblazer

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    1999-01-01

    NASA's New Millenium Program has recently selected the Nanosatellite Constellation Trailblazer (NCT) as its fifth mission (ST-5). NCT will consist of 3 small, very capable and highly autonomous satellites which will be operated as a single "constellation" with minimal ground operations support. Each spacecraft will be approximately 40 cm in diameter by 20 cm in height and weigh only 20 kg. These small satellites will incorporate 8 new technologies essential to the further miniaturization of space science spacecraft which need space flight validation. In this talk we will describe in greater detail the NCT mission concept and goals, the exciting new technologies it will validate, and the role of miniaturized particles and fields sensors in this project. Finally, NCT's pathfinder function for such future NASA missions as Magnetotail Constellation and Inner Magnetosphere Constellation will be discussed.

  17. EVA - Don't Leave Earth Without It

    NASA Technical Reports Server (NTRS)

    Cupples, J. Scott; Smith, Stephen A.

    2011-01-01

    Modern manned space programs come in two categories: those that need Extravehicular Activity (EVA) and those that will need EVA. This paper discusses major milestones in the Shuttle Program where EVA was used to save payloads, enhance on-orbit capabilities, and build structures in order to ensure success of National Aeronautics and Space Administration (NASA) missions. In conjunction, the Extravehicular Mobility Unit s (EMU) design, and hence, its capabilities evolved as its mission evolved. It is the intent that lessons can be drawn from these case studies so that EVA compatibility is designed into future vehicles and payloads.

  18. Evaluation of Carbon Dioxide Sensors for the Constellation Space Suit Life Support System for Surface Exploration

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Paul, Heather L.; Conger, Bruce C.

    2009-01-01

    This paper presents the findings of the trade study to evaluate carbon dioxide (CO2) sensing technologies for the Constellation (Cx) space suit life support system for surface exploration. The trade study found that nondispersive infrared absorption (NDIR) is the most appropriate high Technology Readiness Level (TRL) technology for the CO2 sensor for the Cx space suit. The maturity of the technology is high, as it is the basis for the CO2 sensor in the Extravehicular Mobility Unit (EMU). The study further determined that while there is a range of commercial sensors available, the Cx CO2 sensor should be a new design. Specifically, there are light sources (e.g., infrared light emitting diodes) and detectors (e.g., cooled detectors) that are not in typical commercial sensors due to cost. These advanced technology components offer significant advantages in performance (weight, volume, power, accuracy) to be implemented in the new sensor. The exact sensor design (light source, transmitting optics, path length, receiving optics and detector) will be specific for the Cx space suit and will be determined by the performance requirements of the Cx space suit. The paper further identifies specifications for some of the critical performance parameters as well as discussing the engineering aspects of implementing the sensor into the Portable Life Support System (PLSS). The paper then presents testing results from three CO2 sensors with respect to issues important to Extravehicular Activity (EVA) applications; stability, humidity dependence and low pressure compatibility. The three sensors include two NDIR sensors, one commercial and one custom-developed by NASA (for a different purpose), and one commercial electrochemical sensor. The results show that both NDIR sensors have excellent stability, no dependence on ambient humidity (when the ambient temperature is above the dew point) and operate in low pressure conditions and after being exposed to a full vacuum. The commercial electrochemical sensor was not suitable for the Cx space suit for surface exploration. Finally, the paper identifies a number of techniques currently under development that offer significant advantages for EVA applications. These include miniaturized, room temperature, solid electrolyte systems and advanced optical detectors.

  19. Report for neutral buoyancy simulations of transfer orbit stage contingency extravehicular activities

    NASA Technical Reports Server (NTRS)

    Sexton, J. D.

    1992-01-01

    The transfer orbit stage (TOS) will propel the advanced communications technology satellite (ACTS) from the Space Shuttle to an Earth geosynchronous transfer orbit. Two neutral buoyancy test series were conducted at MSFC to validate the extravehicular activities (EVA) contingency operations for the ACTS/TOS/mission. The results of the neutral buoyancy tests are delineated and a brief history of the TOS EVA program is given.

  20. Management of the Reflection Grating Spectrometer on the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As RGS Integrated Product Team Lead, normal coordination and management efforts in the past year have involved setting and overseeing budgets and schedules, regular status reporting to the Program Manager at Goddard Space Flight Center (GSFC), interacting with Constellation-X groups at GSFC, Smithsonian Astrophysical Observatory (SAO), and RGS team institutions, and supporting the program needs of Constellation-X. In addition to the management aspects described above, there are four significant areas of direct contribution that were accomplished.

  1. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  2. Human Systems Integration in Practice: Constellation Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  3. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  4. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Scott J. Horowitz, NASA Associate Administrator for Exploration Systems, announces to NASA employees and members of the media the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  5. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    NASA Administrator Michael Griffin addresses NASA employees and members of the media about the responsibilities of the NASA centers associated with the Constellation Program for robotic and human Moon and Mars exploration during a NASA Update on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  6. Sensors and Systems for Spacesuits

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2017-01-01

    An AdvancedExtravehicular Mobility Unit (EMU) is being developed and tested in house at JSC. Multiple programs over the last decade have contributed to the success thus far including the SBIR/STTR program.

  7. Improved candidate generation and coverage analysis methods for design optimization of symmetric multi-satellite constellations

    NASA Astrophysics Data System (ADS)

    Matossian, Mark G.

    1997-01-01

    Much attention in recent years has focused on commercial telecommunications ventures involving constellations of spacecraft in low and medium Earth orbit. These projects often require investments on the order of billions of dollars (US$) for development and operations, but surprisingly little work has been published on constellation design optimization for coverage analysis, traffic simulation and launch sequencing for constellation build-up strategies. This paper addresses the two most critical aspects of constellation orbital design — efficient constellation candidate generation and coverage analysis. Inefficiencies and flaws in the current standard algorithm for constellation modeling are identified, and a corrected and improved algorithm is presented. In the 1970's, John Walker and G. V. Mozhaev developed innovative strategies for continuous global coverage using symmetric non-geosynchronous constellations. (These are sometimes referred to as rosette, or Walker constellations. An example is pictured above.) In 1980, the late Arthur Ballard extended and generalized the work of Walker into a detailed algorithm for the NAVSTAR/GPS program, which deployed a 24 satellite symmetric constellation. Ballard's important contribution was published in his "Rosette Constellations of Earth Satellites."

  8. KSC-2009-5248

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – This ribbon cutting officially turns over NASA Kennedy Space Center's Launch Control Center Firing Room 1 from the Space Shuttle Program to the Constellation Program. Participating are (from left) Pepper Phillips, director of the Constellation Project Office at Kennedy; Bob Cabana, Kennedy's director; Robert Crippen, former astronaut; Jeff Hanley, manager of the Constellation Program at NASA's Johnson Space Center; and Nancy Bray, deputy director of Center Operations at Kennedy. The room has undergone demolition and construction and been outfitted with consoles for the upcoming Ares I-X rocket flight test targeted for launch on Oct. 27. As the center of launch operations at Kennedy since the Apollo Program, the Launch Control Center, or LCC, has played a central role in NASA's human spaceflight programs. Firing Room 1 was the first operational firing room constructed. From this room, controllers launched the first Saturn V, the first crewed flight of Saturn V, the first crewed mission to the moon and the first space shuttle. Firing Room 1 will continue this tradition of firsts when controllers launch the Constellation Program's first flight test. Also, this firing room will be the center of operations for the upcoming Ares I and Orion operations. Photo credit: NASA/Kim Shiflett

  9. The NASA Constellation Program Procedure System

    NASA Technical Reports Server (NTRS)

    Phillips, Robert G.; Wang, Lui

    2010-01-01

    NASA has used procedures to describe activities to be performed onboard vehicles by astronaut crew and on the ground by flight controllers since Apollo. Starting with later Space Shuttle missions and the International Space Station, NASA moved forward to electronic presentation of procedures. For the Constellation Program, another large step forward is being taken - to make procedures more interactive with the vehicle and to assist the crew in controlling the vehicle more efficiently and with less error. The overall name for the project is the Constellation Procedure Applications Software System (CxPASS). This paper describes some of the history behind this effort, the key concepts and operational paradigms that the work is based upon, and the actual products being developed to implement procedures for Constellation

  10. Environmental Assessment for the Construction and Operation of the Constellation Program A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    Kennedy, Carolyn D.

    2007-01-01

    This document is an environmental assessment that examines the environmental impacts of a proposed plan to clear land and to construct a test stand for use in testing the J-2X rocket engine at simulated altitude conditions in support of NASA's Constellation Program.

  11. Constellation Program Update

    NASA Image and Video Library

    2006-06-04

    Dean Acosta, NASA Deputy Assistant Administrator and Press Secretary, left, moderates a NASA Update with NASA Administrator Michael Griffin, second from left, Scott J. Horowitz, NASA Associate Administrator for Exploration Systems and Jeff Hanley, Constellation Program Manager, right, on Wednesday, June 5, 2006, at NASA Headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  12. APM for a Constellation Intersatellite Link - EM Qualification and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Hartel, Frank; Kozilek, Horst

    2016-01-01

    For an Intersatellite Link (ISL) of a future constellation program, a study phase was initiated by ESA to design a mechanism for Radio Frequency communication. Airbus DS Friedrichshafen (ADSF) proposed a design based on the Antenna Pointing Mechanism (APM) family with modifications that met the stated needs of the constellation. A qualification program was started beginning in September 2015 to verify the launch and thermal loads and the equipment performance (Radio Frequency, Pointing, Microvibration and Magnetic Moment). Technical challenges identified with the Engineering Model will be discussed within this paper.

  13. Life Support Requirements and Challenges for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Carasquillo, Robyn

    2007-01-01

    NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for 210 days duration at the lunar outpost with limited resource resupply capability wilt require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration EVA's will be particularly challenging. This presentation will summarize the key program and mission life support requirements for the Constellation Program and the unique challenges they present for technology and architecture development.

  14. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, pilings are being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  15. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, workers measure the piling being pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  16. Constellation Lessons Learned Executive Summary

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Neubek, Deb

    2011-01-01

    This slide presentation reviews the lessons learned from the Constellation Program (CxP) and identified several factors that contributed to the inability of the CxP to meet the cost and schedule commitments. The review includes a significant section on the context in which the CxP operated since new programs are likely to experience the same constraints.

  17. CONSTELL: NASA's Satellite Constellation Model

    NASA Technical Reports Server (NTRS)

    Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.

  18. Extravehicular Activity (EVA) Hardware & Operations Overview

    NASA Technical Reports Server (NTRS)

    Moore, Sandra; Marmolejo, Jose

    2014-01-01

    The objectives of this presentation are to: Define Extravehicular Activity (EVA), identify the reasons for conducting an EVA, and review the role that EVA has played in the space program; Identify the types of EVAs that may be performed; Describe some of the U.S. Space Station equipment and tools that are used during an EVA, such as the Extravehicular Mobility Unit (EMU), the Simplified Aid For EVA Rescue (SAFER), the International Space Station (ISS) Joint Airlock and Russian Docking Compartment 1 (DC-1), and EVA Tools & Equipment; Outline the methods and procedures of EVA Preparation, EVA, and Post-EVA operations; Describe the Russian spacesuit used to perform an EVA; Provide a comparison between U.S. and Russian spacesuit hardware and EVA support; and Define the roles that different training facilities play in EVA training.

  19. KSC-2010-1367

    NASA Image and Video Library

    2010-01-19

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, preparations are under way to install the ninth tower segment of a new mobile launcher, or ML, being constructed to support the Constellation Program, on the top of the growing tower. When completed, the tower will be approximately 345 feet tall and have multiple platforms for personnel access. Its base is being made lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. For information on the Constellation Program, visit http://www.nasa.gov/constellation. Photo credit: NASA/Jack Pfaller

  20. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler puts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  1. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling into place to be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  2. Constellation Program: Lessons Learned. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L. (Editor)

    2011-01-01

    This document (Volume I) provides an executive summary of the lessons learned from the Constellation Program. A companion Volume II provides more detailed analyses for those seeking further insight and information. In this volume, Section 1.0 introduces the approach in preparing and organizing the content to enable rapid assimilation of the lessons. Section 2.0 describes the contextual framework in which the Constellation Program was formulated and functioned that is necessary to understand most of the lessons. Context of a former program may seem irrelevant in the heady days of new program formulation. However, readers should take some time to understand the context. Many of the lessons would be different in a different context, so the reader should reflect on the similarities and differences in his or her current circumstances. Section 3.0 summarizes key findings developed from the significant lessons learned at the program level that appear in Section 4.0. Readers can use the key findings in Section 3.0 to peruse for particular topics, and will find more supporting detail and analyses in Section 4.0 in a topical format. Appendix A contains a white paper describing the Constellation Program formulation that may be of use to readers wanting more context or background information. The reader will no doubt recognize some very similar themes from previous lessons learned, blue-ribbon committee reviews, National Academy reviews, and advisory panel reviews for this and other large-scale human spaceflight programs; including Apollo, Space Shuttle, Shuttle/Mir, and the ISS. This could represent an inability to learn lessons from previous generations; however, it is more likely that similar challenges persist in the Agency structure and approach to program formulation, budget advocacy, and management. Perhaps the greatest value of these Constellation lessons learned can be found in viewing them in context with these previous efforts to guide and advise the Agency and its stakeholders.

  3. Eva Physiology, Systems, and Performance (EPSP) Project Overview

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.

    2007-01-01

    Extravehicular activity (EVA) is any activity performed by astronauts outside their space vehicle or habitat. EVA may be performed on orbit, such as outside the Space Shuttle or the International Space Station, or on a planetary surface such as Mars or on the moon. Astronauts wear a pressurized suit that provides environmental protection, mobility, life support, and communications while they work in the harsh conditions of a microgravity environment. Exploration missions to the moon and Mars may last many days and will include many types of EVAs; exploration, science, construction and maintenance. The effectiveness and success of these EVA-filled missions is dependent on the ability to perform tasks efficiently. The EVA Physiology, Systems and Performance (EPSP) project will conduct a number of studies to understand human performance during EVA, from a molecular level to full-scale equipment and suit design aspects, with the aim of developing safe and efficient systems for Exploration missions and the Constellation Program. The EPSP project will 1) develop Exploration Mission EVA suit requirements for metabolic and thermal loading, optional center of gravity location, biomedical sensors, hydration, nutrition, and human biomedical interactions; 2) develop validated EVA prebreathe protocols that meet medical, vehicle, and habitat constraints while minimizing crew time and thus increasing EVA work efficiency; and 3) define exploration decompression sickness (DCS) risks, policy, and mission success statistics and develop a DCS risk definition report.

  4. Constructing lightning towers for the Constellation Program and

    NASA Image and Video Library

    2007-11-09

    On Launch Pad 39B at NASA's Kennedy Space Center, the crane crawler lifts a piling off a truck. The piling will be pounded into the ground to help construct lightning towers for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  5. The COSMO-SkyMed ground and ILS and OPS segments upgrades for full civilian capacity exploitation

    NASA Astrophysics Data System (ADS)

    Fasano, L.; De Luca, G. F.; Cardone, M.; Loizzo, R.; Sacco, P.; Daraio, M. G.

    2015-10-01

    COSMO-SkyMed (CSK), is an Earth Observation joint program between Agenzia Spaziale Italiana (Italian Space Agency, ASI) and Italian Ministry of Defense (It-MoD). It consists of a constellation of four X Band Synthetic Aperture Radar (SAR) whose first satellite of has been launched on June 2007. Today the full constellation is fully qualified and is in an operative phase. The COSMO-SkyMed System includes 3 Segments: the Space Segment, the Ground Segment and the Integrated Logistic Support and Operations Segment (ILS and OPS) As part of a more complex re-engineering process aimed to improve the expected constellation lifetime, to fully exploit several system capabilities, to manage the obsolescence, to reduce the maintenance costs and to exploit the entire constellation capability for Civilian users a series of activities have been performed. In the next months these activities are planned to be completed and start to be operational so that it will be possible the programming, planning, acquisition, raw processing and archiving of all the images that the constellation can acquire.

  6. Enhancements to TetrUSS for NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Frink, Neal T.; Abdol-Hamid, Khaled S.; Samareh, Jamshid A,; Parlete, Edward B.; Taft, James R.

    2011-01-01

    The NASA Constellation program is utilizing Computational Fluid Dynamics (CFD) predictions for generating aerodynamic databases and design loads for the Ares I, Ares I-X, and Ares V launch vehicles and for aerodynamic databases for the Orion crew exploration vehicle and its launch abort system configuration. This effort presents several challenges to applied aerodynamicists due to complex geometries and flow physics, as well as from the juxtaposition of short schedule program requirements with high fidelity CFD simulations. NASA TetrUSS codes (GridTool/VGRID/USM3D) have been making extensive contributions in this effort. This paper will provide an overview of several enhancements made to the various elements of TetrUSS suite of codes. Representative TetrUSS solutions for selected Constellation program elements will be shown. Best practices guidelines and scripting developed for generating TetrUSS solutions in a production environment will also be described.

  7. KSC-2009-5542

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - Poised inside Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X rocket's upper stage is adorned with the American flag, NASA logo, and the logos of the Constellation Program, Ares, and Ares I-X. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  8. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  9. ARC-2007-ACD07-0145-046

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  10. ARC-2007-ACD07-0145-027

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  11. ARC-2007-ACD07-0145-004

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  12. ARC-2007-ACD07-0145-045

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  13. ARC-2007-ACD07-0145-003

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  14. ARC-2007-ACD07-0145-005

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  15. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  16. Extravehicular Crewman Work System (ECWS) study program. Volume 3: Satellite service

    NASA Technical Reports Server (NTRS)

    Wilde, R. C.

    1980-01-01

    The satellite service portion of the Extravehicular Crewman Work System Study defines requirements and service equipment concepts for performing satellite service from the space shuttle orbiter. Both normal and contingency orbital satellite service is required. Service oriented satellite design practices are required to provide on orbit satellite service capability for the wide variety of satellites at the subsystem level. Development of additional satellite service equipment is required. The existing space transportation system provides a limited capability for performing satellite service tasks in the shuttle payload bay area.

  17. A study of catasterisms in the 'phaenomena' of Aratus

    NASA Astrophysics Data System (ADS)

    Rousseau, A.; Dimitrakoudis, S.

    We provide a fresh analysis of the constellations in Aratos Phenomena by using the astronomical program Cybersky (by Stephen Schimpf) to check each reference of constellations within the poem for validity in 2800 BCE and 300 BCE (the later accounting for the broader period of time covering Eudoxus of Cnidus and Aratus of Soli). In each case, the latitude of observation was chose to be 36 North in agreement with the area of the sky that is not covered in the descriptions of Aratus (and contains the unseen constellations for a particular latitude). Each constellation was traced back to its Greek mythological origin through tha various writers of antiquity. Our results are collected in a table of the constellations mentioned by Aratus in his epic poem, with respect to the ancient authors who have mentioned each constellation shaping its myth, the locations on the earth each constellation is associated with and the most likely date of observation according to Aratus description and taking into account precession and the proper motion of stars.

  18. Constellation Commodities Studies Summary

    NASA Technical Reports Server (NTRS)

    Dirschka, Eric

    2011-01-01

    Constellation program was NASA's long-term program for space exploration. The goal of the commodities studies was to solicit industry expertise in production, storage, and transportation required for future use and to improve efficiency and life cycle cost over legacy methods. Objectives were to consolidate KSC, CCAFS and other requirements; extract available industry expertise; identify commercial opportunities; and establish synergy with State of Florida partnerships. Study results are reviewed.

  19. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  20. Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)

    NASA Technical Reports Server (NTRS)

    Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.

    2007-01-01

    An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.

  1. Skylab extravehicular mobility unit thermal simulator

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.; Phillips, M. A.

    1974-01-01

    The analytical methods, thermal model, and user's instructions for the Skylab Extravehicular Mobility Unit (SEMU) routine are presented. This digital computer program was developed for detailed thermal performance predictions of the SEMU on the NASA-JSC Univac 1108 computer system. It accounts for conductive, convective, and radiant heat transfer as well as fluid flow and special component characterization. The program provides thermal performance predictions for a 967 node thermal model in one thirty-sixth (1/36) of mission time when operated at a calculating interval of three minutes (mission time). The program has the operational flexibility to: (1) accept card or magnetic tape data input for the thermal model describing the SEMU structure, fluid systems, crewman and component performance, (2) accept card and/or magnetic tape input of internally generated heat and heat influx from the space environment, and (3) output tabular or plotted histories of temperature, flow rates, and other parameters describing system operating modes.

  2. The New Millennium Program Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.

  3. Flying the ST-5 Constellation with "Plug and Play" Autonomy Components and the GMSEC Bus

    NASA Technical Reports Server (NTRS)

    Shendock, Bob; Witt, Ken; Stanley, Jason; Mandl, Dan; Coyle, Steve

    2006-01-01

    The Space Technology 5 (ST5) Project, part of NASA's New Millennium Program, will consist of a constellation of three micro-satellites. This viewgraph document presents the components that will allow it to operate in an autonomous mode. The ST-5 constellation will use the GSFC Mission Services Evolution Center (GMSEC) architecture to enable cost effective model based operations. The ST-5 mission will demonstrate several principles of self managing software components.

  4. Design and implementation of satellite formations and constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(TM) and FreeFlyer(TM) with various fidelity levels of modeling and algorithms are presented.

  5. Design and Implementation of Satellite Formations and Constellations

    NASA Technical Reports Server (NTRS)

    Folta, David; Newman, Lauri Kraft; Quinn, David

    1998-01-01

    The direction to develop small low cost spacecraft has led many scientists to recognize the advantage of flying spacecraft in constellations and formations to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, constellations and formation flying impose additional complications on orbit selection and orbit maintenance, especially when each spacecraft has its own orbit or science requirements. The purpose of this paper is to develop an operational control method for maintenance of these missions. Examples will be taken from the Earth Observing-1 (EO-1) spacecraft that is part of the New Millennium Program (NMP) and from proposed Earth System Science Program Office (ESSPO) constellations. Results can be used to determine the appropriateness of constellations and formation flying for a particular case as well as the operational impacts. Applications to the ESSPO and NMP are highly considered in analysis and applications. After constellation and formation analysis is completed, implementation of a maneuver maintenance strategy becomes the driver. Advances in technology and automation by GSFC's Guidance, Navigation, and Control Center allow more of the burden of the orbit selection and maneuver maintenance to be automated and ultimately placed onboard the spacecraft, mitigating most of the associated operational concerns. This paper presents the GSFC closed-loop control method to fly in either constellations or formations through the use of an autonomous closed loop three-axis navigation control and innovative orbit maintenance support. Simulation results using AutoCon(Trademark) and FreeFlyer(Trademark) with various fidelity levels of modeling and algorithms are presented.

  6. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) Independent Design Reliability Assessment. Volume 1

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2010-01-01

    This report documents the activities, findings, and NASA Engineering and Safety Center (NESC) recommendations of a multidiscipline team to independently assess the Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). This assessment occurred during a period of 15 noncontiguous months between December 2008 and April 2010, prior to the CPAS Project's Preliminary Design Review (PDR) in August 2010.

  7. Navigation Concepts for NASA's Constellation Program and Human Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Moreau, Michael C.

    2008-01-01

    This viewgraph presentation provides an overview of the Constellation Program, and its goal of returning human presence to the moon. Particular attention is given to the navigation concepts, in terms of the flight to the Moon, the landing on the moon, travel on the surface and the return flight to Earth. Finally the development of new navigation, and communication techniques that will enable the exploration beyond the Moon are reviewed.

  8. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2011-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and crewmembers (CMs) ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVA, and provides a historical look at energy expenditure during EVA through the Apollo program.

  9. Orion Spacecraft MMOD Protection Design and Assessment

    NASA Technical Reports Server (NTRS)

    Bohl, W.; Miller, J.; Deighton, K.; Yasensky, J.; Foreman C.; Christiansen, Eric; Hyde, J.; Nahra, H.

    2010-01-01

    The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extended outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that the Constellation Program, Orion Crew Exploration Vehicle design will meet or exceed the stringent micrometeoroid and orbital debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements.

  10. First Crewed Flight: Rationale, Considerations and Challenges from the Constellation Experience

    NASA Technical Reports Server (NTRS)

    Noriega, Carlos; Arceneaux, William; Williams, Jeffrey A.; Rhatigan, Jennifer L.

    2011-01-01

    NASA's Constellation Program has made the most progress in a generation towards building an integrated human-rated spacecraft and launch vehicle. During that development, it became clear that NASA's human-rating requirements lacked the specificity necessary to defend a program plan, particularly human-rating test flight plans, from severe budget challenges. This paper addresses the progress Constellation achieved, problems encountered in clarifying and defending a human-rating certification plan, and discusses key considerations for those who find themselves in similar straits with future human-rated spacecraft and vehicles. We assert, and support with space flight data, that NASA's current human-rating requirements do not adequately address "unknown-unknowns", or the unexpected things the hardware can reveal to the designer during test.

  11. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  12. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  13. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  14. Scheduling algorithms for rapid imaging using agile Cubesat constellations

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Li, Alan S.; Merrick, James H.

    2018-02-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, ∼40 kg in development) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is performed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for execution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated using multiple 20 kg satellites in Low Earth Orbit for two case studies - rapid imaging of Landsat's land and coastal images and extended imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that optimality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for agile constellations.

  15. Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) Independent Design Reliability Assessment. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2010-01-01

    This document contains the Appendices to the report documenting the activities, findings, and NASA Engineering and Safety Center (NESC) recommendations of a multidiscipline team to independently assess the Constellation Program (CxP) Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). The assessment occurred during a period of 15 noncontiguous months between December 2008 and April 2010, prior to the CPAS Project's Preliminary Design Review (PDR) in August 2010.

  16. NASA Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  17. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  18. ALSSAT Development Status

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. Jannivine; Brown, Cheryl B.; Jeng, Frank F.; Anderson, Molly; Ewert, Michael K.

    2009-01-01

    The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft(Registered TradeMark) Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the Exploration Life support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. The latest ALSSAT related publication in ICES 2004 detailed ALSSAT s development status including the completion of all six ELS Subsystems (ELSS), namely, the Air Management Subsystem, the Biomass Subsystem, the Food Management Subsystem, the Solid Waste Management Subsystem, the Water Management Subsystem, and the Thermal Control Subsystem and two external interfaces, including the Extravehicular Activity and the Human Accommodations. Since 2004, many more regenerative technologies in the ELSS were implemented into ALSSAT. ALSSAT has also been used for the ELS Research and Technology Development Metric Calculation for FY02 thru FY06. It was also used to conduct the Lunar Outpost Metric calculation for FY08 and was integrated as part of a Habitat Model developed at Langley Research Center to support the Constellation program. This paper will give an update on the analysis tool s current development status as well as present the analytical results of one of the trade studies that was performed.

  19. The CEOS/GEO Constellation Concept

    NASA Technical Reports Server (NTRS)

    Cramer, Bryant; Ungar, Stephen

    2007-01-01

    The Constellation concept was first proposed during a discussion at the 19th CEOS Plenary, in London, in November 2005. The first Paper of the Constellation Concept was presented at the CEOS Strategic Implementation Team meeting (SIT-18), in Frascati, in March 2006, and strongly endorsed by the CEOS Principals. The concept attempts to provide agencies with tools for implementation of the elements that have been previously discussed in international forums (GEO Work Plan, GCOS Implementation Plan). This provides a solid foundation from the community providing requirements. Though agency spending is governed by national requirements, CEOS seeks synergies among member agency programs to fulfil GEOSS requirements, defining guidelines and standards to help agencies to determine from the outset what can be achieved. The constellations concept will allow the development of a commonalties approach among different agencies. At the heart of the application of the Constellations concept is the definition of a series of standards (specific to each Constellation) - required to be satisfied for any mission to be included in the constellation - and a process of recognition/acceptance, whereby an agency applies to SIT to have one or more of its missions (ideally from the outset of planning) recognised as meeting the constellation standards and thereby satisfying the relevant user community needs.

  20. KSC-2009-1997

    NASA Image and Video Library

    2009-03-09

    CAPE CANAVERAL, Fla. – Near Launch Pad 39B at NASA's Kennedy Space Center in Florida, Jose Perez-Morales explains use of the launch pad for the Ares rockets in the Constellation Program. Perez-Morales is Constellation senior pad project manager. Pad 39B will be used for the Ares I-X flight test, targeted for July 2009. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Photo credit: NASA/Jack Pfaller

  1. Advanced Extravehicular Protective System (AEPS) study

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Webbon, B. W.; Copeland, R. J.

    1972-01-01

    A summary is presented of Advanced Extravehicular Protective Systems (AEPS) for the future missions beyond Skylab in earth orbit, on the lunar surface, and on the Martian surface. The study concentrated on the origination of regenerable life support concepts for use in portable extravehicular protective systems, and included evaluation and comparison with expendable systems, and selection of life support subsystems. The study was conducted in two phases. In the first phase, subsystem concepts for performing life support functions in AEPS which are regenerable or partially regenerable were originated, and in addition, expendable subsystems were considered. Parametric data for each subsystem concept were evolved including subsystem weight and volume, power requirement, thermal control requirement; base regeneration equipment weight and volume, requirement. The second phase involved an evaluation of the impact of safety considerations involving redundant and/or backup systems on the selection of the regenerable life support subsystems. In addition, the impact of the space shuttle program on regenerable life support subsystem development was investigated.

  2. Ultra high frequency follow-on communications satellite system

    NASA Astrophysics Data System (ADS)

    Hassien, Michael J.

    1992-03-01

    The existing constellation of UHF communications satellites (LEASAT and FLTSAT) provide key command and control links for mobile forces of the DoD and other government agencies. The UHF Follow-On satellite program will provide for a new generation of communications satellites to replace the existing ones as they reach the end of their life cycle beginning in 1992. Continued coverage is required for both peacetime and crisis environments, and must be maintained indefinitely. An eight-satellite UFO constellation (two per coverage area) will replenish the existing FLTSATCOM constellation.

  3. Energy Expenditure During Extravehicular Activity Through Apollo

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.

    2012-01-01

    Monitoring crew health during manned space missions has always been an important factor to ensure that the astronauts can complete the missions successfully and within safe physiological limits. The necessity of real-time metabolic rate monitoring during extravehicular activities (EVAs) came into question during the Gemini missions, when the energy expenditure required to complete EVA tasks exceeded the life support capabilities for cooling and humidity control and, as a result, crew members ended the EVAs fatigued and overworked. This paper discusses the importance of real-time monitoring of metabolic rate during EVAs, and provides a historical look at energy expenditure during EVAs through the Apollo Program.

  4. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Mesloh, Miranda; Thompson, Shelby; England, Scott; Benson, Liz

    2009-01-01

    With the new vision of space travel aimed at traveling back to the Moon and eventually to Mars, NASA is designing a new spacesuit glove. The purpose of this study was to baseline hand strength while wearing the current Extravehicular Activity (EVA) glove, the Phase VI. By varying the pressure in the glove, hand strength could be characterized as a function of spacesuit pressure. This finding is of extreme importance when evaluating missions that require varying suit pressures associated with different operations within NASA's current human spaceflight program, Constellation. This characterization fed directly into the derivation of requirements for the next EVA glove. This study captured three types of maximum hand strength: grip, lateral pinch, and pulp-2 pinch. All three strengths were measured under varying pressures and compared to a bare-hand condition. The resulting standardized data was reported as a percentage of the bare-hand strength. The first wave of tests was performed while the subjects, four female and four male, were wearing an Extravehicular Mobility Unit (EMU) suit supported by a suit stand. This portion of the test collected data from the barehand, suited unpressurized, and suited pressurized (4.3 psi) conditions. In addition, the effects of the Thermal Micrometeoroid Garment (TMG) on hand strength were examined, with the suited unpressurized and pressurized cases tested with and without a TMG. It was found that, when pressurized and with the TMG, the Phase VI glove reduced applied grip strength to a little more than half of the subject s bare-hand strength. The lateral pinch strength remained relatively constant while the pulp-2 pinch strength actually increased with pressure. The TMG was found to decrease maximum applied grip strength by an additional 10% for both pressurized and unpressurized cases, while the pinch strengths saw little to no change. In developing requirements based on human subjects, it is important to attempt to derive results that encompass the variation within the entire population. The current EMU does not accommodate humans at the extremes of the anthropometric spectrum. To account for this and to ensure that these requirements cover the population, another phase of testing will be conducted in a differential pressure glove box. This phase will focus on smaller females and very large males that do not have a properly fitted EMU suit. Instead, they would wear smaller or larger gloves and be tested in the glove box as a means to compare and contrast their strength capabilities against the EMU accommodated hand size subjects. The glove box s ability to change pressures easily will also allow for a wider range of glove pressures to be tested. Compared to the data collected on the subjects wearing the EMU suit, it is expected that there will be similar ratios to bare-hand. It is recommended that this topic be sent to the Physical Ergonomics Board for review.

  5. The Lunar Mapping and Modeling Project

    NASA Technical Reports Server (NTRS)

    Noble, Sarah; French, Raymond; Nall, Mark; Muery, Kimberly

    2009-01-01

    LMMP was initiated in 2007 to help in making the anticipated results of the LRO spacecraft useful and accessible to Constellation. The LMMP is managing and developing a suite of lunar mapping and modeling tools and products that support the Constellation Program (CxP) and other lunar exploration activities. In addition to the LRO Principal Investigators, relevant activities and expertise that had already been funded by NASA was identified at ARC, CRREL (Army Cold Regions Research & Engineering Laboratory), GSFC, JPL, & USGS. LMMP is a cost capped, design-to-cost project (Project budget was established prior to obtaining Constellation needs)

  6. Overview of Human Factors and Habitability at NASA

    NASA Technical Reports Server (NTRS)

    Connolly, Janis; Arch, M.; Kaiser, Mary

    2009-01-01

    This slide presentation reviews the ongoing work on human factors and habitability in the development of the Constellation Program. The focus of the work is on how equipment, spacecraft design, tools, procedures and nutrition be used to improve the health, safety and efficiency of the crewmembers. There are slides showing the components of the Constellation Program, and the conceptual designs of the Orion Crew module, the lunar lander, (i.e., Altair) the microgravity EVA suit, and the lunar surface EVA suit, the lunar rover, and the lunar surface system infrastructure.

  7. Developments in Radiation-Hardened Electronics Applicable to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Frazier, Donald O.; Patrick , Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the anticipated requirements of NASA's Constellation program. Methods of protecting and hardening electronics against the encountered space environment are discussed. Critical stages of a spaceflight mission that are vulnerable to radiation-induced interruptions or failures are identified. Solutions to mitigating the risk of radiation events are proposed through the infusion of RHESE technology products and deliverables into the Constellation program's spacecraft designs.

  8. Constellation X-Ray Mission and Support

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Grady, Jean (Technical Monitor)

    2002-01-01

    This report is a supplement to the Third Annual Report summarizing work performed by the Smithsonian Astrophysical Observatory (SAO) for NASA Goddard Space Flight Center (GSFC) under Cooperative Agreement NCC5-3681. The Agreement is entitled 'Constellation X-ray Mission Study and Support.' This supplementary report covers the period from October 1, 2001 through January 10, 2002. The report has been prepared and submitted to ensure that the Constellation-X Project Office at GSFC has current performance information needed to evaluate a proposed modified budget for FY02. That proposed budget is being submitted separately. SAO continues to perform work under the overall direction of Dr. Harvey Tananbaum, the SAO Principal Investigator for the program. Mr. Robert Rasche is the SAO Program Manager and is responsible for day-to-day program management at SAO and coordination with GSFC. The report summarizes the main areas of SAO activity. Most of the work has been done jointly with personnel from GSFC and Marshall Space Flight Center (MSFC). We describe SAO participation in these efforts. Under the Agreement, SAO performed work in seven major areas of activity. These areas related to: (1) Constellation X-ray Mission Facility Definition Team and Study Management; (2) Science Support; (3) Spectroscopy X-ray Telescope (SXT); (4) Systems Engineering; (5) Travel in Support of the Work Effort; and (6) In-house Management and Coordination.

  9. CREW PORTRAIT - SPACE SHUTTLE MISSION 41B

    NASA Image and Video Library

    1983-01-01

    S83-40555 (15 October 1983) --- These five astronauts are in training for the STS-41B mission, scheduled early next year. On the front row are Vance D. Brand, commander; and Robert L. Gibson, pilot. Mission specialists (back row, left to right) are Robert L. Stewart, Dr. Ronald E. McNair and Bruce McCandless II. Stewart and McCandless are wearing Extravehicular Mobility Units (EMU) space suits. The STS program's second extravehicular activity (EVA) is to be performed on this flight, largely as a rehearsal for a scheduled repair visit to the Solar Maximum Satellite (SMS), on a later mission. The Manned Maneuvering Unit (MMU) will make its space debut on STS-41B.

  10. Summary of Liquid Propulsion System Needs in Support of the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lorier, Terry; Sumrall, Phil; Baine, Michael

    2008-01-01

    In January 2004, the President of the United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration of Mars and worlds beyond. In response, NASA developed the Constellation Program, consisting of the components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support of the Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview of engines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part of this paper. Also, other portions of the VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements of returning humans to the Moon.

  11. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2015-12-01

    the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management system, and a new...MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will continue to support legacy...Antecedent Information The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons

  12. GPM Mission, its Scientific Agenda, and its Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Smith Eric A.

    2004-01-01

    The GPM mission is currently planned for start in the late 2010 time frame. From the perspective of NASA s Earth Science Enterprise (ESE) and within the framework of ESE's global water and energy cycle (GWEC) research program, its main scientific goal is to help answer pressing scientific problems concerning how global and regional water cycle processes and precipitation fluctuations and trends influence the variability intrinsic to climate, weather, and hydrology. These problems cut across a hierarchy of space-time scales and include improving understanding of climate-water cycle interactions, developing better techniques for incorporating satellite precipitation measurements into weather and climate predictions, and demonstrating that more accurate, more complete, and better sampled observations of precipitation and other water budget variables used as inputs can improve the ability of prognostic hydrometeorological models in the prediction of hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource stores. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar (DPR) and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination (GMI). The other constellation members will include a combination of new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of calibration-quality rainrates, plus cloud-precipitation microphysical processes, to be used in conjunction with more basic rain retrievals from the other constellation satellites to ensure bias-free constellation coverage.

  13. Lunar Extravehicular Activity Program

    NASA Technical Reports Server (NTRS)

    Heartsill, Amy Ellison

    2006-01-01

    Extravehicular Activity (EVA) has proven an invaluable tool for space exploration since the inception of the space program. There are situations in which the best means to evaluate, observe, explore and potentially troubleshoot space systems are accomplished by direct human intervention. EVA provides this unique capability. There are many aspects of the technology required to enable a "miniature spaceship" to support individuals in a hostile environment in order to accomplish these tasks. This includes not only the space suit assembly itself, but the tools, design interfaces of equipment on which EVA must work and the specific vehicles required to support transfer of humans between habitation areas and the external world. This lunar mission program will require EVA support in three primary areas. The first of these areas include Orbital stage EVA or micro-gravity EVA which includes both Low Earth Orbit (LEO), transfer and Lunar Orbit EVA. The second area is Lunar Lander EVA capability, which is lunar surface EVA and carries slightly different requirements from micro-gravity EVA. The third and final area is Lunar Habitat based surface EVA, which is the final system supporting a long-term presence on the moon.

  14. Occupant Protection during Orion Crew Exploration Vehicle Landings

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Jones, J. A.; Granderson, B. K.; Somers, J. T.

    2009-01-01

    The constellation program is evaluating current vehicle design capabilities for nominal water landings and contingency land landings of the Orion Crew Exploration vehicle. The Orion Landing Strategy tiger team was formed to lead the technical effort for which associated activities include the current vehicle design, susceptibility to roll control and tip over, reviewing methods for assessing occupant injury during ascent / aborts /landings, developing an alternate seat/attenuation design solution which improves occupant protection and operability, and testing the seat/attenuation system designs to ensure valid results. The EVA physiology, systems and Performance (EPSP) project is leading the effort under the authority of the Tiger Team Steering committee to develop, verify, validate and accredit biodynamics models using a variety of crash and injury databases including NASCAR, Indy Car and military aircraft. The validated biodynamics models will be used by the Constellation program to evaluate a variety of vehicle, seat and restraint designs in the context of multiple nominal and off-nominal landing scenarios. The models will be used in conjunction with Acceptable Injury Risk definitions to provide new occupant protection requirements for the Constellation Program.

  15. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required. Additionally, the modular system will allow for specific technology incorporation and upgrade as required with minimal redesign of the system.

  16. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  17. Quantification of Transient Changes of Thermospheric Neutral Density

    DTIC Science & Technology

    2014-11-24

    Pedersen conductivity at high latitudes. Based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites...the model. The seasonal variations of the ratio have been investigated for both hemispheres, and an interhemispheric asymmetry has been identified...Satellite Program (DMSP) F- 15, F-16, F-17 and F-18 satellites and the Iridium satellite constellation is presented, using an inverse procedure for high

  18. Mobile User Objective System (MUOS)

    DTIC Science & Technology

    2013-12-01

    system capacity of the current UHF Follow-On ( UFO ) constellation. MUOS includes the satellite constellation, a ground control and network management...terminals able to support the MUOS CAI. Each MUOS satellite carries a legacy payload similar to that flown on UFO -11. These legacy payloads will...Antecedent Information: The antecedent system to MUOS was the Ultra High Frequency (UHF) Follow-on ( UFO ) satellite communications program. Comparisons of O

  19. Antenna Design Considerations for the Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Bakula, Casey J.; Theofylaktos, Onoufrios

    2015-01-01

    NASA is designing an Advanced Extravehicular Mobility Unit (AEMU)to support future manned missions beyond low-Earth orbit (LEO). A key component of the AEMU is the communications assembly that allows for the wireless transfer of voice, video, and suit telemetry. The Extravehicular Mobility Unit (EMU) currently used on the International Space Station (ISS) contains a radio system with a single omni-directional resonant cavity antenna operating slightly above 400 MHz capable of transmitting and receiving data at a rate of about 125 kbps. Recent wireless communications architectures are calling for the inclusion of commercial wireless standards such as 802.11 that operate in higher frequency bands at much higher data rates. The current AEMU radio design supports a 400 MHz band for low-rate mission-critical data and a high-rate band based on commercial wireless local area network (WLAN) technology to support video, communication with non-extravehicular activity (EVA) assets such as wireless sensors and robotic assistants, and a redundant path for mission-critical EVA data. This paper recommends the replacement of the existing EMU antenna with a new antenna that maintains the performance characteristics of the current antenna but with lower weight and volume footprints. NASA has funded several firms to develop such an antenna over the past few years, and the most promising designs are variations on the basic patch antenna. This antenna technology at UHF is considered by the authors to be mature and ready for infusion into NASA AEMU technology development programs.

  20. A human factors evaluation of Extravehicular Activity gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1989-01-01

    One of the major problems faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human-hand capabilities. NASA has sponsored a program to develop a standardized set of tests designed to assess EVA-gloved hand capabilities in six performance domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each performance domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand, an EVA glove without pressure, an EVA glove at operation pressure. Thus, the differential effect on performance of the glove with and without pressure was tested. Bare hand performance was used to 'calibrate' the effects. Ten subjects participated in the test setup as a repeated-measures experimental design. The paper will report the results of the test program.

  1. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  2. Oxygen Concentration Flammability Thresholds of Selected Aerospace Materials Considered for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.

    2007-01-01

    Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.

  3. Anthropometric Requirements for Constellation

    NASA Technical Reports Server (NTRS)

    Raulu, Sudhakar; Margerum, Sarah; Dory, Jonathan; Rochlis, Jennifer

    2009-01-01

    This slide presentation reviews the requirement from an Anthropometric standpoint for the development of the Constellation's programs hardware, specifically the Orion crew exploration vehicle. The NASA JSC Anthropometry and Biomechanics Facility (ABF) provides anthropometry, strength, mobility, and mass properties requirements; gathers, interprets, manages and maintains the flight crew anthropometry database; and participates and provides input during crew selection. This is used to assist in requirements for vehicle and space suit design and for crew selection.

  4. RapidEye constellation relative radiometric accuracy measurement using lunar images

    NASA Astrophysics Data System (ADS)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  5. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  6. Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2010-01-01

    The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.

  7. Constellation crew exploration vehicle, or CEV, is being prepare

    NASA Image and Video Library

    2007-11-27

    In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars.

  8. Review of the Constellation Level II Safety, Reliability, and Quality Assurance (SR&QA) Requirements Documents during Participation in the Constellation Level II SR&QA Forum

    NASA Technical Reports Server (NTRS)

    Cameron, Kenneth D.; Gentz, Steven J.; Beil, Robert J.; Minute, Stephen A.; Currie, Nancy J.; Scott, Steven S.; Thomas, Walter B., III; Smiles, Michael D.; Schafer, Charles F.; Null, Cynthia H.; hide

    2009-01-01

    At the request of the Exploration Systems Mission Directorate (ESMD) and the Constellation Program (CxP) Safety, Reliability; and Quality Assurance (SR&QA) Requirements Director, the NASA Engineering and Safety Center (NESC) participated in the Cx SR&QA Requirements forum. The Requirements Forum was held June 24-26; 2008, at GRC's Plum Brook Facility. The forums purpose was to gather all stakeholders into a focused meeting to help complete the process of refining the CxP to refine its Level II SR&QA requirements or defining project-specific requirements tailoring. Element prime contractors had raised specific questions about the wording and intent of many requirements in areas they felt were driving costs without adding commensurate value. NESC was asked to provide an independent and thorough review of requirements that contractors believed were driving Program costs, by active participation in the forum. This document contains information from the forum.

  9. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The Shuttle and Constellation Programs require very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing LC-39 pad tanks, which will be passed onto Constellation, are 40 years old and have received minimal refurbishment or even inspection, because they can only be temperature cycled a few times before being overhauled (a costly operation in both time and dollars). Numerous questions exist on the performance and reliability of these old tanks which could cause a major Program schedule disruption. Consequently, with the passing of the first two tanks to Constellation to occur this year, there is growing awareness that NDE is needed to detect problems early in these tanks so that corrective actions can be scheduled when least disruptive. Time series thermal images of two sides of the Pad B LH2 tank have been taken over multiple days to demonstrate the effects of environmental conditions to the solar heating of the tank and therefore the effectiveness of thermal imaging.

  10. Exploration Update

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Delores Beasley, NASA Public Affairs, introduces the panel who consist of: Scott "Doc" Horowitz, Associate Administrator of Exploration Systems from NASA Headquarters; Jeff Henley, Constellation Program Manager from NASA Johnson Space Flight Center; and Steve Cook, Manager Exploration Launch Office at NASA Marshall Space Flight Center. Scott Horowitz presents a short video entitled, "Ares Launching the Future". He further explains how NASA personnel came up with the name of Ares and where the name Ares was derived. Jeff Henley, updates the Constellation program and Steve Cook presents two slide presentations detailing the Ares l crew launch vehicle and Ares 5 cargo launch vehicle. A short question and answer period from the news media follows.

  11. Overview of the Altair Lunar Lander Thermal Control System Design

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program has been developed to successfully return humans to the Lunar surface by 2020. The Constellation Program includes several different project offices including Altair, which is the next generation Lunar Lander. The planned Altair missions are very different than the Lunar missions accomplished during the Apollo era. These differences have resulted in a significantly different thermal control system architecture. The current paper will summarize the Altair mission architecture and the various operational phases. In addition, the derived thermal requirements will be presented. The paper will conclude with a brief description of the thermal control system designed to meet these unique and challenging thermal requirements.

  12. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  13. COSMO-SkyMed Interoperability, Expandability and Multi-Sensor Capabilities: The Keys for Full Multi-Mission Spectrum Operations

    DTIC Science & Technology

    2006-08-01

    constellation, SAR Bistatic for interferometry, L-band SAR data from Argentinean SAOCOM satellites, and optical imaging data from the French ‘ Pleiades ...a services federation (e.g. COSMO-SkyMed (SAR) and Pleiades (optical) constellation). Its main purpose is the elaboration of Programming Requests...on catalogue interoperability or on a federation of services (i.e. with French Pleiades optical satellites). The multi-mission objectives are

  14. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  15. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  16. Thermal control extravehicular life support system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results of a comprehensive study which defined an Extravehicular Life Support System Thermal Control System (TCS) are presented. The design of the prototype hardware and a detail summary of the prototype TCS fabrication and test effort are given. Several heat rejection subsystems, water management subsystems, humidity control subsystems, pressure control schemes and temperature control schemes were evaluated. Alternative integrated TCS systems were studied, and an optimum system was selected based on quantitative weighing of weight, volume, cost, complexity and other factors. The selected subsystem contains a sublimator for heat rejection, bubble expansion tank for water management, a slurper and rotary separator for humidity control, and a pump, a temperature control valve, a gas separator and a vehicle umbilical connector for water transport. The prototype hardware complied with program objectives.

  17. Prevention of decompression sickness during extravehicular activity in space: a review.

    PubMed

    Tokumaru, O

    1997-12-01

    Extended and more frequent extravehicular activity (EVA) is planned in NASA's future space programs. The more EVAs are conducted, the higher the incidence of decompression sickness (DCS) that is anticipated. Since Japan is also promoting the Space Station Freedom project with NASA, DCS during EVA will be an inevitable complication. The author reviewed the pathophysiology of DCS and detailed four possible ways of preventing decompression sickness during EVA in space: (1) higher pressure suit technology; (2) preoxygenation/prebreathing; (3) staged decompression; and (4) habitat or vehicle pressurization. Among these measures, development of zero-prebreathe higher pressure suit technology seems most ideal, but because of economic and technical reasons and in cases of emergency, other methods must also be improved. Unsolved problems like repeated decompression or oxygen toxicity were also listed.

  18. Lessons Learned for Cx PRACA. Constellation Program Problem Reporting, Analysis and Corrective Action Process and System

    NASA Technical Reports Server (NTRS)

    Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil

    2009-01-01

    This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.

  19. Extravehicular Activity Testing in Analog Environments: Evaluating the Effects of Center of Gravity and Environment on Human Performance

    NASA Technical Reports Server (NTRS)

    Gernhardt, M.L.; Chappell, S.P.

    2009-01-01

    The EVA Physiology, Systems and Performance (EPSP) Project is performing tests in different analog environments to understand human performance during Extravehicular Activity (EVA) with the aim of developing more safe and efficient systems for lunar exploration missions and the Constellation Program. The project is characterizing human EVA performance in studies using several test beds, including the underwater NASA Extreme Environment Mission Operations (NEEMO) and Neutral Buoyancy Laboratory (NBL) facilities, JSC fs Partial Gravity Simulator (POGO), and the NASA Reduced Gravity Office (RGO) parabolic flight aircraft. Using these varied testing environments, NASA can gain a more complete understanding of human performance issues related to EVA and the limitations of each testing environment. Tests are focused on identifying and understanding the EVA system factors that affect human performance such as center of gravity (CG), inertial mass, ground reaction forces (GRF), suit weight, and suit pressure. The test results will lead to the development of lunar EVA systems operations concepts and design requirements that optimize human performance and exploration capabilities. METHODS: Tests were conducted in the NBL and during NEEMO missions in the NOAA Aquarius Habitat. A reconfigurable back pack with repositionable mass was used to simulate Perfect, Low, Forward, High, Aft and NASA Baseline CG locations. Subjects performed simulated exploration tasks that included ambulation, kneel and recovery, rock pick-up, and shoveling. Testing using POGO, that simulates partial gravity via pneumatic weight offload system and a similar reconfigurable rig, is underway for a subset of the same tasks. Additionally, test trials are being performed on the RGO parabolic flight aircraft. Subject performance was assessed using a modified Cooper-Harper scale to assess operator compensation required to achieve desired performance. All CG locations are based on the assumption of a standardized 6 ft 180 lb subject. RESULTS: The modified Cooper-Harper Scale assesses desired task performance described as performance in a reduced gravity environment as compared to a 1G environment. Modified Cooper-Harper ratings of . 3 indicate no improvements are needed, ratings of 4-6 indicate improvements are desirable, and ratings . 7 indicate improvements are mandatory. DISCUSSION: Differences were noted in suited CH results based on environment at the same CG and suit pressure. Additionally, results suggest that CG location affects unsuited human performance. Subjects preferred locations near their natural CG over those that are high, aft, or a combination of high and aft. Further testing and analyses are planned to compare these unsuited results to suited performance.

  20. Multisatellite constellation configuration selection for multiregional highly elliptical orbit constellations

    NASA Technical Reports Server (NTRS)

    Matossian, Mark G.

    1994-01-01

    The Archimedes Project is a joint effort of the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA). The primary goal of the Archimedes project is to perform a technical feasibility analysis and preliminary design of a highly inclined multisatellite constellation for direct broadcast and mobile communications services for Europe, Japan and much of North America. This report addresses one aspect of this project, specifically an analysis of continuous satellite coverage using multiregional highly elliptical orbits (M-HEO's). The analysis methodology and ensuing software tool, named SPIFF, were developed specifically for this project by the author during the summer of 1992 under the STA/NSF Summer Institute in Japan Program at Tsukuba Space Center.

  1. Design for Reliability and Safety Approach for the New NASA Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Weldon, Danny M.

    2007-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new launch vehicles, the ARES I and ARES V. Specifically, the paper addresses the use of an integrated probabilistic functional analysis to support the design analysis cycle and a probabilistic risk assessment (PRA) to support the preliminary design and beyond.

  2. Constellation Program Thermal and Environmental Control and Life Support System Status: 2009 - 2010

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Carrasquillo, Robyn L.; Bagdigian, Robert M.

    2009-01-01

    The Constellation Program (CxP) consists of spacecrafts, launch vehicles, and support systems to execute the Exploration Architecture. The Program is currently divided into three distinct phases. The first phase is to develop a vehicle to provide limited cargo resupply capability and allow crew member rotation to the International Space Station (ISS). The second phase is to support the return of humans to the moon. The final phase is currently envisioned to allow the delivery of humans and cargo to Mars for an extended time. To implement this phased approach the CxP is currently working on the first vehicle and support systems to replace the Space Shuttle and allow continued access to space. This paper provides a summary of the CxP Thermal and Environmental Control and Life Support (ECLS) work that that has occurred across the different parts of the Program in support of these three phases over the past year.

  3. Astronaut Bonnie Dunbar wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.

  4. The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.

  5. Salivary amylase and stress during stressful environment: three Mars analog mission crews study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-14

    After the establishment of the space age physicians, human factors engineers, neurologist and psychologists and their special attention to work on people's capability to meet up the physical, psychological, neuroscience and interpersonal strains of working in space, it has been regarded as an issue that seeks urgent consideration. Not study was conducted on effect of simulated Mars analog environment on stress and salivary amylase. So, this study aimed to confirm whether salivary amylase is act as stress biomarker in crew members who took part in Mars analog mission in an isolated and stressful environment. The 18 crew members were selected who took part in Mars Analog Research Station, Utah. Salivary amylase was measured using a biosensor of salivary amylase monitor and State-Trait Anxiety Inventory score at pre-extravehicular activity, post-extravehicular activity and on before mission. The state and trait anxiety scores at pre-extravehicular activity for each commander were elevated as compared to after extravehicular activity. There were significant differences in the state and trait anxiety scores between before extravehicular activity and after extravehicular activity of Commander and other members, also there were significant differences in values of before-extravehicular activity between commanders and other members. There were significant differences in values of salivary amylase at before extravehicular activity and after extravehicular activity between commander group and other members. There was significant correlation between salivary amylase and state and trait anxiety scores in all groups. Measuring salivary amylase level could be useful for stress assessment of crew members and population working in a stressful and isolated environment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Labeled cutaway line drawing of Shuttle Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    1991-05-21

    Labeled cutaway line drawing of the Shuttle extravehicular mobility unit (EMU) identifies its various components and equipment. The portable life support system (PLSS) and protective layers of fabric (thermal micrometeoroid garment (TMG)) incorporated in this extravehicular activity (EVA) space suit are shown.

  7. Labeled cutaway line drawing of Shuttle Extravehicular Mobility Unit (EMU)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Labeled cutaway line drawing of the Shuttle extravehicular mobility unit (EMU) identifies its various components and equipment. The portable life support system (PLSS) and protective layers of fabric (thermal micrometeoroid garment (TMG)) incorporated in this extravehicular activity (EVA) space suit are shown.

  8. Astronaut James Buchli wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).

  9. Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations

    NASA Technical Reports Server (NTRS)

    Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara

    2010-01-01

    This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.

  10. Development of Constellation's Launch Control System

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk D.; Peaden, Cary J.

    2010-01-01

    The paper focuses on the National Aeronautics and Space Administration (NASA) Constellation Program's Launch Control System (LCS) development effort at Kennedy Space Center (KSC). It provides a brief history of some preceding efforts to provide launch control and ground processing systems for other NASA programs, and some lessons learned from those experiences. It then provides high level descriptions of the LCS mission, objectives, organization, architecture, and progress. It discusses some of our development tenets, including our use of standards based design and use of off-the-shelf products whenever possible, incremental development cycles, and highly reliable, available, and supportable enterprise class system servers. It concludes with some new lessons learned and our plans for the future.

  11. Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth A.; England, Scott A.; Mesloh, Miranda; Thompson, Shelby; ajulu, Sudhakar

    2010-01-01

    The gloved hand is one of an astronaut s primary means of interacting with the environment, and any restrictions imposed by the glove can strongly affect performance during extravehicular activity (EVA). Glove restrictions have been the subject of study for decades, yet previous studies have generally been unsuccessful in quantifying glove mobility and tactility. Past studies have tended to focus on the dexterity, strength, and functional performance of the gloved hand; this provides only a circumspect analysis of the impact of each type of restriction on the glove s overall capability. The aim of this study was to develop novel capabilities to provide metrics for mobility and tactility that can be used to assess the performance of a glove in a way that could enable designers and engineers to improve their current designs. A series of evaluations were performed to compare unpressurized and pressurized (4.3 psi) gloved conditions with the ungloved condition. A second series of evaluations were performed with the Thermal Micrometeoroid Garment (TMG) removed. This series of tests provided interesting insight into how much of an effect the TMG has on gloved mobility - in some cases, the presence of the TMG restricted glove mobility as much as pressurization did. Previous hypotheses had assumed that the TMG would have a much lower impact on mobility, but these results suggest that an improvement in the design of the TMG could have a significant impact on glove performance. Tactility testing illustrated the effect of glove pressurization, provided insight into the design of hardware that interfaces with the glove, and highlighted areas of concern. The metrics developed in this study served to benchmark the Phase VI EVA glove and to develop requirements for the next-generation glove for the Constellation program.

  12. Dual Mission Scenarios for the Human Lunar Campaign - Performance, Cost and Risk Benefits

    NASA Technical Reports Server (NTRS)

    Saucillo, Rudolph J.; Reeves, David M.; Chrone, Jonathan D.; Stromgren, Chel; Reeves, John D.; North, David D.

    2008-01-01

    Scenarios for human lunar operations with capabilities significantly beyond Constellation Program baseline missions are potentially feasible based on the concept of dual, sequential missions utilizing a common crew and a single Ares I/CEV (Crew Exploration Vehicle). For example, scenarios possible within the scope of baseline technology planning include outpost-based sortie missions and dual sortie missions. Top level cost benefits of these dual sortie scenarios may be estimated by comparison to the Constellation Program reference two-mission-per-year lunar campaign. The primary cost benefit is the accomplishment of Mission B with a "single launch solution" since no Ares I launch is required. Cumulative risk to the crew is lowered since crew exposure to launch risks and Earth return risks are reduced versus comparable Constellation Program reference two-mission-per-year scenarios. Payload-to-the-lunar-surface capability is substantially increased in the Mission B sortie as a result of additional propellant available for Lunar Lander #2 descent. This additional propellant is a result of EDS #2 transferring a smaller stack through trans-lunar injection and using remaining propellant to perform a portion of the lunar orbit insertion (LOI) maneuver. This paper describes these dual mission concepts, including cost, risk and performance benefits per lunar sortie site, and provides an initial feasibility assessment.

  13. Solar flares, proton showers, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Rust, D. M.

    1982-01-01

    Attention is given the hazards posed to Space Shuttle crews by energetic proton radiation from inherently unpredictable solar flares, such as that of April 10-13, 1981, which was experienced by the Space Shuttle Columbia. The most energetic protons from this flare reached the earth's atmosphere an hour after flare onset, and would have posed a potentially lethal threat to astronauts engaged in extravehicular activity in a polar or geosynchronous orbit rather than the low-latitude, low-altitude orbit of this mission. It is shown that proton-producing flares are associated with energization in shocks, many of which are driven by coronal mass ejections. Insights gained from the Solar Maximum Year programs allow reconsideration of proton shower forecasting, which will be essential in the prediction of the weather that Space Shuttle astronauts will encounter during extravehicular activities.

  14. Extravehicular Mobility Unit (EMU) Preparations in Joint Airlock Quest

    NASA Image and Video Library

    2009-03-23

    ISS018-E-042704 (23 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, attired in his Extravehicular Mobility Unit (EMU) spacesuit, gives a ?thumbs-up? signal as he prepares for the mission's third scheduled session of extravehicular activity (EVA) in the Quest Airlock of the International Space Station.

  15. KSC-2009-5541

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - Inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the 327-foot-tall Ares I-X rocket stands on its mobile launcher platform. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  17. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  18. Gemini Program Mission Planning Report

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This report defines the Gemini Program objectives and presents guidelines for the individual Gemini missions. It provides general space vehicle configuration data, and descriptions of planned missions. Contingency mission requirements and extravehicular operations to be performed during specific missions are described in the last two sections of the basic document. Data on spacecraft weights and Gemini Launch Vehicle performance capabilities are provided in Appendix A, while Appendix B provides descriptions of onboard experiments to be conducted during Gemini missions.

  19. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  20. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    Shown is an illustration of the Ares I concept. The first stage will be a single, five-segment solid rocket booster derived from the space shuttle programs reusable solid rocket motor. The first stage is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama for NASA's Constellation program.

  1. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller-in-the-loop demonstration. The autonomy software can then be integrated with NASA's open source Core Flight Software, ported onto a Raspberry Pi 3.0 for a software-in-the-loop demonstration. Future use cases can be time critical events such as cloud movement, storms or other disasters, and in conjunction with other platforms in a Sensor Web.

  2. GEMINI-TITAN (GT)-9 - EXTRAVEHICULAR LIFE SUPPORT SYSTEM (ELSS) - ASTRONAUT MANEUVERING UNIT (AMU) - MSC

    NASA Image and Video Library

    1966-05-01

    S66-33162 (May 1966) --- Test subject Fred Spross, Crew Systems Division, wears configured extravehicular spacesuit assembly and Extravehicular Life Support System chest pack. The spacesuit legs are covered with Chromel R, which is a cloth woven from stainless steel fibers, used to protect the suit and astronaut from the hot exhaust thrust of the Astronaut Maneuvering Unit backpack. The Gemini spacesuit, backpack and chest pack comprise the AMU, a system which is essentially a miniature manned spacecraft. Astronaut Eugene A. Cernan will wear the AMU during his Gemini-9A extravehicular activity (EVA). Photo credit: NASA

  3. KSC-2009-2504

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – On display at the Kennedy Space Center Visitor Complex in Florida is the Orion crew exploration vehicle mockup (left) and an exhibit about the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-2507

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – On display at the Kennedy Space Center Visitor Complex in Florida is the Orion crew exploration vehicle mockup (right) and an exhibit about the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  5. KSC-2009-2505

    NASA Image and Video Library

    2009-04-02

    CAPE CANAVERAL, Fla. – A NASA official talks to visitors at the Kennedy Space Center Visitor Complex in Florida about the Orion crew exploration vehicle mockup and the Constellation Program. The Orion mockup is on display before heading offshore to be tested in open water. The spacecraft mock-up traveled from the Naval Surface Warfare Center's Carderock Division in Bethesda, Md. The goal of the open water testing, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motion astronauts can expect after landing, as well as outside conditions for recovery teams. Part of the Constellation Program, Orion is targeted to begin carrying humans to the International Space Station in 2015 and to the moon by 2020. Photo credit: NASA/Jack Pfaller

  6. KSC-2009-2301

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett

  7. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  8. Impact of Obesity and Other Chronic Conditions on Lifestyle Exercise During the Year After Completion of Cardiac Rehabilitation.

    PubMed

    Sattar, Abdus; Josephson, Richard; Moore, Shirley M

    2017-07-01

    Patients who attend cardiac rehabilitation programs have a high prevalence of multiple chronic conditions (MCCs). The extent to which different constellations of MCC influence lifestyle exercise in the year after completion of an outpatient phase 2 cardiac rehabilitation program (CRP) is unknown. Our objective was to examine the effects of MCC on lifestyle exercise in the year after completion of a CRP. The effects of different constellations of comorbidities on objectively measured lifestyle exercise were examined using data from a randomized controlled trial testing lifestyle behavior change interventions in patients with cardiac events (n = 379) who completed a phase 2 CRP. Adjusting for important covariates, the relationships between the primary outcome, exercise amount, and the presence of common chronic conditions (hypertension, obesity, diabetes, and arthritis) were studied using robust linear mixed-effects models. Diabetes, hypertension, obesity, and their dyads, triads, and quads have a negative impact on amount of exercise. For example, the cooccurrences of obesity and hypertension reduced lifestyle exercise by 2.83 hours per month (95% CI, 1.33-4.33) after adjustment for the effects of covariates. The presence of obesity was a major factor in the comorbid constellations affecting lifestyle exercise. The presence of obesity and other chronic conditions negatively impacts lifestyle exercise in the year after a CRP. The magnitude of the effect depends on the comorbidities. Different constellations of comorbid conditions can be used to identify those persons at greatest risk for not exercising after cardiac rehabilitation.

  9. Approach for Mitigating Pressure Garment Design Risks in a Mobile Lunar Surface Systems Architecture

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2009-01-01

    The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.

  10. Strategic Analysis Overview

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Earle, Kevin D.; Goodliff, Kandyce E.; Reeves, J. D.; Stromgren, Chel; Andraschko, Mark R.; Merrill, R. Gabe

    2008-01-01

    NASA s Constellation Program employs a strategic analysis methodology in providing an integrated analysis capability of Lunar exploration scenarios and to support strategic decision-making regarding those scenarios. The strategic analysis methodology integrates the assessment of the major contributors to strategic objective satisfaction performance, affordability, and risk and captures the linkages and feedbacks between all three components. Strategic analysis supports strategic decision making by senior management through comparable analysis of alternative strategies, provision of a consistent set of high level value metrics, and the enabling of cost-benefit analysis. The tools developed to implement the strategic analysis methodology are not element design and sizing tools. Rather, these models evaluate strategic performance using predefined elements, imported into a library from expert-driven design/sizing tools or expert analysis. Specific components of the strategic analysis tool set include scenario definition, requirements generation, mission manifesting, scenario lifecycle costing, crew time analysis, objective satisfaction benefit, risk analysis, and probabilistic evaluation. Results from all components of strategic analysis are evaluated a set of pre-defined figures of merit (FOMs). These FOMs capture the high-level strategic characteristics of all scenarios and facilitate direct comparison of options. The strategic analysis methodology that is described in this paper has previously been applied to the Space Shuttle and International Space Station Programs and is now being used to support the development of the baseline Constellation Program lunar architecture. This paper will present an overview of the strategic analysis methodology and will present sample results from the application of the strategic analysis methodology to the Constellation Program lunar architecture.

  11. The Science Goals of the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Tananbaum, Harvey; Weaver, Kimberly; Petre, Robert; Bookbinder, Jay

    2004-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution spectroscopy. The mission will also perform routine high- resolution X-ray spectroscopy of faint and extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity, and ionization state for a wide range of astrophysical problems. This has enormous potential for the discovery of new unexpected phenomena. The Constellation-X mission is a high priority in the National Academy of Sciences McKee-Taylor Astronomy and Astrophysics Survey of new Astrophysics Facilities for the first decade of the 21st century.

  12. KSC-2009-5548

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - The Ares I-X rocket heads toward Launch Pad 39B at NASA's Kennedy Space Center in Florida, riding atop a crawler-transporter. The 4.2-mile trip to the pad from the massive Vehicle Assembly Building began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-5543

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - With the work platforms retracted, the Ares I-X stands tall inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The platforms were retracted in preparation for the rocket's rollout to Launch Pad 39B. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-5546

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. - The towering 327-foot-tall Ares I-X rocket rides aboard a crawler-transporter as it exits the massive Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The rocket is bolted to its mobile launcher platform for the move to the launch pad. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-5529

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. – Spotlighted against the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the 327-foot-tall Ares I-X rocket begins its slow trek to Launch Pad 39B. The move, known as "rollout," began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jim Grossmann

  16. Obtaining Valid Safety Data for Software Safety Measurement and Process Improvement

    NASA Technical Reports Server (NTRS)

    Basili, Victor r.; Zelkowitz, Marvin V.; Layman, Lucas; Dangle, Kathleen; Diep, Madeline

    2010-01-01

    We report on a preliminary case study to examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Our goal is to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. Our purpose was two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to identify potential risks due to incorrect application of the safety process, deficiencies in the safety process, or the lack of a defined process. One early outcome of this work was to show that there are structural deficiencies in collecting valid safety data that make software safety different from hardware safety. In our conclusions we present some of these deficiencies.

  17. The role of EVA on Space Shuttle. [experimental support and maintenance activities

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1974-01-01

    The purpose of this paper is to present the history of Extravehicular Activity (EVA) through the Skylab Program and to outline the expected tasks and equipment capabilities projected for the Space Shuttle Program. Advantages offered by EVA as a tool to extend payload capabilities and effectiveness and economic advantages of using EVA will be explored. The presentation will conclude with some guidelines and recommendations for consideration by payload investigators in establishing concepts and designs utilizing EVA support.

  18. Evidence Report: Risk of Decompression Sickness (DCS)

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Norcross, Jason R.; Wessel, James H. III; Abercromby, Andrew F. J.; Klein, Jill S.; Dervay, Joseph P.; Gernhardt, Michael L.

    2013-01-01

    The Risk of Decompression Sickness (DCS) is identified by the NASA Human Research Program (HRP) as a recognized risk to human health and performance in space, as defined in the HRP Program Requirements Document (PRD). This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. Given that tissue inert gas partial pressure is often greater than ambient pressure during phases of a mission, primarily during extravehicular activity (EVA), there is a possibility that decompression sickness may occur.

  19. Extravehicular activity welding experiment

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin

    1989-01-01

    The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.

  20. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.

    1986-01-01

    The development of and test control strategies for self-contained, autonomous free flying space robots are discussed. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). Use of robots should reduce the expense and danger attending EVA both by providing assistance to astronauts and in many cases by eliminating altogether the need for human EVA, thus greatly enhancing the scope and flexibility of space assembly and repair activities. The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. It is planned, in a later phase, to extend the research to three dimensions by carrying out experiments in the Space Shuttle cargo bay.

  1. A simulation system for Space Station extravehicular activity

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose A.; Shepherd, Chip

    1993-01-01

    America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.

  2. Extravehicular activities limitations study. Volume 2: Establishment of physiological and performance criteria for EVA gloves

    NASA Technical Reports Server (NTRS)

    Ohara, John M.; Briganti, Michael; Cleland, John; Winfield, Dan

    1988-01-01

    One of the major probelms faced in Extravehicular Activity (EVA) glove development has been the absence of concise and reliable methods to measure the effects of EVA gloves on human hand capabilities. This report describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: Range of Motion, Strength, Tactile Perception, Dexterity, Fatigue, and Comfort. Based on an assessment of general human hand functioning and EVA task requirements several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure. A test program was conducted to evaluate the tests using a representative EVA glove. Eleven test subjects participated in a repeated-measures design. The report presents the results of the tests in each capability domain.

  3. Analysis of a Possible Future Degradation in the DORIS Geodetic Results Related to Changes in the Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Willis, Pascal

    2006-01-01

    This viewgraph presentation reviews the consequences of losing one or more of the 4 remaining Doppler & Ranging Information System (DORIS) satellites and any impact such a loss might have on geodesy. The goals of this program are to analyze the sensitivity of the current DORIS geodetic results (station position and polar motion) to the size of the DORIS constellation and to verify if some satellites are most important or less important than others. The conclusions of the study are summarized.

  4. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  5. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  6. Survey of Constellation-Era LOX/Methane Development Activities and Future Development Needs

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Stiegemeier, Benjamin; Greene, Sandra Elam; Hurlbert, Eric A.

    2017-01-01

    NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.

  7. Constellation Training Facility Support

    NASA Technical Reports Server (NTRS)

    Flores, Jose M.

    2008-01-01

    The National Aeronautics and Space Administration is developing the next set of vehicles that will take men back to the moon under the Constellation Program. The Constellation Training Facility (CxTF) is a project in development that will be used to train astronauts, instructors, and flight controllers on the operation of Constellation Program vehicles. It will also be used for procedure verification and validation of flight software and console tools. The CxTF will have simulations for the Crew Exploration Vehicle (CEV), Crew Module (CM), CEV Service Module (SM), Launch Abort System (LAS), Spacecraft Adapter (SA), Crew Launch Vehicle (CLV), Pressurized Cargo Variant CM, Pressurized Cargo Variant SM, Cargo Launch Vehicle, Earth Departure Stage (EDS), and the Lunar Surface Access Module (LSAM). The Facility will consist of part-task and full-task trainers, each with a specific set of mission training capabilities. Part task trainers will be used for focused training on a single vehicle system or set of related systems. Full task trainers will be used for training on complete vehicles and all of its subsystems. Support was provided in both software development and project planning areas of the CxTF project. Simulation software was developed for the hydraulic system of the Thrust Vector Control (TVC) of the ARES I launch vehicle. The TVC system is in charge of the actuation of the nozzle gimbals for navigation control of the upper stage of the ARES I rocket. Also, software was developed using C standards to send and receive data to and from hand controllers to be used in CxTF cockpit simulations. The hand controllers provided movement in all six rotational and translational axes. Under Project Planning & Control, support was provided to the development and maintenance of integrated schedules for both the Constellation Training Facility and Missions Operations Facilities Division. These schedules maintain communication between projects in different levels. The CxTF support provided is one that requires continuous maintenance since the project is still on initial development phases.

  8. Space Station medical sciences concepts

    NASA Technical Reports Server (NTRS)

    Mason, J. A.; Johnson, P. C., Jr.

    1984-01-01

    Current life sciences concepts relating to Space Station are presented including the following: research, extravehicular activity, biobehavioral considerations, medical care, maintenance of dental health, maintaining health through physical conditioning and countermeasures, protection from radiation, atmospheric contamination control, atmospheric composition, noise pollution, food supply and service, clothing and furnishings, and educational program possibilities. Information on the current status of Soviet Space Stations is contained.

  9. Study to evaluate the effect of EVA on payload systems. Volume 1: Executive summary. [project planning of space missions employing extravehicular activity as a means of cost reduction

    NASA Technical Reports Server (NTRS)

    Patrick, J. W.; Kraly, E. F.

    1975-01-01

    Programmatic benefits to payloads are examined which can result from the routine use of extravehicular activity (EVA) during space missions. Design and operations costs were compared for 13 representative baseline payloads to the costs of those payloads adapted for EVA operations. The EVA-oriented concepts developed in the study were derived from these baseline concepts and maintained mission and program objectives as well as basic configurations. This permitted isolation of cost saving factors associated specifically with incorporation of EVA in a variety of payload designs and operations. The study results were extrapolated to a total of 74 payload programs. Using appropriate complexity and learning factors, net EVA savings were extrapolated to over $551M for NASA and U.S. civil payloads for routine operations. Adding DOD and ESRO payloads increases the net estimated savings of $776M. Planned maintenance by EVA indicated an estimated $168M savings due to elimination of automated service equipment. Contingency problems of payloads were also analyzed to establish expected failure rates for shuttle payloads. The failure information resulted in an estimated potential for EVA savings of $1.9 B.

  10. Fault Management Technology Maturation for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.

    2010-01-01

    This slide presentation reviews the maturation of fault management technology in preparation for the Constellation Program. There is a review of the Space Shuttle Main Engine (SSME) and a discussion of a couple of incidents with the shuttle main engine and tanking that indicated the necessity for predictive maintenance. Included is a review of the planned Ares I-X Ground Diagnostic Prototype (GDP) and further information about detection and isolation of faults using Testability Engineering and Maintenance System (TEAMS). Another system that being readied for use that detects anomalies, the Inductive Monitoring System (IMS). The IMS automatically learns how the system behaves and alerts operations it the current behavior is anomalous. The comparison of STS-83 and STS-107 (i.e., the Columbia accident) is shown as an example of the anomaly detection capabilities.

  11. Launching the Future... Constellation Program at KSC

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2010-01-01

    With the Constellation Program, NASA is entering a new age of space exploration that will take us back to the Moon, to Mars, and beyond, and NASA is developing the new technology and vehicles to take us there. At the forefront are the Orion spacecraft and the Ares I launch vehicle. As NASA's gateway to space, Kennedy Space Center (KSC) will process and launch the new vehicles. This will require new systems and extensive changes to existing infrastructure. KSC is designing a new mobile launcher, a new launch control system, and new ground support equipment; modifying the Vehicle Assembly Building, one of the launch pads, and other facilities; and launching the Ares I-X flight test. It is an exciting and challenging time to be an engineer at KSC.

  12. NASA Range Safety Annual Report 2007

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2007-01-01

    As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.

  13. The Role and Quality of Software Safety in the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor R.; Zelkowitz, Marvin V.

    2010-01-01

    In this study, we examine software safety risk in the early design phase of the NASA Constellation spaceflight program. Obtaining an accurate, program-wide picture of software safety risk is difficult across multiple, independently-developing systems. We leverage one source of safety information, hazard analysis, to provide NASA quality assurance managers with information regarding the ongoing state of software safety across the program. The goal of this research is two-fold: 1) to quantify the relative importance of software with respect to system safety; and 2) to quantify the level of risk presented by software in the hazard analysis. We examined 154 hazard reports created during the preliminary design phase of three major flight hardware systems within the Constellation program. To quantify the importance of software, we collected metrics based on the number of software-related causes and controls of hazardous conditions. To quantify the level of risk presented by software, we created a metric scheme to measure the specificity of these software causes. We found that from 49-70% of hazardous conditions in the three systems could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. Furthermore, 10-12% of all controls were software-based. There is potential for inaccuracy in these counts, however, as software causes are not consistently scoped, and the presence of software in a cause or control is not always clear. The application of our software specificity metrics also identified risks in the hazard reporting process. In particular, we found a number of traceability risks in the hazard reports may impede verification of software and system safety.

  14. Procedures Manual: The Willie M. Program in North Carolina.

    ERIC Educational Resources Information Center

    Laneve, Ronald S.

    The guide focuses on administrative and program planning for Willie M. students (ages 9-18), those whose particular constellation of behavioral, emotional, neurological, and/or academic needs may require specially tailored special education or mental health services. Contents include a discussion of the role of the North Carolina Department of…

  15. Power Goals for the NASA Exploration Program

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2009-01-01

    This slide presentation reviews the requirements for electrical power for future NASA exploration missions to the lunar surface. A review of the Constellation program is included as an introduction to the review of the batteries required for safe and reliable power for the ascent stage of the Altair Lunar Lander module.

  16. Science and the Constellation Systems Program Office

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell

    2007-01-01

    An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known, even in ILEWG. At the recent annual Lunar and Planetary Science Conference, I reviewed the evolution of the program as a function of Agency leadership and the constraints put on NASA by the President in his 2004 announcement. I plan to continue my long-time ILEWG tradition of reporting a personal view of the state of development of human exploration of the solar system, this time coming from within the program office tasked to implement the vision for the United States. The current NASA implementation of the Vision for Space Exploration is consistent with certain classical scenarios that have been discussed extensively in the literature. I will discuss the role of science within the Vision, both from official policy and from a de facto interaction. While science goals are not officially driving the implementation of the Vision, the tools of scientific exploration are integral to defining the extraterrestrial design environments. In this respect the sharing of results from international missions to the Moon can make significant contributions to the success of the future human activities.

  17. Going Beyond Einstein with the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    2007-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.

  18. Global communication using a constellation of low earth meridian orbits

    NASA Astrophysics Data System (ADS)

    Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.

    1993-07-01

    The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.

  19. Science with Constellation-X, Choice of Instrumentation

    NASA Technical Reports Server (NTRS)

    Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean

    2007-01-01

    The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.

  20. Autonomy for Constellation

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    The newer types of space systems, which are planned for the future, are placing challenging demands for newer autonomy concepts and techniques. Motivating these challenges are resource constraints. Even though onboard computing power will surely increase in the coming years, the resource constraints associated with space-based processes will continue to be a major factor that needs to be considered when dealing with, for example, agent-based spacecraft autonomy. To realize "economical intelligence", i.e., constrained computational intelligence that can reside within a process under severe resource constraints (time, power, space, etc.), is a major goal for such space systems as the Nanosat constellations. To begin to address the new challenges, we are developing approaches to constellation autonomy with constraints in mind. Within the Agent Concepts Testbed (ACT) at the Goddard Space Flight Center we are currently developing a Nanosat-related prototype for the first of the two-step program.

  1. Advanced extravehicular activity systems requirements definition study. Phase 2: Extravehicular activity at a lunar base

    NASA Technical Reports Server (NTRS)

    Neal, Valerie; Shields, Nicholas, Jr.; Carr, Gerald P.; Pogue, William; Schmitt, Harrison H.; Schulze, Arthur E.

    1988-01-01

    The focus is on Extravehicular Activity (EVA) systems requirements definition for an advanced space mission: remote-from-main base EVA on the Moon. The lunar environment, biomedical considerations, appropriate hardware design criteria, hardware and interface requirements, and key technical issues for advanced lunar EVA were examined. Six remote EVA scenarios (three nominal operations and three contingency situations) were developed in considerable detail.

  2. Gemini 9 configured extravehicular spacesuit assembly

    NASA Image and Video Library

    1966-05-01

    S66-31019 (May 1966) --- Test subject Fred Spross, Crew Systems Division, wears the Gemini-9 configured extravehicular spacesuit assembly. The legs are covered with Chromel R, which is a cloth woven from stainless steel fibers, used to protect the astronaut and suit from the hot exhaust thrust of the Astronaut Maneuvering Unit (AMU). Astronaut Eugene A. Cernan will wear this spacesuit during his Gemini-9A extravehicular activity (EVA). Photo credit: NASA

  3. Views of the extravehicular activity of Astronaut Stewart during STS 41-B

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Close up frontal view of Astronaut Robert L. Stewart, mission specialist, as he participates in a extravehicular activity (EVA), a few meters away from the cabin of the shuttle Challenger. The open payload bay is reflected in his helmet visor as he faces the camera. Stewart is wearing the extravehicular mobility unit (EMU) and one of the manned maneuvering units (MMU) developed for this mission.

  4. Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment

    NASA Technical Reports Server (NTRS)

    Miranda, David J.; Fayez, Sam; Steele, Martin J.

    2011-01-01

    On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete event simulations.

  5. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  6. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  7. NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.

  8. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation sensitivity of anodic coatings. This project was directed toward the effects of ultra-violet radiation on high emissivity anodic coatings. The work of both Evelyne Orndoff and Hector Tello is of interest to the Engineering Directorate at NASA/JSC and is also directed toward their research as Rice University graduate students.

  9. Human-Rating Implementation for Commercial Space

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Kubicek, Kate; Berdich, Debbie

    2010-01-01

    This slide presentation reviews the appropriate NASA standards and Health and Medical Technical Authority (HMTA) standards for human rated spacecraft developed by commercial vendors. Included are the HMTA requirements for the Constellation Program (CxP)

  10. CxP Medical Operations Concept of Operations (CONOPS)

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the planned medical operations for manned missions to the Moon and Mars as outlined in the Constellation program. Many of the issues involving the medical operations are examined.

  11. Promoting Positive Peer Relationships among Youths: A Study Examining the Effects of a Class-Wide Bullying Prevention Program

    ERIC Educational Resources Information Center

    Earhart, James Allen, Jr.

    2011-01-01

    Bullying in schools has revealed deleterious psychosocial consequences for bullies, victims, and bystanders. Programs aimed at preventing bullying have largely revealed limited positive outcomes. Efforts that have been associated with positive results have drawn from the social-ecological model, focusing on the constellation of individual…

  12. KSC-2009-5536

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. – The 327-foot-tall Ares I-X rocket clears the door of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, on its way to Launch Pad 39B. The move to the launch pad, known as "rollout," began at 1:39 a.m. EDT. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-5913

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA's Kennedy Space Center in Florida, the rotating service structure has been rolled back from the Constellation Program's 327-foot-tall Ares I-X rocket, sitting atop its mobile launcher platform, during preparations for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-5915

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – Sunrise at Launch Pad 39B at NASA's Kennedy Space Center in Florida reveals the rotating service structure and the arms of the vehicle stabilization system have been retracted from around the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-5914

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – At Launch Pad 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the Constellation Program's 327-foot-tall Ares I-X rocket after the rotating service structure, has been retracted from around it for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-5917

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – Daybreak at Launch Pad 39B at NASA's Kennedy Space Center in Florida reveals the rotating service structure rolled back from around the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  17. Modeling Operations Costs for Human Exploration Architectures

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2013-01-01

    Operations and support (O&S) costs for human spaceflight have not received the same attention in the cost estimating community as have development costs. This is unfortunate as O&S costs typically comprise a majority of life-cycle costs (LCC) in such programs as the International Space Station (ISS) and the now-cancelled Constellation Program. Recognizing this, the Constellation Program and NASA HQs supported the development of an O&S cost model specifically for human spaceflight. This model, known as the Exploration Architectures Operations Cost Model (ExAOCM), provided the operations cost estimates for a variety of alternative human missions to the moon, Mars, and Near-Earth Objects (NEOs) in architectural studies. ExAOCM is philosophically based on the DoD Architecture Framework (DoDAF) concepts of operational nodes, systems, operational functions, and milestones. This paper presents some of the historical background surrounding the development of the model, and discusses the underlying structure, its unusual user interface, and lastly, previous examples of its use in the aforementioned architectural studies.

  18. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  19. Shuttle EVA description and design criteria

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The STS extravehicular mobility unit, orbiter EVA provisions, EVA equipment, factors affecting employment of EVA, EVA mission integration, baselined extravehicular activity are discussed. Design requirements are also discussed.

  20. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, the NASA/NOAA Joint Polar Satellite System (JPSS), and EUMETSAT MetOp satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. Relative to current data products, GPM's "nextgeneration" precipitation products will be characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. An overview of the GPM mission concept, the U.S. GPM program status and updates on international science collaborations on GPM will be presented.

  1. Williams during EVA 36

    NASA Image and Video Library

    2016-08-19

    Extravehicular crewmember 1 (EV1) Jeff Williams pauses for a photo after installing a Hemispherical (Hemi) Reflector Cover on Pressurized Mating Adapter 2 (PMA-2) during Extravehicular Activity 36 (EVA 36).

  2. Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems

    NASA Technical Reports Server (NTRS)

    vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis

    2008-01-01

    With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.

  3. Evaluation of Dual-Launch Lunar Architectures Using the Mission Assessment Post Processor

    NASA Technical Reports Server (NTRS)

    Stewart, Shaun M.; Senent, Juan; Williams, Jacob; Condon, Gerald L.; Lee, David E.

    2010-01-01

    The National Aeronautics and Space Administrations (NASA) Constellation Program is currently designing a new transportation system to replace the Space Shuttle, support human missions to both the International Space Station (ISS) and the Moon, and enable the eventual establishment of an outpost on the lunar surface. The present Constellation architecture is designed to meet nominal capability requirements and provide flexibility sufficient for handling a host of contingency scenarios including (but not limited to) launch delays at the Earth. This report summarizes a body of work performed in support of the Review of U.S. Human Space Flight Committee. It analyzes three lunar orbit rendezvous dual-launch architecture options which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. NASA employed the recently-developed Mission Assessment Post Processor (MAPP) tool to quickly evaluate vehicle performance requirements for several candidate approaches for conducting human missions to the Moon. The MAPP tool enabled analysis of Earth perturbation effects and Earth-Moon geometry effects on the integrated vehicle performance as it varies over the 18.6-year lunar nodal cycle. Results are provided summarizing best-case and worst-case vehicle propellant requirements for each architecture option. Additionally, the associated vehicle payload mass requirements at launch are compared between each architecture and against those of the Constellation Program. The current Constellation Program architecture assumes that the Altair lunar lander and Earth Departure Stage (EDS) vehicles are launched on a heavy lift launch vehicle. The Orion Crew Exploration Vehicle (CEV) is separately launched on a smaller man-rated vehicle. This strategy relaxes man-rating requirements for the heavy lift launch vehicle and has the potential to significantly reduce the cost of the overall architecture over the operational lifetime of the program. The crew launch occurs first, four days prior to the optimal trans-lunar injection (TLI) departure window. This is done to allow for launch delays in the Altair/EDS launch. During this time, the Orion vehicle is required to conduct orbit maintenance while loitering in low Earth orbit (LEO). The alternative architectures presented aim to eliminate the need for costly orbit maintenance maneuvers while loitering in LEO. In all of the alternative architectures considered, it is assumed that the Altair and Orion vehicles are nominally launched 90 minutes apart, depart the Earth separately, and complete the rendezvous and docking sequence at the Moon. In this lunar orbit rendezvous (LOR) strategy, both the Altair and Orion vehicles will require separate EDS stages, and each will be required to perform lunar orbit insertion (LOI). This has the effect of balancing payload requirements between the two launch vehicles at the Earth. In this case, the overall payload mass is increased slightly, but the increased mission costs could potentially be offset by requiring the construction of two rockets similar in size and nature, unlike the current Constellation architecture. Three dual-launch architecture options with LOR were evaluated, which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. Benefits and drawbacks of each of the dual-launch architecture options with LOR are discussed and the overall mission performance is compared with that of the existing Constellation Program lunar architecture.

  4. J-2X concludes series of tests

    NASA Image and Video Library

    2008-05-09

    NASA engineers successfully complete the first series of tests in the early development of the J-2X engine that will power the Ares I and Ares V rockets, key components of NASA's Constellation Program.

  5. Surface extra-vehicular activity emergency scenario management: Tools, procedures, and geologically related implications

    NASA Astrophysics Data System (ADS)

    Zea, Luis; Diaz, Alejandro R.; Shepherd, Charles K.; Kumar, Ranganathan

    2010-07-01

    Extra-vehicular activities (EVAs) are an essential part of human space exploration, but involve inherently dangerous procedures which can put crew safety at risk during a space mission. To help mitigate this risk, astronauts' training programs spend substantial attention on preparing for surface EVA emergency scenarios. With the help of two Mars Desert Research Station (MDRS) crews (61 and 65), wearing simulated spacesuits, the most important of these emergency scenarios were examined at three different types of locations that geologically and environmentally resemble lunar and Martian landscapes. These three platforms were analyzed geologically as well as topographically (utilizing a laser range finder with slope estimation capabilities and a slope determination software). Emergency scenarios were separated into four main groups: (1) suit issues, (2) general physiological, (3) attacks and (4) others. Specific tools and procedures were developed to address each scenario. The tools and processes were tested in the field under Mars-analog conditions with the suited subjects for feasibility and speed of execution.

  6. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.; Cannon, R. H., Jr.

    1985-01-01

    The goal of the research is to develop and test control strategies for a self-contained, free flying space robot. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. The development of the SRSV and of some of the controller subsystems are discribed. The two-link arm was fitted to the SRSV base, and researchers explored the open-loop characteristics of the arm and thruster actuators. Work began on building the software foundation necessary for use of the on-board computer, as well as hardware and software for a local vision system for target identification and tracking.

  7. Task network models in the prediction of workload imposed by extravehicular activities during the Hubble Space Telescope servicing mission

    NASA Technical Reports Server (NTRS)

    Diaz, Manuel F.; Takamoto, Neal; Woolford, Barbara

    1994-01-01

    In a joint effort with Brooks AFB, Texas, the Flight Crew Support Division at JSC has begun a computer simulation and performance modeling program directed at establishing the predictive validity of software tools for modeling human performance during spaceflight. This paper addresses the utility of task network modeling for predicting the workload that astronauts are likely to encounter in extravehicular activities (EVA) during the Hubble Space Telescope (HST) repair mission. The intent of the study was to determine whether two EVA crewmembers and one intravehicular activity (IVA) crewmember could reasonably be expected to complete HST Wide Field/Planetary Camera (WFPC) replacement in the allotted time. Ultimately, examination of the points during HST servicing that may result in excessive workload will lead to recommendations to the HST Flight Systems and Servicing Project concerning (1) expectation of degraded performance, (2) the need to change task allocation across crewmembers, (3) the need to expand the timeline, and (4) the need to increase the number of EVA's.

  8. APOLLO XVII EXTRAVEHICULAR ACTIVITY (EVA) - SCIENTIST-ASTRONAUT HARRISON H. SCHMITT - MOON

    NASA Image and Video Library

    1972-12-13

    S73-22871 (13 Dec. 1972) --- Scientist-astronaut Harrison H. Schmitt is photographed standing next to a huge, split lunar boulder during the third Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The Lunar Roving Vehicle (LRV), which transported Schmitt and Eugene A. Cernan to this extravehicular station from their Lunar Module (LM), is seen in the background. The mosaic is made from two frames from Apollo 17 Hasselblad magazine 140. The two frames were photographed by Cernan.

  9. Extravehicular Activity/Air Traffic Control (EVA/ATC) test report. [communication links to the astronaut

    NASA Technical Reports Server (NTRS)

    Tomaro, D. J.

    1982-01-01

    During extravehicular activity (EVA), communications between the EVA astronaut and the space shuttle orbiter are maintained by means of transceiver installed in the environmental support system backpack. Onboard the orbiter, a transceiver line replaceable unit and its associated equipment performs the task of providing a communications link to the astronaut in the extravehicular activity/air traffic control (EVA/ATC) mode. Results of the acceptance tests that performed on the system designed and fabricated for EVA/ATC testing are discussed.

  10. The Extravehicular Maneuvering Unit's New Long Life Battery and Lithium Ion Battery Charger

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.; Elder, Mark A.; Williams, Anthony G.; Dembeck, Jacob

    2010-01-01

    The Long Life (Lithium Ion) Battery is designed to replace the current Extravehicular Mobility Unit Silver/Zinc Increased Capacity Battery, which is used to provide power to the Primary Life Support Subsystem during Extravehicular Activities. The Charger is designed to charge, discharge, and condition the battery either in a charger-strapped configuration or in a suit-mounted configuration. This paper will provide an overview of the capabilities and systems engineering development approach for both the battery and the charger

  11. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the participating space agencies. These include 1) Time of day changes in NO2 using Aura/OMI and Metop/GOME-2. 2) Near-real-time fire detection and smoke forecasts using multiple satellites (A-Train, GOES, GOME-2, MSG, etc) and trajectory model, and 3) Improved volcanic ash alerts for aviation hazard avoidance from satellite SO2 and ash data from SCIAMACHY, OMI, GOME-2, AIRS and SEVIRI. Each of the three projects will address the GEO SBAs with consideration to discovery and interoperability of their data products. The status of the ACC studies will be reviewed with a progress report on the above three projects.

  12. EVA 25

    NASA Image and Video Library

    2013-12-24

    View of Rick Mastracchio,in his Extravehicular Mobility Unit (EMU),working to mate spare Pump Module (PM) Quick Disconnects (QDs) during International Space Station (ISS) Extravehicular Activity (EVA) 25. Image was released by astronaut on Twitter.

  13. Application of shuttle EVA systems to payloads. Volume 1: EVA systems and operational modes description

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Descriptions of the EVA system baselined for the space shuttle program were provided, as well as a compendium of data on available EVA operational modes for payload and orbiter servicing. Operational concepts and techniques to accomplish representative EVA payload tasks are proposed. Some of the subjects discussed include: extravehicular mobility unit, remote manipulator system, airlock, EVA translation aids, restraints, workstations, tools and support equipment.

  14. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Bohdan Bejmuk, chair, Constellation program Standing Review Board, and former manager of the Boeing Space Shuttle and Sea Launch programs, right, asks a question during the final meeting of the Human Space Flight Review Committee as Dr. Wanda Austin, president and CEO, The Aerospace Corp., looks on at left, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  15. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  16. Space Technology 5: Enabling Future Micro-Sat Constellation Science Missions

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace C.; Webb, Evan H.; Slavin, James A.

    2004-01-01

    The Space Technology 5 (ST-5) Project is part of NASA s New Millennium Program. ST-5 will consist of a constellation of three micro-satellites, each approximately 25 kg in mass. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft, to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable micro-satellites with new technologies. ST-5 is designed to measurably raise the utility of small satellites by providing high functionality in a low mass, low power, and low volume package. The whole of ST-5 is greater than the sum of its parts: the collection of components into the ST-5 spacecraft allows it to perform the functionality of a larger scientific spacecraft on a micro-satellite platform. The ST-5 mission was originally designed to be launched as a secondary payload into a Geosynchronous Transfer Orbit (GTO). Recently, the mission has been replanned for a Pegasus XL dedicated launch into an elliptical polar orbit. A three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST- 5 s technologies and concepts will then be transferred to future micro-sat science missions.

  17. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  18. Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann (Editor); Garcia, Michael (Editor)

    2005-01-01

    NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.

  19. Astronomy Graphics.

    ERIC Educational Resources Information Center

    Hubin, W. N.

    1982-01-01

    Various microcomputer-generated astronomy graphs are presented, including those of constellations and planetary motions. Graphs were produced on a computer-driver plotter and then reproduced for class use. Copies of the programs that produced the graphs are available from the author. (Author/JN)

  20. A Piloted Flight to a Near-Earth Object: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Landis, Rob; Korsmeyer, Dave; Abell, Paul; Adamo, Dan; Morrison, Dave; Lu, Ed; Lemke, Larry; Gonzales, Andy; Jones, Tom; Gershman, Bob; hide

    2007-01-01

    This viewgraph presentation examines flight hardware elements of the Constellation Program (CxP) and the utilization of the Crew Exploration Vehicle (CEV), Evolvable Expendable Launch Vehicles (EELVs) and Ares launch vehicles for NEO missions.

  1. Ares I-X: First Flight of a New Era

    NASA Technical Reports Server (NTRS)

    Davis, Stephen R.; Askins, Bruce R.

    2010-01-01

    Since 2005, NASA s Constellation Program has been designing, building, and testing the next generation of launch and space vehicles to carry humans beyond low-Earth orbit (LEO). The Ares Projects at Marshall Space Flight Center (MSFC) are developing the Ares I crew launch vehicle and Ares V cargo launch vehicle. On October 28, 2009, the first development flight test of the Ares I crew launch vehicle, Ares I-X, lifted off from a launch pad at Kennedy Space Center (KSC) on successful suborbital flight. Basing exploration launch vehicle designs on Ares I-X information puts NASA one step closer to full-up "test as you fly," a best practice in vehicle design. Although the final Constellation Program architecture is under review, the Ares I-X data and experience in vehicle design and operations can be applied to any launch vehicle. This paper presents the mission background as well as results and lessons learned from the flight.

  2. Constellation Program Electrical Ground Support Equipment Research and Development

    NASA Technical Reports Server (NTRS)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  3. Constellation Program Mission Operations Project Office Status and Support Philosophy

    NASA Technical Reports Server (NTRS)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  4. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  5. Development of Methodology to Gather Seated Anthropometry Data in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Young, Karen; Mesloh, Miranda

    2010-01-01

    The Constellation Program is designing a new vehicle based off of new anthropometric requirements. These requirements specify the need to account for a spinal elongation factor for anthropometric measurements involving the spine, such as eye height and seated height. However, to date there is no data relating spinal elongation to a seated posture. Only data relating spinal elongation to stature has been collected in microgravity. Therefore, it was proposed to collect seated height in microgravity to provide the Constellation designers appropriate data for their analyses. This document will describe the process in which the best method to collect seated height in microgravity was developed.

  6. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  7. EVA Glove Research Team

    NASA Technical Reports Server (NTRS)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  8. Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-77 TRAINING VIEW --- Wearing a training version of the Extravehicular Mobility Unit (EMU) space suit, astronaut Mario Runco, mission specialist, prepares to participate in an underwater rehearsal of a contingency Extravehicular Activity (EVA). This type of training routinely takes place in the 25-feet deep pool of the Johnson Space Centers (JSC) Weightless Environment Training Center (WET-F). The training prepares at least two crew members on each flight for procedures to follow outside the spacecraft in event of failure of remote methods to perform various chores.

  9. Idea Bank.

    ERIC Educational Resources Information Center

    Buck, Cheryl A.; And Others

    1988-01-01

    Introduces 12 activities for teaching science. Includes one way to begin the school year, peristalsis demonstration, candy-coated metrics, 3-D constellations, 35-mm astrophotography, create an alien organism, jet propulsion, computer programs for pendulum calculations, plant versus animal, chocolate chip petroleum, paper rockets, and…

  10. Habitability and Human Factors Contributions to Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sumaya, Jennifer Boyer

    2011-01-01

    This slide presentation reviews the work of the Habitability and Human Factors Branch in support of human space flight in two main areas: Applied support to major space programs, and Space research. The field of Human Factors applies knowledge of human characteristics for the design of safer, more effective, and more efficient systems. This work is in several areas of the human space program: (1) Human-System Integration (HSI), (2) Orion Crew Exploration Vehicle, (3) Extravehicular Activity (EVA), (4) Lunar Surface Systems, (5) International Space Station (ISS), and (6) Human Research Program (HRP). After detailing the work done in these areas, the facilities that are available for human factors work are shown.

  11. Extravehicular Activity Systems: 1994-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the space suit of the future, specifically for productive work on planetary surfaces. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  12. NASA-marks 5th anniversary of first lunar landing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of the Apollo 11 Flight are presented as a tribute to the fifth anniversary of the first landing on the moon. The document contains: (1) a general description of the Apollo 11 Flight, (2) Presidential statements, (3) Apollo historical summary, (4) Apollo mission facts, (5) information on astronauts who are no longer in the program, and (6) transcripts of the landing sequence and first extravehicular activities on the moon.

  13. Lunar Human Research Requirements (LHRR)

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela

    2009-01-01

    Biomedical research will be conducted during transit and on the surface of the Moon to prepare for extended stays on the Moon and to prepare for the exploration of Mars. The objective of the Human Research Program (HRP) is to preserve the health and enhance performance of astronaut explorers. Specific objectives of the HRP include developing the knowledge, capabilities, and necessary countermeasures and technologies in support of human space exploration; focusing on mitigating the highest risks to crew health and performance; and defining and improving human spaceflight medical, environmental, behavioral, and human factors standards. This document contains a detailed description of the resource accommodations, interfaces, and environments to be provided by the Constellation Program (CxP) to support the HRP research in transit and on the lunar surface. Covered, specifically, are the requirements for mass and volume transport; crew availability; ground operations, baseline data collection, and payload processing; power, and data. Volumes and mass are given for transport of conditioned samples only. They do not account for the engineering solution that the Constellation Program will implement (refrigerator/freezer volume/mass). This document does not account for requirements on the Orion vehicle for transportation to and from the International Space Station (ISS). The ISS Program has supplied requirements for this mission.

  14. Student achievement and attitudes in astronomy: An experimental comparison of two planetarium programs

    NASA Astrophysics Data System (ADS)

    Mallon, Gerald L.; Bruce, Matthew H.

    Of the 1100 planetariums in the U.S., approximately 96% are smaller facilities. The majority of these use a program type called the Star Show, whereas some have advocated a different type called the Participatory Oriented Planetarium. The purpose of this study was to investigate the following question: In a smaller educational planetarium, with a capacity of between 15-75 people, is a traditional Star Show planetarium program, or a Participatory Oriented Planetarium program the most effective method of instruction and attitude change? A large scale investigation was conducted in Pennsylvania, with four smaller replications in Texas, Minnesota, California, and Nevada. In each planetarium, a group of 8-10 year old students were identified and randomly assigned to groups. 556 students were tested. The testing instruments included a paper-and-pencil content test and a Likert-style science opinionnaire. The instructional programs were chosen from existing scripts to avoid bias in their construction. Both programs dealt with constellation study. Correlated t tests were used to compare pretest to posttest scores and two-way factorial analyses of variance were used to compare the groups' posttest scores. It was concluded that, The Participatory Oriented Planetarium program, utilizing an activity-based format and extensive verbal interaction, is clearly the more effective utilization of a small planetarium facility for teaching constellation study and possibly for improving students' attitudes towards astronomy and the planetarium.

  15. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  16. One of 50: Challenger, the University of Colorado Boulder QB50 Constellation Satellite

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Rainville, N.; Dahir, A.; Rouleau, C.; Stark, J.; Nell, N.; Fukushima, J.; Antunes de Sa, A.

    2015-12-01

    QB50 is a bold project lead by the Von Karman Institute of Fluid Dynamics as part of the European Union FP7 program to launch fifty cubesats from a single launch vehicle. With a planned deployment altitude of 380km, the QB50 constellation will stay below the space station and deorbit within 9-12 months, depending upon solar conditions. Forty of the QB50 satellites are flying specified scientific sensors which include an ion-neutral mass spectrometer, a Langmuir probe or a FIPEX oxygen sensor. This constellation of cubesats will yield an unprecedented set of distributed measurements of the lower-thermosphere. The University of Colorado Boulder was selected as part of a four team consortium of US cubesat providers to participate in the QB50 mission and is supported by the National Science Foundation. The Challenger cubesat, designed and built by a multidisciplinary team of students at the University of Colorado Boulder will carry the ion-neutral mass spectrometer as a science instrument and has heritage from the Colorado Student Space Weather Experiment (CSSWE) and Miniature X-Ray Spectrometer (MinXSS) cubesats. Many of the cubesat subsystems were designed, built and tested by students in the Space Technology Integration (STIg) lab. This paper will provide an overview and a status update of the QB50 program in addition to details of the Challenger cubesat.

  17. Launching Science: Science Opportunities Provided by NASA's Constellation System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science mission concepts that could take advantage of Constellation s unique capabilities are likely to be prohibitively expensive. Several times in the past NASA has begun ambitious space science missions that ultimately proved too expensive for the agency to pursue. Examples include the Voyager-Mars mission and the Prometheus program and its Jupiter Icy Moons Orbiter spacecraft (both examples are discussed in Chapter 1). Finding: The scientific missions reviewed by the committee as appropriate for launch on an Ares V vehicle fall, with few exceptions, into the "flagship" class of missions. The preliminary cost estimates, based on mission concepts that at this time are not very detailed, indicate that the costs of many of the missions analyzed will be above $5 billion (in current dollars). The Ares V costs are not included in these estimates. All of the costs discussed in this report are presented in current-year (2008) dollars, not accounting for potential inflation that could occur between now and the decade in which these missions might be pursued. In general, preliminary cost estimates for proposed missions are, for many reasons, significantly lower than the final costs. Given the large cost estimates for many of the missions assessed in this report, the potentially large impacts on NASA's budget by many of these missions are readily apparent.

  18. KSC-2009-5595

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. – Workers prepare to close the arms of the vehicle stabilization system around the towering 327-foot-tall Ares I-X rocket, newly arrived on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The test rocket left the Vehicle Assembly Building at 1:39 a.m. EDT on its 4.2-mile trek to the pad and was "hard down" on the pad’s pedestals at 9:17 a.m. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  19. KSC-2009-5596

    NASA Image and Video Library

    2009-10-20

    CAPE CANAVERAL, Fla. – The arms of the vehicle stabilization system are closed around the towering 327-foot-tall Ares I-X rocket, newly arrived on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The test rocket left the Vehicle Assembly Building at 1:39 a.m. EDT on its 4.2-mile trek to the pad and was "hard down" on the pad’s pedestals at 9:17 a.m. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, along with the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  20. KSC-2009-5916

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – As the sun rises over Launch Pad 39B at NASA's Kennedy Space Center in Florida, the rotating service structure and the arms of the vehicle stabilization system have been retracted from around the Constellation Program's 327-foot-tall Ares I-X rocket, resting atop its mobile launcher platform, for launch. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-5911

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. – Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida prepare the Constellation Program's 327-foot-tall Ares I-X rocket for launch. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-5912

    NASA Image and Video Library

    2009-10-27

    CAPE CANAVERAL, Fla. - Workers on Launch Pad 39B at NASA's Kennedy Space Center in Florida make final preparations for launch of the Constellation Program's 327-foot-tall Ares I-X rocket. The rotating service structure and the arms of the vehicle stabilization system will be moved from around the rocket for liftoff. The transfer of the pad from the Space Shuttle Program to the Constellation Program took place May 31. Modifications made to the pad include the removal of shuttle unique subsystems, such as the orbiter access arm and a section of the gaseous oxygen vent arm, and the installation of three 600-foot lightning towers, access platforms, environmental control systems and a vehicle stabilization system. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  3. Heliospheric Physics and NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2007-01-01

    The Vision for Space Exploration outlines NASA's development of a new generation of human-rated launch vehicles to replace the Space Shuttle and an architecture for exploring the Moon and Mars. The system--developed by the Constellation Program--includes a near term (approx. 2014) capability to provide crew and cargo service to the International Space Station after the Shuttle is retired in 2010 and a human return to the Moon no later than 2020. Constellation vehicles and systems will necessarily be required to operate efficiently, safely, and reliably in the space plasma and radiation environments of low Earth orbit, the Earth's magnetosphere, interplanetary space, and on the lunar surface. This presentation will provide an overview of the characteristics of space radiation and plasma environments relevant to lunar programs including the trans-lunar injection and trans-Earth injection trajectories through the Earth's radiation belts, solar wind surface dose and plasma wake charging environments in near lunar space, energetic solar particle events, and galactic cosmic rays and discusses the design and operational environments being developed for lunar program requirements to assure that systems operate successfully in the space environment.

  4. The Extravehicular Mobility Unit (EMU): Proven hardware for Satellite Servicing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A general technical description of the extravehicular mobility unit (EMU) is given. The description provides a basis for understanding EMU mobility capabilities and the environments a payload is exposed to in the vicinity of an EMU.

  5. Marshall Space Flight Center Digital Manufacturing

    NASA Technical Reports Server (NTRS)

    Arays, Edward; Phillips, Steven

    2008-01-01

    This presentation highlights the history of DELMIA at MSFC; provides an overview of the Constellation Program; examines the manufacturing of Ares 1 Upper Stage; explains the digital manufacturing implementation for Ares 1 Upper Stage; and, discusses manufacturing and development problems and challenges.

  6. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2016-01-01

    Design Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellation Abstract Communication systems are described that use geometrically PSK shaped constellations that have increased capacity compared to conventional PSK constellations operating within a similar SNR band. The geometrically shaped PSK constellation is optimized based upon parallel decoding capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  7. Studies Relating to EVA

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.

  8. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  9. Constellation Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Cook, Steve; Fragola, Joseph R.; Priskos, Alex; Davis, Danny; Kaynard, Mike; Hutt, John; Davis, Stephan; Creech, Steve

    2009-01-01

    This slide presentation reviews the current status of the launch vehicles associated with the Constellation Program. These are the Ares I and the Ares V. An overview of the Ares launch vehicles is included. The presentation stresses that the major criteria for the Ares I launcher is the safety of the crew, and the presentation reviews the various features that are designed to assure that aim. The Ares I vehicle is being built on a foundation of proven technologies, and the Ares V will give NASA unprecedented performance and payload volume that can enable a range of future missions. The CDs contain videos of scenes from various activities surrounding the design, construction and testing of the vehicles.

  10. CATIA V5 Virtual Environment Support for Constellation Ground Operations

    NASA Technical Reports Server (NTRS)

    Kelley, Andrew

    2009-01-01

    This summer internship primarily involved using CATIA V5 modeling software to design and model parts to support ground operations for the Constellation program. I learned several new CATIA features, including the Imagine and Shape workbench and the Tubing Design workbench, and presented brief workbench lessons to my co-workers. Most modeling tasks involved visualizing design options for Launch Pad 39B operations, including Mobile Launcher Platform (MLP) access and internal access to the Ares I rocket. Other ground support equipment, including a hydrazine servicing cart, a mobile fuel vapor scrubber, a hypergolic propellant tank cart, and a SCAPE (Self Contained Atmospheric Protective Ensemble) suit, was created to aid in the visualization of pad operations.

  11. Linking Satellites Via Earth "Hot Spots" and the Internet to Form Ad Hoc Constellations

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Frye, Stu; Grosvenor, Sandra; Ingram, Mary Ann; Langley, John; Miranda, Felix; Lee, Richard Q.; Romanofsky, Robert; Zaman, Afoz; Popovic, Zoya

    2004-01-01

    As more assets are placed in orbit, opportunities emerge to combine various sets of satellites in temporary constellations to perform collaborative image collections. Often, new operations concepts for a satellite or set of satellites emerge after launch. To the degree with which new space assets can be inexpensively and rapidly integrated into temporary or "ad hoc" constellations, will determine whether these new ideas will be implemented or not. On the Earth Observing 1 (EO-1) satellite, a New Millennium Program mission, a number of experiments were conducted and are being conducted to demonstrate various aspects of an architecture that, when taken as a whole, will enable progressive mission autonomy. In particular, the target architecture will use adaptive ground antenna arrays to form, as close as possible, the equivalent of wireless access points for low earth orbiting satellites. Coupled with various ground and flight software and the Internet. the architecture enables progressive mission autonomy. Thus, new collaborative sensing techniques can be implemented post-launch. This paper will outline the overall operations concept and highlight details of both the research effort being conducted in

  12. Flight Computer Design for the Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Speer, David; Jackson, George; Raphael, Dave; Day, John H. (Technical Monitor)

    2001-01-01

    As part of NASA's New Millennium Program, the Space Technology 5 mission will validate a variety of technologies for nano-satellite and constellation mission applications. Included are: a miniaturized and low power X-band transponder, a constellation communication and navigation transceiver, a cold gas micro-thruster, two different variable emittance (thermal) controllers, flex cables for solar array power collection, autonomous groundbased constellation management tools, and a new CMOS ultra low-power, radiation-tolerant, +0.5 volt logic technology. The ST-5 focus is on small and low-power. A single-processor, multi-function flight computer will implement direct digital and analog interfaces to all of the other spacecraft subsystems and components. There will not be a distributed data system that uses a standardized serial bus such as MIL-STD-1553 or MIL-STD-1773. The flight software running on the single processor will be responsible for all real-time processing associated with: guidance, navigation and control, command and data handling (C&DH) including uplink/downlink, power switching and battery charge management, science data analysis and storage, intra-constellation communications, and housekeeping data collection and logging. As a nanosatellite trail-blazer for future constellations of up to 100 separate space vehicles, ST-5 will demonstrate a compact (single board), low power (5.5 watts) solution to the data acquisition, control, communications, processing and storage requirements that have traditionally required an entire network of separate circuit boards and/or avionics boxes. In addition to the New Millennium technologies, other major spacecraft subsystems include the power system electronics, a lithium-ion battery, triple-junction solar cell arrays, a science-grade magnetometer, a miniature spinning sun sensor, and a propulsion system.

  13. Towards the Development of a Global Precipitation Measurement Mission Concept

    NASA Astrophysics Data System (ADS)

    Shepherd, J. M.

    2001-12-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study-Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-20008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  14. Towards the Development of a Global Precipitation Measurement (GPM) Mission Concept

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study - Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-2008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-su n -synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  15. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2015-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e., `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR (signal to noise ratio). In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d (sub min) (i.e. minimum distance between constellations) are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  16. Lessons Learned on Implementing Fault Detection, Isolation, and Recovery (FDIR) in a Ground Launch Environment

    NASA Technical Reports Server (NTRS)

    Ferell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Goerz, Jesse; Brown, Barbara

    2010-01-01

    This paper's main purpose is to detail issues and lessons learned regarding designing, integrating, and implementing Fault Detection Isolation and Recovery (FDIR) for Constellation Exploration Program (CxP) Ground Operations at Kennedy Space Center (KSC).

  17. STS-64 extravehicular activity training view

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency space walk. Voyles and Rueter help Linenger attach the gloves to his extravehicular mobility unit (EMU).

  18. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research Small Business Technology Transfer (SBIR/STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) projects. Other Government and commercial projects managers can also find this useful. Space Transportation; Life Support and Habitation Systems; Extra-Vehicular Activity; High EfficiencySpace Power; Human Exploration and Operations Mission,

  19. Feasibility study of automatic control of crew comfort in the shuttle Extravehicular Mobility Unit. [liquid cooled garment regulator

    NASA Technical Reports Server (NTRS)

    Cook, D. W.

    1977-01-01

    Computer simulation is used to demonstrate that crewman comfort can be assured by using automatic control of the inlet temperature of the coolant into the liquid cooled garment when input to the controller consists of measurements of the garment inlet temperature and the garment outlet temperature difference. Subsequent tests using a facsimile of the control logic developed in the computer program confirmed the feasibility of such a design scheme.

  20. Extravehicular Crewman Work System (ECWS) study program: Prebreathe elimination study

    NASA Technical Reports Server (NTRS)

    Wilde, R. L.

    1981-01-01

    The study examined impacts of changing Orbiter cabin pressure and EMU EVA pressure to eliminate pure O2 prebreathing prior to EVA. The investigation defines circumscribing physiological boundaries and identifies changes required within Orbiter to reduce cabin pressure. The study also identifies payload impacts, payload flight assignment constraints, and impacts upon EMU resulting from raising EVA pressure. The study presents the trade-off which optimizes the choice of reduced cabin pressure and increased EVA pressure.

  1. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  2. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  3. 802.16e System Profile for NASA Extra-Vehicular Activities

    NASA Technical Reports Server (NTRS)

    Foore, Lawrence R.; Chelmins, David T.; Nguyen, Hung D.; Downey, Joseph A.; Finn, Gregory G.; Cagley, Richard E.; Bakula, Casey J.

    2009-01-01

    This report identifies an 802.16e system profile that is applicable to a lunar surface wireless network, and specifically for meeting extra-vehicular activity (EVA) data flow requirements. EVA suit communication needs are addressed. Design-driving operational scenarios are considered. These scenarios are then used to identify a configuration of the 802.16e system (system profile) that meets EVA requirements, but also aim to make the radio realizable within EVA constraints. Limitations of this system configuration are highlighted. An overview and development status is presented by Toyon Research Corporation concerning the development of an 802.16e compatible modem under NASA s Small Business Innovative Research (SBIR) Program. This modem is based on the recommended system profile developed as part of this report. Last, a path forward is outlined that presents an evolvable solution for the EVA radio system and lunar surface radio networks. This solution is based on a custom link layer, and 802.16e compliant physical layer compliant to the identified system profile, and a later progression to a fully interoperable 802.16e system.

  4. Constellation Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W. (Compiler)

    1997-01-01

    The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.

  5. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  6. NASA Propulsion Investments for Exploration and Science

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.

  7. 76 FR 41783 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Commodities Group, Constellation Pwr Source Generation LLC, Constellation NewEnergy, Inc., CER Generation II..., CER Generation, LLC, Constellation Energy Commodities Group M, Constellation Mystic Power, LLC...

  8. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  9. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  10. Sheet Membrane Spacesuit Water Membrane Evaporator Thermal Test

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant C.

    2009-01-01

    For future lunar extravehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon(Registered Trademark) membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using this membrane was successfully tested by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of a compact sheet membrane SWME development unit for use in the Constellation System Spacesuit Element Portable Life Support System (Vogel and et. al., ICES 2008). Major design objectives included minimizing mass, volume, and manufacturing complexity while rejecting a minimum of 810 watts of heat from water flowing through the SWME at 91 kg/hr with an inlet temperature of 291K. The design meeting these objectives consisted of three concentric cylindrical water channels interlaced with four water vapor channels. Two units were manufactured for the purpose of investigating manufacturing techniques and performing thermal testing. The extensive thermal test measured SWME heat rejection as a function of water inlet temperatures, water flow-rates, water absolute pressures, water impurities, and water vapor back-pressures. This paper presents the test results and subsequent analysis, which includes a comparison of SWME heat rejection measurements to pretest predictions. In addition, test measurements were taken such that an analysis of the commercial-off-the-shelf vapor pressure control valve could be performed.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: CONSTELLATION TECHNOLOGY CORPORATION - CT-1128 PORTABLE GAS CHROMATOGRAPH-MASS SPECTROMETER

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program, beginning as an initiative of the U.S. Environmental Protection Agency (EPA) in 1995, verifies the performance of commercially available, innovative technologies that can be used to measure environmental quality. The ETV p...

  12. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  13. KSC-2009-2296

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1, on top of the crawler-transporter, reaches the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-2294

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1, on top of the crawler-transporter, nears the flame trench (lower left) on the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-2290

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 is moving to Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-2292

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 nears the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  17. KSC-2009-2289

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 is moving to Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  18. KSC-2009-2295

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1, on top of the crawler-transporter, reaches the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  19. Preliminary Performance Analyses of the Constellation Program ARES 1 Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Phillips, Mark; Hanson, John; Shmitt, Terri; Dukemand, Greg; Hays, Jim; Hill, Ashley; Garcia, Jessica

    2007-01-01

    By the time NASA's Exploration Systems Architecture Study (ESAS) report had been released to the public in December 2005, engineers at NASA's Marshall Space Flight Center had already initiated the first of a series of detailed design analysis cycles (DACs) for the Constellation Program Crew Launch Vehicle (CLV), which has been given the name Ares I. As a major component of the Constellation Architecture, the CLV's initial role will be to deliver crew and cargo aboard the newly conceived Crew Exploration Vehicle (CEV) to a staging orbit for eventual rendezvous with the International Space Station (ISS). However, the long-term goal and design focus of the CLV will be to provide launch services for a crewed CEV in support of lunar exploration missions. Key to the success of the CLV design effort and an integral part of each DAC is a detailed performance analysis tailored to assess nominal and dispersed performance of the vehicle, to determine performance sensitivities, and to generate design-driving dispersed trajectories. Results of these analyses provide valuable design information to the program for the current design as well as provide feedback to engineers on how to adjust the current design in order to maintain program goals. This paper presents a condensed subset of the CLV performance analyses performed during the CLV DAC-1 cycle. Deterministic studies include development of the CLV DAC-1 reference trajectories, identification of vehicle stage impact footprints, an assessment of launch window impacts to payload performance, and the computation of select CLV payload partials. Dispersion studies include definition of input uncertainties, Monte Carlo analysis of trajectory performance parameters based on input dispersions, assessment of CLV flight performance reserve (FPR), assessment of orbital insertion accuracy, and an assessment of bending load indicators due to dispersions in vehicle angle of attack and side slip angle. A short discussion of the various customers for the dispersion results, along with results and ramifications of each study, are also provided.

  20. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041093 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  1. STS-119 Extravehicular Activity (EVA) 1 Swanson in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041098 (19 March 2009) --- Astronaut Steve Swanson, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Swanson and astronaut Richard Arnold (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays.

  2. Apollo experience report: Assessment of metabolic expenditures. [extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Hawkins, W. R.; Humbert, G. F.; Nelson, L. J.; Vogel, S. J.; Kuznetz, L. H.

    1975-01-01

    A significant effort was made to assess the metabolic expenditure for extravehicular activity on the lunar surface. After evaluation of the real-time data available to the flight controller during extravehicular activity, three independent methods of metabolic assessment were chosen based on the relationship between heart rate and metabolic production, between oxygen consumption and metabolic production, and between the thermodynamics of the liquid-cooled garment and metabolic production. The metabolic assessment procedure is analyzed and discussed. Real-time use of this information by the Apollo flight surgeon is discussed. Results and analyses of the Apollo missions and comments concerning future applications are included.

  3. Constellations: A New Paradigm for Earth Observations

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Volz, Stephen M.; Yuhas, Cheryl L.; Case, Warren F.

    2009-01-01

    The last decade has seen a significant increase in the number and the capabilities of remote sensing satellites launched by the international community. A relatively new approach has been the launching of satellites into heterogeneous constellations. Constellations provide the scientists a capability to acquire science data, not only from specific instruments on a single satellite, but also from instruments on other satellites that fly in the same orbit. Initial results from the A-Train (especially following the CALIPSO/CloudSat launch) attest to the tremendous scientific value of constellation flying. This paper provides a history of the constellations (particularly the A-Train) and how the A-Train mission design was driven by science requirements. The A-Train has presented operational challenges which had not previously been encountered. Operations planning had to address not only how the satellites of each constellation operate safely together, but also how the two constellations fly in the same orbits without interfering with each other when commands are uplinked or data are downlinked to their respective ground stations. This paper discusses the benefits of joining an on-orbit constellation. When compared to a single, large satellite, a constellation infrastructure offers more than just the opportunities for coincidental science observations. For example, constellations reduce risks by distributing observing instruments among numerous satellites; in contrast, a failed launch or a system failure in a single satellite would lead to loss of all observations. Constellations allow for more focused, less complex satellites. Constellations distribute the development, testing, and operations costs among various agencies and organizations for example, the Morning and Afternoon Constellations involve several agencies within the U.S. and in other countries. Lastly, this paper addresses the need to plan for the long-term evolution of a constellation. Agencies need to have a replenishment strategy as some satellites age and eventually leave the constellation. This will ensure overlap of observations, thus providing continuous, calibrated science data over a much longer time period. Thoughts on the evolution of the A-Train will also be presented.

  4. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation

    NASA Astrophysics Data System (ADS)

    Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico

    2017-02-01

    Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is analysed.

  5. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  6. Methods and Apparatuses for Signaling with Geometric Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2018-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  7. Methods and apparatuses for signaling with geometric constellations

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2012-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  8. AMS Blanket and TTCS Wedge Install during EVA 32

    NASA Image and Video Library

    2015-10-28

    Close-up view of the Alpha Magnetic Spectrometer-02 (AMS-02), in the area where the Tracker Thermal Control System (TTCS) wedge will be installed. Image was taken by Extravehicular Crewmember 2 (EV2) during Extravehicular Activity 32 (EVA 32) and released on social media.

  9. NASA Materials Research for Extreme Conditions

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.

  10. Natural Environment Definition for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Suggs, Robert M.

    2017-01-01

    A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit (LEO), trans-lunar, cislunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.

  11. Natural Environment Definition for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Suggs, Rob

    2017-01-01

    A comprehensive set of environment definitions is necessary from the beginning of the development of a spacecraft. The Cross-Program Design Specification for Natural Environments (DSNE, SLS-SPEC-159) was originally developed during the Constellation Program and then modified and matured for the Exploration Programs (Space Launch System and Orion). The DSNE includes launch, low-earth orbit, trans-lunar, cis-lunar, interplanetary, and entry/descent/landing environments developed from standard and custom databases and models. The space environments section will be discussed in detail.

  12. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    DTIC Science & Technology

    2015-03-26

    programs. This specific tool not only offers high fidelity simulations, but it also offers the visual aid provided by STK . The ability to...MATLAB and STK . STK is a program that allows users to model, analyze, and visualize space systems. Users can create objects such as satellites and...position dilution of precision (PDOP) and system cost. This thesis utilized Satellite Tool Kit ( STK ) to calculate PDOP values of navigation

  13. Dynamics of tethered constellations in Earth orbit

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    Topics covered include station keeping of single-axis and two-axis constellations; single-axis vertical constellations with low-g platform; single-axis vertical constellations with three masses; deployment strategy; and damping of vibrational modes.

  14. A-3 First Tree Cutting

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  15. A-3 First Tree Cutting

    NASA Image and Video Library

    2007-06-13

    Tree clearing for the site of the new A-3 Test Stand at Stennis Space center began June 13. NASA's first new large rocket engine test stand to be built since the site's inception, A-3 construction begins a historic era for America's largest rocket engine test complex. The 300-foot-tall structure is scheduled for completion in August 2010. A-3 will perform altitude tests on the Constellation's J-2X engine that will power the upper stage of the Ares I crew launch vehicle and earth departure stage of the Ares V cargo launch vehicle. The Constellation Program, NASA's plan for carrying out the nation's Vision for Space Exploration, will return humans to the moon and eventually carry them to Mars and beyond.

  16. KSC-2009-5342

    NASA Image and Video Library

    2009-10-06

    CAPE CANAVERAL, Fla. – A banner inside NASA Kennedy Space Center's Vehicle Assembly Building captures the excitement building at Kennedy in anticipation of the flight test of the Ares I-X rocket, towering above it in High Bay 3. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I, which is the essential core of a space transportation system designed to carry crewed missions back to the moon, on to Mars and out into the solar system. The Ares I-X flight test is targeted for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/mission_pages/constellation/ares/flighttests/aresIx/index.html. Photo credit: NASA/Glenn Benson

  17. Measurements of Ionospheric Density, Temperature, and Spacecraft Charging in a Space Weather Constellation

    NASA Astrophysics Data System (ADS)

    Balthazor, R. L.; McHarg, M. G.; Wilson, G.

    2016-12-01

    The Integrated Miniaturized Electrostatic Analyzer (IMESA) is a space weather sensor developed by the United States Air Force Academy and integrated and flown by the DoD's Space Test Program. IMESA records plasma spectrograms from which can be derived plasma density, temperature, and spacecraft frame charging. Results from IMESA currently orbiting on STPSat-3 are presented, showing frame charging effects dependent on a complex function of the number of solar panel cell strings switched in, solar panel current, and plasma density. IMESA will fly on four more satellites launching in the next two calendar years, enabling an undergraduate DoD space weather constellation in Low Earth Orbit that has the ability to significantly improve space weather forecasting capabilities using assimilative forecast models.

  18. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2008-01-01

    An assessment was performed to identify the applicability of composite material technologies to major structural elements of the NASA Constellation program. A qualitative technology assessment methodology was developed to document the relative benefit of 24 structural systems with respect to 33 major structural elements of Ares I, Orion, Ares V, and Altair. Technology maturity assessments and development plans were obtained from more than 30 Boeing subject matter experts for more than 100 technologies. These assessment results and technology plans were combined to generate a four-level hierarchy of recommendations. An overarching strategy is suggested, followed by a Constellation-wide development plan, three integrated technology demonstrations, and three focused projects for a task order follow-on.

  19. KSC-07pd3481

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3479

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3482

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3478

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd3477

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd3480

    NASA Image and Video Library

    2007-11-27

    KENNEDY SPACE CENTER, FLA. -- In Hangar N at NASA's Kennedy Space Center, a heat shield for the Constellation crew exploration vehicle, or CEV, is being prepared for a demonstration. A developmental heat shield for the Orion spacecraft is being tested and evaluated at Kennedy. The shield was designed and assembled by the Boeing Company in Huntington Beach, Calif., for NASA's Constellation Program. The thermal protection system manufacturing demonstration unit is designed to protect astronauts from extreme heat during re-entry to Earth's atmosphere from low Earth orbit and lunar missions. The CEV will be used to dock and gain access to the International Space Station, travel to the moon in the 2018 timeframe and play a crucial role in exploring Mars. Photo credit: NASA/Kim Shiflett

  5. Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Hertig, B. A.

    1972-01-01

    Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.

  6. Plastic toy shark drifts through airlock in front of EMU suited MS Lenoir

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Plastic toy shark drifts through airlock and around fully extravehicular mobility unit (EMU) suited Mission Specialist (MS) Lenoir. Lenoir watches as shark drifts pass his left hand. Lenoir donned the EMU in preparation for a scheduled extravehicular activity (EVA) which was cancelled due to EMU problems.

  7. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  8. Application of EVA guidelines and design criteria. Volume 1: EVA selection/systems design considerations

    NASA Technical Reports Server (NTRS)

    Brown, N. E.

    1973-01-01

    Parameters that require consideration by the planners and designers when planning for man to perform functions outside the vehicle are presented in terms of the impact the extravehicular crewmen and major EV equipment items have on the mission, vehicle, and payload. Summary data on man's performance capabilities in the weightless space environment are also provided. The performance data are based on orbital and transearth EVA from previous space flight programs and earthbound simulations, such as water immersion and zero-g aircraft.

  9. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  10. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  11. End-to-End Trade-space Analysis for Designing Constellation Missions

    NASA Astrophysics Data System (ADS)

    LeMoigne, J.; Dabney, P.; Foreman, V.; Grogan, P.; Hache, S.; Holland, M. P.; Hughes, S. P.; Nag, S.; Siddiqi, A.

    2017-12-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.

  12. End-to-End Trade-Space Analysis for Designing Constellation

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; Foreman, Veronica; Grogan, Paul T.; Hache, Sigfried; Holland, Matthew; Hughes, Steven; Nag, Sreeja; Siddiqi, Afreen

    2017-01-01

    Multipoint measurement missions can provide a significant advancement in science return and this science interest coupled with as many recent technological advances are driving a growing trend in exploring distributed architectures for future NASA missions. Distributed Spacecraft Missions (DSMs) leverage multiple spacecraft to achieve one or more common goals. In particular, a constellation is the most general form of DSM with two or more spacecraft placed into specific orbit(s) for the purpose of serving a common objective (e.g., CYGNSS). Because a DSM architectural trade-space includes both monolithic and distributed design variables, DSM optimization is a large and complex problem with multiple conflicting objectives. Over the last two years, our team has been developing a Trade-space Analysis Tool for Constellations (TAT-C), implemented in common programming languages for pre-Phase A constellation mission analysis. By evaluating alternative mission architectures, TAT-C seeks to minimize cost and maximize performance for pre-defined science goals. This presentation will describe the overall architecture of TAT-C including: a User Interface (UI) at several levels of details and user expertise; Trade-space Search Requests that are created from the Science requirements gathered by the UI and validated by a Knowledge Base; a Knowledge Base to compare the current requests to prior mission concepts to potentially prune the trade-space; a Trade-space Search Iterator which, with inputs from the Knowledge Base, and, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generates multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, modeling orbits to balance accuracy and performance. The current version includes uniform and non-uniform Walker constellations as well as Ad-Hoc and precessing constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The current GUI automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost. The end-to-end system will be demonstrated as part of the presentation.

  13. ENRE 655 Class Project. Development of the Initial Main Parachute Failure Probability for the Constellation Program (CxP) Orion Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS)

    NASA Technical Reports Server (NTRS)

    Fuqua, Bryan C.

    2010-01-01

    Loss of Crew (LOC) and Loss of Mission (LOM) are two key requirements the Constellation Program (CxP) measure against. To date, one of the top risk drivers for both LOC and LOM has been Orion's Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS). Even though the Orion CPAS is one of the top risk drivers of CxP, it has been very difficult to obtain any relevant data to accurately quantify the risk. At first glance, it would seem that a parachute system would be very reliable given the track record of Apollo and Soyuz. Given the success of those two programs, the amount of data is considered to be statistically insignificant. However, due to CxP having LOC/LOM as key design requirements, it was necessary for Orion to generate a valid prior to begin the Risk Informed Design process. To do so, the Safety & Mission Assurance (S&MA) Space Shuttle & Exploration Analysis Section generated an initial failure probability for Orion to use in preparation for the Orion Systems Requirements Review (SRR).

  14. STEM Education Efforts in the Ares Projects

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv; Armstrong, Robert C.

    2010-01-01

    According to the National Science Foundation, of the more than 4 million first university degrees awarded in science and engineering in 2006, students in China earned about 21%, those in the European Union earned about 19%, and those in the United States earned about 11%. Statistics like these are of great interest to NASA's Ares Projects, which are responsible for building the rockets for the U.S. Constellation Program to send humans beyond low-Earth orbit. Science, technology, engineering, and mathematics students are essential for the long-term sustainability of any space program. Since the Projects creation, the Ares Outreach Team has used a variety of STEM-related media, methods, and materials to engage students, educators, and the general public in Constellation's mission. Like Project Apollo, the nation s exploration destinations and the vehicles used to get there can inspire students to learn more about STEM. Ares has been particularly active in public outreach to schools in Northern Alabama; on the Internet via outreach and grade-specific educational materials; and in more informal social media settings such as YouTube and Facebook. These combined efforts remain integral to America s space program, regardless of its future direction.

  15. Global Coverage from Ad-Hoc Constellations in Rideshare Orbits

    NASA Technical Reports Server (NTRS)

    Ellis, Armin; Mercury, Michael; Brown, Shannon

    2012-01-01

    A promising area of small satellite development is in providing higher temporal resolution than larger satellites. Traditional constellations have required specific orbits and dedicated launch vehicles. In this paper we discuss an alternative architecture in which the individual elements of the constellation are launched as rideshare opportunities. We compare the coverage of such an ad-hoc constellation with more traditional constellations. Coverage analysis is based on actual historical data from rideshare opportunities. Our analysis includes ground coverage and temporal revisits for Polar, Tropics, Temperate, and Global regions, comparing ad-hoc and Walker constellation.

  16. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  17. Nanosatellite constellation deployment using on-board magnetic torquer interaction with space plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Matsuzawa, Shinji; Inamori, Takaya; Jeung, In-Seuck

    2018-04-01

    One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3 U (1-3 kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.

  18. The 2-D lattice theory of Flower Constellations

    NASA Astrophysics Data System (ADS)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  19. An Approach for Performance Based Glove Mobility Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benson, Elizabeth; England, Scott

    2016-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves currently in development.

  20. An Approach for Performance Based Glove Mobility Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay; Benson, Elizabeth; England, Scott

    2015-01-01

    The Space Suit Assembly (SSA) Development Team at NASA Johnson Space Center has invested heavily in the advancement of rear-entry planetary exploration suit design but largely deferred development of extravehicular activity (EVA) glove designs, and accepted the risk of using the current flight gloves, Phase VI, for exploration missions. However, as design reference missions mature, the risks of using heritage hardware have highlighted the need for developing robust new glove technologies. To address the technology gap, the NASA Space Technology Mission Directorate's Game-Changing Development Program provided start-up funding for the High Performance EVA Glove (HPEG) Element as part of the Next Generation Life Support (NGLS) Project in the fall of 2013. The overarching goal of the HPEG Element is to develop a robust glove design that increases human performance during EVA and creates pathway for implementation of emergent technologies, with specific aims of increasing pressurized mobility to 60% of barehanded capability, increasing the durability in on-pristine environments, and decreasing the potential of gloves to cause injury during use. The HPEG Element focused initial efforts on developing quantifiable and repeatable methodologies for assessing glove performance with respect to mobility, injury potential, thermal conductivity, and abrasion resistance. The team used these methodologies to establish requirements against which emerging technologies and glove designs can be assessed at both the component and assembly levels. The mobility performance testing methodology was an early focus for the HPEG team as it stems from collaborations between the SSA Development team and the JSC Anthropometry and Biomechanics Facility (ABF) that began investigating new methods for suited mobility and fit early in the Constellation Program. The combined HPEG and ABF team used lessons learned from the previous efforts as well as additional reviews of methodologies in physical and occupational therapy arenas to develop a protocol that assesses gloved range of motion, strength, dexterity, tactility, and fit in comparative quantitative terms and also provides qualitative insight to direct hardware design iterations. The protocol was evaluated using five experienced test subjects wearing the EMU pressurized to 4.3psid with three different glove configurations. The results of the testing are presented to illustrate where the protocol is and is not valid for benchmark comparisons. The process for requirements development based upon the results is also presented along with suggested performance values for the High Performance EVA Gloves to be procured in fiscal year 2015.

  1. Description of core samples returned by Apollo 12

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.; Fryxell, R.

    1971-01-01

    Three core samples were collected by the Apollo 12 astronauts. Two are single cores, one of which (sample 12026) was collected close to the lunar module during the first extravehicular activity period and is 19.3 centimeters long. The second core (sample 12027) was collected at Sharp Crater during the second extravehicular activity period and is 17.4 centimeters long. The third sample is a double core (samples 12025 and 12028), which was collected near Halo Crater during the second extravehicular activity period. Unlike the other cores, the double-drive-tube core sample has complex layering with at least 10 clearly defined stratigraphic units. This core sample is approximately 41 centimeters long.

  2. Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere

    NASA Technical Reports Server (NTRS)

    Norcross, Jason R.; Conkin, Johnny; Wessel, James H., III; Norsk, Peter; Law, Jennifer; Arias, Diana; Goodwin, Tom; Crucian, Brian; Whitmire, Alexandra; Bloomberg, Jacob; hide

    2015-01-01

    Extravehicular activity (EVA) is at the core of a manned space exploration program. Some elements of exploration may be safely and effectively performed by robots, but certain critical elements will require the trained, assertive, and reasoning mind of a human crewmember. To effectively use these skills, NASA needs a safe, effective, and efficient EVA component integrated into the human exploration program. The EVA preparation time should be minimized and the suit pressure should be low to accommodate EVA tasks without causing undue fatigue, physical discomfort, or suit-related trauma. Commissioned in 2005, the Exploration Atmospheres Working Group (EAWG) had the primary goal of recommending to NASA an internal environment that allowed efficient and repetitive EVAs for missions that were to be enabled by the former Constellation Program. At the conclusion of the EAWG meeting, the 8.0 psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of missions. After re-evaluation in 2012, the 8/32 environment was altered to 8.2 psia and 34% O2 to reduce the hypoxic stress to a crewmember. These two small changes increase alveolar O2 pressure by 11 mmHg, which is expected to significantly benefit crewmembers. The 8.2/34 environment (inspired O2 pressure = 128 mmHg) is also physiologically equivalent to the staged decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 pressure = 127 mmHg) used on 34 different shuttle missions for approximately a week each flight. As a result of selecting this internal environment, NASA gains the capability for efficient EVA with low risk of decompression sickness (DCS), but not without incurring the additional negative stimulus of hypobaric hypoxia to the already physiologically challenging spaceflight environment. This report provides a review of the human health and performance risks associated with the use of the 8.2 psia / 34% O2 environment during spaceflight. Of most concern are the potential effects on the central nervous system (CNS), including increased intracranial pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. Other areas of focus include validation of the DCS mitigation strategy, incidence and treatment of transient acute mountain sickness (AMS), development of new exercise countermeasure protocols, effective food preparation at 8.2 psia, assurance of quality sleep, and prevention of suit-induced injury. Although missions proposing to use an 8.2/34 environment are still years away, it is recommended that these studies begin early enough to ensure that the correct decisions pertaining to vehicle design, mission operational concepts, and human health countermeasures are appropriately informed.

  3. Methodology and Method and Apparatus for Signaling With Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2014-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel. In numerous embodiments, the communication uses adaptive rate encoding and the location of points within the geometrically shaped constellation changes as the code rate changes.

  4. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  5. MIT January Operational Internship Experience

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; DeVivero, Charlie; James, Jillian; Perez-Martinez, Carla; Pino, Wendy; Wang, Andrew; Willett, Ezekiel; Williams, Kwami

    2010-01-01

    This viewgraph presentation describes the MIT January Operational Internship Experience (JOIE) program. The topics include: 1) Landing and Recovery; 2) Transportation; 3) Shuttle Processing; 4) Constellation Processing; 5) External Tank; 6) Launch Pad; 7) Ground Operations; 8) Hypergolic Propellants; 9) Environmental; 10) Logistics; 11) Six Sigma; 12) Systems Engineering; and 13) Human Factors.

  6. The Evolution of Global Positioning System (GPS) Technology.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  7. A bill to prohibit the use of funds for the termination of the Constellation Program of the National Aeronautics and Space Administration, and for other purposes.

    THOMAS, 111th Congress

    Sen. LeMieux, George S. [R-FL

    2010-03-25

    Senate - 03/25/2010 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. A bill to repeal a prohibition on the use of certain funds for the termination of the Constellation program of the National Aeronautics and Space Administration.

    THOMAS, 112th Congress

    Sen. Nelson, Bill [D-FL

    2011-02-08

    Senate - 02/08/2011 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. First Thoughts on Implementing the Framework for Information Literacy

    ERIC Educational Resources Information Center

    Jacobson, Trudi E.; Gibson, Craig

    2015-01-01

    Following the action of the ACRL Board in February 2015 in accepting the "Framework for Information Literacy for Higher Education" as one of the "constellation of documents" that promote and guide information literacy instruction and program development, discussion in the library community continues about steps in implementing…

  10. View - Mission Control Center (MCC) - Lunar Surface - Apollo XI Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39815 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  11. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  12. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  13. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  14. 77 FR 274 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    .... Applicants: Constellation Energy Commodities Group, Baltimore Gas and Electric Company, Constellation Power... that the Commission received the following electric rate filings: Docket Numbers: ER10-2172-006; ER10... Generation, LLC, Constellation NewEnergy, Inc., MXenergy Electric Inc. Description: Constellation MBR...

  15. Methodology and method and appartus for signaling with capacity optimized constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2012-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  16. Methodology and Method and Apparatus for Signaling with Capacity Optimized Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use geometrically shaped constellations that have increased capacity compared to conventional constellations operating within a similar SNR band. In several embodiments, the geometrically shaped is optimized based upon a capacity measure such as parallel decoding capacity or joint capacity. In many embodiments, a capacity optimized geometrically shaped constellation can be used to replace a conventional constellation as part of a firmware upgrade to transmitters and receivers within a communication system. In a number of embodiments, the geometrically shaped constellation is optimized for an Additive White Gaussian Noise channel or a fading channel.

  17. Launch Abort System Flight Test Overview

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy; Bosworth, John T.

    2007-01-01

    This viewgraph presentation is an overview of the Launch Abort System (LAS) for the Constellation Program. The purpose of the paper is to review the planned tests for the LAS. The program will evaluate the performance of the crew escape functions of the Launch Abort System (LAS) specifically: the ability of the LAS to separate from the crew module, to gather flight test data for future design and implementation and to reduce system development risks.

  18. NASA Supportability Engineering Implementation Utilizing DoD Practices and Processes

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Smith, John V.

    2010-01-01

    The Ares I design and development program made the determination early in the System Design Review Phase to utilize DoD ILS and LSA approach for supportability engineering as an integral part of the system engineering process. This paper is to provide a review of the overall approach to design Ares-I with an emphasis on a more affordable, supportable, and sustainable launch vehicle. Discussions will include the requirements development, design influence, support concept alternatives, ILS and LSA planning, Logistics support analyses/trades performed, LSA tailoring for NASA Ares Program, support system infrastructure identification, ILS Design Review documentation, Working Group coordination, and overall ILS implementation. At the outset, the Ares I Project initiated the development of the Integrated Logistics Support Plan (ILSP) and a Logistics Support Analysis process to provide a path forward for the management of the Ares-I ILS program and supportability analysis activities. The ILSP provide the initial planning and coordination between the Ares-I Project Elements and Ground Operation Project. The LSA process provided a system engineering approach in the development of the Ares-I supportability requirements; influence the design for supportability and development of alternative support concepts that satisfies the program operability requirements. The LSA planning and analysis results are documented in the Logistics Support Analysis Report. This document was required during the Ares-I System Design Review (SDR) and Preliminary Design Review (PDR) review cycles. To help coordinate the LSA process across the Ares-I project and between programs, the LSA Report is updated and released quarterly. A System Requirement Analysis was performed to determine the supportability requirements and technical performance measurements (TPMs). Two working groups were established to provide support in the management and implement the Ares-I ILS program, the Integrated Logistics Support Working Group (ILSWG) and the Logistics Support Analysis Record Working Group (LSARWG). The Ares I ILSWG is established to assess the requirements and conduct, evaluate analyses and trade studies associated with acquisition logistic and supportability processes and to resolve Ares I integrated logistics and supportability issues. It established a strategic collaborative alliance for coordination of Logistics Support Analysis activates in support of the integrated Ares I vehicle design and development of logistics support infrastructure. A Joint Ares I - Orion LSAR Working Group was established to: 1) Guide the development of Ares-I and Orion LSAR data and serve as a model for future Constellation programs, 2) Develop rules and assumptions that will apply across the Constellation program with regards to the program's LSAR development, and 3) Maintain the Constellation LSAR Style Guide.

  19. A Physical Validation Program for the GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late 2007 - early 2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycling. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. A major requirement before the retrieved rainfall information generated by the GPM mission can be used effectively by prognostic models to improve weather forecasts, hydrometeorological forecasts, and climate model reanalysis simulations is a capability to quantify the error characteristics of the retrievals. A solution for this problem has been upheld in past precipitation missions because of the lack of suitable error modeling systems incorporated into the validation programs and data distribution systems. An overview of how NASA intends to overcome this problem for the GPM mission using a physically-based error modeling approach within a multi-faceted validation program is described. The solution is to first identify specific user requirements and then determine the most stringent of these requirements that embodies all essential error characterization information needed by the entire user community. In the context of NASA s scientific agenda for the GPM mission, the most stringent user requirement is found within the data assimilation community. The fundamental theory of data assimilation vis-a-vis ingesting satellite precipitation information into the pre-forecast initializations is based on quantifying the conditional bias and precision errors of individual rain retrievals, and the space-time structure of the precision error (i.e., the spatial-temporal error covariance). By generating the hardware and software capability to produce this information in a near real-time fashion, and to couple the derived quantitative error properties to the actual retrieved rainrates, all key validation users can be satisfied. The talk will describe the essential components of the hardware and software systems needed to generate such near real-time error properties, as well as the various paradigm shifts needed within the validation community to produce a validation program relevant to the precipitation user community.

  20. 78 FR 3042 - J.P. Morgan Securities LLC, et al.; Notice of Application and Temporary Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Management Inc. (``BSAM''), Bear Stearns Health Innoventures Management, L.L.C. (``BSHIM''), BSCGP Inc. (``BSGCP''), Constellation Growth Capital LLC (``Constellation''), Constellation Ventures Management II, LLC (``Constellation II''), Highbridge Capital Management, LLC (``Highbridge''), JF International...

  1. Advanced research to qualify man for long term weightlessness.

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1972-01-01

    NASA is in the process of conducting a broad program of research and development of technology to qualify, support, and permit the successful use of man in long-term space flight. The technological tasks include human engineering, extravehicular engineering, life support, and human research to assess the effect of space stresses on human physiology and psychology. Various testing techniques that are being used may have future relevance to world health. These include a biocybernetic approach to the study of cardiovascular stresses, measurement of blood flow by means of the Doppler effect, and a device for simulating radiation dosages similar to those produced in solar flares. The planned program includes a study of both humans and animals.

  2. Extravehicular Mobility Unit Penetration Probability from Micrometeoroids and Orbital Debris: Revised Analytical Model and Potential Space Suit Improvements

    NASA Technical Reports Server (NTRS)

    Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.

    2007-01-01

    The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.

  3. An Investigation into Establishing a Formation of Small Satellites in a Lunar Flower Constellation

    NASA Astrophysics Data System (ADS)

    McManus, Lauren

    Lunar science missions such as LADEE and GRAIL achieved unprecedented measurements of the Lunar exosphere and gravity field. These missions were performed with one (LADEE) or two (GRAIL) traditional satellites. The global coverage achieved by these missions could have been greatly enhanced with the use of a constellation of satellites. A constellation of communication satellites at the Moon would also be necessary if a Lunar human base were to be established. Constellations with many satellites are expensive with traditional technology, but have become feasible through the technological advancements and affordability of cubesats. Cubesat constellations allow for full surface coverage in science or communication missions at a reasonable mission cost. Repeat ground track orbits offer interesting options for science or communication constellations, since they provide repeat coverage of the surface at a fixed time between sequential visits. Flower constellations are a family of constellations being studied primarily by Daniele Mortari at Texas A&M; University that make use of repeat ground tracks. Orbital parameters are selected such that the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on the number of days and the number of revolutions to repeat the ground track. All orbits in a flower constellation have identical orbital elements, with the exception of the right ascension of the ascending node (RAAN) and the initial mean anomaly, which are determined based on the desired phasing scheme desired. Flower constellations have thus far primarily been studied at Earth. A flower constellation at the Moon could be quite useful for science or communication purposes. In this scenario, the flower constellation satellites would be small satellites, which introduces many unique challenges. The cubesats would have limited propulsion capability and would need to be deployed from a mothercraft. Orbital maintenance would then be required after deployment to retain the repeat ground track nature of flower constellations. The limited fuel on the cubesats and the maneuvers required determine the lifetime of the constellation. The communications range of the cubesats will also be limited; following a successful deployment, the mothercraft must move into a long-term communications orbit where it can see both the children craft and Earth, to act as a communications relay. This work investigates the differences in flower constellations at the Moon versus at Earth. It is found that due to the longer rotation period of the Moon, the number of petals in the flower constellation must be quite large in order to produce reasonable orbit sizes. Two types of flower constellations are investigated: a single-petal and multi-petal constellation. The single-petal constellation consists of a string-of-pearls formation within one inertial flower constellation orbit. The multi-petal configuration has one satellite per inertial orbit, with the orbits spaced symmetrically within a 360 degree RAAN distribution. Optimal methods for deployment are explored for both configurations. Phasing orbits are used to deploy the single-petal constellation. This is found to be a simple and low-cost deployment scheme. The multi-petal configuration requires larger plane change maneuvers, and three-burn transfer orbit solutions that are optimal over single impulsive burn maneuvers are found. The mothercraft maneuver into the long-term communications orbit is also investigated. This maneuver is once again just a phase orbit maneuver for the single-petal constellation and is low cost. A polar mothercraft orbit is desired for the multi-petal configuration, again requiring a large and expensive plane change maneuver. As was the case with the deployment maneuver, a three-burn transfer orbit series is found to be cost optimal over a series of impulsive burns for this maneuver. Finally, once the constellation is established, orbit maintenance maneuvers are calculated. A 4 kg cubesat with 1 kg of fuel is assumed, and various thruster types are used to correlate required maintenance Delta-Vs to propellant mass required. It is found that the flower constellations at the Moon can be maintained for between 100 and 800 days, depending on the eciency of the thruster system used. Ultimately, a small satellite constellation at the Moon is found to be feasible to establish and maintain for a science or communication mission.

  4. Human Factors Evaluations of Two-Dimensional Spacecraft Conceptual Layouts

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne

    2010-01-01

    Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the Cooper- Harper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts. Keywords: Constellation, human factors, tools, processes, habitat, outpost, Net Habitable Volume, Cooper-Harper.

  5. Civil Applications of National Satellites

    NASA Astrophysics Data System (ADS)

    Killam, Dudley B.

    2002-01-01

    For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.

  6. EVA console personnel during STS-61 simulations

    NASA Image and Video Library

    1993-09-01

    Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.

  7. View of Mission Control Center (MCC) - Lunar Surface - Apollo XI - Extravehicular Activity (EVA) - MSC

    NASA Image and Video Library

    1969-07-20

    S69-39817 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.

  8. Astronaut Russell Schweickart photographed during EVA

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Russell L. Schweickart, lunar module pilot, stands in 'golden slippers' on the Lunar Module 3 porch during his extravehicular activity on the fourth day of the Apollo 9 earth-orbital mission. This photograph was taken from inside the Lunar Module 'Spider'. The Command/Service Module and Lunar Module were docked. Schweickart is wearing an Extravehicular Mobility Unit (EMU).

  9. View of MISSE 8 during EVA 1

    NASA Image and Video Library

    2011-05-20

    iss027e034948 (5/20/2011) --- Close-up view of Materials International Space Station Experiment (MISSE) 8 and ExPRESS (Expedite the Processing of Experiments to Space Station) Logistics Carrier-2 (ELC-2) taken during MISSE 8 installation. Image was taken by Extravehicular crewmember 1 (EV1) during Expedition 27 / STS-134 Extravehicular Activity 1 (EVA 1).

  10. STS-53 MS Clifford, in EMU, dons gloves with technicians' assistance at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Michael R.U. Clifford, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons gloves with assistance from two technicians. Clifford is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  11. STS-53 MS Voss,in EMU, dons gloves with technicians' assistance at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James S. Voss, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons his gloves with assistance from two technicians. Voss is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  12. Evaluation of cardiac rhythm disturbances during extravehicular activity.

    PubMed

    Rossum, A C; Wood, M L; Bishop, S L; Deblock, H; Charles, J B

    1997-04-15

    This study represents the first systematic evaluation of dysrhythmias before, during, and after spaceflight including extravehicular activity (EVA). The data, based on 7 Shuttle crew members, revealed a nonsignificant decrease in ventricular and supraventricular ectopy during EVA, suggesting that the incidence of dysrhythmias is no greater during EVA than with any other phase of a mission or preflight.

  13. [Research progress of thermal control system for extravehicular activity space suit].

    PubMed

    Wu, Z Q; Shen, L P; Yuan, X G

    1999-08-01

    New research progress of thermal control system for oversea Extravehicular Activity (EVA) space suit is presented. Characteristics of several thermal control systems are analyzed in detail. Some research tendencies and problems are discussed, which are worthwhile to be specially noted. Finally, author's opinion about thermal control system in the future is put forward.

  14. Astronaut William S. McArthur in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut William S. McArthur, mission specialist, participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. He is wearing the extravehicular mobility unit (EMU) minus his helmet. For simulation purposes, McArthur was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF).

  15. STS-119 Extravehicular Activity (EVA) 1 Arnold in Extravehicular Mobility Unit (EMU)

    NASA Image and Video Library

    2009-03-19

    ISS018-E-041104 (19 March 2009) --- Astronaut Richard Arnold, STS-119 mission specialist, participates in the mission's first scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, seven-minute spacewalk, Arnold and astronaut Steve Swanson (out of frame), mission specialist, connected bolts to permanently attach the S6 truss segment to S5. The spacewalkers plugged in power and data connectors to the truss, prepared a radiator to cool it, opened boxes containing the new solar arrays and deployed the Beta Gimbal Assemblies containing masts that support the solar arrays. The blackness of space and Earth?s horizon provide the backdrop for the scene.

  16. Trade-Space Analysis Tool for Constellations (TAT-C)

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Dabney, Philip; de Weck, Olivier; Foreman, Veronica; Grogan, Paul; Holland, Matthew; Hughes, Steven; Nag, Sreeja

    2016-01-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: How many spacecraft should be included in the constellation? Which design has the best costrisk value? The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time.This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit Coverage, Reduction Metrics, and Cost Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance.TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The Knowledge Base supports both analysis and exploration, and the current GUI prototype automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost.

  17. Trade-space Analysis for Constellations

    NASA Astrophysics Data System (ADS)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model consisting of Cost Estimating Relationships (CERs) from widely accepted models. The Knowledge Base supports both analysis and exploration, and the current GUI prototype automatically generates graphics representing metrics such as average revisit time or coverage as a function of cost.

  18. Image quality validation of Sentinel 2 Level-1 products: performance status at the beginning of the constellation routine phase

    NASA Astrophysics Data System (ADS)

    Francesconi, Benjamin; Neveu-VanMalle, Marion; Espesset, Aude; Alhammoud, Bahjat; Bouzinac, Catherine; Clerc, Sébastien; Gascon, Ferran

    2017-09-01

    Sentinel-2 is an Earth Observation mission developed by the European Space Agency (ESA) in the frame of the Copernicus program of the European Commission. The mission is based on a constellation of 2-satellites: Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017. It offers an unprecedented combination of systematic global coverage of land and coastal areas, a high revisit of five days at the equator and 2 days at mid-latitudes under the same viewing conditions, high spatial resolution, and a wide field of view for multispectral observations from 13 bands in the visible, near infrared and short wave infrared range of the electromagnetic spectrum. The mission performances are routinely and closely monitored by the S2 Mission Performance Centre (MPC), including a consortium of Expert Support Laboratories (ESL). This publication focuses on the Sentinel-2 Level-1 product quality validation activities performed by the MPC. It presents an up-to-date status of the Level-1 mission performances at the beginning of the constellation routine phase. Level-1 performance validations routinely performed cover Level-1 Radiometric Validation (Equalisation Validation, Absolute Radiometry Vicarious Validation, Absolute Radiometry Cross-Mission Validation, Multi-temporal Relative Radiometry Vicarious Validation and SNR Validation), and Level-1 Geometric Validation (Geolocation Uncertainty Validation, Multi-spectral Registration Uncertainty Validation and Multi-temporal Registration Uncertainty Validation). Overall, the Sentinel-2 mission is proving very successful in terms of product quality thereby fulfilling the promises of the Copernicus program.

  19. Tests of an alternate mobile transporter and extravehicular activity assembly procedure for the Space Station Freedom truss

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Watson, Judith J.; Lake, Mark S.; Bush, Harold G.; Jensen, J. Kermit; Wallsom, Richard E.; Phelps, James E.

    1992-01-01

    Results are presented from a ground test program of an alternate mobile transporter (MT) concept and extravehicular activity (EVA) assembly procedure for the Space Station Freedom (SSF) truss keel. A three-bay orthogonal tetrahedral truss beam consisting of 44 2-in-diameter struts and 16 nodes was assembled repeatedly in neutral buoyancy by pairs of pressure-suited test subjects working from astronaut positioning devices (APD's) on the MT. The truss bays were cubic with edges 15 ft long. All the truss joint hardware was found to be EVA compatible. The average unit assembly time for a single pair of experienced test subjects was 27.6 sec/strut, which is about half the time derived from other SSF truss assembly tests. A concept for integration of utility trays during truss assembly is introduced and demonstrated in the assembly tests. The concept, which requires minimal EVA handling of the trays, is shown to have little impact on overall assembly time. The results of these tests indicate that by using an MT equipped with APD's, rapid EVA assembly of a space station-size truss structure can be expected.

  20. Space Technology 5 - A Successful Micro-Satellite Constellation Mission

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Webb, Evan H.

    2007-01-01

    The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.

  1. Armenian Names of Sky Constellations

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.; Mikayelyan, A. A.

    2016-12-01

    The work is devoted to the correction and recovery of the Armenian names of the sky constellations, as they were forgotten or distorted during the Soviet years, mainly due to the translation from Russian. A total of 34 constellation names have been corrected. A brief overview of the history of the division of the sky into constellations and their naming is also given. At the end, the list of all 88 constellations is given with the names in Latin, English, Russian and Armenian.

  2. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  3. Ares Projects Office Progress Update

    NASA Technical Reports Server (NTRS)

    Vanhooser, Teresa

    2007-01-01

    NASA's Vision for Exploration requires a safe, reliable, affordable launch infrastructure capable of replacing the Space Shuttle for low Earth orbit transportation, as well as supporting the goal of returning humans to the moon. This presentation provides an overview of NASA's Constellation program and the Ares I and Ares V launch vehicles, including accomplishments and future work.

  4. Oxygen Concentration Flammability Threshold Tests for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Williams, James H.

    2007-01-01

    CEV atmosphere will likely change because craft will be used as LEO spacecraft, lunar spacecraft, orbital spacecraft. Possible O2 % increase and overall pressure decrease pressure vessel certs on spacecraft. Want 34% minimum threshold. Higher, better when atmosphere changes. WSTF suggests testing all materials/components to find flammability threshold, pressure and atmosphere.

  5. A Case Study Using Modeling and Simulation to Predict Logistics Supply Chain Issues

    NASA Technical Reports Server (NTRS)

    Tucker, David A.

    2007-01-01

    Optimization of critical supply chains to deliver thousands of parts, materials, sub-assemblies, and vehicle structures as needed is vital to the success of the Constellation Program. Thorough analysis needs to be performed on the integrated supply chain processes to plan, source, make, deliver, and return critical items efficiently. Process modeling provides simulation technology-based, predictive solutions for supply chain problems which enable decision makers to reduce costs, accelerate cycle time and improve business performance. For example, United Space Alliance, LLC utilized this approach in late 2006 to build simulation models that recreated shuttle orbiter thruster failures and predicted the potential impact of thruster removals on logistics spare assets. The main objective was the early identification of possible problems in providing thruster spares for the remainder of the Shuttle Flight Manifest. After extensive analysis the model results were used to quantify potential problems and led to improvement actions in the supply chain. Similarly the proper modeling and analysis of Constellation parts, materials, operations, and information flows will help ensure the efficiency of the critical logistics supply chains and the overall success of the program.

  6. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  7. KSC-2009-2293

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 nears the top of Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-2291

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – Mobile Launcher Platform-1 is moving to Launch Pad 39B at NASA's Kennedy Space Center in Florida via the crawler-transporter underneath. The MLP has been handed over to the Constellation Program for its future use for the Ares I-X flight test in the summer of 2009. Seen around the service structures on the pad are the new 600-foot lightning towers and masts erected for the Ares launches. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ground Control System hardware was installed in MLP-1 in December 2008. The MLP is being moved to the launch pad to check out the installed hardware with the Launch Control Center Firing Room 1 equipment, using the actual circuits that will be used when the fully stacked Ares I-X vehicle is rolled out later this year for launch. Following this testing, MLP-1 will be moved to the Vehicle Assembly Building's High Bay 3 to begin stacking, or assembling, Ares I-X. Photo credit: NASA/Kim Shiflett

  9. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  10. Identifying the stars on Johann Bayer's Chart of the South Polar Sky

    NASA Astrophysics Data System (ADS)

    Ridpath, I.

    2014-04-01

    The first chart of the stars in the region around the south celestial pole was published in 1603 by Johann Bayer (1572-1625) as part of his monumental star atlas called Uranometria. This south polar chart depicted 12 entirely new constellations that had been created only a few years earlier from stars observed during the first Dutch expedition to the East Indies in 1595-97. Bayer's chart plotted 121 stars in the 12 newly invented constellations. Five more stars formed a southern extension of the existing constellation Eridanus, while another twelve stars were left 'unformed', i.e. unattached to any constellation. Whereas Bayer famously applied Greek or Roman letters to the stars in the 48 Ptolemaic constellations, he left the stars in the newly invented constellations unlabelled. This paper attempts to identify the stars plotted on Bayer's chart. It also discusses the source of Bayer's data and the origin of the 12 new southern constellations.

  11. Exploration Life Support Technology Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  12. The elusive constellations of poverty.

    PubMed

    Breugelmans, Seger M; Plantinga, Arnoud; Zeelenberg, Marcel; Poluektova, Olga; Efremova, Maria

    2017-01-01

    Pepper & Nettle describe possible processes underlying what they call a behavioral constellation of deprivation (BCD). Although we are certain about the application of evolutionary models to our understanding of poverty, we are less certain about the utility of behavioral constellations. The empirical record on poverty-related behaviors is much more divergent and broad than such constellations suggest.

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites, and (8) a microwave imager under planning for the Defense Weather Satellite System (DWSS).

  14. PrimeSupplier Cross-Program Impact Analysis and Supplier Stability Indicator Simulation Model

    NASA Technical Reports Server (NTRS)

    Calluzzi, Michael

    2009-01-01

    PrimeSupplier, a supplier cross-program and element-impact simulation model, with supplier solvency indicator (SSI), has been developed so that the shuttle program can see early indicators of supplier and product line stability, while identifying the various elements and/or programs that have a particular supplier or product designed into the system. The model calculates two categories of benchmarks to determine the SSI, with one category focusing on agency programmatic data and the other focusing on a supplier's financial liquidity. PrimeSupplier was developed to help NASA smoothly transition design, manufacturing, and repair operations from the Shuttle program to the Constellation program, without disruption in the industrial supply base.

  15. GEMINI-TITAN (GT)-12 - EXTRAVEHICULAR (EVA) - MICROMETEOROID PACKAGE - OUTER SPACE

    NASA Image and Video Library

    1966-11-11

    S66-63538 (11 Nov. 1966) --- Astronaut Edwin E. Aldrin Jr., pilot for the Gemini-12 spaceflight, removes micrometeoroid package for return to the spacecraft during extravehicular activity (EVA) on the first day of the four-day mission. Command pilot for the Gemini-12 mission, the last in the Gemini series, was astronaut James A. Lovell Jr. Photo credit: NASA

  16. Astronaut Kathryn Thornton during second HST extravehicular activity

    NASA Image and Video Library

    1993-12-06

    STS061-95-028 (6 Dec 1993) --- Astronaut Kathryn C. Thornton, on the end of the Space Shuttle Endeavour's Remote Manipulator System (RMS) arm, hovers over equipment associated with servicing chores on the Hubble Space Telescope (HST) during the second extravehicular activity (EVA) on the eleven-day mission. Astronauts Thornton and Thomas D. Akers changed out the solar array panels during this EVA.

  17. APOLLO XIII CREW - MISSION OPERATIONS CONTROL ROOM (MOCR) - APOLLO XII - LUNAR EXTRAVEHICULAR ACTIVITY (EVA) - MSC

    NASA Image and Video Library

    1969-11-21

    S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon. Photo credit: NASA

  18. STS-64 extravehicular activity training view

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency space walk. Voyles and Rueter help Linenger attache the gloves to his extravehicular mobility unit (EMU). Minutes later, Linenger was submerged in the 25-feet deep pool in the JSC Weightless Environment Training Facility (WETF).

  19. Astronaut David Wolf participates in training for contingency EVA in WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut David A. Wolf participates in training for contingency extravehicular activity (EVA) for the STS-58 mission. The mission specialist was about to be submerged to a point of neutral buoyancy in the JSC Weightless Environment Training Facility (WETF). In this view, Wolf is aided by technicians in donning the gloves for his extravehicular mobility unit (EMU).

  20. Chinese Spacesuit Analysis

    NASA Technical Reports Server (NTRS)

    Croog, Lewis

    2010-01-01

    In 2008, China became only the 3rd nation to perform an Extravehicular Activity (EVA) from a spacecraft. An overview of the Chinese spacesuit and life support system were assessed from video downlinks during their EVA; from those assessments, spacesuit characteristics were identified. The spacesuits were compared against the Russian Orlan Spacesuit and the U.S. Extravehicular Mobility Unit (EMU). China's plans for future missions also were presented.

  1. Understanding Skill in EVA Mass Handling. Volume 1; Theoretical and Operational Foundations

    NASA Technical Reports Server (NTRS)

    Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob

    1997-01-01

    This report describes the theoretical and operational foundations for our analysis of skill in extravehicular mass handling. A review of our research on postural control, human-environment interactions, and exploratory behavior in skill acquisition is used to motivate our analysis. This scientific material is presented within the context of operationally valid issues concerning extravehicular mass handling. We describe the development of meaningful empirical measures that are relevant to a special class of nested control systems: manual interactions between an individual and the substantial environment. These measures are incorporated into a unique empirical protocol implemented on NASA's principal mass handling simulator, the precision air-bearing floor, in order to evaluate skill in extravehicular mass handling. We discuss the components of such skill with reference to the relationship between postural configuration and controllability of an orbital replacement unit, the relationship between orbital replacement unit control and postural stability, the relationship between antecedent and consequent movements of an orbital replacement unit, and the relationship between antecedent and consequent postural movements. Finally, we describe our expectations regarding the operational relevance of the empirical results as it pertains to extravehicular activity tools, training, monitoring, and planning.

  2. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows the Skylab's Ultraviolet (UV) Spectrograph, an Apollo Telescope Mount instrument. Its telescope, with camera and TV capability, photographed the Sun in selected ultraviolet wavelengths. The spectrograph was used to record the spectrum of UV emissions, such as flares or filaments, from a small individual feature on the solar disc. Real-time TV was used by the crew to monitor the performance of the telescope, transmit to the ground, and record. The exposed films were retrieved by astronaut extravehicular activities. The Marshall Space Flight Center had program management responsibility for the development of the Skylab hardware and experiments.

  3. Skylab

    NASA Image and Video Library

    1973-01-01

    This 1973 chart details Skylab's Ultraviolet (UV) Spectrograph, an Apollo Telescope Mount instrument. Its telescope, with camera and TV capability, photographed the Sun in selected ultraviolet wavelengths. The spectrograph was used to record the spectrum of UV emissions, such as flares or filaments, from a small individual feature on the solar disc. Real-time TV was used by the crew to monitor performance of the telescope, transmit to the ground and record. The exposed films were retrieved by astronaut extravehicular activities. The Marshall Space Flight Center had program management responsibility for the development of the Skylab hardware and experiments.

  4. Science Support Room Operations During Desert RATS 2009

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Horz, F.; Bell, M. S.; Cohen, B. A.; Eppler,D. B.; Evans, C. a.; Hodges, K. V.; Hynek, B. M.; Gruener, J. E.; Kring, D. A.; hide

    2010-01-01

    NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.

  5. The flights before the flight - An overview of shuttle astronaut training

    NASA Technical Reports Server (NTRS)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  6. A computer controlled power tool for the servicing of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Richards, Paul W.; Konkel, Carl; Smith, Chris; Brown, Lee; Wagner, Ken

    1996-01-01

    The Hubble Space Telescope (HST) Pistol Grip Tool (PGT) is a self-contained, microprocessor controlled, battery-powered, 3/8-inch-drive hand-held tool. The PGT is also a non-powered ratchet wrench. This tool will be used by astronauts during Extravehicular Activity (EVA) to apply torque to the HST and HST Servicing Support Equipment mechanical interfaces and fasteners. Numerous torque, speed, and turn or angle limits are programmed into the PGT for use during various missions. Batteries are replaceable during ground operations, Intravehicular Activities, and EVA's.

  7. In-Suit Doppler Technology Assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  8. Automatic sequencing and control of Space Station airlock operations

    NASA Technical Reports Server (NTRS)

    Himel, Victor; Abeles, Fred J.; Auman, James; Tqi, Terry O.

    1989-01-01

    Procedures that have been developed as part of the NASA JSC-sponsored pre-prototype Checkout, Servicing and Maintenance (COSM) program for pre- and post-EVA airlock operations are described. This paper addresses the accompanying pressure changes in the airlock and in the Advanced Extravehicular Mobility Unit (EMU). Additionally, the paper focuses on the components that are checked out, and includes the step-by-step sequences to be followed by the crew, the required screen displays and prompts that accompany each step, and a description of the automated processes that occur.

  9. STS-114: Discovery Day 6 Post MMT Meeting

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wane Hill, Deputy Manager of the Space Shuttle Program, and Steve Poulos, Manager, Orbiter Project Office discussed damage assessments caused during ascent. Steve further detailed the damage analysis and assessments with chart presentation of composite tile damage and gap filler sites evaluation, protruding ceramic shim, left wing tile damage, comparisons of ground test results versus FD5 focused inspection, and the window 1 blanket. Gap fillers, the STS-73, thermal protection, temperature range, heating and heating range, aerodynamics, aerothermodynamics, risk, foam damage, tile adhesions, and extravehicular activities are topics covered with the News media.

  10. Computer Analysis of Electromagnetic Field Exposure Hazard for Space Station Astronauts during Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey

    1995-01-01

    In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.

  11. Origins of the "Western" Constellations

    NASA Astrophysics Data System (ADS)

    Frank, Roslyn M.

    The development of the 48 Greek constellations is analyzed as a complex mixture of cognitive layers deriving from different cultural traditions and dating back to different epochs. The analysis begins with a discussion of the zodiacal constellations, goes on to discuss the stellar lore in Homer and Hesiod, and then examines several theories concerning the origins of the southern non-zodiacal constellations. It concludes with a commentary concerning the age and possible cultural significance of stars of the Great Bear constellation in light of ethnohistorical documentation, folklore, and beliefs related to European bear ceremonialism.

  12. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    PubMed

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  13. Making every gram count - Big measurements from tiny platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.

    2013-12-01

    The most significant advances in Earth, solar, and space physics over the next decades will originate from new, system-level observational techniques. The most promising technique to still be fully developed and exploited requires conducting multi-point or distributed constellation-based observations. This system-level observational approach is required to understand the 'big picture' coupling between disparate regions such as the solar-wind, magnetosphere, ionosphere, upper atmosphere, land, and ocean. The national research council, NASA science mission directorate, and the larger heliophysics community have repeatedly identified the pressing need for multipoint scientific investigations to be implemented via satellite constellations. The NASA Solar Terrestrial Probes Magnetospheric Multiscale (MMS) mission and NASA Earth Science Division's 'A-train', consisting of the AQUA, CloudSat, CALIPSO and AURA satellites, are examples of such constellations. However, the costs to date of these and other similar proposed constellations have been prohibitive given the 'large satellite' architectures and the multiple launch vehicles required for implementing the constellations. Financially sustainable development and deployment of multi-spacecraft constellations can only be achieved through the use of small spacecraft that allow for multiple hostings per launch vehicle. The revolution in commercial mobile and other battery powered consumer technology has helped enable researchers in recent years to build and fly very small yet capable satellites, principally CubeSats. A majority of the CubeSat activity and development to date has come from international academia and the amateur radio satellite community, but several of the typical large-satellite vendors have developed CubeSats as well. Recent government-sponsored CubeSat initiatives, such as the NRO Colony, NSF CubeSat Space Weather, NASA Office of Chief Technologist Edison and CubeSat Launch Initiative (CSLI) Educational Launch of Nanosatellites Educational Launch of Nano-satellites (ELaNa), the Air Force Space Environmental NanoSat Experiment (SENSE), and the ESA QB50 programs have spurred the development of very proficient miniature space sensors and technologies that enable technology demonstration, space and earth science research, and operational CubeSat based missions. In this paper we will review many of the small, low cost sensor and instrumentation technologies that have been developed to date as part of the CubeSat movement and examine how these new CubeSat based technologies are helping us do more with less.

  14. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, Marsha; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  15. Thoughts on Earned Value Assessments

    NASA Technical Reports Server (NTRS)

    Pido, Kelle

    2009-01-01

    This slide presentation reviews the concepts of Earned Value reporting and Earned Value Metrics (EVM) and the implementation for the Constellation Program. EVM is used to manage both the contract and civil service workforce, and used as a measure of contractor costs and performance. The Program EVM is not as useful for Level of Effort tasking, for either contractor, or civil service employees. Some issues and concerns in reference to EVM and the process for the use of EVM for Mission assurance are reviewed,

  16. Tailoring Shipboard Training to Fleet Performance Needs: III. Development of Deckplate Procedural Training for the Shipboard Propulsion Plant Operator Training (SPPOT) Program.

    DTIC Science & Technology

    1981-10-01

    McMichael 7/i Released by James F. Kelly, Jr. Commanding Officer Navy Personnel Research and Development Center San Diego, California 92152 UNCLASSIFTED...Shipboard training media, Training Aids. 20., AGSTRACT (Cfnust on resee ofE. It neep se n ~11 by Wleek Mabee .) In designing a shipboard training program...Engineering Department personnel of CONSTELLATION. Without their help, the design and the development of SPPOT would not have been possible. JAMES F. KELLY

  17. Insignia for the Apollo program

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.

  18. The Solar system.Stars and constellations

    NASA Astrophysics Data System (ADS)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  19. Hopkins and Mastracchio in the A/L

    NASA Image and Video Library

    2013-12-20

    ISS038-E-019271 (20 Dec. 2013) --- In the Quest airlock onboard the Earth-orbiting International Space Station, on the eve of their first spacewalk together, NASA astronauts Rick Mastracchio, right, and Mike Hopkins are completely suited in their extravehicular mobility unit spacesuits. NASA has scheduled at least two sessions of extravehicular activity for the two flight engineers to troubleshoot a faulty coolant pump on the orbital outpost.

  20. iss032e025361

    NASA Image and Video Library

    2012-09-05

    ISS032-E-025361 (5 Sept. 2012) --- Having doffed the outer layer of their Extravehicular Mobility Unit (EMU) spacesuits, Expedition 32 Flight Engineers Sunita Williams of NASA and Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) flex their muscles, celebrating success on their just-completed spacewalk, the second extravehicular activity for them in less than a week. They are still sporting their EMU thermal underwear in the Unity Node 1.

  1. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26920 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Photo credit: NASA or National Aeronautics and Space Administration

  2. Forrester opens a MISSE PEC installed on the ISS Airlock

    NASA Image and Video Library

    2001-08-16

    STS105-346-007 (18 August 2001) --- Astronaut Patrick G. Forrester, during the second STS-105 extravehicular activity, prepares to work with the Materials International Space Station Experiment (MISSE). The experiment was installed on the outside of the Quest Airlock during the first extravehicular activity (EVA) of the STS-105 mission. MISSE will collect information on how different materials weather in the environment of space.

  3. [Development of special food products for cosmonaut's nutrition during extravehicular activities].

    PubMed

    Agureev, A N; Kalandarov, S; Vasil'eva, V F; Gurova, L A

    2003-01-01

    On the analysis of the factual energy expenditure by cosmonauts during extravehicular activities two choices of special rations (SR) were developed. Hygienic testing showed that all nutritional components in these SRs were present in optimal quantities. Consumption of the SR foods during any basic meal will not misbalance the latter but satisfy the body demand of the main indispensable nutritional factors.

  4. Tethered constellations

    NASA Technical Reports Server (NTRS)

    Lorenzini, E.

    1986-01-01

    The studies that have been carried out on Tethered Constellations are briefly addressed. A definition of a tethered constellation is any number of masses/platforms greater that two connected by tethers in a stable configuration. Configurations and stability constraints are reviewed. Conclusions reached are: (1) The 1-D, horizontal, passively stabilized constellations have been ruled out; (2) Fishbone constellations have been also ruled out; (3) Alternative stable 2-D configurations have been devised such as the quadrangular configuration stabilized by electrodynamic forces (ESC), the quadrangular configuration stabilized by differential air drag (DSC), and the pseudo elliptical configuration stabilized by electrodynamic forces (PEC). Typical dimensions for these constellations are 10 km (horizontal) by 20 km (vertical) with balloon diameters around 100 m in the case of a DSC and a power consumption around 7 KW for an ESC or PEC.

  5. Child Psychology: Parent Handbook. Mehlville School District ESEA Title III, PACE Program.

    ERIC Educational Resources Information Center

    Mehlville R-9 School District, St. Louis, MO.

    This document is one of a series published by the Mehlville School District (St. Louis, Mo.) and used in their workshops for parents regarding family communications. It includes an explanation of Maslow's Hierarchy of Needs, a definition of characteristics of the family constellation, an examination of child development stages, a brief summary of…

  6. 78 FR 30295 - Constellation Energy Commoditiesgroup, Inc., ENI USA Gas Marketing LLC, Sequent Energy Canada...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Natural Gas, and Vacating Prior Authority During March 2013 AGENCY: Office of Fossil Energy, Department of Energy (DOE). ACTION: Notice of orders. SUMMARY: The Office of Fossil Energy (FE) of the Department of... attached appendix and may be found on the FE Web site at http://www.fossil.energy.gov/programs...

  7. The Family in America: An Encyclopedia. The American Family. Volumes One and Two.

    ERIC Educational Resources Information Center

    Hawes, Joseph M., Ed.

    As the United States changes as a nation, so too, does the family. This two-volume encyclopedia takes an incisive, multidisciplinary look at the American family over the past 200 years, examining public policies, organizations and programs, health and social issues, the family constellation, researchers and theorists, and family customs and…

  8. KSC-2009-5101

    NASA Image and Video Library

    2009-09-10

    CAPE CANAVERAL, Fla. – Near the top of the fixed service structure on NASA Kennedy Space Center's Launch Pad 39B, the new stabilizing arm (white) has been attached. The hardware is being reconfigured for launch of NASA's Ares I-X rocket, part of the agency's Constellation Program. The Ares I-X flight test is targeted for Oct. 31. Photo credit: NASA/Troy Cryder

  9. KSC-2009-5103

    NASA Image and Video Library

    2009-09-10

    CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Launch Pad 39B, a second stabilizing arm is lifted for installation at the top of the fixed service structure. The hardware is being reconfigured for launch of NASA's Ares I-X rocket, part of the agency's Constellation Program. The Ares I-X flight test is targeted for Oct. 31. Photo credit: NASA/Troy Cryder

  10. The Nature of Exemplary Doctoral Advisors' Expectations and the Ways They May Influence Doctoral Persistence

    ERIC Educational Resources Information Center

    Barnes, Benita J.

    2010-01-01

    The high attrition rate from doctoral programs has been called a "hidden crisis" in graduate education (Lovitts & Nelson, 2000). Previous research has identified a constellation of factors that may contribute to doctoral attrition. However, the literature suggests that one of the most powerful influences on doctoral persistence is the relationship…

  11. Ares V Overview and Status

    NASA Technical Reports Server (NTRS)

    Creech, Steve; Sumrall, Phil; Cockrell, Charles E., Jr.; Burris, Mike

    2009-01-01

    As part of NASA s Constellation Program to resume exploration beyond low Earth orbit (LEO), the Ares V heavy-lift cargo launch vehicle as currently conceived will be able to send more crew and cargo to more places on the Moon than the Apollo Program Saturn V. (Figure 1) It also has unprecedented cargo mass and volume capabilities that will be a national asset for science, commerce, and national defense applications. Compared to current systems, it will offer approximately five times the mass and volume to most orbits and locations. The Columbia space shuttle accident, the resulting investigation, the Vision for Space Exploration, and the Exploration Systems Architecture Study (ESAS) broadly shaped the Constellation architecture. Out of those events and initiatives emerged an architecture intended to replace the space shuttle, complete the International Space Station (ISS), resume a much more ambitious plan to explore the moon as a stepping stone to other destinations in the solar system. The Ares I was NASA s main priority because of the goal to retire the Shuttle. Ares V remains in a concept development phase, evolving through hundreds of configurations. The current reference design was approved during the Lunar Capabilities Concept Review/Ares V Mission Concept Review (LCCR/MCR) in June 2008. This reference concept serves as a starting point for a renewed set of design trades and detailed analysis into its interaction with the other components of the Constellation architecture and existing launch infrastructure. In 2009, the Ares V team was heavily involved in supporting the Review of U.S. Human Space Flight Plans Committee. Several alternative designs for Ares V have been supplied to the committee. This paper will discuss the origins of the Ares V design, the evolution to the current reference configuration, and the options provided to the review committee.

  12. Laundry Study for a Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Ewert, Michael; Jeng, Frank

    2009-01-01

    In support of the Constellation Program, which will return humans to the moon and establish an Outpost, NASA has conducted an analysis of crew clothing and laundry options. Single-use or "disposable" clothing has been used from Apollo until International Space Station (ISS) missions, meaning that clothes were worn for the whole mission or thrown away when they became too dirty to wear any longer. This is justified for short duration missions; however, as the Constellation mission will last much longer and each individual Outpost mission is expected to last up to 180 days, mission goals and launch penalties for mass and volume may lead to a different conclusion. Furthermore, the habitat atmosphere pressure and therefore oxygen volume percentage will be different from ISS or Shuttle. Almost daily EVA sorties will be a norm during Outpost exploration missions. All of these factors will have impacts on selection of crew clothing and laundry options for Outpost missions. Mass and volume estimates for disposable crew clothing have been shown as a major penalty in long-duration manned space exploration missions in previous analyses. Assuming disposable clothing like ISS, Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated to be 11,000 kg or about 11% of total life support system ESM for a 10-year Lunar Outpost mission with 4 crew members. Ways to reduce this clothing penalty, which are discussed in this paper, include: a) Reduce clothing supply rate through using clothes made of advanced fabrics; b) Reduce daily usage rate by extending its use duration before disposing; and c) Use laundry and reusable clothing. The report summarizes recent research efforts in advanced clothing, proposed clothing supply rates for Exploration missions, results of a trade-off study between disposable clothing and laundry, and conclusions and suggestions for Constellation Program clothing.

  13. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  14. Ares I-X Range Safety Flight Envelope Analysis

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Olds, Aaron D.; Craig, Anthony S.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  15. Ares I-X Range Safety Analyses Overview

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gowan, John W., Jr.; Thompson, Brian G.; Tarpley, Ashley W.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I Crew Launch Vehicle designed to provide manned access to low Earth orbit. As a one-time test flight, the Air Force's 45th Space Wing required a series of Range Safety analysis data products to be developed for the specified launch date and mission trajectory prior to granting flight approval on the Eastern Range. The range safety data package is required to ensure that the public, launch area, and launch complex personnel and resources are provided with an acceptable level of safety and that all aspects of prelaunch and launch operations adhere to applicable public laws. The analysis data products, defined in the Air Force Space Command Manual 91-710, Volume 2, consisted of a nominal trajectory, three sigma trajectory envelopes, stage impact footprints, acoustic intensity contours, trajectory turn angles resulting from potential vehicle malfunctions (including flight software failures), characterization of potential debris, and debris impact footprints. These data products were developed under the auspices of the Constellation's Program Launch Constellation Range Safety Panel and its Range Safety Trajectory Working Group with the intent of beginning the framework for the operational vehicle data products and providing programmatic review and oversight. A multi-center NASA team in conjunction with the 45th Space Wing, collaborated within the Trajectory Working Group forum to define the data product development processes, performed the analyses necessary to generate the data products, and performed independent verification and validation of the data products. This paper outlines the Range Safety data requirements and provides an overview of the processes established to develop both the data products and the individual analyses used to develop the data products, and it summarizes the results of the analyses required for the Ares I-X launch.

  16. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    NASA Technical Reports Server (NTRS)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  17. Constellation Ground Systems Launch Availability Analysis: Enhancing Highly Reliable Launch Systems Design

    NASA Technical Reports Server (NTRS)

    Gernand, Jeffrey L.; Gillespie, Amanda M.; Monaghan, Mark W.; Cummings, Nicholas H.

    2010-01-01

    Success of the Constellation Program's lunar architecture requires successfully launching two vehicles, Ares I/Orion and Ares V/Altair, in a very limited time period. The reliability and maintainability of flight vehicles and ground systems must deliver a high probability of successfully launching the second vehicle in order to avoid wasting the on-orbit asset launched by the first vehicle. The Ground Operations Project determined which ground subsystems had the potential to affect the probability of the second launch and allocated quantitative availability requirements to these subsystems. The Ground Operations Project also developed a methodology to estimate subsystem reliability, availability and maintainability to ensure that ground subsystems complied with allocated launch availability and maintainability requirements. The verification analysis developed quantitative estimates of subsystem availability based on design documentation; testing results, and other information. Where appropriate, actual performance history was used for legacy subsystems or comparative components that will support Constellation. The results of the verification analysis will be used to verify compliance with requirements and to highlight design or performance shortcomings for further decision-making. This case study will discuss the subsystem requirements allocation process, describe the ground systems methodology for completing quantitative reliability, availability and maintainability analysis, and present findings and observation based on analysis leading to the Ground Systems Preliminary Design Review milestone.

  18. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  19. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  20. STS-64 extravehicular activity training view

    NASA Image and Video Library

    1993-06-21

    S93-37890 (October 1993) --- Astronaut Jerry M. Linenger, STS-64 mission specialist, is assisted by Steve Voyles and Kari Rueter of Boeing Aerospace prior to participating in a rehearsal for a contingency extravehicular activity (EVA). Crewmates Mark C. Lee and Carl J. Meade have used the nearby 25-feet deep pool to rehearse a spacewalk designed to test and evaluate new EVA equipment. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-64 extravehicular activity (EVA) hardware view

    NASA Image and Video Library

    1993-01-21

    S93-26918 (8 Sept. 1994) --- Scott Bleisath, an extravehicular activity (EVA) engineer, demonstrates the hand control module for the Simplified Aid for EVA Rescue (SAFER) system making its first flight on the scheduled September STS-64 mission. Astronauts Mark C. Lee and Carl J. Meade are the spacewalkers assigned to test the system in space. Unidentified technicians and engineers look on. Photo credit: NASA or National Aeronautics and Space Administration

  2. Extravehicular activities limitations study. Volume 1: Physiological limitations to extravehicular activity in space

    NASA Technical Reports Server (NTRS)

    Furr, Paul A.; Monson, Conrad B.; Santoro, Robert L.; Sears, William J.; Peterson, Donald H.; Smith, Malcolm

    1988-01-01

    This report contains the results of a comprehensive literature search on physiological aspects of EVA. Specifically, the topics covered are: (1) Oxygen levels; (2) Optimum EVA work; (3) Food and Water; (4) Carbon dioxide levels; (5) Repetitive decompressions; (6) Thermal, and (7) Urine collection. The literature was assessed on each of these topics, followed by statements on conclusions and recommended future research needs.

  3. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  4. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14467 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  5. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14469 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  6. Apollo experience report: Development of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Lutz, C. C.; Stutesman, H. L.; Carson, M. A.; Mcbarron, J. W., II

    1975-01-01

    The development and performance history of the Apollo extravehicular mobility unit and its major subsystems is described. The three major subsystems, the pressure garment assembly, the portable life-support system, and the oxygen purge system, are defined and described in detail as is the evolutionary process that culminated in each major subsystem component. Descriptions of ground-support equipment and the qualification testing process for component hardware are also presented.

  7. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  8. Astronaut Judith Resnik participates in WETF training

    NASA Image and Video Library

    1984-05-14

    S84-33898 (21 May 1984) --- Astronaut Jon A. McBride, 41-G pilot, assists his crewmate, Astronaut Kathryn D. Sullivan with the glove portion of her extravehicular mobility unit (EMU) prior to Dr. Sullivan's underwater session in the Johnson Space Center's weightless environment training facility (WET-F). Mission specialists Sullivan and David C. Leestma are scheduled for extravehicular activity (EVA) on the Columbia for NASA's 17th scheduled flight.

  9. GEMINI-TITAN (GT)-8 - EXTRAVEHICULAR (EV) EQUIPMENT & SUIT - MSC

    NASA Image and Video Library

    1966-01-18

    S66-17475 (18 Jan. 1966) --- Test subject Fred Spress, Crew Systems Division, wears the spacesuit and extravehicular equipment planned for use by astronaut David R. Scott. The helmet is equipped with a gold-plated visor to shield the astronaut's face from unfiltered sun rays. The system is composed of a life support pack worn on the chest and a support pack worn on the back. Photo credit: NASA

  10. GEMINI-TITAN (GT)-8 - EXTRAVEHICULAR (EV) EQUIPMENT & SUIT - MSC

    NASA Image and Video Library

    1966-01-18

    S66-17480 (18 Jan. 1966) --- Test subject Fred Spress, Crew Systems Division, wears the spacesuit and extravehicular equipment planned for use by astronaut David R. Scott. The helmet is equipped with a gold-plated visor to shield the astronaut's face from unfiltered sun rays. The system is composed of a life support pack worn on the chest and a support pack worn on the back. Photo credit: NASA

  11. Cosmonaut Sergei Krikalev receives assistance from suit technician

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Sergei Krikalev, alternative mission specialist for STS-63, gets help from Dawn Mays, a Boeing suit technician. The cosmonaut was about to participate in a training session at JSC's Weightless Environment Training Facility (WETF). Wearing the training version of the extravehicular mobility unit (EMU) space suit, weighted to allow neutral buoyancy in the 25 feet deep WETF pool, Krikalev minutes later was underwater simulating a contingency spacewalk, or extravehicular activity (EVA).

  12. View of Reilly posing for a photo in the A/L during STS-117/Expedition 15 Joint Operations

    NASA Image and Video Library

    2007-06-15

    ISS015-E-12289 (15 June 2007) --- Attired in his Extravehicular Mobility Unit (EMU) spacesuit, astronaut Jim Reilly, STS-117 mission specialist, gives a "thumbs-up" signal as he awaits the start of the mission's third session of extravehicular activity (EVA) in the Quest Airlock of the International Space Station while Space Shuttle Atlantis was docked with the station.

  13. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  14. Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites

    DTIC Science & Technology

    2014-09-30

    Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type

  15. Development and Testing of the Orion CEV Parachute Assembly System (CPAS)

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Taylor, Anthony P.; Sinclair, Robert; Olmstead, Randy; Kelley, Christopher; Johnson, Justin; Melgares, Michael; Morris, Aaron; Bledsoe, Kristin

    2009-01-01

    The Crew Exploration Vehicle (CEV) is an element of the Constellation Program that includes launch vehicles, spacecraft, and ground systems needed to embark on a robust space exploration program. As an anchoring capability of the Constellation Program, the CEV shall be human-rated and will carry human crews and cargo from Earth into space and back again. Coupled with transfer stages, landing vehicles, and surface exploration systems, the CEV will serve as an essential component of the architecture that supports human voyages to the Moon and beyond. In addition, the CEV will be modified, as required, to support International Space Station (ISS) mission requirements for crewed and pressurized cargo configurations. Headed by Johnson Space Center (JSC), NASA selected Jacobs Engineering as the support contractor to manage the overall CEV Parachute Assembly System (CPAS) program development. Airborne Systems was chosen to develop the parachute system components. General Dynamics Ordnance and Tactical Systems (GD-OTS) was subcontracted to Airborne Systems to provide the mortar systems. Thus the CPAS development team of JSC, Jacobs, Airborne Systems and GD-OTS was formed. The CPAS team has completed the first phase, or Generation I, of the design, fabrication, and test plan. This paper presents an overview of the CPAS program including system requirements and the development of the second phase, known as the Engineering Development Unit (EDU) architecture. We also present top level results of the tests completed to date. A significant number of ground and flight tests have been completed since the last CPAS presentation at the 2007 AIAA ADS Conference.

  16. Ares V: Progress Toward Unprecedented Heavy Lift

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2010-01-01

    Every major examination of America s spaceflight capability since the Apollo program has highlighted and reinforced the need for a heavy lift vehicle for human exploration, science, national security, and commercial development. The Ares V is NASA s most recent effort to address this gap and provide the needed heavy lift capability for NASA and the nation. An Ares V-class heavy lift capability is important to supporting beyond earth orbit (BEO) human exploration. Initially, that consists of exploration of the Moon vastly expanded from the narrow equatorial Apollo missions to a global capability that includes the interesting polar regions. It also enables a permanent human outpost. Under the current program of record, both the Ares V and the lunar exploration it enables serve as a significant part of the technology and experience base for exploration beyond the Moon, including Mars, asteroids, and other destinations. The Ares V is part of NASA s Constellation Program architecture. The Ares V remains in an early stage of concept development, while NASA focused on development of the Ares I crew launch vehicle to replace the Space Shuttle fleet. However, Ares V development has benefitted from its commonality with Ares I, the Shuttle, and contemporary programs on which its design is based. The Constellation program is currently slated for cancellation under the proposed 2011 federal budget, pending review by the legislative branch. However, White House guidance on its 2011 budget retains funding for heavy lift research. This paper will discuss progress to date on the Ares V and its potential utility to payload users.

  17. Best Practices for Operations of Satellite Constellations

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Oza, Dipak; Smith, Danford S.

    2006-01-01

    This paper presents the best practices used by several commercial and government operators of satellite constellations. These best practices were identified through a series of seminars and discussions held at NASA Goddard Space Flight Center (GSFC). The best practices are arrived through many years of experience and improvements made in the operations procedures and the operational systems with the primary drivers as mission safety and cost effectiveness. This paper discusses the operational aspects associated with how different organizations manage complexities of constellation operations. For the purposes of this paper, satellite constellations are groups of similar spacecraft with more than one spacecraft needed to fully accomplish the constellation's mission

  18. A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom

    2013-01-01

    As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.

  19. Extravehicular Activity Operations Concepts Under Communication Latency and Bandwidth Constraints

    NASA Technical Reports Server (NTRS)

    Beaton, Kara H.; Chappell, Steven P.; Abercromby, Andrew F. J.; Miller, Matthew J.; Nawotniak, Shannon Kobs; Hughes, Scott; Brady, Allyson; Lim, Darlene S. S.

    2017-01-01

    The Biologic Analog Science Associated with Lava Terrains (BASALT) project is a multi-year program dedicated to iteratively develop, implement, and evaluate concepts of operations (ConOps) and supporting capabilities intended to enable and enhance human scientific exploration of Mars. This pa-per describes the planning, execution, and initial results from the first field deployment, referred to as BASALT-1, which consisted of a series of 10 simulated extravehicular activities (EVAs) on volcanic flows in Idaho's Craters of the Moon (COTM) National Monument. The ConOps and capabilities deployed and tested during BASALT-1 were based on previous NASA trade studies and analog testing. Our primary research question was whether those ConOps and capabilities work acceptably when performing real (non-simulated) biological and geological scientific exploration under 4 different Mars-to-Earth communication conditions: 5 and 15 min one-way light time (OWLT) communication latencies and low (0.512 Mb/s uplink, 1.54 Mb/s downlink) and high (5.0 Mb/s uplink, 10.0 Mb/s downlink) bandwidth conditions representing the lower and higher limits of technical communication capabilities currently proposed for future human exploration missions. The synthesized results of BASALT-1 with respect to the ConOps and capabilities assessment were derived from a variety of sources, including EVA task timing data, network analytic data, and subjective ratings and comments regarding the scientific and operational acceptability of the ConOp and the extent to which specific capabilities were enabling and enhancing, and are presented here. BASALT-1 established preliminary findings that baseline ConOp, software systems, and communication protocols were scientifically and operationally acceptable with minor improvements desired by the "Mars" extravehicular (EV) and intravehicular (IV) crewmembers, but unacceptable with improvements required by the "Earth" Mission Support Center. These data will provide a basis for guiding and prioritizing capability development for future BASALT deployments and, ultimately, future human exploration missions.

  20. Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.

  1. Constellation Pharmacology: A new paradigm for drug discovery

    PubMed Central

    Schmidt, Eric W.; Olivera, Baldomero M.

    2015-01-01

    Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646

  2. A New Synthesis for the Origin of the Greek Constellations

    NASA Astrophysics Data System (ADS)

    Schaefer, B. E.

    2005-08-01

    The Greek constellations constitute one of the longest enduring intellectual properties of humanity. While various papers attribute the origin of the constellations to many diverse possibilities, main stream historians view the origin as largely being in Mesopotamia after around 1350 BC with transmission to the Greeks around 500 BC or so. The evidence for this synthesis is cuneiform and iconographic records that first mention constellations from roughly 1350-500 BC. My recent research on precessional dating has added much detail to this old synthesis. The earliest surviving written description of the Greek constellations is Aratus' Phaenomenon, which is a copy of Eudoxus' lost book of the same name. Hipparchus' Commentary also extensively quotes from Eudoxus. With 172 observations from Eudoxus, I derive a precessional date of 1130 ± 80 BC and a latitude of 36.0 ± 0.9 degrees north. Further, the positioning of the southern void amongst the Greek constellations yields a date of 690 BC (with an uncertainty of 2-4 centuries) and a latitude of 33 degrees (with an uncertainty of 1-3 degrees) for the six southernmost constellations. The earliest surviving description of the Mesopotamian constellations is the MUL.APIN tablet series, with the oldest dated example from the 8th century BC. My precessional calculation gives a date of 1100 BC and a latitude of 33 north. I also see that Eudoxus and MUL.APIN share a substantial number of observations. In all, some Assyrian observer(s) between 33-36 degrees north latitude around the time of 1300-1000 BC apparently invented many of the constellations adopted by the Greeks and made a database of observations later repeated by MUL.APIN, Eudoxus, Aratus, and Hipparchus. But this is not the whole story, as this only accounts for 19 Greek constellations which are identical in stars and representation with the Mesopotamian sky. An additional 12 Greek constellations have the same star groups as the Babylonians yet have completely different mythology/names; and so these representations must have been added by the Greeks. In addition, the Bear constellations must have originated with Paleolithic hunters in northern Eurasia sometime before 11,000 BC, as shown by the widespread distribution of essentially identical myths for the asterism across Eurasia and North America. This leaves about a dozen old constellations which have no Mesopotamian roots and for which the first reference anywhere is from early Greek sources and which have characteristically Greek flavor. Thus it appears that a substantial fraction of the old Greek constellations are actually Greek in origin, with the majority being older asterisms adopted from Mesopotamia, while the Bear originates at least 13,000 years ago. This research was supported in part by the Herbert C. Pollack Award of the Dudley Observatory.

  3. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  4. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall-off and minimum image distortion among the satellites, using Landsat's specifications. Attitude-specific constraints such as power consumption, response time, and stability were factored into the optimality computations. The algorithm can integrate cloud cover predictions, specific ground and air assets and angular constraints.

  5. Demand Forecasting: DLA’S Aviation Supply Chain High Value Products

    DTIC Science & Technology

    2015-04-09

    program at USS CONSTELLATION (CV 64), San Diego CA LCDR Carlos Lopez Education  MBA in Supply Chain Management, Naval Postgraduate School  BS in...Exponential Smoothing Forecasts ............... 118 xv Figure 80. NIIN 01-463-4340 Seasonal Exponential Smoothing Forecast .............. 119 Figure...5310 Seasonal Exponential Smoothing ............................ 142 Figure 102. NIIN 01-507-5310 12-Month Forecast Simulation

  6. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    NASA Technical Reports Server (NTRS)

    Davusm Daniel J.; McArthur, J. Craig

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system.

  7. NASA Ares I Crew Launch Vehicle Upper State Overview

    NASA Technical Reports Server (NTRS)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA s Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program s transportation system.

  8. "In It for the Long Haul": How Teacher Education Can Contribute to Teacher Retention in High-Poverty, Urban Schools

    ERIC Educational Resources Information Center

    Freedman, Sarah Warshauer; Appleman, Deborah

    2009-01-01

    This study explores a constellation of factors that contribute to the retention of teachers in high-poverty, urban schools. It focuses on one cohort of the University of California at Berkeley's Multicultural Urban Secondary English Credential and MA Program, analyzing qualitative and quantitative data to track the careers of 26 novice teachers…

  9. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  10. Key Issues for Navigation and Time Dissemination in NASA's Space Exploration Program

    NASA Technical Reports Server (NTRS)

    Nelson, R. A.; Brodsky, B.; Oria, A. J.; Connolly, J. W.; Sands, O. S.; Welch, B. W.; Ely T.; Orr, R.; Schuchman, L.

    2006-01-01

    The renewed emphasis on robotic and human missions within NASA's space exploration program warrants a detailed consideration of how the positions of objects in space will be determined and tracked, whether they be spacecraft, human explorers, robots, surface vehicles, or science instrumentation. The Navigation Team within the NASA Space Communications Architecture Working Group (SCAWG) has addressed several key technical issues in this area and the principle findings are reported here. For navigation in the vicinity of the Moon, a variety of satellite constellations have been investigated that provide global or regional surface position determination and timely services analogous to those offered by GPS at Earth. In the vicinity of Mars, there are options for satellite constellations not available at the Moon due to the gravitational perturbations from Earth, such as two satellites in an aerostationary orbit. Alternate methods of radiometric navigation as considered, including one- and two-way signals, as well as autonomous navigation. The use of a software radio capable of receiving all available signal sources, such as GPS, pseudolites, and communication channels, is discussed. Methods of time transfer and dissemination are also considered in this paper.

  11. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2009-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  12. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2010-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  13. A Case Study of Measuring Process Risk for Early Insights into Software Safety

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Basili, Victor; Zelkowitz, Marvin V.; Fisher, Karen L.

    2011-01-01

    In this case study, we examine software safety risk in three flight hardware systems in NASA's Constellation spaceflight program. We applied our Technical and Process Risk Measurement (TPRM) methodology to the Constellation hazard analysis process to quantify the technical and process risks involving software safety in the early design phase of these projects. We analyzed 154 hazard reports and collected metrics to measure the prevalence of software in hazards and the specificity of descriptions of software causes of hazardous conditions. We found that 49-70% of 154 hazardous conditions could be caused by software or software was involved in the prevention of the hazardous condition. We also found that 12-17% of the 2013 hazard causes involved software, and that 23-29% of all causes had a software control. The application of the TPRM methodology identified process risks in the application of the hazard analysis process itself that may lead to software safety risk.

  14. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  15. The Magnetospheric Multiscale Constellation

    NASA Technical Reports Server (NTRS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  16. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  17. Apollo Video Photogrammetry Estimation of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

    2008-01-01

    Each of the six Apollo mission landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were largely not an issue. The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the lander ejects the granular material at high velocities. With high vacuum conditions on the moon (10 (exp -14) to 10 (epx -12) torr), motion of all particles is completely ballistic. Estimates from damage to the Surveyor III show that the ejected regolith particles to be anywhere 400 m/s to 2500 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for the Constellation Program.

  18. Wallops Low Elevation Link Analysis for the Constellation Launch/Ascent Links

    NASA Technical Reports Server (NTRS)

    Cheung, Keith; Ho, C.; Kantak, A.; Lee, C.; Tye, R.; Richards, E.; Sham, C.; Schlesinger, A.; Barritt, B.

    2011-01-01

    To execute the President's Vision for Space Exploration, the Constellation Program (CxP) was formed to build the next generation spacecraft Orion and launch vehicles Ares, to transport human and cargo to International Space Station (ISS), moon, and Mars. This paper focuses on the detailed link analysis for Orion/Ares s launch and ascent links with Wallops 11.3m antenna (1) Orion's Dissimilar Voice link: 10.24 Kbps, 2-way (2) Ares Developmental Flight Instrument link, 20 Mbps, downlink. Three launch trajectories are considered: TD7-E, F (Feb), and G (Aug). In certain launch scenarios, the critical events of main engine cutoff (MECO) and Separation occur during the low elevation regime of WFF s downrange -- less than 5 degree elevation angle. The goal of the study is to access if there is enough link margins for WFF to track the DV and DFI links.

  19. European Space Agency (ESA) Mission Specialist Nicollier trains in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1987-01-01

    European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) is briefed by Randall S. McDaniel on Space Shuttle extravehicular activity (EVA) tools and equipment prior to donning an extravehicular mobility unit and participating in an underwater EVA simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Nicollier is holding the EMU mini workstation. Other equipment on the table includes EVA tool caddies and EVA crewmember safety tethers.

  20. Astronaut John Young collecting samples at North Ray crater during EVA

    NASA Image and Video Library

    1972-04-23

    AS16-117-18825 (23 April 1972) --- Astronaut John W. Young, Apollo 16 commander, with a sample bag in his left hand, moves toward the bottom part of the gnomon (center) while collecting samples at the North Ray Crater geological site. Note how soiled Young's Extravehicular Mobility Unit (EMU) is during this the third and final Apollo 16 extravehicular activity (EVA). The Lunar Roving Vehicle (LRV) is parked at upper left.

Top