Science.gov

Sample records for constitutive hedgehog signaling

  1. Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling.

    PubMed

    Petrova, Elissaveta; Rios-Esteves, Jessica; Ouerfelli, Ouathek; Glickman, J Fraser; Resh, Marilyn D

    2013-04-01

    Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.

  2. Hedgehog Signaling in Pancreatic Fibrosis and Cancer.

    PubMed

    Bai, Yongyu; Bai, Yongheng; Dong, Jiaojiao; Li, Qiang; Jin, Yuepeng; Chen, Bicheng; Zhou, Mengtao

    2016-03-01

    The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies.

  3. Hedgehog Signaling in Pancreatic Fibrosis and Cancer

    PubMed Central

    Bai, Yongyu; Bai, Yongheng; Dong, Jiaojiao; Li, Qiang; Jin, Yuepeng; Chen, Bicheng; Zhou, Mengtao

    2016-01-01

    Abstract The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies. PMID:26962810

  4. Hedgehog signaling and gastrointestinal cancer

    PubMed Central

    Saqui-Salces, Milena; Merchant, Juanita L.

    2017-01-01

    Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis. PMID:20307590

  5. Hedgehog Signal Transduction Inhibitors in Breast Cancer Treatment and Prevention

    DTIC Science & Technology

    2004-07-01

    cancer treatment . We find 1) that constitutive activation of hedgehog signaling by overexpression of the Smoothened effector protein in transgenic mice leads to increased proliferation and cancer-like developmental defects. 2) hedgehog signaling inhibitors such as cyclopamine slow or prevent breast cancer cell growth (MCF7 and MDA231) but do not alter "normal" cell (MCF10A). In addition, inhibitors show no measurable effect on normal mammary gland development. 3) Unexpectedly, Ptcl-induced defects are not inhibited or reverted by treatment with specific inhibitors of

  6. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  7. Primary cilia and graded Sonic Hedgehog signaling.

    PubMed

    Sasai, Noriaki; Briscoe, James

    2012-01-01

    Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.

  8. Hedgehog Signaling in Malignant Pleural Mesothelioma

    PubMed Central

    Felley-Bosco, Emanuela; Opitz, Isabelle; Meerang, Mayura

    2015-01-01

    Malignant pleural mesothelioma (MPM) is a cancer associated with exposure to asbestos fibers, which accumulate in the pleural space, damage tissue and stimulate regeneration. Hedgehog signaling is a pathway important during embryonic mesothelium development and is inactivated in adult mesothelium. The pathway is reactivated in some MPM patients with poor clinical outcome, mainly mediated by the expression of the ligands. Nevertheless, mutations in components of the pathway have been observed in a few cases. Data from different MPM animal models and primary culture suggest that both autocrine and paracrine Hedgehog signaling are important to maintain tumor growth. Drugs inhibiting the pathway at the level of the smoothened receptor (Smo) or glioma-associated protein transcription factors (Gli) have been used mostly in experimental models. For clinical development, biomarkers are necessary for the selection of patients who can benefit from Hedgehog signaling inhibition. PMID:26184317

  9. Hedgehog Signaling in Malignant Pleural Mesothelioma.

    PubMed

    Felley-Bosco, Emanuela; Opitz, Isabelle; Meerang, Mayura

    2015-07-08

    Malignant pleural mesothelioma (MPM) is a cancer associated with exposure to asbestos fibers, which accumulate in the pleural space, damage tissue and stimulate regeneration. Hedgehog signaling is a pathway important during embryonic mesothelium development and is inactivated in adult mesothelium. The pathway is reactivated in some MPM patients with poor clinical outcome, mainly mediated by the expression of the ligands. Nevertheless, mutations in components of the pathway have been observed in a few cases. Data from different MPM animal models and primary culture suggest that both autocrine and paracrine Hedgehog signaling are important to maintain tumor growth. Drugs inhibiting the pathway at the level of the smoothened receptor (Smo) or glioma-associated protein transcription factors (Gli) have been used mostly in experimental models. For clinical development, biomarkers are necessary for the selection of patients who can benefit from Hedgehog signaling inhibition.

  10. Development of anticancer agents targeting the Hedgehog signaling.

    PubMed

    Zhang, Xiangqian; Tian, Ye; Yang, Yanling; Hao, Jijun

    2017-03-17

    Hedgehog signaling is an evolutionarily conserved pathway which is essential in embryonic and postnatal development as well as adult organ homeostasis. Abnormal regulation of Hedgehog signaling is implicated in many diseases including cancer. Consequently, substantial efforts have made in the past to develop potential therapeutic agents that specifically target the Hedgehog signaling for cancer treatment. Here, we review the therapeutic agents for inhibition of the Hedgehog signaling and their clinical advances in cancer treatment.

  11. Paracrine Hedgehog signaling in stomach and intestine: new roles for Hedgehog in gastrointestinal patterning

    PubMed Central

    Kolterud, Åsa; Grosse, Ann S.; Zacharias, William J.; Walton, Katherine D.; Kretovich, Katherine E.; Madison, Blair; Waghray, Meghna; Ferris, Jennifer E.; Hu, Chunbo; Merchant, Juanita L.; Dlugosz, Andrzej; Kottmann, Andreas H.; Gumucio, Deborah L.

    2009-01-01

    Background & Aims Hedgehog signaling is critical in gastrointestinal patterning. Mice deficient in Hedgehog signaling exhibit abnormalities that mirror deformities seen in the human VACTERL (vertebral, anal, cardiac, tracheal, esophageal, renal, limb) association. However, the direction of Hedgehog signal flow is controversial and the cellular targets of Hedgehog signaling change with time during development. We profiled cellular Hedgehog response patterns from embryonic day 10.5 (E10.5) to adult in murine antrum, pyloric region, small intestine and colon. Methods Hedgehog signaling was profiled using Hedgehog pathway reporter mice and in situ hybridization. Cellular targets were identified by immunostaining. Ihh-overexpressing transgenic animals were generated and analyzed. Results Hedgehog signaling is strictly paracrine from antrum to colon throughout embryonic and adult life. Novel findings include: mesothelial cells of the serosa transduce Hedgehog signals in fetal life; the hindgut epithelium expresses Ptch but not Gli1 at E10.5; the two layers of the muscularis externa respond differently to Hedgehog signals; organogenesis of the pyloric sphincter is associated with robust Hedgehog signaling; dramatically different Hedgehog responses characterize stomach and intestine at E16; after birth, the muscularis mucosa and villus smooth muscle (SM) consist primarily of Hedgehog responsive cells and Hh levels actively modulate villus core SM. Conclusions These studies reveal a previously unrecognized association of paracrine Hedgehog signaling with several gastrointestinal patterning events involving the serosa, pylorus and villus smooth muscle. The results may have implications for several human anomalies and could potentially expand the spectrum of the human VACTERL association. PMID:19445942

  12. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism.

    PubMed

    Breitling, Rainer

    2007-11-01

    The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malformations that mimic Hh signaling defects. Recently, it was furthermore shown that secreted Hh could hitchhike on lipoprotein particles to establish its morphogenic gradient in the developing embryo. Additionally, there is new evidence that the Hh-receptor Patched transmits the Hh signal by modulating the secretion of an inhibitory sterol molecule from the receiving cells. Here we present some of the most recent discoveries on the Hh-sterol link and discuss their implications from a systems design perspective. We predict that a robust functioning of the Hh pathway will require the involvement of more sterol metabolites, and these should be the subject of future research.

  13. Regulation of Hedgehog signaling by ubiquitination

    PubMed Central

    Hsia, Elaine Y. C.; Gui, Yirui; Zheng, Xiaoyan

    2015-01-01

    The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components. PMID:26366162

  14. Hedgehog Signaling during Appendage Development and Regeneration

    PubMed Central

    Singh, Bhairab N.; Koyano-Nakagawa, Naoko; Donaldson, Andrew; Weaver, Cyprian V.; Garry, Mary G.; Garry, Daniel J.

    2015-01-01

    Regulatory networks that govern embryonic development have been well defined. While a common hypothesis supports the notion that the embryonic regulatory cascades are reexpressed following injury and tissue regeneration, the mechanistic regulatory pathways that mediate the regenerative response in higher organisms remain undefined. Relative to mammals, lower vertebrates, including zebrafish and newts, have a tremendous regenerative capacity to repair and regenerate a number of organs including: appendages, retina, heart, jaw and nervous system. Elucidation of the pathways that govern regeneration in these lower organisms may provide cues that will enhance the capacity for the regeneration of mammalian organs. Signaling pathways, such as the hedgehog pathway, have been shown to play critical functions during development and during regeneration in lower organisms. These signaling pathways have been shown to modulate multiple processes including cellular origin, positional identity and cellular maturation. The present review will focus on the cellular and molecular regulation of the hedgehog (HH) signaling pathway and its interaction with other signaling factors during appendage development and regeneration. PMID:26110318

  15. Targeting sonic hedgehog signaling in neurological disorders.

    PubMed

    Patel, Sita Sharan; Tomar, Sunil; Sharma, Diksha; Mahindroo, Neeraj; Udayabanu, Malairaman

    2017-03-01

    Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.

  16. Hedgehog signaling pathway as a therapeutic target for ovarian cancer.

    PubMed

    Li, Haixia; Li, Jinghua; Feng, Limin

    2016-02-01

    Ovarian cancer is the most lethal cause of death among gynecological malignancies. Despite advancements in surgery and chemotherapy treatment strategies, the prognosis of ovarian cancer patients remains poor; a majority of patients relapse and eventually succumb to this disease. Therefore, novel therapeutic approaches to improve patient outcome are urgently needed. The hedgehog signaling pathway is vital for embryonic development and tissue homeostasis, and its deregulation is implicated in cancer cell growth, survival, differentiation, and metastasis. The critical role of hedgehog signaling in multiple biologic processes raises concerns about its potential therapeutic use in cancer. Consequently, many studies are focusing on hedgehog signaling as an attractive target in cancer treatment. In this review, we present an overview of the hedgehog pathway and its pathological aberrations in ovarian cancer. We also discuss inhibitors of the hedgehog signaling pathway that are currently being investigated in the laboratory and in early clinical trials; as well as the clinical challenges these inhibitors face.

  17. Sonic Hedgehog Signaling and Hippocampal Neuroplasticity.

    PubMed

    Yao, Pamela J; Petralia, Ronald S; Mattson, Mark P

    2016-12-01

    Sonic hedgehog (Shh) is a secreted protein that controls the patterning of neural progenitor cells, and their neuronal and glial progeny, during development. Emerging findings suggest that Shh also has important roles in the formation and plasticity of neuronal circuits in the hippocampus, a brain region of fundamental importance in learning and memory. Shh mediates activity-dependent and injury-induced hippocampal neurogenesis. Activation of Shh receptors in the dendrites of hippocampal neurons engages a trans-neuronal signaling pathway that accelerates axon outgrowth and enhances glutamate release from presynaptic terminals. Impaired Shh signaling may contribute to the pathogenesis of several developmental and adult-onset neurological disorders that affect the hippocampus, suggesting a potential for therapeutic interventions that target Shh pathways.

  18. Hedgehog signaling pathway in small bovine ovarian follicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  19. Novel neutralizing hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine hedgehog signaling.

    PubMed

    Michaud, Neil R; Wang, Youzhen; McEachern, Kristen A; Jordan, Jerold J; Mazzola, Anne Marie; Hernandez, Axel; Jalla, Sanjoo; Chesebrough, Jon W; Hynes, Mark J; Belmonte, Matthew A; Wang, Lidong; Kang, Jaspal S; Jovanovic, Jelena; Laing, Naomi; Jenkins, David W; Hurt, Elaine; Liang, Meina; Frantz, Christopher; Hollingsworth, Robert E; Simeone, Diane M; Blakey, David C; Bedian, Vahe

    2014-02-01

    The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.

  20. Sex and hedgehog: roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation.

    PubMed

    Franco, Heather L; Yao, Humphrey H-C

    2012-01-01

    The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.

  1. dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis

    PubMed Central

    Aerts, Stein; Casares, Fernando; Janody, Florence

    2016-01-01

    Proper organ patterning depends on a tight coordination between cell proliferation and differentiation. The patterning of Drosophila retina occurs both very fast and with high precision. This process is driven by the dynamic changes in signaling activity of the conserved Hedgehog (Hh) pathway, which coordinates cell fate determination, cell cycle and tissue morphogenesis. Here we show that during Drosophila retinogenesis, the retinal determination gene dachshund (dac) is not only a target of the Hh signaling pathway, but is also a modulator of its activity. Using developmental genetics techniques, we demonstrate that dac enhances Hh signaling by promoting the accumulation of the Gli transcription factor Cubitus interruptus (Ci) parallel to or downstream of fused. In the absence of dac, all Hh-mediated events associated to the morphogenetic furrow are delayed. One of the consequences is that, posterior to the furrow, dac- cells cannot activate a Roadkill-Cullin3 negative feedback loop that attenuates Hh signaling and which is necessary for retinal cells to continue normal differentiation. Therefore, dac is part of an essential positive feedback loop in the Hh pathway, guaranteeing the speed and the accuracy of Drosophila retinogenesis. PMID:27442438

  2. A Polyamine Twist on Hedgehog Signaling.

    PubMed

    Zhao, Xuesong; Segal, Rosalind A

    2015-10-12

    The Hedgehog pathway plays important roles in embryonic development and oncogenesis, but how it affects metabolism is less clear. D'Amico et al. (2015) now demonstrate that the Hedgehog pathway regulates translation of ornithine decarboxylase, thereby enhancing polyamine biosynthesis and cell proliferation in neural precursor cells and in brain tumors.

  3. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    SciTech Connect

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  4. Sonic Hedgehog Signaling in Limb Development

    PubMed Central

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554

  5. Sonic Hedgehog Signaling in Limb Development.

    PubMed

    Tickle, Cheryll; Towers, Matthew

    2017-01-01

    The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.

  6. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    SciTech Connect

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  7. Sonic hedgehog signaling in the postnatal brain.

    PubMed

    Álvarez-Buylla, Arturo; Ihrie, Rebecca A

    2014-09-01

    Sonic hedgehog (Shh) is a pleiotropic factor in the developing central nervous system (CNS), driving proliferation, specification, and axonal targeting in multiple sites within the forebrain, hindbrain, and spinal cord. Studies in embryonic CNS have shown how gradients of this morphogen are translated by neuroepithelial precursors to determine the types of neurons and glial cells they produce [1,2]. Shh also has a well-characterized role as a mitogen for specific progenitor cell types in neural development [3,4]. As we begin to appreciate that Shh continues to act in the adult brain, a central question is what functional role this ligand plays when major morphogenetic and proliferative processes are no longer in operation. A second fundamental question is whether similar signaling mechanisms operate in embryonic and adult CNS. In the two major germinal zones of the adult brain, Shh signaling modulates the self-renewal and specification of astrocyte-like primary progenitors, frequently referred to as neural stem cells (NSCs). It also may regulate the response of the mature brain to injury, as Shh signaling has been variously proposed to enhance or inhibit the development of a reactive astrocyte phenotype. The identity of cells producing the Shh ligand, and the conditions that trigger its release, are also areas of growing interest; both germinal zones in the adult brain contain Shh-responsive cells but do not autonomously produce this ligand. Here, we review recent findings revealing the function of this fascinating pathway in the postnatal and adult brain, and highlight ongoing areas of investigation into its actions long past the time when it shapes the developing brain.

  8. Hedgehog signaling in the normal and neoplastic mammary gland.

    PubMed

    Visbal, Adriana P; Lewis, Michael T

    2010-09-01

    The hedgehog signal transduction network is a critical regulator of metazoan development. Inappropriate activation of this network is implicated in several different cancers, including breast. Genetic evidence in mice as well as molecular biological studies in human cells clearly indicate that activated signaling can lead to mammary hyperplasia and, in some cases, tumor formation. However, the exact role(s) activated hedgehog signaling plays in the development or progression of breast cancer also remain unclear. In this review, we have discussed recent data regarding the mechanism(s) by which the hedgehog network may signal in the mammary gland, as well as the data implicating activated signaling as a contributing factor to breast cancer development. Finally, we provide a brief update on the available hedgehog signaling inhibitors with respect to ongoing clinical trials, some of which will include locally advanced or metastatic breast cancers. Given the growing intensity with which the hedgehog signaling network is being studied in the normal and neoplastic mammary gland, a more complete understanding of this network should allow more effective targeting of its activities in breast cancer treatment or prevention.

  9. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  10. Deciphering the role of hedgehog signaling in pancreatic cancer.

    PubMed

    Gu, Dongsheng; Schlotman, Kelly E; Xie, Jingwu

    2016-09-01

    Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.

  11. Brown adipocyte differentiation is regulated by hedgehog signaling during development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During development, brown fat tissue arises from mesenchymal precursor cells under the control of signaling networks that are not yet well understood. The Hedgehog (Hh) signaling pathway is one of the major signaling pathways that regulate mesenchymal cell fate. However, whether the Hh pathway contr...

  12. Hedgehog signaling pathway is inactive in colorectal cancer cell lines.

    PubMed

    Chatel, Guillaume; Ganeff, Corine; Boussif, Naima; Delacroix, Laurence; Briquet, Alexandra; Nolens, Gregory; Winkler, Rosita

    2007-12-15

    The Hedgehog (Hh) signaling pathway plays an important role in human development. Abnormal activation of this pathway has been observed in several types of human cancers, such as the upper gastro-intestinal tract cancers. However, activation of the Hh pathway in colorectal cancers is controversial. We analyzed the expression of the main key members of the Hh pathway in 7 colon cancer cell lines in order to discover whether the pathway is constitutively active in these cells. We estimated the expression of SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein levels were quantified by western blotting. None of the cell lines expressed the complete set of Hh pathway members. The ligands were absent from Colo320 and HCT116 cells, Smo from Colo205, HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the repressive form of Gli3, characteristic of an inactive pathway, was detected in SW480 and Colo320 cells. Finally treatment of colon cancer cells with cyclopamine, a specific inhibitor of the Hh pathway, did not downregulate PTCH and GLI1 genes expression in the colorectal cells, whereas it did so in PANC1 control cells. Taken together, these results indicate that the aberrant activation of the Hh signaling pathway is not common in colorectal cancer cell lines.

  13. Role of Hedgehog Signaling Pathway in NASH

    PubMed Central

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  14. The hedgehog's trick for escaping immunosurveillance: The molecular mechanisms driving myeloid-derived suppressor cell recruitment in hedgehog signaling-dependent tumors.

    PubMed

    Xie, Jingwu

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) are an important means by which tumor cells evade immunosurveillance. Here, we set out to determine how MDSCs are recruited to tumors in genetically engineered mouse cancer models. Expression of oncogenic and constitutively active SmoM2, a key hedgehog-signaling regulatory protein, revealed that MDSC recruitment to the tumor microenvironment is mediated by the CCL2/CCR2 axis in a TGFβ dependent fashion.

  15. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  16. Sonic hedgehog signaling in kidney fibrosis: a master communicator.

    PubMed

    Zhou, Dong; Tan, Roderick J; Liu, Youhua

    2016-09-01

    The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.

  17. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy.

    PubMed

    Pak, Ekaterina; Segal, Rosalind A

    2016-08-22

    The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.

  18. Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells.

    PubMed

    Rodgers, Ursula R; Lanyon-Hogg, Thomas; Masumoto, Naoko; Ritzefeld, Markus; Burke, Rosemary; Blagg, Julian; Magee, Anthony I; Tate, Edward W

    2016-12-16

    The Sonic Hedgehog (Shh) signaling pathway plays a critical role during embryonic development and cancer progression. N-terminal palmitoylation of Shh by Hedgehog acyltransferase (Hhat) is essential for efficient signaling, raising interest in Hhat as a novel drug target. A recently identified series of dihydrothienopyridines has been proposed to function via this mode of action; however, the lead compound in this series (RUSKI-43) was subsequently shown to possess cytotoxic activity unrelated to canonical Shh signaling. To identify a selective chemical probe for cellular studies, we profiled three RUSKI compounds in orthogonal cell-based assays. We found that RUSKI-43 exhibits off-target cytotoxicity, masking its effect on Hhat-dependent signaling, hence results obtained with this compound in cells should be treated with caution. In contrast, RUSKI-201 showed no off-target cytotoxicity, and quantitative whole-proteome palmitoylation profiling with a bioorthogonal alkyne-palmitate reporter demonstrated specific inhibition of Hhat in cells. RUSKI-201 is the first selective Hhat chemical probe in cells and should be used in future studies of Hhat catalytic function.

  19. Characterization of Hedgehog Acyltransferase Inhibitors Identifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells

    PubMed Central

    2016-01-01

    The Sonic Hedgehog (Shh) signaling pathway plays a critical role during embryonic development and cancer progression. N-terminal palmitoylation of Shh by Hedgehog acyltransferase (Hhat) is essential for efficient signaling, raising interest in Hhat as a novel drug target. A recently identified series of dihydrothienopyridines has been proposed to function via this mode of action; however, the lead compound in this series (RUSKI-43) was subsequently shown to possess cytotoxic activity unrelated to canonical Shh signaling. To identify a selective chemical probe for cellular studies, we profiled three RUSKI compounds in orthogonal cell-based assays. We found that RUSKI-43 exhibits off-target cytotoxicity, masking its effect on Hhat-dependent signaling, hence results obtained with this compound in cells should be treated with caution. In contrast, RUSKI-201 showed no off-target cytotoxicity, and quantitative whole-proteome palmitoylation profiling with a bioorthogonal alkyne-palmitate reporter demonstrated specific inhibition of Hhat in cells. RUSKI-201 is the first selective Hhat chemical probe in cells and should be used in future studies of Hhat catalytic function. PMID:27779865

  20. Autonomous Hedgehog signalling is undetectable in PC-3 prostate cancer cells.

    PubMed

    McCarthy, Frank R K; Brown, Andrew J

    2008-08-15

    The Hedgehog signalling pathway has been implicated in the development of prostate cancer, although this area remains controversial. Some but not all studies have noted relatively high Hedgehog pathway activity in commonly used prostate cancer cell lines. We aimed to evaluate the widely used PC-3 cell line as a model to investigate Hedgehog signalling in a prostate cancer setting. Using a sensitive Hedgehog inducible luciferase reporter assay, we found no evidence of autonomous Hedgehog signalling in PC-3 cells, irrespective of passage number. In addition, manipulations that should either increase (an oxysterol) or decrease (cyclopamine) Hedgehog pathway activity had no effect on reporter activity, and cyclopamine treatment did not affect PC-3 cell viability. Therefore, our findings contradict some earlier reports and caution against the use of PC-3 cells to investigate the Hedgehog pathway in a prostate cancer setting.

  1. Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.

    PubMed

    Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang

    2015-01-01

    Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.

  2. Cholesterol and its derivatives in Sonic Hedgehog signaling and Cancer

    PubMed Central

    Riobo, Natalia A.

    2012-01-01

    The connection between the Hedgehog pathway and cholesterol has been recognized since the early days that shaped our current understanding of this unique pathway. Cholesterol and related lipids are intricately linked to HH signaling: from the role of cholesterol in HH biosynthesis to the modulation of HH signal reception and transduction by other sterols, passing by the phylogenetic relationships among many components of the HH pathway that resemble or contain lipid-binding domains. Here I review the connections between HH signaling, cholesterol and its derivatives and analyze the potential implications for HH-dependent cancers. PMID:22832232

  3. Hedgehog-PKA Signaling and gnrh3 Regulate the Development of Zebrafish gnrh3 Neurons

    PubMed Central

    Kuo, Ming-Wei; Lou, Show-Wan; Chung, Bon-chu

    2014-01-01

    GnRH neurons secrete GnRH that controls the development of the reproduction system. Despite many studies, the signals controlling the development of GnRH neurons from its progenitors have not been fully established. To understand the development of GnRH neurons, we examined the development of gnrh3-expressing cells using a transgenic zebrafish line that expresses green fluorescent protein (GFP) and LacZ driven by the gnrh3 promoter. GFP and LacZ expression recapitulated that of gnrh3 in the olfactory region, olfactory bulb and telencephalon. Depletion of gnrh3 by morpholinos led to a reduction of GFP- and gnrh3-expressing cells, while over-expression of gnrh3 mRNA increased the number of these cells. This result indicates a positive feed-forward regulation of gnrh3 cells by gnrh3. The gnrh3 cells were absent in embryos that lack Hedgehog signaling, but their numbers were increased in embryos overexpressing shhb. We manipulated the amounts of kinase that antagonizes the Hedgehog signaling pathway, protein kinase A (PKA), by treating embryos with PKA activator forskolin or by injecting mRNAs encoding its constitutively active catalytic subunit (PKA*) and dominant negative regulatory subunit (PKI) into zebrafish embryos. PKA* misexpression or forskolin treatment decreased GFP cell numbers, while PKI misexpression led to ectopic production of GFP cells. Our data indicate that the Hedgehog-PKA pathway participates in the development of gnrh3-expressing neurons during embryogenesis. PMID:24879419

  4. Hedgehog signaling regulates gene expression in planarian glia

    PubMed Central

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-01-01

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382

  5. A new role for Hedgehogs in juxtacrine signaling.

    PubMed

    Pettigrew, Christopher A; Asp, Eva; Emerson, Charles P

    2014-02-01

    The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not previously been investigated. This study reports on the synthesis, processing, secretion and signaling activities of SHH, IHH and DHH preproteins expressed in cultured cells, providing unexpected evidence that DHH does not undergo substantial autoprocessing or secretion, and does not function in paracrine signaling. Rather, DHH functions as a juxtacrine signaling ligand to activate a cell contact-mediated HH signaling response, consistent with its localised signaling in vivo. Further, the LnCAP prostate cancer cell, when induced to express endogenous DHH and SHH, is active only in juxtacrine signaling. Domain swap studies reveal that the C-terminal domain of HH regulates its processing and secretion. These findings establish a new regulatory role for HHs in cell-mediated juxtacrine signaling in development and cancer.

  6. Smoothened transduces Hedgehog signal by forming a complex with Evc/Evc2.

    PubMed

    Yang, Cuiping; Chen, Wenlin; Chen, Yongbin; Jiang, Jin

    2012-11-01

    Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis in species ranging from Drosophila to mammals. The Hh signal is transduced by Smoothened (Smo), a seven-transmembrane protein related to G protein coupled receptors. Despite a conserved mechanism by which Hh activates Smo in Drosophila and mammals, how mammalian Hh signal is transduced from Smo to the Gli transcription factors is poorly understood. Here, we provide evidence that two ciliary proteins, Evc and Evc2, the products of human disease genes responsible for the Ellis-van Creveld syndrome, act downstream of Smo to transduce the Hh signal. We found that loss of Evc/Evc2 does not affect Sonic Hedgehog-induced Smo phosphorylation and ciliary localization but impedes Hh pathway activation mediated by constitutively active forms of Smo. Evc/Evc2 are dispensable for the constitutive Gli activity in Sufu(-/-) cells, suggesting that Evc/Evc2 act upstream of Sufu to promote Gli activation. Furthermore, we demonstrated that Hh stimulates binding of Evc/Evc2 to Smo depending on phosphorylation of the Smo C-terminal intracellular tail and that the binding is abolished in Kif3a(-/-) cilium-deficient cells. We propose that Hh activates Smo by inducing its phosphorylation, which recruits Evc/Evc2 to activate Gli proteins by antagonizing Sufu in the primary cilia.

  7. G-protein—coupled receptors, hedgehog signaling and primary cilia

    PubMed Central

    Mukhopadhyay, Saikat; Rohatgi, Rajat

    2014-01-01

    The Hedgehog (Hh) pathway has become an important model to study diverse aspects of cell biology of the primary cilium, and reciprocally, the study of ciliary processes provides an opportunity to solve longstanding mysteries in the mechanism of vertebrate Hh signal transduction. The cilium is emerging as an unique compartment for G-protein—coupled receptor (GPCR) signaling in many systems. Two members of the GPCR family, Smoothened and Gpr161, play important roles in the Hh pathway. We review the current understanding of how these proteins may function to regulate Hh signaling and also highlight some of the critical unanswered questions being tackled by the field. Uncovering GPCR-regulated mechanisms important in Hh signaling may provide therapeutic strategies against the Hh pathway that plays important roles in development, regeneration and cancer. PMID:24845016

  8. Hedgehog Signaling: From Basic Biology to Cancer Therapy.

    PubMed

    Wu, Fujia; Zhang, Yu; Sun, Bo; McMahon, Andrew P; Wang, Yu

    2017-03-16

    The Hedgehog (HH) signaling pathway was discovered originally as a key pathway in embryonic patterning and development. Since its discovery, it has become increasingly clear that the HH pathway also plays important roles in a multitude of cancers. Therefore, HH signaling has emerged as a therapeutic target of interest for cancer therapy. In this review, we provide a brief overview of HH signaling and the key molecular players involved and offer an up-to-date summary of our current knowledge of endogenous and exogenous small molecules that modulate HH signaling. We discuss experiences and lessons learned from the decades-long efforts toward the development of cancer therapies targeting the HH pathway. Challenges to develop next-generation cancer therapies are highlighted.

  9. G-protein-coupled receptors, Hedgehog signaling and primary cilia.

    PubMed

    Mukhopadhyay, Saikat; Rohatgi, Rajat

    2014-09-01

    The Hedgehog (Hh) pathway has become an important model to study the cell biology of primary cilia, and reciprocally, the study of ciliary processes provides an opportunity to solve longstanding mysteries in the mechanism of vertebrate Hh signal transduction. The cilium is emerging as an unique compartment for G-protein-coupled receptor (GPCR) signaling in many systems. Two members of the GPCR family, Smoothened and Gpr161, play important roles in the Hh pathway. We review the current understanding of how these proteins may function to regulate Hh signaling and also highlight some of the critical unanswered questions being tackled by the field. Uncovering GPCR-regulated mechanisms important in Hh signaling may provide therapeutic strategies against the Hh pathway that plays important roles in development, regeneration and cancer.

  10. Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells.

    PubMed

    Chen, Mengqian; Tanner, Matthew; Levine, Alice C; Levina, Elina; Ohouo, Patrice; Buttyan, Ralph

    2009-01-01

    Hedgehog signaling is thought to play a role in several human cancers including prostate cancer. Although prostate cancer cells express many of the gene products involved in hedgehog signaling, these cells are refractory to the canonical signaling effects of exogenous hedgehog ligands or to activated Smoothened, the hedgehog-regulated mediator of Gli transcriptional activation. Here, we show that the expression of hedgehog ligands and some hedgehog target genes are regulated by androgen in the human prostate cancer cell line, LNCaP and its more metastatic variants (C4-2 and C4-2B). Androgen (R1881) strongly suppressed the expression of hedgehog ligands in these cells and their prolonged maintenance in androgen-deficient medium upregulated Sonic and Indian hedgehog mRNA and protein levels by up to 30,000-fold. Hedgehogs were released into the conditioned medium of androgen-deprived LNCaP cells and this medium was able to increase hedgehog target gene expression in hedgehog-responsive mouse fibroblasts (MC3T3-E1). Moreover, this activity was accompanied by increased expression of Gli target genes, Patched 1 and Gli2, in LNCaP that could be suppressed by cyclopamine, indicating that chronic androgen-deprivation also re-awakens the autocrine responsiveness of the cancer cells to hedgehog. In contrast to the suppressive effects of R1881 on hedgehog ligand and Gli2 expression, we found that Gli1 expression in LNCaP cells was induced by R1881. Given the ability of androgen to modulate the expression and release of hedgehog ligands and the activity of the autocrine hedgehog signaling pathway in these prostate cancer cells, our results imply that chronic androgen deprivation therapy (ADT) for prostate cancer might create a hedgehog signaling environment in the region of the tumor that could ultimately impact on the long term effectiveness of this treatment. This consideration supports the idea of clinically testing hedgehog-blocking drugs in conjunction with ADT in patients

  11. Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling

    PubMed Central

    Mistretta, Charlotte M.

    2016-01-01

    For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste

  12. Hedgehog Signaling in the Maintenance of Cancer Stem Cells

    PubMed Central

    Cochrane, Catherine R.; Szczepny, Anette; Watkins, D. Neil; Cain, Jason E.

    2015-01-01

    Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis. PMID:26270676

  13. Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment.

    PubMed

    Hanna, Ann; Shevde, Lalita A

    2016-03-18

    Cancer poses a serious health problem in society and is increasingly surpassing cardiovascular disease as the leading cause of mortality in the United States. Current therapeutic strategies for cancer are extreme and harsh to patients and often have limited success; the danger of cancer is intensified as it metastasizes to secondary locations such as lung, bone, and liver, posing a dire threat to patient treatment and survival. Hedgehog signaling is an important pathway for normal development. Initially identified in Drosophila, the vertebrate and mammalian equivalent of the pathway has been studied extensively for its role in cancer development and progression. As this pathway regulates key target genes involved in development, its action also allows for the modulation of the microenvironment to prepare a tumor-suitable niche by manipulating tumor cell growth, differentiation, and immune regulation, thus creating an enabling environment for progression and metastasis. In this review, we will summarize recent scientific discoveries reporting the impact of the Hedgehog signaling pathway on the tumor initiation process and metastatic cascade, shedding light on the ability of the tumor to take over a mechanism crucially intended for development and normal function.

  14. Sonic hedgehog signaling in the lung. From development to disease.

    PubMed

    Kugler, Matthias C; Joyner, Alexandra L; Loomis, Cynthia A; Munger, John S

    2015-01-01

    Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.

  15. Dynamic Hedgehog signalling pathway activity in germline stem cells.

    PubMed

    Sahin, Z; Szczepny, A; McLaughlin, E A; Meistrich, M L; Zhou, W; Ustunel, I; Loveland, K L

    2014-03-01

    Although the contribution of Hedgehog (Hh) signalling to stem cell development and oncogenesis is well recognised, its importance for spermatogonial stem cells (SSCs) has not been established. Here we interrogate adult rat SSCs using an established model in which only undifferentiated spermatogonial cells remain in the testis at 15 weeks following irradiation, and spermatogonial differentiation is induced within 4 weeks by gonadotrophin-releasing hormone antagonist (GnRH-ant) administration. Synthesis of Hh pathway components in untreated adult rat testes was compared with that in irradiated testes prior to and after GnRH-ant exposure using in situ hybridization. In adult testes with complete spermatogenesis, the Desert Hedgehog ligand transcript, Dhh, was detected in Sertoli cells, some spermatogonia and in spermatocytes by in situ hybridization. Spermatogenic cells were identified as sites of Hh signalling through detection of transcripts encoding the Hh receptor, Ptc2 transcripts and proteins for the key downstream target of Hh signalling, Gli1 and the Hh transcriptional activator, Gli2. Remarkably, the undifferentiated spermatogonia present in irradiated adult rat testes contained Dhh in addition to Ptc2, Gli1 and Gli2, revealing the potential for an autocrine Hh signalling loop to sustain undifferentiated spermatogonial cells. These transcripts became undetectable by in situ hybridization following GnRH-ant induction of spermatogonial differentiation, however, detection of Gli1 protein in spermatogonia in all groups indicates that Hh signalling is sustained. This is the first evidence of active Hh signalling in mammalian male germline stem cells, as has been documented for some cancer stem cells.

  16. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  17. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor.

    PubMed

    Kim, S K; Melton, D A

    1998-10-27

    Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.

  18. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling.

    PubMed

    Yang, Xiaofeng; Mao, Feifei; Lv, Xiangdong; Zhang, Zhao; Fu, Lin; Lu, Yi; Wu, Wenqing; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun

    2013-09-15

    The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Malfunction of the Hh signaling pathway leads to numerous serious human diseases, including congenital disorders and cancers. The seven-transmembrane domain protein Smoothened (Smo) is a key transducer of the Hh signaling pathway, and mediates the graded Hh signal across the cell plasma membrane, thereby inducing the proper expression of downstream genes. Smo accumulation on the cell plasma membrane is regulated by its C-tail phosphorylation and the graded Hh signal. The inhibitory mechanism for Smo membrane accumulation in the absence of Hh, however, is still largely unknown. Here, we report that Vps36 of the ESCRT-II complex regulates Smo trafficking between the cytosol and plasma membrane by specifically recognizing the ubiquitin signal on Smo in the absence of Hh. Furthermore, in the absence of Hh, Smo is ubiquitylated on its cytoplasmic part, including its internal loops and C-tail. Taken together, our data suggest that the ESCRT-II complex, especially Vps36, has a special role in controlling Hh signaling by targeting the membrane protein Smo for its trafficking in the absence of Hh, thereby regulating Hh signaling activity.

  19. Small molecule inhibitors of the hedgehog signaling pathway for the treatment of cancer.

    PubMed

    Yun, Jeong In; Kim, Hyoung Rae; Park, Haeil; Kim, Sang Kyum; Lee, Jongkook

    2012-08-01

    Over the past decade, the Hedgehog signaling pathway has attracted considerable interest because the pathway plays important roles in the tumorigenesis of several types of cancer as well as developmental processes. It has also been observed that Hedgehog signaling regulates the proliferation and self-renewal of cancer stem cells. A great number of Hedgehog pathway inhibitors have been discovered through small molecule screens and subsequent medicinal chemistry efforts. Among the inhibitors, several Smo antagonists have reached the clinical trial phase. It has been proved that the inhibition of Hedgehog signaling with Smo antagonists is beneficial to cancer patients with basal cell carcinoma and medulloblastoma. In this review, we provide an overview of Hedgehog pathway inhibitors with focusing on the preclinical and/or clinical efficacy and molecular mechanisms of these inhibitors.

  20. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened.

    PubMed

    Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin

    2015-06-10

    An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.

  1. Role of Sonic Hedgehog Signaling in Oligodendrocyte Differentiation.

    PubMed

    Wang, Li-Chun; Almazan, Guillermina

    2016-12-01

    During development, the secreted molecule Sonic Hedgehog (Shh) is required for lineage specification and proliferation of oligodendrocyte progenitors (OLPs), which are the glia cells responsible for the myelination of axons in the central nervous system (CNS). Shh signaling has been implicated in controlling both the generation of oligodendrocytes (OLGs) during embryonic development and their production in adulthood. Although, some evidence points to a role of Shh signaling in OLG development, its involvement in OLG differentiation remains to be fully determined. The objective of this study was to assess whether Shh signaling is involved in OLG differentiation after neural stem cell commitment to the OLG lineage. To address these questions, we manipulated Shh signaling using cyclopamine, a potent inhibitor of Shh signaling activator Smoothened (Smo), alone or combined with the agonist SAG in OLG primary cultures and assessed expression of myelin-specific markers. We found that inactivation of Shh signaling caused a dose-dependent decrease in myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in differentiating OLGs. Co-treatment of the cells with SAG reversed the inhibitory effect of cyclopamine on both myelin-specific protein levels and morphological changes associated with it. Further experiments are required to elucidate the molecular mechanism by which Shh signaling regulates OLG differentiation.

  2. Hedgehog signaling stimulates the conversion of cholesterol to steroids.

    PubMed

    Tang, Chao; Pan, Yibin; Luo, Huan; Xiong, Wenyi; Zhu, Haibin; Ruan, Hongfeng; Wang, Jirong; Zou, Chaochun; Tang, Lanfang; Iguchi, Takuma; Long, Fanxin; Wu, Ximei

    2015-03-01

    Cholesterol modification of Hedgehog (Hh) ligands is fundamental for the activity of Hh signaling, and cholesterol biosynthesis is also required for intracellular Hh signaling transduction. Here, we investigated the roles and underlying mechanism of Hh signaling in metabolism of cholesterol. The main components of the Hh pathway are abundantly expressed in both human cytotrophoblasts and trophoblast-like cells. Activation of Hh signaling induces the conversion of cholesterol to progesterone (P4) and estradiol (E2) through up-regulating the expression of steroidogenic enzymes including P450 cholesterol side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1), and aromatase. Moreover, inhibition of Hh signaling attenuates not only Hh-induced expression of steroidogenic enzymes but also the conversion of cholesterol to P4 and E2. Whereas Gli3 is required for Hh-induced P450scc expression, Gli2 mediates the induction of 3β-HSD1 and aromatase. Finally, in ovariectomized nude mice, systemic inhibition of Hh signaling by cyclopamine suppresses circulating P4 and E2 levels derived from a trophoblast-like choricarcinoma xenograft, and attenuates uterine response to P4 and E2. Together these results uncover a hitherto uncharacterized role of Hh signaling in metabolism of cholesterol.

  3. The hedgehog signaling network, mammary stem cells, and breast cancer: connections and controversies.

    PubMed

    Lewis, M T; Visbal, A P

    2006-01-01

    Several signal transduction networks have been implicated in the regulation of mammary epithelial stem cell self-renewal and maintenance (Kalirai and Clarke 2006; Liu et al. 2005). These signaling networks include those of the Wnt, Notch, TGFO, EGF, FGF, IGF, and most recently, the Hedgehog (Hh) families of secreted ligands. However, we currently know very little about the cellular and molecular mechanisms by which these signaling pathways function to regulate normal epithelial stem/progenitor cells. What is clear is that the regulatory signaling networks thought to control normal stem/progenitor cell self-renewal and maintenance are, with the current sole exception of the hedgehog network, well-documented to have contributory roles in mammary cancer development and disease progression when misregulated. In this review, genetic regulation of mammary gland development by hedgehog network genes is outlined, highlighting a developing controversy as to whether activated hedgehog signaling regulates normal regenerative mammary epithelial stem cells or, indeed, whether activated hedgehog signaling functions at all in ductal development. In addition, the question of whether inappropriate hedgehog network activation influences breast cancer development is addressed, with emphasis on the prospects for using hedgehog signaling antagonists clinically for breast cancer treatment or prevention.

  4. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    SciTech Connect

    Liu, Jui Tung; Bain, Lisa J.

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  5. Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling

    PubMed Central

    Su, Ying; Ospina, Jason K.; Zhang, Junzheng; Michelson, Andrew P.; Schoen, Adam M.; Zhu, Alan Jian

    2012-01-01

    The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3′,5′-monophosphate (cAMP)–dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling. PMID:21730325

  6. Hedgehog signaling pathway function conserved in Tribolium segmentation

    PubMed Central

    Farzana, Laila

    2008-01-01

    In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect. PMID:18392879

  7. Loss of Merlin induces metabolomic adaptation that engages dependence on Hedgehog signaling

    PubMed Central

    Das, Shamik; Jackson, William P.; Prasain, Jeevan K.; Hanna, Ann; Bailey, Sarah K.; Tucker, J. Allan; Bae, Sejong; Wilson, Landon S.; Samant, Rajeev S.; Barnes, Stephen; Shevde, Lalita A.

    2017-01-01

    The tumor suppressor protein Merlin is proteasomally degraded in breast cancer. We undertook an untargeted metabolomics approach to discern the global metabolomics profile impacted by Merlin in breast cancer cells. We discerned specific changes in glutathione metabolites that uncovered novel facets of Merlin in impacting the cancer cell metabolome. Concordantly, Merlin loss increased oxidative stress causing aberrant activation of Hedgehog signaling. Abrogation of GLI-mediated transcription activity compromised the aggressive phenotype of Merlin-deficient cells indicating a clear dependence of cells on Hedgehog signaling. In breast tumor tissues, GLI1 expression enhanced tissue identification and discriminatory power of Merlin, cumulatively presenting a powerful substantiation of the relationship between these two proteins. We have uncovered, for the first time, details of the tumor cell metabolomic portrait modulated by Merlin, leading to activation of Hedgehog signaling. Importantly, inhibition of Hedgehog signaling offers an avenue to target the vulnerability of tumor cells with loss of Merlin. PMID:28112165

  8. Stromal response to Hedgehog signaling restrains pancreatic cancer progression.

    PubMed

    Lee, John J; Perera, Rushika M; Wang, Huaijun; Wu, Dai-Chen; Liu, X Shawn; Han, Shiwei; Fitamant, Julien; Jones, Phillip D; Ghanta, Krishna S; Kawano, Sally; Nagle, Julia M; Deshpande, Vikram; Boucher, Yves; Kato, Tomoyo; Chen, James K; Willmann, Jürgen K; Bardeesy, Nabeel; Beachy, Philip A

    2014-07-29

    Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.

  9. Sonic hedgehog signaling in the development of the mouse hypothalamus

    PubMed Central

    Blaess, Sandra; Szabó, Nora; Haddad-Tóvolli, Roberta; Zhou, Xunlei; Álvarez-Bolado, Gonzalo

    2014-01-01

    The expression pattern of Sonic Hedgehog (Shh) in the developing hypothalamus changes over time. Shh is initially expressed in the prechordal mesoderm and later in the hypothalamic neuroepithelium—first medially, and then in two off-medial domains. This dynamic expression suggests that Shh might regulate several aspects of hypothalamic development. To gain insight into them, lineage tracing, (conditional) gene inactivation in mouse, in ovo loss- and gain-of-function approaches in chick and analysis of Shh expression regulation have been employed. We will focus on mouse studies and refer to chick and fish when appropriate to clarify. These studies show that Shh-expressing neuroepithelial cells serve as a signaling center for neighboring precursors, and give rise to most of the basal hypothalamus (tuberal and mammillary regions). Shh signaling is initially essential for hypothalamic induction. Later, Shh signaling from the neuroepithelium controls specification of the lateral hypothalamic area and growth-patterning coordination in the basal hypothalamus. To further elucidate the role of Shh in hypothalamic development, it will be essential to understand how Shh regulates the downstream Gli transcription factors. PMID:25610374

  10. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling

    PubMed Central

    Breunig, Joshua J.; Sarkisian, Matthew R.; Arellano, Jon I.; Morozov, Yury M.; Ayoub, Albert E.; Sojitra, Sonal; Wang, Baolin; Flavell, Richard A.; Rakic, Pasko; Town, Terrence

    2008-01-01

    Primary cilia are present on mammalian neurons and glia, but their function is largely unknown. We generated conditional homozygous mutant mice for a gene we termed Stumpy. Mutants lack cilia and have conspicuous abnormalities in postnatally developing brain regions, including a hypoplasic hippocampus characterized by a primary deficiency in neural stem cells known as astrocyte-like neural precursors (ALNPs). Previous studies suggested that primary cilia mediate sonic hedgehog (Shh) signaling. Here, we find that loss of ALNP cilia leads to abrogated Shh activity, increased cell cycle exit, and morphological abnormalities in ALNPs. Processing of Gli3, a mediator of Shh signaling, is also altered in the absence of cilia. Further, key mediators of the Shh pathway localize to ALNP cilia. Thus, selective targeting of Shh machinery to primary cilia confers to ALNPs the ability to differentially respond to Shh mitogenic signals compared to neighboring cells. Our data suggest these organelles are cellular “antennae” critically required to modulate ALNP behavior. PMID:18728187

  11. New hedgehog/GLI-signaling inhibitors from Adenium obesum.

    PubMed

    Arai, Midori A; Tateno, Chikashi; Koyano, Takashi; Kowithayakorn, Thaworn; Kawabe, Seiichiro; Ishibashi, Masami

    2011-02-21

    The aberrant hedgehog (Hh)/GLI signaling pathway causes the formation and progression of a variety of tumors. We recently constructed a cell-based screening system to search for Hh/GLI signaling inhibitors from natural resources. Using our screening system, Adenium obesum was found to include Hh/GLI signaling inhibitors from our tropical plant extract libraries. Bioassay-guided fractionation of this plant extract led to the isolation of 17 cardiac glycosides (1-17), including 3 new compounds (4, 9, 16). These compounds showed strong inhibitory activities, especially the IC(50) of 17 is 0.11 μM. The inhibition of GLI-related protein expression with 3, 9, 11, 15 and 17 was observed in human pancreatic cancer cells (PANC1), which express Hh/GLI components aberrantly. The expressions of GLI-related proteins PTCH and BCL2 were clearly inhibited. These compounds also showed selective cytotoxicity against two cancer cell lines, with less effect against normal cells (C3H10T1/2). RT-PCT examinations showed that Ptch mRNA expression by 3, 11, 15 and 17 was inhibited.

  12. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines

    PubMed Central

    Popovic, Jelena; Schwirtlich, Marija; Rankovic, Branislava; Stevanovic, Milena

    2015-01-01

    Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation. PMID:26588701

  13. Canonical and non-canonical Hedgehog signalling and the control of metabolism

    PubMed Central

    Teperino, Raffaele; Aberger, Fritz; Esterbauer, Harald; Riobo, Natalia; Pospisilik, John Andrew

    2014-01-01

    Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease. PMID:24862854

  14. Hedgehog signaling regulates dental papilla formation and tooth size during zebrafish odontogenesis

    PubMed Central

    Yu, Jeffrey C.; Fox, Zachary D.B.; Crimp, James L.; Littleford, Hana E.; Jowdry, Andrea L.; Jackman, William R.

    2015-01-01

    Background Intercellular communication by the hedgehog cell signaling pathway is necessary for tooth development throughout the vertebrates, but it remains unclear which specific developmental signals control cell behavior at different stages of odontogenesis. To address this issue, we have manipulated hedgehog activity during zebrafish tooth development and visualized the results using confocal microscopy. Results We first established that reporter lines for dlx2b, fli1, NF-κB, and prdm1a are markers for specific subsets of tooth germ tissues. We then blocked hedgehog signaling with cyclopamine and observed a reduction or elimination of the cranial neural crest derived dental papilla, which normally contains the cells that later give rise to dentin-producing odontoblasts. Upon further investigation we observed that the dental papilla begins to form and then regresses in the absence of hedgehog signaling, through a mechanism unrelated to cell proliferation or apoptosis. We also found evidence of an isometric reduction in tooth size that correlates with the time of earliest hedgehog inhibition. Conclusions We hypothesize that these results reveal a previously uncharacterized function of hedgehog signaling during tooth morphogenesis, regulating the number of cells in the dental papilla and thereby controlling tooth size. PMID:25645398

  15. Sonic hedgehog signaling pathway mediates development of hepatocellular carcinoma.

    PubMed

    Cai, Heng; Li, Hongxing; Li, Jingmin; Li, Xiaoyan; Li, Yana; Shi, Yan; Wang, Dong

    2016-10-15

    Although abnormal activation of the sonic hedgehog (Shh) signaling pathway has been demonstrated in human hepatocellular carcinoma (HCC) patients and in most HCC cell lines, the mechanism by which the Shh pathway promotes the development of HCC remains uncertain. Using a liver cancer model induced by diethylnitrosamine (DEN) which mimics the process from liver injury, abnormal hepatocyte proliferation, and hepatocirrhosis to hepatocyte canceration, we investigated the abnormal activation of the Shh pathway by examining the expression of Shh, patched-1 (Ptch), smoothened (SMO), and glioma-associated oncogene-1 (Gli1) genes. During this process, the expression of CDK1 and cyclin B1 protein, which are two components of the M-phase promoting factor (MPF) controlling G2/M transition, was also examined to explore the potential relationship between Shh activation and cell cycle progression. We observed that the cells with Shh, Ptch, and Gli1 protein expression were mainly distributed in hyperplastic nodule, cancerous node, the epithelia of interlobular bile duct, and precancerous tissues. A gradually increasing tendency of the positive expression rate of Shh, Ptch, and Gli1 proteins in the process from the beginning normal tissue to the final cancer formation was revealed. The cyclin B1 and CDK1 expression level was higher in the DEN-induced rats as compared with normal rats, and their expression was mainly distributed in the portal area of the liver, hyperplastic nodule, cancerous node, and precancerous tissues. Our results suggested that the Shh signaling pathway is activated during liver carcinogenesis, and activated Shh signaling promotes the cell proliferation by facilitating the G2/M transition through increasing the expression of cyclin B1 and CDK1 protein, which eventually results in the development of liver cancer. Better understanding of the Shh signaling pathway in HCC may contribute to the development of novel therapeutic strategies in inhibiting cell

  16. The Insecticide Synergist Piperonyl Butoxide Inhibits Hedgehog Signaling: Assessing Chemical Risks

    PubMed Central

    Chen, Wei

    2012-01-01

    The spread of chemicals, including insecticides, into the environment often raises public health concerns, as exemplified by a recent epidemiologic study associating in utero piperonyl butoxide (PBO) exposure with delayed mental development. The insecticide synergist PBO is listed among the top 10 chemicals detected in indoor dust; a systematic assessment of risks from PBO exposure, as for many toxicants unfortunately, may be underdeveloped when important biological targets that can cause toxicity are unknown. Hedgehog/Smoothened signaling is critical in neurological development. This study was designed to use novel high-throughput in vitro drug screening technology to identify modulators of Hedgehog signaling in environmental chemicals to assist the assessment of their potential risks. A directed library of 1408 environmental toxicants was screened for Hedgehog/Smoothened antagonist activity using a high-content assay that evaluated the interaction between Smoothened and βarrestin2 green fluorescent protein. PBO was identified as a Hedgehog/Smoothened antagonist capable of inhibiting Hedgehog signaling. We found that PBO bound Smoothened and blocked Smoothened overexpression–induced Gli-luciferase reporter activity but had no effect on Gli-1 downstream transcriptional factor–induced Gli activity. PBO inhibited Sonic Hedgehog ligand–induced Gli signaling and mouse cerebellar granular precursor cell proliferation. Moreover, PBO disrupted zebrafish development. Our findings demonstrate the value of high-throughput target-based screening strategies that can successfully evaluate large numbers of environmental toxicants and identify key targets and unknown biological activity that is helpful in properly assessing potential risks. PMID:22552772

  17. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia

    PubMed Central

    Lim, Yiting; Gondek, Lukasz; Li, Li; Wang, Qiuju; Ma, Haley; Chang, Emily; Huso, David L.; Foerster, Sarah; Marchionni, Luigi; McGovern, Karen; Watkins, D. Neil; Peacock, Craig D.; Levis, Mark; Smith, B. Douglas; Merchant, Akil A.; Small, Donald; Matsui, William

    2015-01-01

    FLT3 internal tandem duplication (ITD) mutations resulting in constitutive kinase activity are common in acute myeloid leukemia (AML) and carry a poor prognosis. Several agents targeting FLT3 have been developed, but their limited clinical activity suggests that the inhibition of other factors contributing to the malignant phenotype is required. We examined gene expression data sets as well as primary specimens and found that the expression of GLI2, a major effector of the Hedgehog (Hh) signaling pathway, was increased in FLT3-ITD compared to wild type FLT3 AML. To examine the functional role of the Hh pathway, we studied mice in which Flt3-ITD expression results in an indolent myeloproliferative state and found that constitutive Hh signaling accelerated the development of AML by enhancing STAT5 signaling and the proliferation of bone marrow myeloid progenitors. Furthermore, combined FLT3 and Hh pathway inhibition limited leukemic growth in vitro and in vivo, and this approach may serve as a therapeutic strategy for FLT3-ITD AML. PMID:26062848

  18. Anti-apoptotic role of the sonic hedgehog signaling pathway in the proliferation of ameloblastoma.

    PubMed

    Kanda, Shiori; Mitsuyasu, Takeshi; Nakao, Yu; Kawano, Shintaro; Goto, Yuichi; Matsubara, Ryota; Nakamura, Seiji

    2013-09-01

    Sonic hedgehog (SHH) signaling pathway is crucial to growth and patterning during organogenesis. Aberrant activation of the SHH signaling pathway can result in tumor formation. We examined the expression of SHH signaling molecules and investigated the involvement of the SHH pathway in the proliferation of ameloblastoma, the most common benign tumor of the jaws. We used immunohistochemistry on ameloblastoma specimens and immunocytochemistry and reverse transcription-PCR on the ameloblastoma cell line AM-1. We also used the inhibitors of SHH signaling, SHH neutralizing antibody and cyclopamine, to assess the effects of SHH on the proliferation of AM-1 cells. We detected expression of SHH, patched, GLI1, GLI2 and GLI3 in the ameloblastoma specimens and AM-1 cells. The proliferation of these cells was significantly inhibited in the presence of SHH neutralizing antibody or cyclopamine; this was confirmed by BrdU incorporation assays. Furthermore, in the presence of SHH neutralizing antibody, nuclear translocation of GLI1 and GLI2 was abolished, apoptosis was induced, BCL-2 expression decreased and BAX expression increased. Our results suggest that the SHH signaling pathway is constitutively active in ameloblastoma and plays an anti-apoptotic role in the proliferation of ameloblastoma cells through autocrine loop stimulation.

  19. The primary cilia, a 'Rab-id' transit system for hedgehog signaling.

    PubMed

    Oro, Anthony E

    2007-12-01

    Intense focus has been centered around how the primary cilia transduces the hedgehog (Hh) signal from smoothened (Smo) to the Gli transcription factors. New data indicate that ligand and signaling lipids help regulate small GTPase-dependent accumulation and activity of signaling components.

  20. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma.

    PubMed

    Di Marcotullio, Lucia; Ferretti, Elisabetta; De Smaele, Enrico; Argenti, Beatrice; Mincione, Claudia; Zazzeroni, Francesca; Gallo, Rita; Masuelli, Laura; Napolitano, Maddalena; Maroder, Marella; Modesti, Andrea; Giangaspero, Felice; Screpanti, Isabella; Alesse, Edoardo; Gulino, Alberto

    2004-07-20

    Hedgehog signaling is suggested to be a major oncogenic pathway in medulloblastoma, which arises from aberrant development of cerebellar granule progenitors. Allelic loss of chromosome 17p has also been described as the most frequent genetic defect in this human neoplasia. This observation raises the question of a possible interplay between 17p deletion and the Hedgehog tumorigenic pathway. Here, we identify the human orthologue of mouse REN(KCTD11), previously reported to be expressed in differentiating and low proliferating neuroblasts. Human REN(KCTD11) maps to 17p13.2 and displays allelic deletion as well as significantly reduced expression in medulloblastoma. REN(KCTD11) inhibits medulloblastoma cell proliferation and colony formation in vitro and suppresses xenograft tumor growth in vivo. REN(KCTD11) seems to inhibit medulloblastoma growth by negatively regulating the Hedgehog pathway because it antagonizes the Gli-mediated transactivation of Hedgehog target genes, by affecting Gli1 nuclear transfer, and its growth inhibitory activity is impaired by Gli1 inactivation. Therefore, we identify REN(KCTD11) as a suppressor of Hedgehog signaling and suggest that its inactivation might lead to a deregulation of the tumor-promoting Hedgehog pathway in medulloblastoma.

  1. RENKCTD11 is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma

    PubMed Central

    Di Marcotullio, Lucia; Ferretti, Elisabetta; De Smaele, Enrico; Argenti, Beatrice; Mincione, Claudia; Zazzeroni, Francesca; Gallo, Rita; Masuelli, Laura; Napolitano, Maddalena; Maroder, Marella; Modesti, Andrea; Giangaspero, Felice; Screpanti, Isabella; Alesse, Edoardo; Gulino, Alberto

    2004-01-01

    Hedgehog signaling is suggested to be a major oncogenic pathway in medulloblastoma, which arises from aberrant development of cerebellar granule progenitors. Allelic loss of chromosome 17p has also been described as the most frequent genetic defect in this human neoplasia. This observation raises the question of a possible interplay between 17p deletion and the Hedgehog tumorigenic pathway. Here, we identify the human orthologue of mouse RENKCTD11, previously reported to be expressed in differentiating and low proliferating neuroblasts. Human RENKCTD11 maps to 17p13.2 and displays allelic deletion as well as significantly reduced expression in medulloblastoma. RENKCTD11 inhibits medulloblastoma cell proliferation and colony formation in vitro and suppresses xenograft tumor growth in vivo. RENKCTD11 seems to inhibit medulloblastoma growth by negatively regulating the Hedgehog pathway because it antagonizes the Gli-mediated transactivation of Hedgehog target genes, by affecting Gli1 nuclear transfer, and its growth inhibitory activity is impaired by Gli1 inactivation. Therefore, we identify RENKCTD11 as a suppressor of Hedgehog signaling and suggest that its inactivation might lead to a deregulation of the tumor-promoting Hedgehog pathway in medulloblastoma. PMID:15249678

  2. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development

    PubMed Central

    Nguyen, Duy; Fayol, Olivier; Buisine, Nicolas; Lecorre, Pierrette; Uguen, Patricia

    2016-01-01

    Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo. PMID:27176767

  3. Targeting hedgehog signaling in myelofibrosis and other hematologic malignancies

    PubMed Central

    2014-01-01

    Treatment of myelofibrosis (MF), a BCR-ABL–negative myeloproliferative neoplasm, is challenging. The only current potentially curative option, allogeneic hematopoietic stem cell transplant, is recommended for few patients. The remaining patients are treated with palliative therapies to manage MF-related anemia and splenomegaly. Identification of a mutation in the Janus kinase 2 (JAK2) gene (JAK2 V617F) in more than half of all patients with MF has prompted the discovery and clinical development of inhibitors that target JAK2. Although treatment with JAK2 inhibitors has been shown to improve symptom response and quality of life in patients with MF, these drugs do not alter the underlying disease; therefore, novel therapies are needed. The hedgehog (Hh) signaling pathway has been shown to play a role in normal hematopoiesis and in the tumorigenesis of hematologic malignancies. Moreover, inhibitors of the Hh pathway have been shown to inhibit growth and self-renewal capacity in preclinical models of MF. In a mouse model of MF, combined inhibition of the Hh and JAK pathways reduced JAK2 mutant allele burden, reduced bone marrow fibrosis, and reduced white blood cell and platelet counts. Preliminary clinical data also suggest that inhibition of the Hh pathway, alone or in combination with JAK2 inhibition, may enable disease modification in patients with MF. Future studies, including one combining the Hh pathway inhibitor sonidegib and the JAK2 inhibitor ruxolitinib, are underway in patients with MF and will inform whether this combination approach can lead to true disease modification. PMID:24598114

  4. Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome.

    PubMed

    Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki

    2015-02-13

    Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib.

  5. Hedgehog signaling is required at multiple stages of zebrafish tooth development

    PubMed Central

    2010-01-01

    Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution. PMID:21118524

  6. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines.

    PubMed

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-08-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy.

  7. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines

    PubMed Central

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-01-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  8. Gata4 potentiates second heart field proliferation and Hedgehog signaling for cardiac septation.

    PubMed

    Zhou, Lun; Liu, Jielin; Xiang, Menglan; Olson, Patrick; Guzzetta, Alexander; Zhang, Ke; Moskowitz, Ivan P; Xie, Linglin

    2017-02-21

    GATA4, an essential cardiogenic transcription factor, provides a model for dominant transcription factor mutations in human disease. Dominant GATA4 mutations cause congenital heart disease (CHD), specifically atrial and atrioventricular septal defects (ASDs and AVSDs). We found that second heart field (SHF)-specific Gata4 heterozygote embryos recapitulated the AVSDs observed in germline Gata4 heterozygote embryos. A proliferation defect of SHF atrial septum progenitors and hypoplasia of the dorsal mesenchymal protrusion, rather than anlage of the atrioventricular septum, were observed in this model. Knockdown of the cell-cycle repressor phosphatase and tensin homolog (Pten) restored cell-cycle progression and rescued the AVSDs. Gata4 mutants also demonstrated Hedgehog (Hh) signaling defects. Gata4 acts directly upstream of Hh components: Gata4 activated a cis-regulatory element at Gli1 in vitro and occupied the element in vivo. Remarkably, SHF-specific constitutive Hh signaling activation rescued AVSDs in Gata4 SHF-specific heterozygous knockout embryos. Pten expression was unchanged in Smoothened mutants, and Hh pathway genes were unchanged in Pten mutants, suggesting pathway independence. Thus, both the cell-cycle and Hh-signaling defects caused by dominant Gata4 mutations were required for CHD pathogenesis, suggesting a combinatorial model of disease causation by transcription factor haploinsufficiency.

  9. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase.

    PubMed

    Rebollido-Rios, Rocio; Bandari, Shyam; Wilms, Christoph; Jakuschev, Stanislav; Vortkamp, Andrea; Grobe, Kay; Hoffmann, Daniel

    2014-07-01

    Sonic Hedgehog (Shh) is a representative of the evolutionary closely related class of Hedgehog proteins that have essential signaling functions in animal development. The N-terminal domain (ShhN) is also assigned to the group of LAS proteins (LAS = Lysostaphin type enzymes, D-Ala-D-Ala metalloproteases, Sonic Hedgehog), of which all members harbor a structurally well-defined Zn2+ center; however, it is remarkable that ShhN so far is the only LAS member without proven peptidase activity. Another unique feature of ShhN in the LAS group is a double-Ca2+ center close to the zinc. We have studied the effect of these calcium ions on ShhN structure, dynamics, and interactions. We find that the presence of calcium has a marked impact on ShhN properties, with the two calcium ions having different effects. The more strongly bound calcium ion significantly stabilizes the overall structure. Surprisingly, the binding of the second calcium ion switches the putative catalytic center from a state similar to LAS enzymes to a state that probably is catalytically inactive. We describe in detail the mechanics of the switch, including the effect on substrate co-ordinating residues and on the putative catalytic water molecule. The properties of the putative substrate binding site suggest that ShhN could degrade other ShhN molecules, e.g. by cleavage at highly conserved glycines in ShhN. To test experimentally the stability of ShhN against autodegradation, we compare two ShhN mutants in vitro: (1) a ShhN mutant unable to bind calcium but with putative catalytic center intact, and thus, according to our hypothesis, a constitutively active peptidase, and (2) a mutant carrying additionally mutation E177A, i.e., with the putative catalytically active residue knocked out. The in vitro results are consistent with ShhN being a cannibalistic zinc-peptidase. These experiments also reveal that the peptidase activity depends on pH.

  10. The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer

    PubMed Central

    Li, Yiwei; Wang, Zhiwei; Kong, Dejuan

    2010-01-01

    Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies. PMID:20711635

  11. A Novel Strategy to Inhibit Hedgehog Signaling and Control Growth of Androgen-Independent Prostate Cancer Cells

    DTIC Science & Technology

    2013-12-01

    screen named LS122, would be a potent inhibitor of the kinase STK36 which had been proposed to play a role in hedgehog signaling. This pathway was been...and to our disappointment, LS122 did NOT affect the Hedgehog pathway at all and furthermore, no kit existed that would allow us to screen for...that reach the bone microenvironment. It had been proposed in the original application, that LS122 would target the Hedgehog pathway which

  12. Seminiferous cord formation is regulated by hedgehog signaling in the marsupial.

    PubMed

    Chung, Jin Wei; Pask, Andrew J; Renfree, Marilyn B

    2012-03-01

    The signaling molecule DHH, secreted by Sertoli cells, has essential regulatory functions in testicular differentiation. DHH is required for the differentiation of peritubular myoid cells that line the seminiferous cords and steroidogenic Leydig cells. The testicular cords in Dhh-null male mice lack a basal lamina and develop abnormally. To date, the DHH-signaling pathway has never been examined outside of any eutherian mammals. This study examined the effects of inhibition of DHH signaling in a marsupial mammal, the tammar wallaby, by culturing gonads in vitro in the presence of the hedgehog-signaling inhibitors cyclopamine and forskolin. Disruption of hedgehog signaling in the tammar testes caused highly disorganized cord formation. SOX9 protein remained strongly expressed in Sertoli cells, laminin distribution was highly fragmented, and germ cells were distributed around the cortical regions of treated testes in an ovarianlike morphology. This suggests that hedgehog signaling regulates cord formation in the tammar wallaby testis as it does in eutherian mammals. These data demonstrate that the hedgehog pathway has been highly conserved in mammals for at least 160 million years.

  13. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance.

    PubMed

    Huang, Feng-Ting; Zhuan-Sun, Yong-Xun; Zhuang, Yan-Yan; Wei, Shu-Li; Tang, Jian; Chen, Wen-Bo; Zhang, Shi-Neng

    2012-11-01

    Pancreatic cancer stem cells play a crucial role in tumorigenesis and chemoresistance. The Hedgehog signaling pathway is a key regulator in pancreatic tumorigenesis and drug resistance. To identify pancreatic cancer stem cells, tumorspheres derived from the PANC-1 pancreatic cancer cell line were cultured under a floating-culture system. PANC-1 tumorspheres possessed properties of self-renewal, differentiation, higher tumorigenesis and chemoresistance. It was observed that Hedgehog pathway is active in PANC-1 tumorspheres as shown by expression of hedgehog components Smo, Gil 1 and Gli 2, detected by quantitative RT-PCR and western blotting. After cyclopamine-mediated blockade of hedgehog, a decrease in proliferation of PANC-1 tumorspheres and G0/G1 transition were observed, as well as a decreased expression of Bmi-1 in PANC-1 tumorspheres. Cyclopamine reversed chemoresistance to gemcitabine, resulting in decreased expression of ABCG2 in PANC-1 tumorspheres. Taken together, our data indicate that PANC-1 tumorspheres have 'stemness' potential, and hedgehog signaling pathway plays an important role in the regulation of self-renewal and reversal of chemoresistance in cancer stem cells in pancreatic adenocarcinoma.

  14. Prognostic value of hedgehog signaling pathway in patients with colon cancer.

    PubMed

    Xu, Meihua; Li, Xinhua; Liu, Ting; Leng, Aimin; Zhang, Guiying

    2012-06-01

    Hedgehog signaling pathway plays an important role in normal mammalian gastrointestinal development and is implicated in the oncogenesis of various tumors. However, its correlation with progression and prognosis of colon cancer has not been well documented. This study was designed to investigate expression patterns of related proteins in hedgehog signaling pathway in colon cancer to elucidate its prognostic value in this tumor. Using human colon cancer and their corresponding non-diseased colon from 228 patients' biopsies, the expression of sonic hedgehog, its receptor Patched, and downstream transcription factor Gli1 was investigated by immunohistochemical staining to assess their association with the clinicopathological characteristics of colon cancer. Disease-free survival and overall survival were examined by Kaplan-Meier estimates and the log-rank test. Prognostic factors were determined by multivariate Cox analysis. One hundred and thirty-eight patients (59.6%) had sonic hedgehog-positive tumors and that the disease-free survival (43.5 vs. 73.3%, P < 0.001), and overall survival rates (50.7 vs. 88.9%, P < 0.001) of patients with sonic hedgehog-positive tumors were much lower than those of patients with sonic hedgehog-negative tumors. In addition, 163 patients (71.5%) had Patched-positive tumors, and the disease-free survival (41.7 vs. 76.9%, P < 0.001) and overall survival rates (55.2 vs. 80.0%, P = 0.002) of patients with Patched-positive tumors were also lower than those of patients with Patched-negative tumors. Moreover, positive Gli1 expression had a bad effect on the disease-free survival (41.9 vs. 73.2%, P < 0.001) and overall survival rate of patients with colon cancer (50.0 vs. 89.3%, P < 0.001). In a multivariate analysis, sonic hedgehog, Patched, and Gli1 status were indicators for poor disease-free survival and overall survival. These results have shown that the increasing expression of sonic hedgehog, Patched, and Gli1 are indicators for a poor

  15. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia.

    PubMed

    Zhao, Chen; Chen, Alan; Jamieson, Catriona H; Fereshteh, Mark; Abrahamsson, Annelie; Blum, Jordan; Kwon, Hyog Young; Kim, Jynho; Chute, John P; Rizzieri, David; Munchhof, Michael; VanArsdale, Todd; Beachy, Philip A; Reya, Tannishtha

    2009-04-09

    Although the role of Hedgehog (Hh) signalling in embryonic pattern formation is well established, its functions in adult tissue renewal and maintenance remain unclear, and the relationship of these functions to cancer development has not been determined. Here we show that the loss of Smoothened (Smo), an essential component of the Hh pathway, impairs haematopoietic stem cell renewal and decreases induction of chronic myelogenous leukaemia (CML) by the BCR-ABL1 oncoprotein. Loss of Smo causes depletion of CML stem cells--the cells that propagate the leukaemia--whereas constitutively active Smo augments CML stem cell number and accelerates disease. As a possible mechanism for Smo action, we show that the cell fate determinant Numb, which depletes CML stem cells, is increased in the absence of Smo activity. Furthermore, pharmacological inhibition of Hh signalling impairs not only the propagation of CML driven by wild-type BCR-ABL1, but also the growth of imatinib-resistant mouse and human CML. These data indicate that Hh pathway activity is required for maintenance of normal and neoplastic stem cells of the haematopoietic system and raise the possibility that the drug resistance and disease recurrence associated with imatinib treatment of CML might be avoided by targeting this essential stem cell maintenance pathway.

  16. Sox11 Is Required to Maintain Proper Levels of Hedgehog Signaling during Vertebrate Ocular Morphogenesis

    PubMed Central

    Pillai-Kastoori, Lakshmi; Wen, Wen; Wilson, Stephen G.; Strachan, Erin; Lo-Castro, Adriana; Fichera, Marco; Musumeci, Sebastiano A.; Lehmann, Ordan J.; Morris, Ann C.

    2014-01-01

    Ocular coloboma is a sight-threatening malformation caused by failure of the choroid fissure to close during morphogenesis of the eye, and is frequently associated with additional anomalies, including microphthalmia and cataracts. Although Hedgehog signaling is known to play a critical role in choroid fissure closure, genetic regulation of this pathway remains poorly understood. Here, we show that the transcription factor Sox11 is required to maintain specific levels of Hedgehog signaling during ocular development. Sox11-deficient zebrafish embryos displayed delayed and abnormal lens formation, coloboma, and a specific reduction in rod photoreceptors, all of which could be rescued by treatment with the Hedgehog pathway inhibitor cyclopamine. We further demonstrate that the elevated Hedgehog signaling in Sox11-deficient zebrafish was caused by a large increase in shha transcription; indeed, suppressing Shha expression rescued the ocular phenotypes of sox11 morphants. Conversely, over-expression of sox11 induced cyclopia, a phenotype consistent with reduced levels of Sonic hedgehog. We screened DNA samples from 79 patients with microphthalmia, anophthalmia, or coloboma (MAC) and identified two novel heterozygous SOX11 variants in individuals with coloboma. In contrast to wild type human SOX11 mRNA, mRNA containing either variant failed to rescue the lens and coloboma phenotypes of Sox11-deficient zebrafish, and both exhibited significantly reduced transactivation ability in a luciferase reporter assay. Moreover, decreased gene dosage from a segmental deletion encompassing the SOX11 locus resulted in microphthalmia and related ocular phenotypes. Therefore, our study reveals a novel role for Sox11 in controlling Hedgehog signaling, and suggests that SOX11 variants contribute to pediatric eye disorders. PMID:25010521

  17. Aberrant FGF signaling, independent of ectopic hedgehog signaling, initiates preaxial polydactyly in Dorking chickens.

    PubMed

    Bouldin, Cortney M; Harfe, Brian D

    2009-10-01

    The formation of supernumerary digits, or polydactyly, is a common congenital malformation. Although mutations in a number of genes have been linked to polydactyly, the molecular etiology for a third of human disorders with polydactyly remains unknown. To increase our understanding of the potential causes for polydactyly, we characterized a spontaneous chicken mutant, known as Dorking. The hindlimbs of Dorkings form a preaxial supernumerary digit. During the early stages of limb development, ectopic expression of several genes, including Sonic Hedgehog (Shh) and Fibroblast Growth Factor 4 (Fgf4), was found in Dorking hindlimbs. In addition to ectopic gene expression, a decrease in cell death in the anterior of the developing Dorking hindlimb was observed. Further molecular investigation revealed that ectopic Fgf4 expression was initiated and maintained independent of ectopic Shh. Additionally, inhibition of Fgf signaling but not hedgehog signaling was capable of restoring the normal anterior domain of cell death in Dorking hindlimbs. Our data indicates that in Dorking chickens, preaxial polydactyly is initiated independent of Shh.

  18. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    PubMed

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis.

  19. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development.

    PubMed

    DeSouza, Kristin R; Saha, Monalee; Carpenter, Ashley R; Scott, Melissa; McHugh, Kirk M

    2013-01-01

    In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.

  20. Mutations in Hedgehog acyltransferase (Hhat) perturb Hedgehog signaling, resulting in severe acrania-holoprosencephaly-agnathia craniofacial defects.

    PubMed

    Dennis, Jennifer F; Kurosaka, Hiroshi; Iulianella, Angelo; Pace, Jennifer; Thomas, Nancy; Beckham, Sharon; Williams, Trevor; Trainor, Paul A

    2012-01-01

    Holoprosencephaly (HPE) is a failure of the forebrain to bifurcate and is the most common structural malformation of the embryonic brain. Mutations in SHH underlie most familial (17%) cases of HPE; and, consistent with this, Shh is expressed in midline embryonic cells and tissues and their derivatives that are affected in HPE. It has long been recognized that a graded series of facial anomalies occurs within the clinical spectrum of HPE, as HPE is often found in patients together with other malformations such as acrania, anencephaly, and agnathia. However, it is not known if these phenotypes arise through a common etiology and pathogenesis. Here we demonstrate for the first time using mouse models that Hedgehog acyltransferase (Hhat) loss-of-function leads to holoprosencephaly together with acrania and agnathia, which mimics the severe condition observed in humans. Hhat is required for post-translational palmitoylation of Hedgehog (Hh) proteins; and, in the absence of Hhat, Hh secretion from producing cells is diminished. We show through downregulation of the Hh receptor Ptch1 that loss of Hhat perturbs long-range Hh signaling, which in turn disrupts Fgf, Bmp and Erk signaling. Collectively, this leads to abnormal patterning and extensive apoptosis within the craniofacial primordial, together with defects in cartilage and bone differentiation. Therefore our work shows that Hhat loss-of-function underscrores HPE; but more importantly it provides a mechanism for the co-occurrence of acrania, holoprosencephaly, and agnathia. Future genetic studies should include HHAT as a potential candidate in the etiology and pathogenesis of HPE and its associated disorders.

  1. Alteration of hedgehog signaling by chronic exposure to different pesticide formulations and unveiling the regenerative potential of recombinant sonic hedgehog in mouse model of bone marrow aplasia.

    PubMed

    Chaklader, Malay; Law, Sujata

    2015-03-01

    Chronic pesticide exposure-induced downregulation of hedgehog signaling and its subsequent degenerative effects on the mammalian hematopoietic system have not been investigated yet. However a number of concurrent studies have pointed out the positive correlation between chronic pesticide exposure induced bone marrow failure and immune suppression. Here, we have given an emphasis on the recapitulation of human marrow aplasia like condition in mice by chronic mixed pesticide exposures and simultaneously unravel the role of individual pesticides in the said event. Unlike the effect of mixed pesticide, individual pesticides differentially alter the hedgehog signaling in the bone marrow primitive hematopoietic compartment (Sca1 + compartment) and stromal compartment. Individually, hexaconazole disrupted hematopoietic as well as stromal hedgehog signaling activation through inhibiting SMO and facilitating PKC δ expression. On contrary, both chlorpyriphos and cypermethrin increased the sequestration and degradation of GLI1 by upregulating SU(FU) and βTrCP, respectively. However, cypermethrin-mediated inhibition of hedgehog signaling has partly shown to be circumvented by non-canonical activation of GLI1. Finally, we have tested the regenerative response of sonic hedgehog and shown that in vitro supplemented recombinant SHH protein augmented clonogenic stromal progenitors (CFU-F) as well as primitive multipotent hematopoietic clones including CFU-GEMM and CFU-GM of mixed pesticide-induced aplastic marrow. It is an indication of the marrow regeneration. Finally, our findings provide a gripping evidence that downregulated hedgehog signaling contribute to pesticide-mediated bone marrow aplasia but it could be recovered by proper supplementation of recombinant SHH along with hematopoietic base cocktail. Furthermore, SU(FU) and GLI1 can be exploited as future theradiagnostic markers for early marrow aplasia diagnosis.

  2. The Zn Finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis

    PubMed Central

    Glazer, Andrew; Wilkinson, Alex; Backer, Chelsea B.; Lapan, Sylvain; Gutzman, Jennifer H.; Cheeseman, Iain M.; Reddien, Peter W.

    2009-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and that utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian S. mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates. PMID:19852954

  3. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.

    PubMed

    Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W

    2010-01-01

    Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.

  4. Hedgehog signaling in cancer stem cells: a focus on hematological cancers

    PubMed Central

    Campbell, Victoria; Copland, Mhairi

    2015-01-01

    The stem cell paradigm was first demonstrated in hematopoietic stem cells. Whilst classically it was cytokines and chemokines which were believed to control stem cell fate, more recently it has become apparent that the stem cell niche and highly conserved embryonic pathways play a key role in governing stem cell behavior. One of these pathways, the hedgehog signaling pathway, found in all organisms, is vitally important in embryogenesis, performing the function of patterning through early stages of development, and in adulthood, through the control of somatic stem cell numbers. In addition to these roles in health however, it has been found to be deregulated in a number of solid and hematological malignancies, components of the hedgehog pathway being associated with a poor prognosis. Further, these components represent viable therapeutic targets, with inhibition from a drug development perspective being readily achieved, making the hedgehog pathway an attractive potential therapeutic target. However, although the concept of cancer stem cells is well established, how these cells arise and the factors which influence their behavior are not yet fully understood. The role of the hedgehog signaling pathway and its potential as a therapeutic target in hematological malignancies is the focus of this review. PMID:25691811

  5. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract.

    PubMed

    Mao, Junhao; Kim, Byeong-Moo; Rajurkar, Mihir; Shivdasani, Ramesh A; McMahon, Andrew P

    2010-05-01

    Homeostasis of the vertebrate digestive tract requires interactions between an endodermal epithelium and mesenchymal cells derived from the splanchnic mesoderm. Signaling between these two tissue layers is also crucial for patterning and growth of the developing gut. From early developmental stages, sonic hedgehog (Shh) and indian hedgehog (Ihh) are secreted by the endoderm of the mammalian gut, indicative of a developmental role. Further, misregulated hedgehog (Hh) signaling is implicated in both congenital defects and cancers arising from the gastrointestinal tract. In the mouse, only limited gastrointestinal anomalies arise following removal of either Shh or Ihh. However, given the considerable overlap in their endodermal expression domains, a functional redundancy between these signals might mask a more extensive role for Hh signaling in development of the mammalian gut. To address this possibility, we adopted a conditional approach to remove both Shh and Ihh functions from early mouse gut endoderm. Analysis of compound mutants indicates that continuous Hh signaling is dispensable for regional patterning of the gut tube, but is essential for growth of the underlying mesenchyme. Additional in vitro analysis, together with genetic gain-of-function studies, further demonstrate that Hh proteins act as paracrine mitogens to promote the expansion of adjacent mesenchymal progenitors, including those of the smooth muscle compartment. Together, these studies provide new insights into tissue interactions underlying mammalian gastrointestinal organogenesis and disease.

  6. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy.

    PubMed

    Song, Li; Li, Zhuo-Yu; Liu, Wei-Ping; Zhao, Mei-Rong

    2015-01-01

    Wnt/β-catenin and Hedgehog/Gli signalings play key roles in multiple biogenesis such as embryonic development and tissue homeostasis. Dysregulations of these 2 pathways are frequently found in most cancers, particularly in colon cancer. Their crosstalk has been increasingly appreciated as an important mechanism in regulating colon cancer progression. Our studies into the link between Wnt/β-catenin and Hedgehog/Gli signalings in colon cancer revealed several possible crosstalk points and suggested potential therapeutic strategies for colon cancer.

  7. ZnRF3 Induces Apoptosis of Gastric Cancer Cells by Antagonizing Wnt and Hedgehog Signaling.

    PubMed

    Qin, Hongzhen; Cai, Aizhen; Xi, Hongqing; Yuan, Jing; Chen, Lin

    2015-11-01

    A large proportion of malignant cancers of the stomach are gastric adenocarcinoma type. In spite of many studies, the molecular basis for this cancer is still unclear. Deregulated cell proliferative signaling via Wnt/β-catenin and Hedgehog pathways is considered important in the pathogenesis of many cancers including the gastric cancer. Recent studies identified ZnRF3 protein, which is a E3-ubiquitin ligase and which is either deleted or mutated in cancers, to inhibit Wnt signaling. However, the significance of ZnRF3 in the control of gastric cancer and whether it also regulates Hedgehog signaling pathway, is not known. In the present study, we assessed the expression of ZnRF3 in gastric tumors and paracancerous tissues from 58 patients (44 male and 14 female) of different ages and related this to patient survival. We observed a clear relationship between ZnRF3 expression in paracancerous tissue and tumor size. Also, ZnRF3 expression was much higher in tumors from aged patients. Male patients showed higher mortality than the females. Mechanistic studies using normal gastric cells (GES1) and gastric cancer cells (MGC-803) infected with either AdZnRF3 or AdGFP viral vectors, revealed that ZnRF3 overexpression causes significantly more apoptosis and lowered proliferation of cancer cells. ZnRF3 overexpression led to greatly reduced levels of Lgr5, a component of Wnt signaling and also Gli1, a component of Hedgehog signaling. Thus, ZnRF3 negatively influences both the Wnt and Hedgehog proliferative pathways, and probably this way it negatively regulates cancer progression. These results suggest the importance of normal ZnRF3 function in checking the progression of cancer cell growth and indicate that a lack of this protein can lead to poorer clinical outcomes for gastric cancer patients.

  8. Sonic Hedgehog Signaling Protects Human Hepatocellular Carcinoma Cells Against Ionizing Radiation in an Autocrine Manner

    SciTech Connect

    Chen, Yu-Jen; Lin, Chin-Ping; Hsu, Ming-Ling; Shieh, Hui-Ru; Chao, Nicholas K.; Chao, K.S. Clifford

    2011-07-01

    Purpose: Sonic hedgehog (Shh) signaling is critical to embryogenesis and resistance to chemotherapy. We aimed to examine the role of Shh signaling in the response to radiation of human hepatocellular carcinoma (HCC) cells. Methods and Materials: Response to ionizing radiation therapy (RT) was evaluated by clonogenic assay. Quantitative RT-polymerase chain reaction for patched-1 (PTCH-1) expression was performed. Cytosolic accumulation of Shh and nuclear translocation of Gli-1 were assessed by immunofluorescence. Gli-1 knockdown was done by RNA interference (RNAi). Immunoprecipitation was performed to detect Shh ligand in conditioned medium. Immunofluorescent stain for {gamma}-H2AX was used as an index of DNA double strand breaks (DSB). Expression of proteins related to DNA damage repair was assessed by Western blotting. Results: We found that Shh ligand could protect human HCC HA22T and Sk-Hep1 cells against RT. In HA22T cells, Shh ligand activated the Shh signaling with upregulation of Shh, PTCH-1, and Gli-1 expression. The nuclear translocation of Gli-1 further supports the activation of Gli-1. The radioprotection by Shh ligand was partly blocked by Shh antibody neutralization and was abolished by Gli-1 RNAi, suggesting a critical role of Shh signaling in radiation resistance. Furthermore, we noted that soluble factors secreted into conditioned medium, either constitutively or responding to radiation, by HA22T or Sk-Hep1 cells protected subsequent culturing cells against RT. Immunoprecipitation shows the presence of Shh peptide in conditioned medium. Intriguingly, antibody neutralization of Shh ligand or knockdown of Gli-1 reversed the radioprotective effect of conditioned medium. Furthermore, Shh ligand reduced the RT-induced phosphorylation of checkpoint kinase 1 and impaired the repair of DNA DSB. Conclusions: Activation of Shh signaling protects HCC cells against ionizing radiation in an autocrine manner. Impairment of DNA damage repair might involve

  9. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway.

    PubMed

    Svärd, Jessica; Heby-Henricson, Karin; Henricson, Karin Heby; Persson-Lek, Madelen; Rozell, Björn; Lauth, Matthias; Bergström, Asa; Ericson, Johan; Toftgård, Rune; Teglund, Stephan

    2006-02-01

    The Hedgehog (Hh) pathway plays important roles during embryogenesis and carcinogenesis. Here, we show that ablation of the mouse Suppressor of fused (Sufu), an intracellular pathway component, leads to embryonic lethality at approximately E9.5 with cephalic and neural tube defects. Fibroblasts derived from Sufu(-/-) embryos showed high Gli-mediated Hh pathway activity that could not be modulated at the level of Smoothened and could only partially be blocked by PKA activation. Despite the robust constitutive pathway activation in the Sufu(-/-) fibroblasts, the GLI1 steady-state localization remained largely cytoplasmic, implying the presence of an effective nuclear export mechanism. Sufu(+/-) mice develop a skin phenotype with basaloid changes and jaw keratocysts, characteristic features of Gorlin syndrome, a human genetic disease linked to enhanced Hh signaling. Our data demonstrate that, in striking contrast to Drosophila, in mammals, Sufu has a central role, and its loss of function leads to potent ligand-independent activation of the Hh pathway.

  10. Structural basis of SUFU-GLI interaction in human Hedgehog signalling regulation.

    PubMed

    Cherry, Amy L; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A; Del Campo, Mark; Criswell, Angela R; de Sanctis, Daniele; Jovine, Luca; Toftgård, Rune

    2013-12-01

    Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU-GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU-GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.

  11. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    PubMed Central

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A.; Del Campo, Mark; Criswell, Angela R.; de Sanctis, Daniele; Jovine, Luca; Toftgård, Rune

    2013-01-01

    Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics. PMID:24311597

  12. Structural basis of SUFU–GLI interaction in human Hedgehog signalling regulation

    SciTech Connect

    Cherry, Amy L.; Finta, Csaba; Karlström, Mikael; Jin, Qianren; Schwend, Thomas; Astorga-Wells, Juan; Zubarev, Roman A.; Del Campo, Mark; Criswell, Angela R.; Sanctis, Daniele de; Jovine, Luca Toftgård, Rune

    2013-12-01

    Crystal and small-angle X-ray scattering structures of full-length human SUFU alone and in complex with the conserved SYGHL motif from GLI transcription factors show major conformational changes associated with binding and reveal an intrinsically disordered region crucial for pathway activation. Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.

  13. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy.

    PubMed

    Tang, Xiaoli; Deng, Libin; Chen, Qi; Wang, Yao; Xu, Rong; Shi, Chao; Shao, Jia; Hu, Guohui; Gao, Meng; Rao, Hai; Luo, Shiwen; Lu, Quqin

    2015-05-01

    Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells. Microarray analysis revealed that differentially expressed genes (DEGs) in human cancer cells are enriched in autophagy pathway in response to the inhibition of Hh signaling. Interestingly, inhibition of Hh signaling induced autophagy, whereas activation of Hh signaling by ligand treatments prevented the induction of autophagy. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed cytotoxicity induced by inhibition of Hh signaling. Finally, in autophagy deficient cells, cytotoxic effect triggered by inhibition of Hh signaling was partially reversed, indicating the modulation of autophagy by Hh signaling is autophagy-specific. These results suggest that inhibition of Hh signaling impedes cancer cell proliferation in part through induction of autophagy.

  14. Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis.

    PubMed

    Syed, Islam S; Pedram, Akbari; Farhat, Walid A

    2016-02-01

    Sonic hedgehog (Shh) signaling pathway has emerged as a critical component of bladder development, cancer initiation, and progression. While the role of Shh signaling in bladder development is well documented, its role in bladder cancer progression is uncertain. Additionally, epithelial-to-mesenchymal transition (EMT) has been identified to promote bladder cancer progression in the initial stages and also contribute to drug resistance in the later stage and ultimately metastasis. We speculate that epithelial-to-mesenchymal transitions (EMT) and Shh fuel the carcinogenesis process. This review presents the most recent studies focusing on the role of Shh signaling in bladder cancer progression.

  15. Hedgehog signaling: from the cuirass to the heart of pancreatic cancer.

    PubMed

    Di Marco, Mariacristina; Macchini, Marina; Vecchiarelli, Silvia; Sina, Sokol; Biasco, Guido

    2012-01-01

    Exocrine pancreatic cancer is the fifth cause of cancer-related death in Europe and carries a very poor prognosis for all disease stages. To date no medical treatment has significantly increased patients' survival. One of the reasons for pancreatic cancer's chemoresistence is the complex tumor architecture: cancer cells are surrounded by a dense desmoplastic stroma that blocks drug delivery. Moreover, pancreatic cancer is characterized by a marked heterogeneity of cells, including cancer stem cells (CSCs) that act as tumor-initiating cells and hierarchically control the differentiated cancer cells. In particular, this subpopulation is resistant to classic cytotoxic therapies, and seems to be responsible for disease renewal. Hedgehog signaling (HH) is implicated in pancreatic gland development during embryogenesis and is reactivated during tumorigenesis and the maintenance of pancreatic cancer. Some studies demonstrated that the Hedgehog-secreted signaling proteins are overexpressed in both the stromal and CSCs pools, implying an abnormal activation of HH in the main compartment of pancreatic cancer. For this reason, the Hedgehog pathway could be an interesting target for clinical trials to increase drug concentration in neoplastic cells and hence deplete the stroma and directly kill tumor-initiating cells.

  16. Wwox suppresses breast cancer cell growth through modulation of the hedgehog-GLI1 signaling pathway.

    PubMed

    Xiong, Anwen; Wei, Li; Ying, Mingzhen; Wu, Hongmei; Hua, Jin; Wang, Yajie

    2014-01-24

    Wwox is a tumor suppressor that is frequently deleted or altered in several cancer types, including breast cancer. Previous studies have shown that ectopic expression of Wwox inhibits proliferation of breast cancer cells. However, the underlying mechanism remains unclear. To better understand the molecular mechanisms of Wwox function, we investigated novel partners of this protein. Utilizing the coimmunoprecipitation assay, we observed a physical association between Wwox and the Gli1 zinc-finger transcription factor involved in the hedgehog pathway. Our results further demonstrated that Wwox expression triggered redistribution of nuclear Gli1 to the cytoplasm. Additionally, ectopic expression of Wwox reduced Gli1 expression in vitro. Furthermore, Gli1 Blocks Wwox-induced breast cancer cell growth inhibition. These findings suggest a functional crosstalk between Wwox and hedgehog-GLI1 signaling pathway in tumorigenesis.

  17. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease.

    PubMed

    Christ, Annabel; Herzog, Katja; Willnow, Thomas E

    2016-05-01

    To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.

  18. LKB1 suppresses proliferation and invasion of prostate cancer through hedgehog signaling pathway.

    PubMed

    Xu, Peiyuan; Cai, Fei; Liu, Xiaofei; Guo, Lele

    2014-01-01

    Activation of the hedgehog (Hh) signaling pathway has been implicated in the development of many human malignancies. Hh signaling target genes, such as patched (PTCH), smoothened (SMO) and sonic hedgehog (SHH), are markers of Hh signaling activation in most Hh-associated tumors. The protein kinase LKB1 has been shown to slow proliferation and induce cell-cycle arrest in many cell lines. However, the function of LKB1 in prostate cancer development remains largely unclear. In this study, the expression of LKB1 in human prostate cancer tissue samples and prostate cancer cell lines was detected, and the effects of LKB1 on prostate cancer cell proliferation and invasion were evaluated. Moreover, the influence of LKB1 on target genes of the Hh signaling pathway was analyzed. The results indicated that knockdown of LKB1 expression by RNA interference promoted cell proliferation, colony formation and invasion. Meanwhile, we observed that LKB1 siRNA increased the expression of factors related to Hh signaling reporter activity in prostate cancer cells, including PTCH, SMO and SHH. These findings suggest that LKB1 is a putative tumor suppressor gene in prostate cancer, and that LKB1 is negatively correlated with the expression of Hh signaling related transcription factors. Our results suggest that LKB1 may inhibit tumorigenesis by regulating the Hh signaling pathway in certain cancers.

  19. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds

    PubMed Central

    Yang, Hyekyung; Cong, Wei-na; Yoon, Jeong Seon; Egan, Josephine M

    2015-01-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds. PMID:25354792

  20. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.

    PubMed

    Yang, Hyekyung; Cong, Wei-Na; Yoon, Jeong Seon; Egan, Josephine M

    2015-02-01

    Vismodegib, a highly selective inhibitor of hedgehog (Hh) pathway, is an approved treatment for basal-cell carcinoma. Patients on treatment with vismodegib often report profound alterations in taste sensation. The cellular mechanisms underlying the alterations have not been studied. Sonic Hh (Shh) signaling is required for cell growth and differentiation. In taste buds, Shh is exclusively expressed in type IV taste cells, which are undifferentiated basal cells and the precursors of the three types of taste sensing cells. Thus, we investigated if vismodegib has an inhibitory effect on taste cell turnover because of its known effects on Hh signaling. We gavaged C57BL/6J male mice daily with either vehicle or 30 mg/kg vismodegib for 15 weeks. The gustatory behavior and immunohistochemical profile of taste cells were examined. Vismodegib-treated mice showed decreased growth rate and behavioral responsivity to sweet and bitter stimuli, compared to vehicle-treated mice. We found that vismodegib-treated mice had significant reductions in taste bud size and numbers of taste cells per taste bud. Additionally, vismodegib treatment resulted in decreased numbers of Ki67- and Shh-expressing cells in taste buds. The numbers of phospholipase Cβ2- and α-gustducin-expressing cells, which contain biochemical machinery for sweet and bitter sensing, were reduced in vismodegib-treated mice. Furthermore, vismodegib treatment resulted in reduction in numbers of T1R3, glucagon-like peptide-1, and glucagon-expressing cells, which are known to modulate sweet taste sensitivity. These results suggest that inhibition of Shh signaling by vismodegib treatment directly results in alteration of taste due to local effects in taste buds.

  1. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer.

    PubMed

    Watkins, D Neil; Berman, David M; Burkholder, Scott G; Wang, Baolin; Beachy, Philip A; Baylin, Stephen B

    2003-03-20

    Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.

  2. Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling

    PubMed Central

    Yazawa, Shigenobu; Umesono, Yoshihiko; Hayashi, Tetsutaro; Tarui, Hiroshi; Agata, Kiyokazu

    2009-01-01

    Despite long-standing interest, the molecular mechanisms underlying the establishment of anterior–posterior (AP) polarity remain among the unsolved mysteries in metazoans. In the planarians (a family of flatworms), canonical Wnt/β-catenin signaling is required for posterior specification, as it is in many animals. However, the molecular mechanisms regulating the posterior-specific induction of Wnt genes according to the AP polarity have remained unclear. Here, we demonstrate that Hedgehog (Hh) signaling is responsible for the establishment of AP polarity via its regulation of the transcription of Wnt family genes during planarian regeneration. We found that RNAi gene knockdown of Dugesia japonica patched (Djptc) caused ectopic tail formation in the anterior blastema of body fragments, resulting in bipolar-tails regeneration. In contrast, RNAi of hedgehog (Djhh) and gli (Djgli) caused bipolar-heads regeneration. We show that Patched-mediated Hh signaling was crucial for posterior specification, which is established by regulating the transcription of Wnt genes via downstream Gli activity. Moreover, differentiated cells were responsible for the posterior specification of undifferentiated stem cells through Wnt/β-catenin signaling. Surprisingly, Djhh was expressed in neural cells all along the ventral nerve cords (along the AP axis), but not in the posterior blastema of body fragments, where the expression of Wnt genes was induced for posteriorization. We therefore propose that Hh signals direct head or tail regeneration according to the AP polarity, which is established by Hh signaling activity along the body's preexisting nervous system. PMID:20018728

  3. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth

    PubMed Central

    Gerling, Marco; Büller, Nikè V. J. A.; Kirn, Leonard M.; Joost, Simon; Frings, Oliver; Englert, Benjamin; Bergström, Åsa; Kuiper, Raoul V.; Blaas, Leander; Wielenga, Mattheus C. B.; Almer, Sven; Kühl, Anja A.; Fredlund, Erik; van den Brink, Gijs R.; Toftgård, Rune

    2016-01-01

    A role for Hedgehog (Hh) signalling in the development of colorectal cancer (CRC) has been proposed. In CRC and other solid tumours, Hh ligands are upregulated; however, a specific Hh antagonist provided no benefit in a clinical trial. Here we use Hh reporter mice to show that downstream Hh activity is unexpectedly diminished in a mouse model of colitis-associated colon cancer, and that downstream Hh signalling is restricted to the stroma. Functionally, stroma-specific Hh activation in mice markedly reduces the tumour load and blocks progression of advanced neoplasms, partly via the modulation of BMP signalling and restriction of the colonic stem cell signature. By contrast, attenuated Hh signalling accelerates colonic tumourigenesis. In human CRC, downstream Hh activity is similarly reduced and canonical Hh signalling remains predominantly paracrine. Our results suggest that diminished downstream Hh signalling enhances CRC development, and that stromal Hh activation can act as a colonic tumour suppressor. PMID:27492255

  4. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways.

    PubMed

    Borggrefe, Tilman; Lauth, Matthias; Zwijsen, An; Huylebroeck, Danny; Oswald, Franz; Giaimo, Benedetto Daniele

    2016-02-01

    Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.

  5. CDO, an Hh-coreceptor, mediates lung cancer cell proliferation and tumorigenicity through Hedgehog signaling.

    PubMed

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.

  6. CDO, an Hh-Coreceptor, Mediates Lung Cancer Cell Proliferation and Tumorigenicity through Hedgehog Signaling

    PubMed Central

    Leem, Young-Eun; Ha, Hye-Lim; Bae, Ju-Hyeon; Baek, Kwan-Hyuck; Kang, Jong-Sun

    2014-01-01

    Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling. PMID:25369201

  7. A Smoothened-Evc2 complex transduces the Hedgehog signal at primary cilia.

    PubMed

    Dorn, Karolin V; Hughes, Casey E; Rohatgi, Rajat

    2012-10-16

    Vertebrate Hedgehog (Hh) signaling is initiated at primary cilia by the ligand-triggered accumulation of Smoothened (Smo) in the ciliary membrane. The underlying biochemical mechanisms remain unknown. We find that Hh agonists promote the association between Smo and Evc2, a ciliary protein that is defective in two human ciliopathies. The formation of the Smo-Evc2 complex is under strict spatial control, being restricted to a distinct ciliary compartment, the EvC zone. Mutant Evc2 proteins that localize in cilia but are displaced from the EvC zone are dominant inhibitors of Hh signaling. Disabling Evc2 function blocks Hh signaling at a specific step between Smo and the downstream regulators protein kinase A and Suppressor of Fused, preventing activation of the Gli transcription factors. Our data suggest that the Smo-Evc2 signaling complex at the EvC zone is required for Hh signal transmission and elucidate the molecular basis of two human ciliopathies.

  8. Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia

    PubMed Central

    Kern, D; Regl, G; Hofbauer, S W; Altenhofer, P; Achatz, G; Dlugosz, A; Schnidar, H; Greil, R; Hartmann, T N; Aberger, F

    2015-01-01

    The initiation and maintenance of a malignant phenotype requires complex and synergistic interactions of multiple oncogenic signals. The Hedgehog (HH)/GLI pathway has been implicated in a variety of cancer entities and targeted pathway inhibition is of therapeutic relevance. Signal cross-talk with other cancer pathways including PI3K/AKT modulates HH/GLI signal strength and its oncogenicity. In this study, we addressed the role of HH/GLI and its putative interaction with the PI3K/AKT cascade in the initiation and maintenance of chronic lymphocytic leukemia (CLL). Using transgenic mouse models, we show that B-cell-specific constitutive activation of HH/GLI signaling either at the level of the HH effector and drug target Smoothened or at the level of the GLI transcription factors does not suffice to initiate a CLL-like phenotype characterized by the accumulation of CD5+ B cells in the lymphatic system and peripheral blood. Furthermore, Hh/Gli activation in Pten-deficient B cells with activated Pi3K/Akt signaling failed to enhance the expansion of leukemic CD5+ B cells, suggesting that genetic or epigenetic alterations leading to aberrant HH/GLI signaling in B cells do not suffice to elicit a CLL-like phenotype in mice. By contrast, we identify a critical role of GLI and PI3K signaling for the survival of human primary CLL cells. We show that combined targeting of GLI and PI3K/AKT/mTOR signaling can have a synergistic therapeutic effect in cells from a subgroup of CLL patients, thereby providing a basis for the evaluation of future combination therapies targeting HH/GLI and PI3K signaling in this common hematopoietic malignancy. PMID:25639866

  9. Hedgehog signaling pathway regulates ovarian cancer invasion and migration via adhesion molecule CD24

    PubMed Central

    Zeng, Chunyan; Chen, Tingtao; Zhang, Yan; Chen, Qi

    2017-01-01

    Hedgehog (Hh) signalling plays an important role in cancer; however, its mechanism in ovarian cancer migration and invasion remains unclear. In the present study, we aimed to clarify the effect of the Hh signalling pathway on ovarian cancer migration and invasion through the regulation of CD24 expression, both in vitro and in vivo. Patients with ovarian cancer (n = 97) were recruited for this study. Evaluation of the explored the role parameters of patients indicated that CD24 expression was negatively associated with age, histological type and lymph node metastasis (p>0.05), but was positively associated with the clinical stage and pathological grading (p<0.05).The in vitro results indicated that the activator (sonic hedgehog, Shh) and inhibitor (GANT61) of Hh signalling significantly enhanced and reduced CD24 expression, respectively, at both the gene and protein levels (p<0.05).The addition of Shh significantly enhanced cellular migration and invasion of SKOV3 cells in vitro (p<0.05) Down regulation of CD24 using siRNA inhibited the tumour-promoting effects of Shh, and the in vivo results confirmed that GANT61 significantly inhibited CD24 expression and reduced tumour growth (p<0.01). In conclusion, the expression of CD24 can be regulated by Hh signalling, and downregulation of CD24 could play an important role in inhibiting ovarian cancer progression. PMID:28382140

  10. Serotonin Regulates Calcium Homeostasis in Lactation by Epigenetic Activation of Hedgehog Signaling

    PubMed Central

    Laporta, Jimena; Keil, Kimberly P.; Weaver, Samantha R.; Cronick, Callyssa M.; Prichard, Austin P.; Crenshaw, Thomas D.; Heyne, Galen W.; Vezina, Chad M.; Lipinski, Robert J.

    2014-01-01

    Calcium homeostasis during lactation is critical for maternal and neonatal health. We previously showed that nonneuronal/peripheral serotonin [5-hydroxytryptamine (5-HT)] causes the lactating mammary gland to synthesize and secrete PTHrP in an acute fashion. Here, using a mouse model, we found that genetic inactivation of tryptophan hydroxylase 1 (Tph1), which catalyzes the rate-limiting step in peripheral 5-HT synthesis, reduced circulating and mammary PTHrP expression, osteoclast activity, and maternal circulating calcium concentrations during the transition from pregnancy to lactation. Tph1 inactivation also reduced sonic hedgehog signaling in the mammary gland during lactation. Each of these deficiencies was rescued by daily injections of 5-hydroxy-L-tryptophan (an immediate precursor of 5-HT) to Tph1-deficient dams. We used immortalized mouse embryonic fibroblasts to demonstrate that 5-HT induces PTHrP through a sonic hedgehog-dependent signal transduction mechanism. We also found that 5-HT altered DNA methylation of the Shh gene locus, leading to transcriptional initiation at an alternate start site and formation of a variant transcript in mouse embryonic fibroblasts in vitro and in mammary tissue in vivo. These results support a new paradigm of 5-HT-mediated Shh regulation involving DNA methylation remodeling and promoter switching. In addition to having immediate implications for lactation biology, identification and characterization of a novel functional regulatory relationship between nonneuronal 5-HT, hedgehog signaling, and PTHrP offers new avenues for the study of these important factors in development and disease. PMID:25192038

  11. Drosophila melanogaster Hedgehog cooperates with Frazzled to guide axons through a non-canonical signalling pathway.

    PubMed

    Ricolo, Delia; Butí, Elisenda; Araújo, Sofia J

    2015-08-01

    We report that the morphogen Hedgehog (Hh) is an axonal chemoattractant in the midline of Drosophila melanogaster embryos. Hh is present in the ventral nerve cord during axonal guidance and overexpression of hh in the midline causes ectopic midline crossing of FasII-positive axonal tracts. In addition, we show that Hh influences axonal guidance via a non-canonical signalling pathway dependent on Ptc. Our results reveal that the Hh pathway cooperates with the Netrin/Frazzled pathway to guide axons through the midline in invertebrates.

  12. Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer.

    PubMed

    Onishi, Hideya; Katano, Mitsuo

    2014-03-07

    Pancreatic cancer is one of the most aggressive and difficult cancers to treat. Despite numerous research efforts, limited success has been achieved in the therapeutic management of patients with this disease. In the current review, we focus on one component of morphogenesis signaling, Hedgehog (Hh), with the aim of developing novel, effective therapies for the treatment of pancreatic cancer. Hh signaling contributes to the induction of a malignant phenotype in pancreatic cancer and is responsible for maintaining pancreatic cancer stem cells. In addition, we propose a novel concept linking Hh signaling and tumor hypoxic conditions, and discuss the effects of Hh inhibitors in clinical trials. The Hh signaling pathway may represent a potential therapeutic target for patients with refractory pancreatic cancer.

  13. Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila.

    PubMed

    Sanchez, Gonzalo M; Alkhori, Liza; Hatano, Eduardo; Schultz, Sebastian W; Kuzhandaivel, Anujaianthi; Jafari, Shadi; Granseth, Björn; Alenius, Mattias

    2016-01-26

    Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.

  14. Regulation of Smoothened Trafficking and Hedgehog Signaling by the SUMO Pathway.

    PubMed

    Ma, Guoqiang; Li, Shuang; Han, Yuhong; Li, Shuangxi; Yue, Tao; Wang, Bing; Jiang, Jin

    2016-11-21

    Hedgehog (Hh) signaling plays a central role in development and diseases. Hh activates its signal transducer and GPCR-family protein Smoothened (Smo) by inducing Smo phosphorylation, but whether Smo is activated through other post-translational modifications remains unexplored. Here we show that sumoylation acts in parallel with phosphorylation to promote Smo cell-surface expression and Hh signaling. We find that Hh stimulates Smo sumoylation by dissociating it from a desumoylation enzyme Ulp1. Sumoylation of Smo in turn recruits a deubiquitinase UBPY/USP8 to antagonize Smo ubiquitination and degradation, leading to its cell-surface accumulation and elevated Hh pathway activity. We also provide evidence that Shh stimulates sumoylation of mammalian Smo (mSmo) and that sumoylation promotes ciliary localization of mSmo and Shh pathway activity. Our findings reveal a conserved mechanism whereby the SUMO pathway promotes Hh signaling by regulating Smo subcellular localization and shed light on how sumoylation regulates membrane protein trafficking.

  15. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development.

    PubMed

    Nosavanh, LaGina; Yu, Da-Hai; Jaehnig, Eric J; Tong, Qiang; Shen, Lanlan; Chen, Miao-Hsueh

    2015-04-21

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to Hedgehog (Hh) signaling. Furthermore, cell-autonomous activation of Hh signaling blocks early brown-preadipocyte differentiation, inhibits BAT formation in vivo, and results in replacement of neck BAT with poorly differentiated skeletal muscle. Finally, we show that Hh signaling inhibits BAT formation partially through up-regulation of chicken ovalbumin upstream promoter transcription factor II (COUP-TFII). Taken together, our studies uncover a previously unidentified role for Hh as an inhibitor of BAT development.

  16. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function

    PubMed Central

    Hamilton, Bruce A.

    2016-01-01

    Zfp423 encodes a 30-zinc finger transcription factor that intersects several canonical signaling pathways. Zfp423 mutations result in ciliopathy-related phenotypes, including agenesis of the cerebellar vermis in mice and Joubert syndrome (JBTS19) and nephronophthisis (NPHP14) in humans. Unlike most ciliopathy genes, Zfp423 encodes a nuclear protein and its developmental expression is complex, leading to alternative proposals for cellular mechanisms. Here we show that Zfp423 is expressed by cerebellar granule cell precursors, that loss of Zfp423 in these precursors leads to cell-intrinsic reduction in proliferation, loss of response to Shh, and primary cilia abnormalities that include diminished frequency of both Smoothened and IFT88 localization. Loss of Zfp423 alters expression of several genes encoding key cilium components, including increased expression of Tulp3. Tulp3 is a direct binding target of Zfp423 and reducing the overexpression of Tulp3 in Zfp423-deficient cells suppresses Smoothened translocation defects. These results define Zfp423 deficiency as a bona fide ciliopathy, acting upstream of Shh signaling, and indicate a mechanism intrinsic to granule cell precursors for the resulting cerebellar hypoplasia. PMID:27727273

  17. The Role of Sonic Hedgehog Signaling in Osteoclastogenesis and Jaw Bone Destruction

    PubMed Central

    Shimo, Tsuyoshi; Matsumoto, Kenichi; Takabatake, Kiyofumi; Aoyama, Eriko; Takebe, Yuichiro; Ibaragi, Soichiro; Okui, Tatsuo; Kurio, Naito; Takada, Hiroyuki; Obata, Kyoichi; Pang, Pai; Iwamoto, Masahiro; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-01-01

    Sonic hedgehog (SHH) and its signaling have been identified in several human cancers, and increased levels of its expression appear to correlate with disease progression and metastasis. However, the role of SHH in bone destruction associated with oral squamous cell carcinomas is still unclear. In this study we analyzed SHH expression and the role played by SHH signaling in gingival carcinoma-induced jawbone destruction. From an analysis of surgically resected lower gingival squamous cell carcinoma mandible samples, we found that SHH was highly expressed in tumor cells that had invaded the bone matrix. On the other hand, the hedgehog receptor Patched and the signaling molecule Gli-2 were highly expressed in the osteoclasts and the progenitor cells. SHH stimulated osteoclast formation and pit formation in the presence of the receptor activator for nuclear factor-κB ligand (RANKL) in CD11b+ mouse bone marrow cells. SHH upregulated phosphorylation of ERK1/2 and p38 MAPK, NFATc1, tartrate-resistant acid phosphatase (TRAP), and Cathepsin K expression in RAW264.7 cells. Our results suggest that tumor-derived SHH stimulated the osteoclast formation and bone resorption in the tumor jawbone microenvironment. PMID:27007126

  18. Hedgehog signaling regulates E-cadherin expression for the maintenance of the actin cytoskeleton and tight junctions

    PubMed Central

    Xiao, Chang; Ogle, Sally A.; Schumacher, Michael A.; Schilling, Neal; Tokhunts, Robert A.; Orr-Asman, Melissa A.; Miller, Marian L.; Robbins, David J.; Hollande, Frederic

    2010-01-01

    In the stomach, strictly regulated cell adherens junctions are crucial in determining epithelial cell differentiation. Sonic Hedgehog (Shh) regulates epithelial cell differentiation in the adult stomach. We sought to identify whether Shh plays a role in regulating adherens junction protein E-cadherin as a mechanism for epithelial cell differentiation. Mouse nontumorigenic gastric epithelial (IMGE-5) cells treated with Hedgehog signaling inhibitor cyclopamine and anti-Shh 5E1 antibody or transduced with short hairpin RNA against Skinny Hedgehog (IMGE-5Ski) were cultured. A mouse model expressing a parietal cell-specific deletion of Shh (HKCre/ShhKO) was used to identify further changes in adherens and tight junctions. Inhibition of Hedgehog signaling in IMGE-5 cells caused loss of E-cadherin expression accompanied by disruption of F-actin cortical expression and relocalization of zonula occludens-1 (ZO-1). Loss of E-cadherin was also associated with increased proliferation in IMGE-5Ski cells and increased expression of the mucous neck cell lineage marker MUC6. Compared with membrane-expressed E-cadherin and ZO-1 protein in controls, dissociation of E-cadherin/β-catenin and ZO-1/occludin protein complexes was observed in HKCre/ShhKO mice. In conclusion, we demonstrate that Hedgehog signaling regulates E-cadherin expression that is required for the maintenance of F-actin cortical expression and stability of tight junction protein ZO-1. PMID:20847300

  19. Targeting of sonic hedgehog-Gli signaling: A potential therapeutic target for patients with breast cancer.

    PubMed

    Song, Lingqin; Wang, Weifeng; Liu, Di; Zhao, Yang; He, Jianjun; Wang, Xijing; Dai, Zhijun; Zhang, Huimin; Li, Xiao

    2016-08-01

    Breast cancer is the most common malignant cancer among women. The Hedgehog (Hh) signaling pathway serves a key role in malignant cancer cell growth and migration. However, little is known with regard to the specific function of the Hh signaling pathway in human breast cancer. The current study investigated the specific role of Hh signaling in the human breast cancer cell line MDA-MB-231. Expression of components of Shh-Gli signaling, as well as the Gli-responsive genes B-cell lymphoma 2 (Bcl-2) and cyclin D1, were investigated in MDA-MB-231 cells using western blotting. The effects of Shh-Gli signaling on MDA-MB-231 proliferation were analyzed by MTT assay. The role of E-cadherin in the epithelial-mesenchymal transition process was determined by western blot while matrix metalloproteinase (MMP)-9/MMP-2 secretion was studied by enzyme-linked immunosorbent assay. The results indicated that Shh-Gli signaling was activated in MDA-MB-231 cells, significantly enhancing cell viability. Overexpression of Gli positively regulated the transcription of Bcl-2 and cyclin D1 thereby regulating MDA-MB-231 cell proliferation and survival. Treatment of MDA-MB-231 cells with human sonic hedgehog, n-terminus for 72 h significantly reduced E-cadherin protein levels and enhanced secretion of MMP-9 and MMP-2. These findings suggest that Shh-Gli signaling is significantly activated in human breast cancer cells, and is accompanied by enhanced cell viability, proliferation and migration capacities.

  20. Targeting of sonic hedgehog-Gli signaling: A potential therapeutic target for patients with breast cancer

    PubMed Central

    Song, Lingqin; Wang, Weifeng; Liu, Di; Zhao, Yang; He, Jianjun; Wang, Xijing; Dai, Zhijun; Zhang, Huimin; Li, Xiao

    2016-01-01

    Breast cancer is the most common malignant cancer among women. The Hedgehog (Hh) signaling pathway serves a key role in malignant cancer cell growth and migration. However, little is known with regard to the specific function of the Hh signaling pathway in human breast cancer. The current study investigated the specific role of Hh signaling in the human breast cancer cell line MDA-MB-231. Expression of components of Shh-Gli signaling, as well as the Gli-responsive genes B-cell lymphoma 2 (Bcl-2) and cyclin D1, were investigated in MDA-MB-231 cells using western blotting. The effects of Shh-Gli signaling on MDA-MB-231 proliferation were analyzed by MTT assay. The role of E-cadherin in the epithelial-mesenchymal transition process was determined by western blot while matrix metalloproteinase (MMP)-9/MMP-2 secretion was studied by enzyme-linked immunosorbent assay. The results indicated that Shh-Gli signaling was activated in MDA-MB-231 cells, significantly enhancing cell viability. Overexpression of Gli positively regulated the transcription of Bcl-2 and cyclin D1 thereby regulating MDA-MB-231 cell proliferation and survival. Treatment of MDA-MB-231 cells with human sonic hedgehog, n-terminus for 72 h significantly reduced E-cadherin protein levels and enhanced secretion of MMP-9 and MMP-2. These findings suggest that Shh-Gli signaling is significantly activated in human breast cancer cells, and is accompanied by enhanced cell viability, proliferation and migration capacities. PMID:27446389

  1. Low-level Ga-Al-As laser irradiation enhances osteoblast proliferation through activation of Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Li, Qiushi; Qu, Zhou; Chen, Yingxin; Liu, Shujie; Zhou, Yanmin

    2014-12-01

    Low-level laser irradiation has been reported to promote bone formation, but the molecular mechanism is still unclear. Hedgehog signaling pathway has been reported to play an important role in promoting bone formation. The aim of the present study was to examine whether low-level Ga-Al-As laser (808 nm) irradiation could have an effect on Hedgehog signaling pathway during osteoblast proliferation in vitro. Mouse osteoblastic cell line MC3T3-E1 was cultured in vitro. The cultures after laser irradiation (3.75J/cm2) were treated with recombinant N-terminals Sonic Hedgehog (N-Shh)or Hedgehog inhibitor cyclopamine (cy). The experiment was divided into 4 group, group 1:laser irradiation, group 2: laser irradiation and N-Shh, group 3: laser irradiation and cy, group 4:control with no laser irradiation. On day 1,2 and 3,cell proliferation was determined by cell counting, Cell Counting Kit-8.On 12 h and 24 h, cell cycle was detected by flow cytometry. Proliferation activity of laser irradiation and N-Shh group was remarkably increased compared with those of laser irradiation group. Proliferation activity of laser irradiation and cy group was remarkably decreased compared with those of laser irradiation group, however proliferation activity of laser irradiation and cy group was remarkably increased compared with those of control group. These results suggest that low-level Ga-Al-As laser irradiation activate Hedgehog signaling pathway during osteoblast proliferation in vitro. Hedgehog signaling pathway is one of the signaling pathways by which low-level Ga-Al-As laser irradiation regulates osteoblast proliferation.

  2. Transcriptional regulation of WNT2B based on the balance of Hedgehog, Notch, BMP and WNT signals.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2009-05-01

    We cloned and characterized human WNT2B in 1996, and then others cloned and characterized mouse, chicken, and zebrafish WNT2B orthologs. WNT2B is expressed in several types of human cancer, such as basal cell carcinoma, gastric cancer, breast cancer, head/neck squamous cell carcinoma, cervical cancer and leukemia. WNT2B is one of canonical WNTs transducing signals through Frizzled (FZD) and LRP5/LRP6 receptors to beta-catenin-TCF/LEF signaling cascade. Here, refined integrative genomic analyses on WNT2B orthologs were carried out to elucidate its transcriptional mechanisms. GLI-, double FOX-, HES/HEY-, bHLH-, and Sp1-binding sites within mammalian WNT2B promoter were well conserved. Because GLI1, FOXA2, FOXC2, FOXE1, FOXF1 and FOXL1 are direct target genes of Hedgehog-GLI2 signaling cascade, Hedgehog signals should induce WNT2B upregulation through GLI family members as well as FOX family members. Notch, BMP and Hedgehog signals inhibit WNT2B expression via HES/HEY-binding to N-box, whereas BMP and WNT signals inhibit bHLH transcription factor-induced WNT2B expression via ID1, ID2, ID3, MSX1 or MSX2. Together these facts indicate that Hedgehog signals and bHLH transcription factors are involved in WNT2B upregulation, which is counteracted by BMP, WNT and Notch signals. Mesenchymal BMP induces IHH expression in gastrointestinal epithelial cells, and then epithelial Hedgehog induces WNT2B and BMP4 expression in mesenchymal cells. NF-kappaB signals induce SHH upregulation, and WNT2B is upregulated in inflammatory bowel disease (IBD). BMP-IHH and inflammation-SHH signaling loops are involved in WNT2B up-regulation during embryogenesis, adult tissue homeostasis, and carcinogenesis.

  3. The Kinesin-4 Protein KIF7 Regulates Mammalian Hedgehog Signaling by Organizing the Cilia Tip Compartment

    PubMed Central

    He, Mu; Subramanian, Radhika; Bangs, Fiona; Omelchenko, Tatiana; Liem, Karel F.; Kapoor, Tarun M.; Anderson, Kathryn V.

    2014-01-01

    Mammalian Hedgehog (Hh) signal transduction requires the primary cilium, a microtubule-based organelle, and the Gli/Sufu complexes that mediate Hh signaling are enriched at cilia tips. KIF7, a kinesin-4 family protein, is a conserved regulator of the Hh signaling pathway and a human ciliopathy protein. Here we show that KIF7 localizes to cilia tips, the site of microtubule plus-ends, where it limits cilia length and controls cilia structure. Purified recombinant KIF7 binds the plus-ends of growing microtubules in vitro, where it reduces the rate of microtubule growth and increases the frequency of microtubule catastrophe. KIF7 is not required for normal intraflagellar transport or for trafficking of Hh pathway proteins into cilia. Instead, a central function of KIF7 in the mammalian Hh pathway is to control cilia architecture and to create a single cilia tip compartment where Gli/Sufu activation can be correctly regulated. PMID:24952464

  4. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster

    PubMed Central

    Araújo, Sofia J.

    2015-01-01

    Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression. PMID:26445062

  5. Hedgehog signaling is activated in canine transitional cell carcinoma and contributes to cell proliferation and survival.

    PubMed

    Gustafson, T L; Kitchell, B E; Biller, B

    2017-03-01

    Transitional cell carcinoma (TCC) is the most commonly diagnosed tumor of the canine urinary system. Hedgehog (HH) signaling represents one possible novel therapeutic target, based on its recently identified central role in human urothelial carcinoma. The purpose of this study was to determine if HH mediators are expressed in canine TCC and the effect of inhibition of this pathway on cell growth and survival. HH pathway mediators were found to be expressed in five canine TCC cell lines. Indian HH was expressed in tumor cells in five canine bladder tumor tissues, but not in normal canine bladder tissue. Inhibition of HH signaling with cyclopamine and GANT61 led to significantly decreased cell proliferation but had a smaller effect on apoptosis. These results support future investigation of inhibitors of HH signaling in the treatment of canine TCC.

  6. A PTCH1 Homolog Transcriptionally Activated by p53 Suppresses Hedgehog Signaling*

    PubMed Central

    Chung, Jon H.; Larsen, Andrew R.; Chen, Evan; Bunz, Fred

    2014-01-01

    The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals. PMID:25296753

  7. Novel association of VACTERL, neural tube defect and crossed renal ectopia: sonic hedgehog signaling: a point of coherence?

    PubMed

    Vaze, Dhananjay; Mahalik, Santosh; Rao, Katragadda L N

    2012-12-01

    The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence.

  8. Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance

    PubMed Central

    Alonso, Salvador; Hernandez, Daniela; Chang, Yu-ting; Gocke, Christian B.; McCray, Megan; Varadhan, Ravi; Matsui, William H.; Jones, Richard J.

    2016-01-01

    Interactions between multiple myeloma (MM) cells and the BM microenvironment play a critical role in bortezomib (BTZ) resistance. However, the mechanisms involved in these interactions are not completely understood. We previously showed that expression of CYP26 in BM stromal cells maintains a retinoic acid–low (RA-low) microenvironment that prevents the differentiation of normal and malignant hematopoietic cells. Since a low secretory B cell phenotype is associated with BTZ resistance in MM and retinoid signaling promotes plasma cell differentiation and Ig production, we investigated whether stromal expression of the cytochrome P450 monooxygenase CYP26 modulates BTZ sensitivity in the BM niche. CYP26-mediated inactivation of RA within the BM microenvironment prevented plasma cell differentiation and promoted a B cell–like, BTZ-resistant phenotype in human MM cells that were cocultured on BM stroma. Moreover, paracrine Hedgehog secretion by MM cells upregulated stromal CYP26 and further reinforced a protective microenvironment. These results suggest that crosstalk between Hedgehog and retinoid signaling modulates BTZ sensitivity in the BM niche. Targeting these pathological interactions holds promise for eliminating minimal residual disease in MM. PMID:27775549

  9. Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development.

    PubMed

    Walton, Katherine D; Croce, Jenifer C; Glenn, Thomas D; Wu, Shu-Yu; McClay, David R

    2006-12-01

    The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.

  10. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas.

    PubMed

    Abidi, Afroz

    2014-01-01

    The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.

  11. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells

    PubMed Central

    Vlčková, K; Ondrušová, L; Vachtenheim, J; Réda, J; Dundr, P; Zadinová, M; Žáková, P; Poučková, P

    2016-01-01

    Survivin, an important antiapoptotic protein, is expressed in tumors, whereas in normal tissues the expression of this protein is extremely low, defining a role for survivin as a cancer gene. Survivin exhibits multifunctional activity in tumor cells. However, why survivin expression is sharply and invariably restricted to tumor tissue remains unclear. Here, we identified 11 putative consensus binding sites for GLI transcription factors in the survivin promoter and characterized the promoter activity. Inhibitors of the Hedgehog/GLI pathway, cyclopamine and GANT61, decreased the promoter activity in reporter assays. ΔNGLI2 (which lacks the repressor domain) was the most potent vector in activating the survivin promoter–reporter. Moreover, GANT61, a GLI1/2 inhibitor, repressed endogenous survivin protein and mRNA expression in most cells across a large panel of tumor cell lines. Chromatin immunoprecipitation showed GLI2 binding to the survivin promoter. The ectopic GLI2-evoked expression of endogenous survivin was observed in normal human fibroblasts. GANT61 decreased survivin level in nude mice tumors, mimicking the activity of GANT61 in cultured cells. The immunohistochemistry and double immunofluorescence of human tumors revealed a correlation between the tissue regions showing high GLI2 and survivin positivity. Thus, these results demonstrated that survivin is a classical transcriptional target of GLI2, a Hedgehog pathway signaling effector. This potentially reflects the high expression of survivin in human tumor cells. As the Hedgehog pathway is upregulated in virtually all types of cancer cells, these findings substantially contribute to the explanation of uniform survivin expression in tumors as a potential target for the development of a more effective treatment of cancers through the inhibition of GLI2 to restrain survivin activity. PMID:26775700

  12. Outfoxing the Hedgehog

    ERIC Educational Resources Information Center

    Barbieri, Richard

    2011-01-01

    Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…

  13. A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs.

    PubMed

    Gillis, J Andrew; Hall, Brian K

    2016-04-15

    Chondrichthyans (sharks, skates, rays and holocephalans) possess paired appendages that project laterally from their gill arches, known as branchial rays. This led Carl Gegenbaur to propose that paired fins (and hence tetrapod limbs) originally evolved via transformation of gill arches. Tetrapod limbs are patterned by asonic hedgehog(Shh)-expressing signalling centre known as the zone of polarising activity, which establishes the anteroposterior axis of the limb bud and maintains proliferative expansion of limb endoskeletal progenitors. Here, we use loss-of-function, label-retention and fate-mapping approaches in the little skate to demonstrate that Shh secretion from a signalling centre in the developing gill arches establishes gill arch anteroposterior polarity and maintains the proliferative expansion of branchial ray endoskeletal progenitor cells. These findings highlight striking parallels in the axial patterning mechanisms employed by chondrichthyan branchial rays and paired fins/limbs, and provide mechanistic insight into the anatomical foundation of Gegenbaur's gill arch hypothesis.

  14. A critical role for sonic hedgehog signaling in the early expansion of the developing brain.

    PubMed

    Britto, Joanne; Tannahill, David; Keynes, Roger

    2002-02-01

    The mechanisms that coordinate the three-dimensional shape of the vertebrate brain during development are largely unknown. We have found that sonic hedgehog (Shh) is crucial in driving the rapid, extensive expansion of the early vesicles of the developing midbrain and forebrain. Transient displacement of the notochord from the midbrain floor plate resulted in abnormal folding and overall collapse of the vesicles, accompanied by reduced cell proliferation and increased cell death in the midbrain. Simultaneously, expression of Shh decreased locally in the notochord and floor plate, whereas overt patterning and differentiation proceeded normally. Normal midbrain expansion was restored by implantation of Shh-secreting cells in a dose-dependent manner; conversely, expansion was retarded following antagonism of the Shh signaling pathway by cyclopamine. Our results indicate that Shh signaling from the ventral midline is essential for regulating brain morphogenesis during early development.

  15. Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer.

    PubMed

    Mimeault, Murielle; Rachagani, Satyanarayana; Muniyan, Sakthivel; Seshacharyulu, Parthasarathy; Johansson, Sonny L; Datta, Kaustubh; Lin, Ming-Fong; Batra, Surinder K

    2015-02-28

    The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel. Here, we show that the combination of GDC-0449 plus docetaxel inhibited the proliferation of WPE1-NB26 cells and PC3 cells via a blockade of G1 and G2M phases. The combined treatment significantly inhibited PC cell migration in vitro. Moreover, the apoptotic effect induced by GDC-0449 plus docetaxel on PC3 cells was mediated, at least partly, via the mitochondrial membrane depolarization, H2O2 production and caspase cascade activation. Interestingly, GDC-0449 was effective at inhibiting the prostasphere formation, inducing the prostasphere disintegration and apoptotic death of side population (SP) from PC3 cells and reversing the resistance of SP cells to docetaxel. In addition, GDC-0449 plus docetaxel also have shown a greater anti-tumoral growth inhibitory effect on PC3 cell xenografts. These findings support the use of the hedgehog inhibitor GDC-0449, which is currently in clinical trials, for improving the anticarcinogenic efficacy of docetaxel-based chemotherapeutic treatments against locally advanced, AI and metastatic PC.

  16. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties

    PubMed Central

    Vyas, Neha; Walvekar, Ankita; Tate, Dhananjay; Lakshmanan, Vairavan; Bansal, Dhiru; Cicero, Alessandra Lo; Raposo, Graca; Palakodeti, Dasaradhi; Dhawan, Jyotsna

    2014-01-01

    Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation. PMID:25483805

  17. Vertebrate Hedgehog is secreted on two types of extracellular vesicles with different signaling properties.

    PubMed

    Vyas, Neha; Walvekar, Ankita; Tate, Dhananjay; Lakshmanan, Vairavan; Bansal, Dhiru; Lo Cicero, Alessandra; Raposo, Graca; Palakodeti, Dasaradhi; Dhawan, Jyotsna

    2014-12-08

    Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation.

  18. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling.

    PubMed

    Wang, Jinhu; Cao, Jingli; Dickson, Amy L; Poss, Kenneth D

    2015-06-11

    In response to cardiac damage, a mesothelial tissue layer enveloping the heart called the epicardium is activated to proliferate and accumulate at the injury site. Recent studies have implicated the epicardium in multiple aspects of cardiac repair: as a source of paracrine signals for cardiomyocyte survival or proliferation; a supply of perivascular cells and possibly other cell types such as cardiomyocytes; and as a mediator of inflammation. However, the biology and dynamism of the adult epicardium is poorly understood. To investigate this, we created a transgenic line to ablate the epicardial cell population in adult zebrafish. Here we find that genetic depletion of the epicardium after myocardial loss inhibits cardiomyocyte proliferation and delays muscle regeneration. The epicardium vigorously regenerates after its ablation, through proliferation and migration of spared epicardial cells as a sheet to cover the exposed ventricular surface in a wave from the chamber base towards its apex. By reconstituting epicardial regeneration ex vivo, we show that extirpation of the bulbous arteriosus-a distinct, smooth-muscle-rich tissue structure that distributes outflow from the ventricle-prevents epicardial regeneration. Conversely, experimental repositioning of the bulbous arteriosus by tissue recombination initiates epicardial regeneration and can govern its direction. Hedgehog (Hh) ligand is expressed in the bulbous arteriosus, and treatment with a Hh signalling antagonist arrests epicardial regeneration and blunts the epicardial response to muscle injury. Transplantation of Sonic hedgehog (Shh)-soaked beads at the ventricular base stimulates epicardial regeneration after bulbous arteriosus removal, indicating that Hh signalling can substitute for the influence of the outflow tract. Thus, the ventricular epicardium has pronounced regenerative capacity, regulated by the neighbouring cardiac outflow tract and Hh signalling. These findings extend our understanding of

  19. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    PubMed

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  20. Hedgehog Signaling Pathway Database: a repository of current annotation efforts and resources for the Hh research community.

    PubMed

    Hervold, Kieran; Martin, Andrew; Kirkpatrick, Roger A; Mc Kenna, Paul F; Ramirez-Weber, F A

    2007-01-01

    The Hedgehog Signaling Pathway Database is a curated repository of information pertaining to the Hedgehog developmental pathway. It was designed to provide centralized access to a wide range of relevant information in an organism-agnostic manner. Data are provided for all genes and gene targets known to be involved in the Hh pathway across various organisms. The data provided include DNA and protein sequences as well as domain structure motifs. All known human diseases associated with the Hh pathway are indexed including experimental data on therapeutic agents and their molecular targets. Hh researchers will find useful information on relevant protocols, tissue cell lines and reagents used in current Hh research projects. Curated content is also provided for publications, grants and patents relating to the Hh pathway. The database can be accessed at http://www.hedgehog.sfsu.edu.

  1. Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy.

    PubMed

    Pandolfi, Silvia; Stecca, Barbara

    2015-02-09

    The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.

  2. Sox4 regulates choroid fissure closure by limiting Hedgehog signaling during ocular morphogenesis

    PubMed Central

    Wen, Wen; Pillai-Kastoori, Lakshmi; Wilson, Stephen G.; Morris, Ann C.

    2015-01-01

    SoxC transcription factors play critical roles in many developmental processes, including neurogenesis, cardiac formation, and skeletal differentiation. In vitro and in vivo loss-of-function studies have suggested that SoxC genes are required for oculogenesis, however the mechanism was poorly understood. Here, we have explored the function of the SoxC factor Sox4 during zebrafish eye development. We show that sox4a and sox4b are expressed in the forebrain and periocular mesenchyme adjacent to the optic stalk during early eye development. Knockdown of sox4 in zebrafish resulted in coloboma, a structural malformation of the eye that is a significant cause of pediatric visual impairment in humans, in which the choroid fissure fails to close. Sox4 morphants displayed altered proximo-distal patterning of the optic vesicle, including expanded pax2 expression in the optic stalk, as well as ectopic cell proliferation in the retina. We show that the abnormal ocular morphogenesis observed in Sox4-deficient zebrafish is caused by elevated Hedgehog (Hh) signaling, and this is due to increased expression of the Hh pathway ligand Indian hedgehog b (ihhb). Consistent with these results, coloboma in sox4 morphants could be rescued by pharmacological treatment with the Hh inhibitor cyclopamine, or by co-knockdown of ihhb. Conversely, overexpression of sox4 reduced Hh signaling and ihhb expression, resulting in cyclopia. Finally, we demonstrate that sox4 and sox11 have overlapping, but not completely redundant, functions in regulating ocular morphogenesis. Taken together, our data demonstrate that Sox4 is required to limit the extent of Hh signaling during eye development, and suggest that mutations in SoxC factors could contribute to the development of coloboma. PMID:25557621

  3. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case.

    PubMed

    Rétaux, Sylvie; Kano, Shungo

    2010-07-01

    Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to

  4. Hedgehog nanopackages ready for dispatch.

    PubMed

    Vincent, Jean-Paul

    2008-06-27

    Hedgehog proteins are intercellular long-range signaling molecules that spread within tissues and activate gene expression during development. Vyas et al. (2008) propose that Hedgehog forms nanometer-sized oligomers that localize in proteoglycan-rich clusters at the surface of cells expressing Hedgehog. This nanoscale organization and enrichment in clusters ensures that Hedgehog is able to spread and activate signaling over many cell diameters.

  5. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling.

    PubMed

    Lu, Ying; Ma, Wei; Mao, Jun; Yu, Xiaotang; Hou, Zhenhuan; Fan, Shujun; Song, Bo; Wang, Huan; Li, Jiazhi; Kang, Le; Liu, Pixu; Liu, Quentin; Li, Lianhong

    2015-02-25

    Breast cancer tissue contains a small population of cells that have the ability to self-renew, these cells are known as breast cancer stem cells (BCSCs). The Hedgehog signal transduction pathway plays a central role in stem cell development, its aberrant activation has been shown to contribute to the development of breast cancer, making this pathway an attractive therapeutic target. Salinomycin (Sal) is a novel identified cancer stem cells (CSCs) killer, however, the molecular basis for its anticancer effects is not yet clear. In the current study, Sal's ability to modulate the activity of key elements in the Hedgehog pathway was examined in the human breast cancer cell line MCF-7, as well as in a subpopulation of cancer stem cells identified within this cancer cell line. We show here that Sal inhibits proliferation, invasion, and migration while also inducing apoptosis in MCF-7 cells. Interestingly, in a subpopulation of MCF-7 cells with the CD44(+)/CD24(-) markers and high ALDH1 levels indicative of BCSCs, modulators of Hedgehog signaling Smo and Gli1 were significantly down-regulated upon treatment with Sal. These results demonstrate that Sal also inhibits proliferation and induces apoptosis of BCSCs, further establishing it as therapeutically relevant in the context of breast cancers and also indicating that modulation of Hedgehog signaling is one potential mechanism by which it exerts these anticancer effects.

  6. Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis

    PubMed Central

    Ding, Hong; Zhou, Dong; Hao, Sha; Zhou, Lili; He, Weichun; Nie, Jing; Hou, Fan Fan

    2012-01-01

    Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1lacZ knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh protein activated Gli1 and induced α-smooth muscle actin (α-SMA), desmin, fibronectin, and collagen I expression, suggesting that Shh signaling promotes myofibroblast activation and matrix production. Blockade of Shh signaling with cyclopamine abolished the Shh-mediated induction of Gli1, Snail1, α-SMA, fibronectin, and collagen I. In vivo, the kidneys of Gli1-deficient mice were protected against the development of interstitial fibrosis after obstructive injury. In wild-type mice, cyclopamine did not affect renal Shh expression but did inhibit induction of Gli1, Snail1, and α-SMA. In addition, cyclopamine reduced matrix expression and mitigated fibrotic lesions. These results suggest that tubule-derived Shh mediates epithelial–mesenchymal communication by targeting interstitial fibroblasts after kidney injury. We conclude that Shh/Gli1 signaling plays a critical role in promoting fibroblast activation, production of extracellular matrix, and development of renal interstitial fibrosis. PMID:22302193

  7. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    PubMed

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  8. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation.

    PubMed

    Yuan, Xue; Cao, Jay; He, Xiaoning; Serra, Rosa; Qu, Jun; Cao, Xu; Yang, Shuying

    2016-03-21

    Intraflagellar transport proteins (IFT) are required for hedgehog (Hh) signalling transduction that is essential for bone development, however, how IFT proteins regulate Hh signalling in osteoblasts (OBs) remains unclear. Here we show that deletion of ciliary IFT80 in OB precursor cells (OPC) in mice results in growth retardation and markedly decreased bone mass with impaired OB differentiation. Loss of IFT80 blocks canonical Hh-Gli signalling via disrupting Smo ciliary localization, but elevates non-canonical Hh-Gαi-RhoA-stress fibre signalling by increasing Smo and Gαi binding. Inhibition of RhoA and ROCK activity partially restores osteogenic differentiation of IFT80-deficient OPCs by inhibiting non-canonical Hh-RhoA-Cofilin/MLC2 signalling. Cytochalasin D, an actin destabilizer, dramatically restores OB differentiation of IFT80-deficient OPCs by disrupting actin stress fibres and promoting cilia formation and Hh-Gli signalling. These findings reveal that IFT80 is required for OB differentiation by balancing between canonical Hh-Gli and non-canonical Hh-Gαi-RhoA pathways and highlight IFT80 as a therapeutic target for craniofacial and skeletal abnormalities.

  9. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  10. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation

    PubMed Central

    Yuan, Xue; Cao, Jay; He, Xiaoning; Serra, Rosa; Qu, Jun; Cao, Xu; Yang, Shuying

    2016-01-01

    Intraflagellar transport proteins (IFT) are required for hedgehog (Hh) signalling transduction that is essential for bone development, however, how IFT proteins regulate Hh signalling in osteoblasts (OBs) remains unclear. Here we show that deletion of ciliary IFT80 in OB precursor cells (OPC) in mice results in growth retardation and markedly decreased bone mass with impaired OB differentiation. Loss of IFT80 blocks canonical Hh–Gli signalling via disrupting Smo ciliary localization, but elevates non-canonical Hh–Gαi–RhoA–stress fibre signalling by increasing Smo and Gαi binding. Inhibition of RhoA and ROCK activity partially restores osteogenic differentiation of IFT80-deficient OPCs by inhibiting non-canonical Hh–RhoA–Cofilin/MLC2 signalling. Cytochalasin D, an actin destabilizer, dramatically restores OB differentiation of IFT80-deficient OPCs by disrupting actin stress fibres and promoting cilia formation and Hh–Gli signalling. These findings reveal that IFT80 is required for OB differentiation by balancing between canonical Hh–Gli and non-canonical Hh–Gαi–RhoA pathways and highlight IFT80 as a therapeutic target for craniofacial and skeletal abnormalities. PMID:26996322

  11. Hedgehog Pathway Modulation by Multiple Lipid Binding Sites on the Smoothened Effector of Signal Response

    PubMed Central

    Myers, Benjamin R.; Sever, Navdar; Chong, Yong Chun; Kim, James; Belani, Jitendra D.; Rychnovsky, Scott; Bazan, J. Fernando; Beachy, Philip A.

    2014-01-01

    Summary Hedgehog (Hh) signaling during development and in postembryonic tissues requires activation of the 7TM oncoprotein Smoothened (Smo), by mechanisms that may involve endogenous lipidic modulators. Exogenous Smo ligands previously identified include the plant sterol cyclopamine (and its therapeutically useful synthetic mimics) and hydroxylated cholesterol derivatives (oxysterols); Smo is also highly sensitive to cellular sterol levels. The relationships between these effects are unclear because the relevant Smo structural determinants are unknown. We identify the conserved extracellular cysteine rich domain (CRD) as the site of action for oxysterols on Smo, involving residues structurally analogous to those contacting the Wnt lipid adduct in the homologous Frizzled CRD; this modulatory effect is distinct from that of cyclopamine mimics, from Hh-mediated regulation, and from the permissive action of cellular sterol pools. These results imply that Hh pathway activity is sensitive to lipid binding at several Smo sites, suggesting mechanisms for tuning by multiple physiological inputs. PMID:23954590

  12. Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma.

    PubMed

    Flora, Adriano; Klisch, Tiemo J; Schuster, Gabriele; Zoghbi, Huda Y

    2009-12-04

    Granule neuron precursors (GNPs) are the most actively proliferating cells in the postnatal nervous system, and mutations in pathways that control the GNP cell cycle can result in medulloblastoma. The transcription factor Atoh1 has been suspected to contribute to GNP proliferation, but its role in normal and neoplastic postnatal cerebellar development remains unexplored. We show that Atoh1 regulates the signal transduction pathway of Sonic Hedgehog, an extracellular factor that is essential for GNP proliferation, and demonstrate that deletion of Atoh1 prevents cerebellar neoplasia in a mouse model of medulloblastoma. Our data shed light on the function of Atoh1 in postnatal cerebellar development and identify a new mechanism that can be targeted to regulate medulloblastoma formation.

  13. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx.

    PubMed

    Tabler, Jacqueline M; Rigney, Maggie M; Berman, Gordon J; Gopalakrishnan, Swetha; Heude, Eglantine; Al-Lami, Hadeel Adel; Yannakoudiadkis, Basil Z; Fitch, Rebecca D; Carter, Christopher; Vokes, Steven; Liu, Karen J; Tajbakhsh, Shahragim; Egnor, Se Roian; Wallingford, John B

    2017-02-13

    Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus.

  14. Indian Hedgehog Signaling Regulates Transcription and Expression of Collagen Type X via Runx2/Smads Interactions*

    PubMed Central

    Amano, Katsuhiko; Densmore, Michael; Nishimura, Riko; Lanske, Beate

    2014-01-01

    Indian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown. We recently discovered that Ihh overexpression in chondrocytes stimulated the expression of late chondrocyte differentiation markers and induced matrix mineralization. Focusing on collagen type X (Col10α1) expression and transcription, we observed that hedgehog downstream transcription factors GLI-Krüppel family members (Gli) 1/2 increased COL10A1 promoter activity and identified a novel Gli1/2 response element in the 250-bp basic promoter. In addition, we found that Ihh induced Runx2 expression in chondrocytes without up-regulating other modulators of chondrocyte maturation such as Mef2c, Foxa2, and Foxa3. Runx2 promoted Col10α1 expression in cooperation with Ihh. Further analyses using promoter assays, immunofluorescence, and binding assays showed the interaction of Gli1/2 in a complex with Runx2/Smads induces chondrocyte differentiation. Finally, we could demonstrate that Ihh promotes in vitro matrix mineralization using similar molecular mechanisms. Our data provide an in vitro mechanism for Ihh signaling to positively regulate Col10α1 transcription. Thus, Ihh signaling could be an important player for not only early chondrocyte differentiation but maturation and calcification of chondrocytes. PMID:25028519

  15. Primary cilium and sonic hedgehog signaling during neural tube patterning: role of GPCRs and second messengers.

    PubMed

    Pal, Kasturi; Mukhopadhyay, Saikat

    2015-04-01

    The ventral neural tube in vertebrates is patterned by a gradient of sonic hedgehog (Shh) secreted from the notochord and floor plate. Forward genetic screens first pointed to the role of the primary cilium in ventral neural tube patterning. Further research has shown that most components of the Shh pathway localize to or shuttle through the primary cilium. In the absence of Shh, the bifunctional Gli transcription factors are proteolytically processed into repressor forms in a protein kinase A (PKA)- and cilium-dependent manner. Recent work suggests that the orphan G-protein-coupled receptor (GPCR) Gpr161 localizes to cilia, and functions as a negative regulator of Shh signaling by determining Gli processing via cAMP signaling. The primary cilium also functions as a signaling compartment for calcium in the Shh pathway. A better understanding of the role of the cilium as a signaling compartment, and the interplay of second messenger systems that regulate PKA activation and Gli amplification during signaling is critical for deciphering the role of Shh during development, neuronal differentiation, and tumorigenesis.

  16. Inhibition of Gli/hedgehog signaling in prostate cancer cells by "cancer bush" Sutherlandia frutescens extract.

    PubMed

    Lin, Hui; Jackson, Glenn A; Lu, Yuan; Drenkhahn, Sara K; Brownstein, Korey J; Starkey, Nicholas J; Lamberson, William R; Fritsche, Kevin L; Mossine, Valeri V; Besch-Williford, Cynthia L; Folk, William R; Zhang, Yong; Lubahn, Dennis B

    2016-02-01

    Sutherlandia frutescens is a medicinal plant, traditionally used to treat various types of human diseases, including cancer. Previous studies of several botanicals link suppression of prostate cancer growth with inhibition of the Gli/hedgehog (Gli/Hh) signaling pathway. Here we hypothesized the anti-cancer effect of S. frutescens was linked to its inhibition of the Gli/Hh signaling in prostate cancer. We found a dose- and time-dependent growth inhibition in human prostate cancer cells, PC3 and LNCaP, and mouse prostate cancer cell, TRAMP-C2, treated with S. frutescens methanol extract (SLE). We also observed a dose-dependent inhibition of the Gli-reporter activity in Shh Light II and TRAMP-C2QGli cells treated with SLE. In addition, SLE can inhibit Gli/Hh signaling by blocking Gli1 and Ptched1 gene expression in the presence of a Gli/Hh signaling agonist (SAG). A diet supplemented with S. frutescens suppressed the formation of poorly differentiated carcinoma in prostates of TRAMP mice. Finally, we found Sutherlandioside D was the most potent compound in the crude extract that could suppress Gli-reporter in Shh Light II cells. Together, this suggests that the S. frutescens extract may exert anti-cancer effect by targeting Gli/Hh signaling, and Sutherlandioside D is one of the active compounds.

  17. Hedgehog signaling pathway regulated the target genes for adipogenesis in silkworm Bombyx mori.

    PubMed

    Liang, Shuang; Chen, Rui-Ting; Zhang, Deng-Pan; Xin, Hu-Hu; Lu, Yan; Wang, Mei-Xian; Miao, Yun-Gen

    2015-10-01

    Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the pathway in adipose development remains poorly understood. In this report, we found that Hh pathway components are expressed in the fat body of silkworm larvae. Functional analysis of these components in a BmN cell line model revealed that activation of the Hh gene stimulated transcription of Hh pathway components, but inhibited the expression of the adipose marker gene AP2. Conversely, specific RNA interference-mediated knockdown of Hh resulted in increased AP2 expression. This further showed the regulation of Hh signal on the adipose marker gene. In silkworm larval models, enhanced adipocyte differentiation and an increase in adipocyte cell size were observed in silkworms that had been treated with a specific Hh signaling pathway antagonist, cyclopamine. The fat-body-specific Hh blockade tests were consistent with Hh signaling inhibiting silkworm adipogenesis. Our results indicate that the role of Hh signaling in inhibiting fat formation is conserved in vertebrates and invertebrates.

  18. Hedgehog signaling plays roles in epithelial cell proliferation in neonatal mouse uterus and vagina.

    PubMed

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2012-04-01

    Both the uterus and vagina develop from the Müllerian duct but are quite distinct in morphology and function. To investigate factors controlling epithelial differentiation and cell proliferation in neonatal uterus and vagina, we focused on Hedgehog (HH) signaling. In neonatal mice, Sonic hh (Shh) was localized in the vaginal epithelium and Indian hh (Ihh) was slightly expressed in the uterus and vagina, whereas all Glioma-associated oncogene homolog (Gli) genes were mainly expressed in the stroma. The expression of target genes of HH signaling was high in the neonatal vagina and in the uterus, it increased with growth. Thus, in neonatal mice, Shh in the vaginal epithelium and Ihh in the uterus and vagina activated HH signaling in the stroma. Tissue recombinants showed that vaginal Shh expression was inhibited by the vaginal stroma and uterine Ihh expression was stimulated by the uterine stroma. Addition of a HH signaling inhibitor decreased epithelial cell proliferation in organ-cultured uterus and vagina and increased stromal cell proliferation in organ-cultured uterus. However, it did not affect epithelial differentiation or the expression of growth factors in organ-cultured uterus and vagina. Thus, activated HH signaling stimulates epithelial cell proliferation in neonatal uterus and vagina but inhibits stromal cell proliferation in neonatal uterus.

  19. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling

    PubMed Central

    Hyun, Jeongeun; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  20. Nek2A/SuFu feedback loop regulates Gli-mediated Hedgehog signaling pathway

    PubMed Central

    Zhou, Fen; Huang, Dengliang; Li, Yong; Hu, Guanghui; Rao, Hai; Lu, Quqin; Luo, Shiwen; Wang, Yao

    2017-01-01

    Suppressor of Fused (SuFu), one of the most conserved components of the Hedgehog (Hh) signaling, binds Gli transcription factors and impedes activation of target gene expression in mammalian cells. Despite the central importance of SuFu in the Hh pathway, little is known about SuFu regulation. In a previous study, we identified NIMA-related expressed kinase 2A (Nek2A) as a SuFu-interacting protein. Here, we show that Nek2A stabilizes SuFu through impairing ubiquitin/proteasome degradation of SuFu. In addition, Nek2A negatively regulates target genes of Hh signaling as well as Gli2 transcriptional activity. In turn, inhibition of Hh signaling by GANT61 diminishes mRNA and protein levels of Nek2A, and Hh agonist promotes transcription of NEK2A gene. Chromatin immunoprecipitation assays revealed that Gli1 and Gli2 directly bind to the promoter regions of NEK2A gene and induced its transcription. Thus, we uncovered one of the mechanisms by which Nek2A acts as a modulator of the Hh signaling pathway in the context of a novel negative-feedback loop, which may offer new insights into Gli-mediated Hh signaling regulation in development and human diseases. PMID:28035348

  1. [Novel signal transduction pathways: the molecular basis for targeted cancer therapies in Hedgehog/Notch/Wnt pathway].

    PubMed

    Shimizu, Toshio; Nakagawa, Kazuhiko

    2015-08-01

    Aberrant activation of the Wnt, Notch and Hedgehog pathways via mutations or ligand overexpression has been implicated in a large number of cancer types where they are involved in functions ranging from tumor initiation to cancer stem cell (CSC) maintenance and angiogenesis. Agents targeting each one of these three pathways have now reached clinical trials, and the first one of these, Vismodegib, a hedgehog pathway inhibitor, was approved in 2012 by US FDA for the treatment of advanced basal cell carcinoma. Development of agents that target critical steps in these pathways as novel signal transduction pathways will be complicated by signaling cross-talk. The role that embryonic signaling pathways play in the function of CSCs, the development of new anti-CSC therapeutic agents, and the complexity of potential CSC signaling cross-talk are being explored coupled with early phase I clinical studies.

  2. Interplay between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of the Hedgehog signaling pathway.

    PubMed

    Cheng, Peng; Wang, Yun-Feng; Li, Gang; Yang, Sheng-sheng; Liu, Che; Hu, Hao; Jin, Gang; Hu, Xian-Gui

    2016-01-01

    Menin, the product of the Men1 gene, which is frequently mutated in pancreatic neuroendocrine tumors, acts as a chromatin-remodeling factor to modulate the transcription of cell cycle regulators by interacting with histone modification factors. However, the function of menin and its underlying mechanisms in pancreatic ductal adenocarcinoma remain unknown. Here, we found that menin inhibited pancreatic cancer cell growth in vitro and in vivo and that its expression was gradually lost during pancreatic carcinogenesis. Menin overexpression significantly activated the expression of the cyclin-dependent kinase (CDK) inhibitors p18 and p27, accompanied with a decrease in DNA methylation levels of p18 and p27 promoters. Mechanistically, we found that interaction of menin with DNA methyltransferase 1 (Dnmt1) competitively pulled down Dnmt1 from p18 and p27 promoters, leading to the downregulation of DNA methylation levels. Moreover, menin expression was suppressed by Dnmt1 downstream of the Hedgehog signaling pathway, and menin overexpression strongly antagonized the promotion effect of hedgehog signaling on pancreatic cancer cell proliferation. Taken together, the interaction between menin and Dnmt1 reversibly regulates pancreatic cancer cell growth downstream of Hedgehog pathways with complex mutual modulation networks, suggesting that the Hedgehog/Dnmt1/menin axis is a potential molecular target for pancreatic cancer therapy.

  3. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    PubMed Central

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  4. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.

    PubMed

    Warner, Jacob F; Miranda, Esther L; McClay, David R

    2016-03-15

    Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways including Nodal, and BMP. Here we provide a comprehensive analysis of Hedgehog signaling and it's contribution to left-right asymmetry. We report that Hh signaling plays a conserved role to regulate late asymmetric expression of Nodal and that this regulation occurs after Nodal breaks left-right symmetry in the mesoderm. Thus, while Hh functions to maintain late Nodal expression, the molecular asymmetry of the future coelomic pouches is locked in. Furthermore we report that cilia play a role only insofar as to transduce Hh signaling and do not have an independent effect on the asymmetry of the mesoderm. From this, we are able to construct a more complete regulatory network governing the establishment of left-right asymmetry in the sea urchin.

  5. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling

    PubMed Central

    Zhou, Siru; Xie, Yangli; Tang, Junzhou; Huang, Junlan; Huang, Qizhao; Xu, Wei; Wang, Zuqiang; Luo, Fengtao; Wang, Quan; Chen, Hangang; Du, Xiaolan; Shen, Yue; Chen, Di; Chen, Lin

    2015-01-01

    Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR)3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK) activity and increased Indian hedgehog (IHH) expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK) inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis. PMID:26091072

  6. Control of Antagonistic Components of the Hedgehog Signaling Pathway by microRNAs in Drosophila

    PubMed Central

    Friggi-Grelin, Florence; Lavenant-Staccini, Laurence; Therond, Pascal

    2008-01-01

    Hedgehog (Hh) signaling is critical for many developmental processes and for the genesis of diverse cancers. Hh signaling comprises a series of negative regulatory steps, from Hh reception to gene transcription output. We previously showed that stability of antagonistic regulatory proteins, including the coreceptor Smoothened (Smo), the kinesin-like Costal-2 (Cos2), and the kinase Fused (Fu), is affected by Hh signaling activation. Here, we show that the level of these three proteins is also regulated by a microRNA cluster. Indeed, the overexpression of this cluster and resulting microRNA regulation of the 3′-UTRs of smo, cos2, and fu mRNA decreases the levels of the three proteins and activates the pathway. Further, the loss of the microRNA cluster or of Dicer function modifies the 3′-UTR regulation of smo and cos2 mRNA, confirming that the mRNAs encoding the different Hh components are physiological targets of microRNAs. Nevertheless, an absence of neither the microRNA cluster nor of Dicer activity creates an hh-like phenotype, possibly due to dose compensation between the different antagonistic targets. This study reveals that a single signaling pathway can be targeted at multiple levels by the same microRNAs. PMID:18493062

  7. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling

    PubMed Central

    Nachtergaele, Sigrid; Whalen, Daniel M; Mydock, Laurel K; Zhao, Zhonghua; Malinauskas, Tomas; Krishnan, Kathiresan; Ingham, Philip W; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2013-01-01

    The Hedgehog (Hh) signal is transduced across the membrane by the heptahelical protein Smoothened (Smo), a developmental regulator, oncoprotein and drug target in oncology. We present the 2.3 Å crystal structure of the extracellular cysteine rich domain (CRD) of vertebrate Smo and show that it binds to oxysterols, endogenous lipids that activate Hh signaling. The oxysterol-binding groove in the Smo CRD is analogous to that used by Frizzled 8 to bind to the palmitoleyl group of Wnt ligands and to similar pockets used by other Frizzled-like CRDs to bind hydrophobic ligands. The CRD is required for signaling in response to native Hh ligands, showing that it is an important regulatory module for Smo activation. Indeed, targeting of the Smo CRD by oxysterol-inspired small molecules can block signaling by all known classes of Hh activators and by clinically relevant Smo mutants. DOI: http://dx.doi.org/10.7554/eLife.01340.001 PMID:24171105

  8. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis

    PubMed Central

    Yao, Humphrey Hung-Chang; Whoriskey, Wendy; Capel, Blanche

    2002-01-01

    Establishment of the steroid-producing Leydig cell lineage is an event downstream of Sry that is critical for masculinization of mammalian embryos. Neither the origin of fetal Leydig cell precursors nor the signaling pathway that specifies the Leydig cell lineage is known. Based on the sex-specific expression patterns of Desert Hedgehog (Dhh) and its receptor Patched 1 (Ptch1) in XY gonads, we investigated the potential role of DHH/PTCH1 signaling in the origin and specification of fetal Leydig cells. Analysis of Dhh−/− XY gonads revealed that differentiation of fetal Leydig cells was severely defective. Defects in Leydig cell differentiation in Dhh−/− XY gonads did not result from failure of cell migration from the mesonephros, thought to be a possible source of Leydig cell precursors. Nor did DHH/PTCH1 signaling appear to be involved in the proliferation or survival of fetal Leydig precursors in the interstitium of the XY gonad. Instead, our results suggest that DHH/PTCH1 signaling triggers Leydig cell differentiation by up-regulating Steroidogenic Factor 1 and P450 Side Chain Cleavage enzyme expression in Ptch1-expressing precursor cells located outside testis cords. PMID:12050120

  9. Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle

    PubMed Central

    Kijimoto, Teiya; Moczek, Armin P.

    2016-01-01

    The recruitment of modular developmental genetic components into new developmental contexts has been proposed as a central mechanism enabling the origin of novel traits and trait functions without necessitating the origin of novel pathways. Here, we investigate the function of the hedgehog (Hh) signaling pathway, a highly conserved pathway best understood for its role in patterning anterior/posterior (A/P) polarity of diverse traits, in the developmental evolution of beetle horns, an evolutionary novelty, and horn polyphenisms, a highly derived form of environment-responsive trait induction. We show that interactions among pathway members are conserved during development of Onthophagus horned beetles and have retained the ability to regulate A/P polarity in traditional appendages, such as legs. At the same time, the Hh signaling pathway has acquired a novel and highly unusual role in the nutrition-dependent regulation of horn polyphenisms by actively suppressing horn formation in low-nutrition males. Down-regulation of Hh signaling lifts this inhibition and returns a highly derived sigmoid horn body size allometry to its presumed ancestral, linear state. Our results suggest that recruitment of the Hh signaling pathway may have been a key step in the evolution of trait thresholds, such as those involved in horn polyphenisms and the corresponding origin of alternative phenotypes and complex allometries. PMID:27162357

  10. Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling

    PubMed Central

    Meda, Francesca; Gauron, Carole; Rampon, Christine; Teillon, Jérémie; Volovitch, Michel

    2016-01-01

    Abstract Aims: Recent advances in redox biology have emphasized the role of hydrogen peroxide (H2O2) in the modulation of signaling pathways and revealed that H2O2 plays a role in cellular remodeling in adults. Thus, an understanding of the mechanisms that control H2O2 levels in mature tissue would be of great interest. Results: We used a denervation strategy to demonstrate that sensory neurons are responsible for controlling H2O2 levels under normal conditions and after being lesioned. Moreover, we demonstrate that severed nerves respond to appendage amputation via the induction of Hedgehog signaling and that this signaling is responsible for H2O2 production in the wounded epidermis. Finally, we show that H2O2 and nerve growth are regulated via reciprocal action in adults. Innovation and Conclusion: These data support a new paradigm for the regulation of tissue homeostasis: H2O2 attracts nerves and nerves control H2O2 levels in a positive feedback loop. This finding suggests that the peripheral nerve redox environment could be a target for manipulating cell plasticity in adults. Antioxid. Redox Signal. 24, 299–311. PMID:26442784

  11. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    PubMed

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P < .05). Expression of Patched (Ptch) and Gli1 gradually increased from non-malignant cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  12. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis.

    PubMed

    Gu, Dongsheng; Liu, Hailan; Su, Gloria H; Zhang, Xiaoli; Chin-Sinex, Helen; Hanenberg, Helmut; Mendonca, Marc S; Shannon, Harlan E; Chiorean, E Gabriela; Xie, Jingwu

    2013-06-01

    Pancreatic cancer often presents in advanced stages and is unresponsive to conventional treatments. Thus, the need to develop novel treatment strategies for pancreatic cancer has never been greater. Here, we report that combination of focal irradiation with hedgehog (Hh) signaling inhibition exerts better than additive effects on reducing metastases. In an orthotopic model, we found that focal irradiation alone effectively reduced primary tumor growth but did not significantly affect metastasis. We hypothesized that cancer stem cells (CSC) of pancreatic cancer are responsible for the residual tumors following irradiation, which may be regulated by Hh signaling. To test our hypothesis, we showed that tumor metastasis in our model was accompanied by increased expression of CSC cell surface markers as well as Hh target genes. We generated tumor spheres from orthotopic pancreatic and metastatic tumors, which have elevated levels of CSC markers relative to the parental cells and elevated expression of Hh target genes. Irradiation of tumor spheres further elevated CSC cell surface markers and increased Hh target gene expression. Combination of Hh signaling inhibition with radiation had more than additive effects on tumor sphere regeneration in vitro. This phenotype was observed in two independent cell lines. In our orthotopic animal model, focal radiation plus Hh inhibition had more than additive effects on reducing lymph node metastasis. We identified several potential molecules in mediating Hh signaling effects. Taken together, our data provide a rationale for combined use of Hh inhibition with irradiation for clinical treatment of patients with pancreatic cancer.

  13. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy

    PubMed Central

    2013-01-01

    Despite the progress achieved in breast cancer screening and therapeutic innovations, the basal-like subtype of breast cancer (BLBC) still represents a particular clinical challenge. In order to make an impact on survival in this type of aggressive breast cancer, new targeted therapeutic agents are urgently needed. Aberrant activation of the Hedgehog (Hh) signalling pathway has been unambiguously tied to cancer development and progression in a variety of solid malignancies, and the recent approval of vismodegib, an orally bioavailable small-molecule inhibitor of Smoothened, validates Hh signalling as a valuable therapeutic target. A number of recent publications have highlighted a role for Hh signalling in breast cancer models and clinical specimens. Interestingly, Hh ligand overexpression is associated with the BLBC phenotype and a poor outcome in terms of metastasis and breast cancer-related death. In this review, we provide a comprehensive overview of the canonical Hh signalling pathway in mammals, highlight its roles in mammary gland development and breast carcinogenesis and discuss its potential therapeutic value in BLBC. PMID:23547970

  14. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    PubMed

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  15. Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment.

    PubMed

    Lubik, Amy A; Nouri, Mannan; Truong, Sarah; Ghaffari, Mazyar; Adomat, Hans H; Corey, Eva; Cox, Michael E; Li, Na; Guns, Emma S; Yenki, Parvin; Pham, Steven; Buttyan, Ralph

    2017-01-15

    Despite the substantial benefit of androgen deprivation therapy (ADT) for metastatic prostate cancer, patients often progress to castration-resistant disease (CRPC) that is more difficult to treat. CRPC is associated with renewed androgen receptor activity in tumor cells and restoration of tumor androgen levels through acquired intratumoral steroidogenesis (AIS). Although prostate cancer (PCa) cells have been shown to have steroidogenic capability in vitro, we previously found that benign prostate stromal cells (PrSCs) can also synthesize testosterone (T) from an adrenal precursor, DHEA, when stimulated with a hedgehog (Hh) pathway agonist, SAG. Here, we show exposure of PrSCs to a different Smoothened (Smo) agonist, Ag1.5, or to conditioned medium from sonic hedgehog overexpressing LNCaP cells induces steroidogenic enzyme expression in PrSCs and significantly increases production of T and its precursor steroids in a Smo-dependent manner from 22-OH-cholesterol substrate. Hh agonist-/ligand-treated PrSCs produced androgens at a rate similar to or greater than that of PCa cell lines. Likewise, primary bone marrow stromal cells became more steroidogenic and produced T under the influence of Smo agonist. Treatment of mice bearing LNCaP xenografts with a Smo antagonist, TAK-441, delayed the onset of CRPC after castration and substantially reduced androgen levels in residual tumors. These outcomes support the idea that stromal cells in ADT-treated primary or metastatic prostate tumors can contribute to AIS as a consequence of a paracrine Hh signaling microenvironment. As such, Smo antagonists may be useful for targeting prostate tumor stromal cell-derived AIS and delaying the onset of CRPC after ADT.

  16. Association between FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue microarray analysis

    PubMed Central

    Chen, Hong; Wang, Jingjing; Yang, Hong; Chen, Dan; Li, Panpan

    2016-01-01

    Forkhead box M1 (FOXM1) and hedgehog (Hh) signaling pathway are implicated in the formation and development of human tumors, including cervical cancer. Previous studies have indicated that FOXM1 may be a downstream target gene of the Hh signaling pathway, but their association in cervical cancer is largely unknown. In the present study, the expression of FOXM1 and Hh signaling molecules was evaluated by immunohistochemical analysis in a tissue microarray that contained 70 cervical cancer tissues and 10 normal cervical tissues. In addition, the association of these molecules with clinicopathological parameters, and the association between FOXM1 and various molecules involved in the Hh signaling pathway was investigated. The results indicated that FOXM1 and Hh signaling molecules were overexpressed in cervical cancer tissues. The protein expression levels of FOXM1, glioma-associated oncogene 1 (GLI1) and smoothened (SMO) correlated with the clinical stage of the tumors, while the protein expression levels of Sonic Hh (SHh), patched 1 (PTCH1) and GLI1 correlated with the pathological grade of the tumors. The expression levels of GLI1 were lower in tissues without lymph node metastasis than in tissues with lymph node metastasis. In addition, FOXM1 expression correlated with GLI1, SHh and PTCH1 expression in cancer tissues. These findings confirmed the participation of FOXM1 and the Hh signaling pathway in cervical cancer. Furthermore, the finding that FOXM1 may be a downstream target gene of the Hh signaling pathway in cervical cancer provides a potential novel diagnostic and therapeutic target for cervical cancer. PMID:27698840

  17. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis.

    PubMed

    Matz-Soja, Madlen; Rennert, Christiane; Schönefeld, Kristin; Aleithe, Susanne; Boettger, Jan; Schmidt-Heck, Wolfgang; Weiss, Thomas S; Hovhannisyan, Amalya; Zellmer, Sebastian; Klöting, Nora; Schulz, Angela; Kratzsch, Jürgen; Guthke, Reinhardt; Gebhardt, Rolf

    2016-05-17

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond.

  18. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis

    PubMed Central

    Matz-Soja, Madlen; Rennert, Christiane; Schönefeld, Kristin; Aleithe, Susanne; Boettger, Jan; Schmidt-Heck, Wolfgang; Weiss, Thomas S; Hovhannisyan, Amalya; Zellmer, Sebastian; Klöting, Nora; Schulz, Angela; Kratzsch, Jürgen; Guthke, Reinhardt; Gebhardt, Rolf

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries and is increasing in prevalence. The pathomechanisms, however, are poorly understood. This study assessed the unexpected role of the Hedgehog pathway in adult liver lipid metabolism. Using transgenic mice with conditional hepatocyte-specific deletion of Smoothened in adult mice, we showed that hepatocellular inhibition of Hedgehog signaling leads to steatosis by altering the abundance of the transcription factors GLI1 and GLI3. This steatotic 'Gli-code' caused the modulation of a complex network of lipogenic transcription factors and enzymes, including SREBP1 and PNPLA3, as demonstrated by microarray analysis and siRNA experiments and could be confirmed in other steatotic mouse models as well as in steatotic human livers. Conversely, activation of the Hedgehog pathway reversed the "Gli-code" and mitigated hepatic steatosis. Collectively, our results reveal that dysfunctions in the Hedgehog pathway play an important role in hepatic steatosis and beyond. DOI: http://dx.doi.org/10.7554/eLife.13308.001 PMID:27185526

  19. Blocking Hedgehog release from pancreatic cancer cells increases paracrine signaling potency.

    PubMed

    Damhofer, Helene; Veenstra, Veronique L; Tol, Johanna A M G; van Laarhoven, Hanneke W M; Medema, Jan Paul; Bijlsma, Maarten F

    2015-01-01

    Members of the Hedgehog (Hh) family of morphogens play crucial roles in development but are also involved in the progression of certain types of cancer. Despite being synthesized as hydrophobic dually lipid-modified molecules, and thus being strongly membrane-associated, Hh ligands are able to spread through tissues and act on target cells several cell diameters away. Various mechanisms that mediate Hh release have been discussed in recent years; however, little is known about dispersion of this ligand from cancer cells. Using co-culture models in conjunction with a newly developed reporter system, we were able to show that different members of the ADAM family of metalloproteinases strongly contribute to the release of endogenous bioactive Hh from pancreatic cancer cells, but that this solubilization decreases the potency of cancer cells to signal to adjacent stromal cells in direct co-culture models. These findings imply that under certain conditions, cancer-cell-tethered Hh molecules are the more potent signaling activators and that retaining Hh on the surface of cancer cells can unexpectedly increase the effective signaling range of this ligand, depending on tissue context.

  20. Autonomous and nonautonomous roles of Hedgehog signaling in regulating limb muscle formation

    PubMed Central

    Hu, Jimmy Kuang-Hsien; McGlinn, Edwina; Harfe, Brian D.; Kardon, Gabrielle; Tabin, Clifford J.

    2012-01-01

    Muscle progenitor cells migrate from the lateral somites into the developing vertebrate limb, where they undergo patterning and differentiation in response to local signals. Sonic hedgehog (Shh) is a secreted molecule made in the posterior limb bud that affects patterning and development of multiple tissues, including skeletal muscles. However, the cell-autonomous and non-cell-autonomous functions of Shh during limb muscle formation have remained unclear. We found that Shh affects the pattern of limb musculature non-cell-autonomously, acting through adjacent nonmuscle mesenchyme. However, Shh plays a cell-autonomous role in maintaining cell survival in the dermomyotome and initiating early activation of the myogenic program in the ventral limb. At later stages, Shh promotes slow muscle differentiation cell-autonomously. In addition, Shh signaling is required cell-autonomously to regulate directional muscle cell migration in the distal limb. We identify neuroepithelial cell transforming gene 1 (Net1) as a downstream target and effector of Shh signaling in that context. PMID:22987639

  1. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration

    PubMed Central

    Peng, Yu-Ching; Levine, Charles M.; Zahid, Sarwar; Wilson, E. Lynette; Joyner, Alexandra L.

    2013-01-01

    The adult mouse prostate has a seemingly endless capacity for regeneration, and sonic hedgehog (SHH) signaling has been implicated in this stem cell-driven process. However, it is not clear whether SHH acts on the epithelium or stromal cells that secrete factors required for epithelial expansion. Because little is known about stromal stem cells compared with their epithelial counterparts, we used in vivo mouse genetics tools to characterize four prostate stromal subtypes and their stem cells. Using knockin reporter alleles, we uncovered that SHH signals from prostate basal epithelial cells to adjacent stromal cells. Furthermore, the SHH target gene Gli1 is preferentially expressed in subepithelial fibroblast-like cells, one of four prostate stromal subtypes and the subtype closest to the epithelial source of SHH. Using Genetic Inducible Fate Mapping to mark adult Gli1- or Smooth muscle actin-expressing cells and follow their fate during regeneration, we uncovered that Gli1-expressing cells exhibit long-term self-renewal capacity during multiple rounds of androgen-mediated regeneration after castration-induced involution, and depleted smooth muscle cells are mainly replenished by preexisting smooth muscle cells. Based on our Genetic Inducible Fate Mapping studies, we propose a model where SHH signals to multiple stromal stem cells, which are largely unipotent in vivo. PMID:24218555

  2. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells

    PubMed Central

    Ferretti, Elisabetta; De Smaele, Enrico; Miele, Evelina; Laneve, Pietro; Po, Agnese; Pelloni, Marianna; Paganelli, Arianna; Di Marcotullio, Lucia; Caffarelli, Elisa; Screpanti, Isabella; Bozzoni, Irene; Gulino, Alberto

    2008-01-01

    MicroRNAs (miRNA) are crucial post-transcriptional regulators of gene expression and control cell differentiation and proliferation. However, little is known about their targeting of specific developmental pathways. Hedgehog (Hh) signalling controls cerebellar granule cell progenitor development and a subversion of this pathway leads to neoplastic transformation into medulloblastoma (MB). Using a miRNA high-throughput profile screening, we identify here a downregulated miRNA signature in human MBs with high Hh signalling. Specifically, we identify miR-125b and miR-326 as suppressors of the pathway activator Smoothened together with miR-324-5p, which also targets the downstream transcription factor Gli1. Downregulation of these miRNAs allows high levels of Hh-dependent gene expression leading to tumour cell proliferation. Interestingly, the downregulation of miR-324-5p is genetically determined by MB-associated deletion of chromosome 17p. We also report that whereas miRNA expression is downregulated in cerebellar neuronal progenitors, it increases alongside differentiation, thereby allowing cell maturation and growth inhibition. These findings identify a novel regulatory circuitry of the Hh signalling and suggest that misregulation of specific miRNAs, leading to its aberrant activation, sustain cancer development. PMID:18756266

  3. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  4. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer

    PubMed Central

    Yang, Zhaohui; Peng, Yu-Ching; Gopalan, Anuradha; Gao, Dong; Chen, Yu

    2017-01-01

    ABSTRACT It is widely appreciated that reactive stroma or carcinoma-associated fibroblasts can influence epithelial tumor progression. In prostate cancer (PCa), the second most common male malignancy worldwide, the amount of reactive stroma is variable and has predictive value for tumor recurrence. By analyzing human PCa protein and RNA expression databases, we found smooth muscle cells (SMCs) are decreased in advanced tumors, whereas fibroblasts are maintained. In three mouse models of PCa, PB-MYC, ERG/PTEN and TRAMP, we found the composition of the stroma is distinct. SMCs are greatly depleted in advanced PB-MYC tumors and locally reduced in ERG/PTEN prostates, whereas in TRAMP tumors the SMC layers are increased. In addition, interductal fibroblast-like cells expand in PB-MYC and ERG/PTEN tumors, whereas in TRAMP PCa they expand little and stromal cells invade into intraductal adenomas. Fate mapping of SMCs showed that in PB-MYC tumors the cells are depleted, whereas they expand in TRAMP tumors and interestingly contribute to the stromal cells in intraductal adenomas. Hedgehog (HH) ligands secreted by epithelial cells are known to regulate prostate mesenchyme expansion differentially during development and regeneration. Any possible role of HH signaling in stromal cells during PCa progression is poorly understood. We found that HH signaling is high in SMCs and fibroblasts near tumor cells in all models, and epithelial Shh expression is decreased whereas Ihh and Dhh are increased. In human primary PCa, expression of IHH is the highest of the three HH genes, and elevated HH signaling correlates with high stromal gene expression. Moreover, increasing HH signaling in the stroma of PB-MYC PCa resulted in more intact SMC layers and decreased tumor progression (micro-invasive carcinoma). Thus, we propose HH signaling restrains tumor progression by maintaining the smooth muscle and preventing invasion by tumor cells. Our studies highlight the importance of understanding

  5. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling.

    PubMed

    Buchtová, Marcela; Handrigan, Gregory R; Tucker, Abigail S; Lozanoff, Scott; Town, Liam; Fu, Katherine; Diewert, Virginia M; Wicking, Carol; Richman, Joy M

    2008-07-01

    Here we take the first look at cellular dynamics and molecular signaling in the developing snake dentition. We found that tooth formation differs from rodents in several respects. The majority of snake teeth bud off of a deep, ribbon-like dental lamina rather than as separate tooth germs. Prior to and after dental lamina ingrowth, we observe asymmetries in cell proliferation and extracellular matrix distribution suggesting that localized signaling by a secreted protein is involved. We cloned Sonic hedgehog from the African rock python Python sebae and traced its expression in the species as well as in two other snakes, the closely-related Python regius and the more derived corn snake Elaphe guttata (Colubridae). We found that expression of Shh is first confined to the odontogenic band and defines the position of the future dental lamina. Shh transcripts in pythons are progressively restricted to the oral epithelium on one side of the dental lamina and remain in this position throughout the prehatching period. Shh is expressed in the inner enamel epithelium and the stellate reticulum of the tooth anlagen, but is absent from the outer enamel epithelium and its derivative, the successional lamina. This suggests that signals other than Shh are responsible for replacement tooth formation. Functional studies using cyclopamine to block Hh signaling during odontogenesis prevented initiation and extension of the dental lamina into the mesenchyme, and also affected the directionality of this process. Further, blocking Hh signaling led to disruptions of the inner enamel epithelium. To explore the role of Shh in lamina extension, we looked at its expression in the premaxillary teeth, which form closer to the oral surface than elsewhere in the mouth. Oral ectodermal Shh expression in premaxillary teeth is lost soon after the teeth form reinforcing the idea that Shh is controlling the depth of the dental lamina. In summary, we have found diverse roles for Shh in patterning the

  6. Polo-Like Kinase 2 Is a Mediator of Hedgehog Survival Signaling in Cholangiocarcinoma

    PubMed Central

    Fingas, Christian D.; Mertens, Joachim C.; Razumilava, Nataliya; Sydor, Svenja; Bronk, Steven F.; Christensen, John D.; Rizvi, Sumera H.; Canbay, Ali; Treckmann, Jürgen W.; Paul, Andreas; Sirica, Alphonse E.; Gores, Gregory J.

    2013-01-01

    Cholangiocarcinoma (CCA) cells paradoxically express the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and thus rely on potent survival signals to circumvent cell death by TRAIL. Hedgehog (Hh) signaling is an important survival pathway in CCA. Herein, we further examine the mechanisms whereby Hh signaling mediates apoptosis resistance in CCA, revealing a pivotal role for the cell division regulating serine/threonine kinase polo-like kinase 2 (PLK2). We employed 50 human CCA samples (25 intrahepatic and 25 extrahepatic CCA) as well as human KMCH-1, Mz-CHA-1, and HUCCT-1 CCA cells for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. In human samples, polo-like kinase (PLK)1/2/3-immunoreactive cancer cells were present in the preponderance of intra- and extrahepatic CCA specimens. Inhibition of Hh signaling by cyclopamine reduced PLK2, but not PLK1 or PLK3, messenger RNA and protein expression in vehicle-treated and sonic Hh–treated CCA cells, confirming our previous microarray study. PLK2 regulation by Hh signaling appears to be direct, because the Hh transcription factors, glioma-associated oncogene 1 and 2, bind to the PLK2 promotor. Moreover, inhibition of PLK2 by the PLK inhibitor, BI 6727 (volasertib), or PLK2 knockdown was proapoptotic in CCA cells. BI 6727 administration or PLK2 knockdown decreased cellular protein levels of antiapoptotic myeloid cell leukemia 1 (Mcl-1), an effect reversed by the proteasome inhibitor, MG-132. Finally, BI 6727 administration reduced Mcl-1 protein expression in CCA cells, resulting in CCA cell apoptosis and tumor suppression in vivo. Conclusion PLK2 appears to be an important mediator of Hh survival signaling. These results suggest PLK inhibitors to be of therapeutic value for treatment of human CCA. PMID:23703673

  7. Inhibition of ErbB receptors, Hedgehog and NF-kappaB signaling by polyphenols in cancer.

    PubMed

    Benvenuto, Monica; Fantini, Massimo; Masuelli, Laura; De Smaele, Enrico; Zazzeroni, Francesca; Tresoldi, Ilaria; Calabrese, Giorgio; Galvano, Fabio; Modesti, Andrea; Bei, Roberto

    2013-06-01

    Carcinogenesis is a multi-step process triggered by cumulative genetic alterations, which drive the progressive transformation of a normal cell into a cancer cell. Among the signal transduction pathways whose cross-talk plays an important role in neoplastic transformation are those mediated by ErbB receptors, NF-kappaB and the Hedgehog (HH)/glioma-associated oncogene (GLI) cascade. Polyphenols can be employed to inhibit the growth of cancer cells due to their ability to modulate the activity of multiple targets involved in carcinogenesis through simultaneous direct interaction or modulation of gene expression. This review will describe the cross-talk between ErbB receptors, NF-kappaB and the Hedgehog (HH)/glioma-associated oncogene (GLI) signaling pathways and the potential role of polyphenols in inhibiting this dialogue and the growth of cancer cells.

  8. Tamoxifen Treatment of Breast Cancer Cells: Impact on Hedgehog/GLI1 Signaling.

    PubMed

    Villegas, Victoria E; Rondón-Lagos, Milena; Annaratone, Laura; Castellano, Isabella; Grismaldo, Adriana; Sapino, Anna; Zaphiropoulos, Peter G

    2016-02-27

    The selective estrogen receptor (ER) modulator tamoxifen (TAM) has become the standard therapy for the treatment of ER+ breast cancer patients. Despite the obvious benefits of TAM, a proportion of patients acquire resistance to treatment, and this is a significant clinical problem. Consequently, the identification of possible mechanisms involved in TAM-resistance should help the development of new therapeutic targets. In this study, we present in vitro data using a panel of different breast cancer cell lines and demonstrate the modulatory effect of TAM on cellular proliferation and expression of Hedgehog signaling components, including the terminal effector of the pathway, the transcription factor GLI1. A variable pattern of expression following TAM administration was observed, reflecting the distinctive properties of the ER+ and ER- cell lines analyzed. Remarkably, the TAM-induced increase in the proliferation of the ER+ ZR-75-1 and BT474 cells parallels a sustained upregulation of GLI1 expression and its translocation to the nucleus. These findings, implicating a TAM-GLI1 signaling cross-talk, could ultimately be exploited not only as a means for novel prognostication markers but also in efforts to effectively target breast cancer subtypes.

  9. Human embryonic stem cells in culture possess primary cilia with hedgehog signaling machinery.

    PubMed

    Kiprilov, Enko N; Awan, Aashir; Desprat, Romain; Velho, Michelle; Clement, Christian A; Byskov, Anne Grete; Andersen, Claus Y; Satir, Peter; Bouhassira, Eric E; Christensen, Søren T; Hirsch, Rhoda Elison

    2008-03-10

    Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.

  10. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    PubMed Central

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer. PMID:26197339

  11. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma.

    PubMed

    Peacock, Craig D; Wang, Qiuju; Gesell, Gregory S; Corcoran-Schwartz, Ian M; Jones, Evan; Kim, Jynho; Devereux, Wendy L; Rhodes, Jonathan T; Huff, Carol A; Beachy, Philip A; Watkins, D Neil; Matsui, William

    2007-03-06

    The cancer stem cell hypothesis suggests that malignant growth depends on a subset of tumor cells with stem cell-like properties of self-renewal. Because hedgehog (Hh) signaling regulates progenitor cell fate in normal development and homeostasis, aberrant pathway activation might be involved in the maintenance of such a population in cancer. Indeed, mutational activation of the Hh pathway is associated with medulloblastoma and basal cell carcinoma; pathway activity is also critical for growth of other tumors lacking such mutations, although the mechanism of pathway activation is poorly understood. Here we study the role and mechanism of Hh pathway activation in multiple myeloma (MM), a malignancy with a well defined stem cell compartment. In this model, rare malignant progenitors capable of clonal expansion resemble B cells, whereas the much larger tumor cell population manifests a differentiated plasma cell phenotype that pathologically defines the disease. We show that the subset of MM cells that manifests Hh pathway activity is markedly concentrated within the tumor stem cell compartment. The Hh ligand promotes expansion of MM stem cells without differentiation, whereas the Hh pathway blockade, while having little or no effect on malignant plasma cell growth, markedly inhibits clonal expansion accompanied by terminal differentiation of purified MM stem cells. These data reveal that Hh pathway activation is heterogeneous across the spectrum of MM tumor stem cells and their more differentiated progeny. The potential existence of similar relationships in other adult cancers may have important biologic and clinical implications for the study of aberrant Hh signaling.

  12. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration.

    PubMed

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-03-28

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy.

  13. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway.

    PubMed

    Song, Libin; Chen, Xiangyuan; Gao, Song; Zhang, Chenyue; Qu, Chao; Wang, Peng; Liu, Luming

    2016-10-12

    Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.

  14. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors.

    PubMed

    Rimkus, Tadas K; Carpenter, Richard L; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-02-15

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials.

  15. SUMO regulates the activity of Smoothened and Costal-2 in Drosophila Hedgehog signaling

    PubMed Central

    Zhang, Jie; Liu, Yajuan; Jiang, Kai; Jia, Jianhang

    2017-01-01

    In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas desumoylation by Ulp1 destabilizes Smo in a phosphorylation independent manner. Mechanistically, we discover that excessive Krz, the Drosophila β-arrestin 2, inhibits Smo sumoylation and prevents Smo accumulation through Krz regulatory domain. Krz likely facilitates the interaction between Smo and Ulp1 because knockdown of Krz by RNAi attenuates Smo-Ulp1 interaction. Finally, we provide evidence that Cos2 is also sumoylated, which counteracts its inhibitory role on Smo accumulation in the wing. Taken together, we have uncovered a novel mechanism for Smo activation by sumoylation that is regulated by Hh and Smo interacting proteins. PMID:28195188

  16. Transcriptome Changes Affecting Hedgehog and Cytokine Signalling in the Umbilical Cord: Implications for Disease Risk

    PubMed Central

    Stünkel, Walter; Tng, Emilia; Tan, Jun Hao; Chen, Li; Joseph, Roy; Cheong, Clara Y.; Ong, Mei-Lyn; Lee, Yung Seng; Chong, Yap-Seng; Saw, Seang Mei; Meaney, Michael J.; Kwek, Kenneth; Sheppard, Allan M.; Gluckman, Peter D.; Holbrook, Joanna D.

    2012-01-01

    Background Babies born at lower gestational ages or smaller birthweights have a greater risk of poorer health in later life. Both the causes of these sub-optimal birth outcomes and the mechanism by which the effects are transmitted over decades are the subject of extensive study. We investigated whether a transcriptomic signature of either birthweight or gestational age could be detected in umbilical cord RNA. Methods The gene expression patterns of 32 umbilical cords from Singaporean babies of Chinese ethnicity across a range of birthweights (1698–4151 g) and gestational ages (35–41 weeks) were determined. We confirmed the differential expression pattern by gestational age for 12 genes in a series of 127 umbilical cords of Chinese, Malay and Indian ethnicity. Results We found that the transcriptome is substantially influenced by gestational age; but less so by birthweight. We show that some of the expression changes dependent on gestational age are enriched in signal transduction pathways, such as Hedgehog and in genes with roles in cytokine signalling and angiogenesis. We show that some of the gene expression changes we report are reflected in the epigenome. Conclusions We studied the umbilical cord which is peripheral to disease susceptible tissues. The results suggest that soma-wide transcriptome changes, preserved at the epigenetic level, may be a mechanism whereby birth outcomes are linked to the risk of adult metabolic and arthritic disease and suggest that greater attention be given to the association between premature birth and later disease risk. PMID:22808055

  17. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors

    PubMed Central

    Rimkus, Tadas K.; Carpenter, Richard L.; Qasem, Shadi; Chan, Michael; Lo, Hui-Wen

    2016-01-01

    The sonic hedgehog (Shh) signaling pathway is a major regulator of cell differentiation, cell proliferation, and tissue polarity. Aberrant activation of the Shh pathway has been shown in a variety of human cancers, including, basal cell carcinoma, malignant gliomas, medulloblastoma, leukemias, and cancers of the breast, lung, pancreas, and prostate. Tumorigenesis, tumor progression and therapeutic response have all been shown to be impacted by the Shh signaling pathway. Downstream effectors of the Shh pathway include smoothened (SMO) and glioma-associated oncogene homolog (GLI) family of zinc finger transcription factors. Both are regarded as important targets for cancer therapeutics. While most efforts have been devoted towards pharmacologically targeting SMO, developing GLI-targeted approach has its merit because of the fact that GLI proteins can be activated by both Shh ligand-dependent and -independent mechanisms. To date, two SMO inhibitors (LDE225/Sonidegib and GDC-0449/Vismodegib) have received FDA approval for treating basal cell carcinoma while many clinical trials are being conducted to evaluate the efficacy of this exciting class of targeted therapy in a variety of cancers. In this review, we provide an overview of the biology of the Shh pathway and then detail the current landscape of the Shh-SMO-GLI pathway inhibitors including those in preclinical studies and clinical trials. PMID:26891329

  18. Myofibroblast-derived PDGF-BB Promotes Hedgehog Survival Signaling in Cholangiocarcinoma Cells

    PubMed Central

    Fingas, C D; Bronk, S F; Werneburg, N W; Mott, J L; Guicciardi, M E; Cazanave, S C; Mertens, J C; Sirica, A E; Gores, G J

    2011-01-01

    Cholangiocarcinoma (CCA) cells paradoxically express the death ligand TRAIL, and, therefore, are dependent upon potent survival signals to circumvent TRAIL cytotoxicity. CCAs are also highly desmoplastic cancers with a tumor microenvironment rich in myofibroblasts (MFBs). Herein, we examine a role for MFB-derived CCA survival signals. We employed human KMCH-1, KMBC, HuCCT-1, TFK-1, and Mz-ChA-1 CCA cells as well as human primary hepatic stellate and myofibroblastic LX-2 cells for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. Co-culturing CCA cells with myofibroblastic human primary HSCs or LX-2 cells significantly decreased TRAIL-induced apoptosis in CCA cells, a cytoprotective effect abrogated by neutralizing PDGF-BB-antiserum. Cytoprotection by PDGF-BB was dependent upon Hedgehog (Hh) signaling as it was abolished by the smoothened (the transducer of Hh signaling) inhibitor cyclopamine. PDGF-BB induced PKA-dependent trafficking of smoothened to the plasma membrane resulting in GLI2 nuclear translocation and activation of a consensus GLI reporter gene-based luciferase assay. A genome-wide mRNA expression analysis identified 67 target genes to be commonly up- (50 genes) or downregulated (17 genes) by both SHH and PDGF-BB in a cyclopamine-dependent manner in CCA cells. Finally, in a rodent CCA in vivo-model, cyclopamine administration increased apoptosis in CCA cells resulting in tumor suppression. Conclusions Myofibroblast-derived PDGF-BB protects CCA cells from TRAIL cytotoxicity by a Hh signaling-dependent process. These results have therapeutical implications for the treatment of human cholangiocarcinoma. PMID:22038837

  19. Role of the hedgehog/patched signaling pathway in oncogenesis: a new polymorphism in the PTCH gene in ovarian fibroma.

    PubMed

    Levanat, Sonja; Musani, Vesna; Komar, Arijana; Oreskovic, S

    2004-12-01

    We compared the expression of target genes of Hedgehog/Patched signaling in ovarian fibromas and ovarian dermoids. We noted that high levels of SHH appear almost regularly, especially in dermoids, usually accompanied by increased expression of SMO. GLI overexpression does not coincide with that of PTCH. Loss of heterozygosity findings in the PTCH locus and increased expression of several genes in the pathway strongly suggest that the pathway is involved in both ovarian fibroma and dermoids.

  20. Vismodegib hedgehog-signaling inhibition and treatment of basal cell carcinomas as well as keratocystic odontogenic tumors in Gorlin syndrome.

    PubMed

    Booms, Patrick; Harth, Marc; Sader, Robert; Ghanaati, Shahram

    2015-01-01

    Vismodegib hedgehog signaling inhibition treatment has potential for reducing the burden of multiple skin basal cell carcinomas and jaw keratocystic odontogenic tumors. They are major criteria for the diagnosis of Gorlin syndrome, also called nevoid basal cell carcinoma syndrome. Clinical features of Gorlin syndrome are reported, and the relevance of hedgehog signaling pathway inhibition by oral vismodegib for maxillofacial surgeons is highlighted. In summary, progressed basal cell carcinoma lesions are virtually inoperable. Keratocystic odontogenic tumors have an aggressive behavior including rapid growth and extension into adjacent tissues. Interestingly, nearly complete regression of multiple Gorlin syndrome-associated keratocystic odontogenic tumors following treatment with vismodegib. Due to radio-hypersensitivity in Gorlin syndrome, avoidance of treatment by radiotherapy is strongly recommended for all affected individuals. Vismodegib can help in those instances where radiation is contra-indicated, or the lesions are inoperable. The effect of vismodegib on basal cell carcinomas was associated with a significant decrease in hedgehog-signaling and tumor proliferation. Vismodegib, a new and approved drug for the treatment of advanced basal cell carcinoma, is a specific oncogene inhibitor. It also seems to be effective for treatment of keratocystic odontogenic tumors and basal cell carcinomas in Gorlin syndrome, rendering the surgical resections less challenging.

  1. Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines:a collaborative filtering method

    PubMed Central

    2012-01-01

    Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have

  2. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia

    PubMed Central

    Kakiuchi, Seiji; Minami, Yosuke; Miyata, Yoshiharu; Mizutani, Yu; Goto, Hideaki; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Kurata, Keiji; Matsuoka, Hiroshi; Minami, Hironobu

    2017-01-01

    Aberrant activation of the Hedgehog (Hh) signaling pathway is involved in the maintenance of leukemic stem cell (LSCs) populations. PF-0444913 (PF-913) is a novel inhibitor that selectively targets Smoothened (SMO), which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML). However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA) revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling. PMID:28245563

  3. Structural insights into human Kif7, a kinesin involved in Hedgehog signalling

    SciTech Connect

    Klejnot, Marta Kozielski, Frank

    2012-02-01

    The human Kif7 motor domain structure provides insights into a kinesin of medical significance. Kif7, a member of the kinesin 4 superfamily, is implicated in a variety of diseases including Joubert, hydrolethalus and acrocallosal syndromes. It is also involved in primary cilium formation and the Hedgehog signalling pathway and may play a role in cancer. Its activity is crucial for embryonic development. Kif7 and Kif27, a closely related kinesin in the same subfamily, are orthologues of the Drosophila melano@@gaster kinesin-like protein Costal-2 (Cos2). In vertebrates, they work together to fulfil the role of the single Cos2 gene in Drosophila. Here, the high-resolution structure of the human Kif7 motor domain is reported and is compared with that of conventional kinesin, the founding member of the kinesin superfamily. These data are a first step towards structural characterization of a kinesin-4 family member and of this interesting molecular motor of medical significance.

  4. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review

    PubMed Central

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-01-01

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer. PMID:27190692

  5. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma

    PubMed Central

    Wen, Jing; Lee, Juhyun; Malhotra, Anshu; Nahta, Rita; Arnold, Amanda R.; Buss, Meghan C.; Brown, Briana D.; Maier, Caroline; Kenney, Anna M.; Remke, Marc; Ramaswamy, Vijay; Taylor, Michael D.; Castellino, Robert C.

    2016-01-01

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor (cGNP) cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer in early post-natal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with a Shh-activated MB mouse model. Conversely, Wip1 knock out significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knock-down or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB. PMID:27086929

  6. WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma.

    PubMed

    Wen, J; Lee, J; Malhotra, A; Nahta, R; Arnold, A R; Buss, M C; Brown, B D; Maier, C; Kenney, A M; Remke, M; Ramaswamy, V; Taylor, M D; Castellino, R C

    2016-10-20

    High-level amplification of the protein phosphatase PPM1D (WIP1) is present in a subset of medulloblastomas (MBs) that have an expression profile consistent with active Sonic Hedgehog (SHH) signaling. We found that WIP1 overexpression increased expression of Shh target genes and cell proliferation in response to Shh stimulation in NIH3T3 and cerebellar granule neuron precursor cells in a p53-independent manner. Thus, we developed a mouse in which WIP1 is expressed in the developing brain under control of the Neurod2 promoter (ND2:WIP1). The external granule layer (EGL) in early postnatal ND2:WIP1 mice exhibited increased proliferation and expression of Shh downstream targets. MB incidence increased and survival decreased when ND2:WIP1 mice were crossed with an Shh-activated MB mouse model. Conversely, Wip1 knockout significantly suppressed MB formation in two independent mouse models of Shh-activated MB. Furthermore, Wip1 knockdown or treatment with a WIP1 inhibitor suppressed the effects of Shh stimulation and potentiated the growth inhibitory effects of SHH pathway-inhibiting drugs in Shh-activated MB cells in vitro. This suggests an important cross-talk between SHH and WIP1 pathways that accelerates tumorigenesis and supports WIP1 inhibition as a potential treatment strategy for MB.

  7. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx

    PubMed Central

    Tabler, Jacqueline M; Rigney, Maggie M; Berman, Gordon J; Gopalakrishnan, Swetha; Heude, Eglantine; Al-lami, Hadeel Adel; Yannakoudiadkis, Basil Z; Fitch, Rebecca D; Carter, Christopher; Vokes, Steven; Liu, Karen J; Tajbakhsh, Shahragim; Egnor, SE Roian; Wallingford, John B

    2017-01-01

    Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus. DOI: http://dx.doi.org/10.7554/eLife.19153.001 PMID:28177282

  8. Sonic hedgehog signaling regulates amygdalar neurogenesis and extinction of fear memory.

    PubMed

    Hung, Hui-Chi; Hsiao, Ya-Hsin; Gean, Po-Wu

    2015-10-01

    It is now recognized that neurogenesis occurs throughout life predominantly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. In the present study, we investigated the relationship between neurogenesis in the amygdala and extinction of fear memory. Mice received 15 tone-footshock pairings. Twenty-four hours after training, the mice were given 15 tone-alone trials (extinction training) once per day for 7 days. Two hours before extinction training, the mice were injected intraperitoneally with 5-bromo-3-deoxyuridine (BrdU). BrdU-positive and NeuN-positive cells were analyzed 52 days after the training. A group of mice that received tone-footshock pairings but no extinction training served as controls (FC+No-Ext). The number of BrdU(+)/NeuN(+) cells was significantly higher in the extinction (FC+Ext) than in the FC+No-Ext mice. Proliferation inhibitor methylazoxymethanol acetate (MAM) or DNA synthesis inhibitor cytosine arabinoside (Ara-C) reduced neurogenesis and retarded extinction. Silencing Sonic hedgehog (Shh) gene with short hairpin interfering RNA (shRNA) by means of a retrovirus expression system to knockdown Shh specifically in the mitotic neurons reduced neurogenesis and retarded extinction. By contrast, over-expression of Shh increased neurogenesis and facilitated extinction. These results suggest that amygdala neurogenesis and Shh signaling are involved in the extinction of fear memory.

  9. Hedgehog signaling mediates adaptive variation in a dynamic functional system in the cichlid feeding apparatus

    PubMed Central

    Hu, Yinan; Albertson, R. Craig

    2014-01-01

    Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression—the opercular four-bar linkage apparatus—among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches. PMID:24912175

  10. Hedgehog signaling mediates adaptive variation in a dynamic functional system in the cichlid feeding apparatus.

    PubMed

    Hu, Yinan; Albertson, R Craig

    2014-06-10

    Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression--the opercular four-bar linkage apparatus--among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches.

  11. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes

    PubMed Central

    Cordero, Dwight; Marcucio, Ralph; Hu, Diane; Gaffield, William; Tapadia, Minal; Helms, Jill A.

    2004-01-01

    One of the most perplexing questions in clinical genetics is why patients with identical gene mutations oftentimes exhibit radically different clinical features. This inconsistency between genotype and phenotype is illustrated in the malformation spectrum of holoprosencephaly (HPE). Family members carrying identical mutations in sonic hedgehog (SHH) can exhibit a variety of facial features ranging from cyclopia to subtle midline asymmetries. Such intrafamilial variability may arise from environmental factors acting in conjunction with gene mutations that collectively reduce SHH activity below a critical threshold. We undertook a series of experiments to test the hypothesis that modifying the activity of the SHH signaling pathway at discrete periods of embryonic development could account for the phenotypic spectrum of HPE. Exposing avian embryos to cyclopamine during critical periods of craniofacial development recreated a continuum of HPE-related defects. The craniofacial malformations included hypotelorism, midfacial hypoplasia, and facial clefting and were not the result of excessive crest cell apoptosis. Rather, they resulted from molecular reprogramming of an organizing center whose activity controls outgrowth and patterning of the mid and upper face. Collectively, these data reveal one mechanism by which the variable expressivity of a disorder such as HPE can be produced through temporal disruption of a single molecular pathway. PMID:15314685

  12. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    PubMed

    Götschel, Frank; Berg, Daniela; Gruber, Wolfgang; Bender, Christian; Eberl, Markus; Friedel, Myriam; Sonntag, Johanna; Rüngeler, Elena; Hache, Hendrik; Wierling, Christoph; Nietfeld, Wilfried; Lehrach, Hans; Frischauf, Annemarie; Schwartz-Albiez, Reinhard; Aberger, Fritz; Korf, Ulrike

    2013-01-01

    Aberrant activation of Hedgehog (HH) signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG) was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  13. Synergism between Hedgehog-GLI and EGFR Signaling in Hedgehog-Responsive Human Medulloblastoma Cells Induces Downregulation of Canonical Hedgehog-Target Genes and Stabilized Expression of GLI1

    PubMed Central

    Götschel, Frank; Berg, Daniela; Gruber, Wolfgang; Bender, Christian; Eberl, Markus; Friedel, Myriam; Sonntag, Johanna; Rüngeler, Elena; Hache, Hendrik; Wierling, Christoph; Nietfeld, Wilfried; Lehrach, Hans; Frischauf, Annemarie; Schwartz-Albiez, Reinhard; Aberger, Fritz; Korf, Ulrike

    2013-01-01

    Aberrant activation of Hedgehog (HH) signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG) was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies. PMID:23762360

  14. Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion

    PubMed Central

    Lu, Jie; Almada, Luciana L.; Lomberk, Gwen; Fernandez-Zapico, Martin E.; Urrutia, Raul; Huebert, Robert C.

    2016-01-01

    Background & Aims Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. Methods Using directed differentiation of induced pluripotent stem cells (iPSC), isolated DRCs, and in vivo models, we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). Results We demonstrate, for the first time, that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein, enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7, CK19, and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient, ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. Conclusion We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo. PMID:27936185

  15. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog.

    PubMed

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-10-04

    The Hedgehog cell-cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants.

  16. Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog

    PubMed Central

    Tukachinsky, Hanna; Petrov, Kostadin; Watanabe, Miyako; Salic, Adrian

    2016-01-01

    The Hedgehog cell–cell signaling pathway is crucial for animal development, and its misregulation is implicated in numerous birth defects and cancers. In unstimulated cells, pathway activity is inhibited by the tumor suppressor membrane protein, Patched. Hedgehog signaling is triggered by the secreted Hedgehog ligand, which binds and inhibits Patched, thus setting in motion the downstream events in signal transduction. Despite its critical importance, the mechanism by which Hedgehog antagonizes Patched has remained unknown. Here, we show that vertebrate Patched1 inhibition is caused by direct, palmitate-dependent interaction with the Sonic Hedgehog ligand. We find that a short palmitoylated N-terminal fragment of Sonic Hedgehog binds Patched1 and, strikingly, is sufficient to inhibit it and to activate signaling. The rest of Sonic Hedgehog confers high-affinity Patched1 binding and internalization through a distinct binding site, but, surprisingly, it is not absolutely required for signaling. The palmitate-dependent interaction with Patched1 is specifically impaired in a Sonic Hedgehog mutant causing human holoprosencephaly, the most frequent congenital brain malformation, explaining its drastically reduced potency. The palmitate-dependent interaction is also abolished in constitutively inhibited Patched1 point mutants causing the Gorlin cancer syndrome, suggesting that they might adopt a conformation distinct from the wild type. Our data demonstrate that Sonic Hedgehog signals via the palmitate-dependent arm of a two-pronged contact with Patched1. Furthermore, our results suggest that, during Hedgehog signaling, ligand binding inhibits Patched by trapping it in an inactive conformation, a mechanism that explains the dramatically reduced activity of oncogenic Patched1 mutants. PMID:27647915

  17. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex

    PubMed Central

    Wang, Lei; Hou, Shirui; Han, Young-Goo

    2016-01-01

    The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs, also called outer RGs) and intermediate progenitor cells (IPCs). Here, we show that constitutively active Shh signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but not in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs as well as increasing IPC proliferation. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding. PMID:27214567

  18. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer.

    PubMed

    Brechbiel, Jillian; Miller-Moslin, Karen; Adjei, Alex A

    2014-07-01

    The hedgehog (Hh) pathway is aberrantly activated in a number of tumors. In medulloblastoma, basal cell carcinoma, and rhabdomyosarcoma, mutations in Hh pathway genes lead to ligand-independent pathway activation. In many other tumor types, ligand-dependent activation of Hh signaling is potentiated through crosstalk with other critical molecular signaling pathways. Among such pathways, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch are of particular interest because agents that selectively inhibit these pathways are available and can be readily combined with agents such as vismodegib, sonidegib (LDE225), and BMS-833923, which target smoothened-a key Hh pathway regulator. Numerous preclinical studies have revealed the ways in which Hh intersects with each of these pathways, and combination therapies have resulted in improved antitumor efficacy and survival in animal models. Hh also plays an important role in hematopoiesis and in the maintenance of BCR-ABL-driven leukemic stem cells. Thus, combined inhibition of the Hh pathway and BCR-ABL has emerged as a promising potential therapeutic strategy in chronic myeloid leukemia (CML). A number of clinical trials evaluating combinations of Hh inhibitors with other targeted agents are now underway in CML and a variety of solid tumors. This review highlights these trials and summarizes preclinical evidence of crosstalk between Hh and four other actionable pathways-RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch-as well as the role of Hh in the maintenance of BCR-ABL-driven leukemic stem cells.

  19. Hedgehog Signaling Antagonist GDC-0449 (Vismodegib) Inhibits Pancreatic Cancer Stem Cell Characteristics: Molecular Mechanisms

    PubMed Central

    Singh, Brahma N.; Fu, Junsheng; Srivastava, Rakesh K.; Shankar, Sharmila

    2011-01-01

    Background Recent evidence from in vitro and in vivo studies has demonstrated that aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway regulates genes that promote cellular proliferation in various human cancer stem cells (CSCs). Therefore, the chemotherapeutic agents that inhibit activation of Gli transcription factors have emerged as promising novel therapeutic drugs for pancreatic cancer. GDC-0449 (Vismodegib), orally administrable molecule belonging to the 2-arylpyridine class, inhibits SHH signaling pathway by blocking the activities of Smoothened. The objectives of this study were to examine the molecular mechanisms by which GDC-0449 regulates human pancreatic CSC characteristics in vitro. Methodology/Principal Findings GDC-0499 inhibited cell viability and induced apoptosis in three pancreatic cancer cell lines and pancreatic CSCs. This inhibitor also suppressed cell viability, Gli-DNA binding and transcriptional activities, and induced apoptosis through caspase-3 activation and PARP cleavage in pancreatic CSCs. GDC-0449-induced apoptosis in CSCs showed increased Fas expression and decreased expression of PDGFRα. Furthermore, Bcl-2 was down-regulated whereas TRAIL-R1/DR4 and TRAIL-R2/DR5 expression was increased following the treatment of CSCs with GDC-0449. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GDC-0449-treated pancreatic CSCs. Thus, activated Gli genes repress DRs and Fas expressions, up-regulate the expressions of Bcl-2 and PDGFRα and facilitate cell survival. Conclusions/Significance These data suggest that GDC-0499 can be used for the management of pancreatic cancer by targeting pancreatic CSCs. PMID:22087285

  20. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis.

    PubMed

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C; El-Cheikh, Marcia Cury

    2017-02-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte-macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  1. Epigenetic deregulation of Ellis Van Creveld confers robust Hedgehog signaling in adult T-cell leukemia.

    PubMed

    Takahashi, Ryutaro; Yamagishi, Makoto; Nakano, Kazumi; Yamochi, Toshiko; Yamochi, Tadanori; Fujikawa, Dai; Nakashima, Makoto; Tanaka, Yuetsu; Uchimaru, Kaoru; Utsunomiya, Atae; Watanabe, Toshiki

    2014-09-01

    One of the hallmarks of cancer, global gene expression alteration, is closely associated with the development and malignant characteristics associated with adult T-cell leukemia (ATL) as well as other cancers. Here, we show that aberrant overexpression of the Ellis Van Creveld (EVC) family is responsible for cellular Hedgehog (HH) activation, which provides the pro-survival ability of ATL cells. Using microarray, quantitative RT-PCR and immunohistochemistry we have demonstrated that EVC is significantly upregulated in ATL and human T-cell leukemia virus type I (HTLV-1)-infected cells. Epigenetic marks, including histone H3 acetylation and Lys4 trimethylation, are specifically accumulated at the EVC locus in ATL samples. The HTLV-1 Tax participates in the coordination of EVC expression in an epigenetic fashion. The treatment of shRNA targeting EVC, as well as the transcription factors for HH signaling, diminishes the HH activation and leads to apoptotic death in ATL cell lines. We also showed that a HH signaling inhibitor, GANT61, induces strong apoptosis in the established ATL cell lines and patient-derived primary ATL cells. Therefore, our data indicate that HH activation is involved in the regulation of leukemic cell survival. The epigenetically deregulated EVC appears to play an important role for HH activation. The possible use of EVC as a specific cell marker and a novel drug target for HTLV-1-infected T-cells is implicated by these findings. The HH inhibitors are suggested as drug candidates for ATL therapy. Our findings also suggest chromatin rearrangement associated with active histone markers in ATL.

  2. Galectin-3, histone deacetylases, and Hedgehog signaling: Possible convergent targets in schistosomiasis-induced liver fibrosis

    PubMed Central

    de Oliveira, Felipe Leite; Carneiro, Katia; Brito, José Marques; Cabanel, Mariana; Pereira, Jonathas Xavier; Paiva, Ligia de Almeida; Syn, Wingkin; Henderson, Neil C.; El-Cheikh, Marcia Cury

    2017-01-01

    Schistosomiasis affects approximately 240 million people in the world. Schistosoma mansoni eggs in the liver induce periportal fibrosis and hepatic failure driven by monocyte recruitment and macrophage activation, resulting in robust Th2 response. Here, we suggested a possible involvement of Galectin-3 (Gal-3), histone deacetylases (HDACs), and Hedgehog (Hh) signaling with macrophage activation during Th1/Th2 immune responses, fibrogranuloma reaction, and tissue repair during schistosomiasis. Gal-3 is highly expressed by liver macrophages (Kupffer cells) around Schistosoma eggs. HDACs and Hh regulate macrophage polarization and hepatic stellate cell activation during schistosomiasis-associated fibrogenesis. Previously, we demonstrated an abnormal extracellular matrix distribution in the liver that correlated with atypical monocyte–macrophage differentiation in S. mansoni-infected, Gal-3-deficient (Lgals3-/-) mice. New findings explored in this review focus on the chronic phase, when wild-type (Lgals3+/+) and Lgals3-/- mice were analyzed 90 days after cercariae infection. In Lgals3-/- infected mice, there was significant inflammatory infiltration with myeloid cells associated with egg destruction (hematoxylin and eosin staining), phagocytes (specifically Kupffer cells), numerically reduced and diffuse matrix extracellular deposition in fibrotic areas (Gomori trichrome staining), and severe disorganization of collagen fibers surrounding the S. mansoni eggs (reticulin staining). Granuloma-derived stromal cells (GR cells) of Lgals3-/- infected mice expressed lower levels of alpha smooth muscle actin (α-SMA) and eotaxin and higher levels of IL-4 than Lgals3+/+ mice (real-time PCR). The relevant participation of macrophages in these events led us to suggest distinct mechanisms of activation that culminate in defective fibrosis in the liver of Lgals3-/- infected mice. These aspects were discussed in this review, as well as the possible interference between Gal-3, HDACs

  3. Biology-oriented synthesis of a withanolide-inspired compound collection reveals novel modulators of hedgehog signaling.

    PubMed

    Švenda, Jakub; Sheremet, Michael; Kremer, Lea; Maier, Lukáš; Bauer, Jonathan O; Strohmann, Carsten; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert

    2015-05-04

    Biology-oriented synthesis employs the structural information encoded in complex natural products to guide the synthesis of compound collections enriched in bioactivity. The trans-hydrindane dehydro-δ-lactone motif defines the characteristic scaffold of the steroid-like withanolides, a plant-derived natural product class with a diverse pattern of bioactivity. A withanolide-inspired compound collection was synthesized by making use of three key intermediates that contain this characteristic framework derivatized with different reactive functional groups. Biological evaluation of the compound collection in cell-based assays that monitored biological signal-transduction processes revealed a novel class of Hedgehog signaling inhibitors that target the protein Smoothened.

  4. Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing

    PubMed Central

    Kazmers, Nikolas H.; McKenzie, Jennifer A.; Shen, Tony S.; Long, Fanxin; Silva, Matthew J.

    2015-01-01

    Hedgehog (Hh) signaling is critical in developmental osteogenesis, and recent studies suggest it may also play a role in regulating osteogenic gene expression in the post-natal setting. However, there is a void of studies directly assessing the effect of Hh inhibition on post-natal osteogenesis. This study utilized a cyclic loading-induced ulnar stress fracture model to evaluate the hypothesis that Hh signaling contributes to osteogenesis and angiogenesis during stress fracture healing. Immediately prior to loading, adult rats were given GDC-0449 (Vismodegib - a selective Hh pathway inhibitor; 50mg/kg orally twice daily), or vehicle. Hh signaling was upregulated in response to stress fracture at 3d (Ptch1, Gli1 expression), and was markedly inhibited by GDC-0449 at 1d and 3d in the loaded and non-loaded ulnae. GDC-0449 did not affect Hh ligand expression (Shh, Ihh, Dhh) at 1d, but decreased Shh expression by 37% at 3d. GDC-0449 decreased woven bone volume (−37%) and mineral density (−17%) at 7d. Dynamic histomorphometry revealed that the 7d callus was composed predominantly of woven bone in both groups. The observed reduction in woven bone occurred concomitantly with decreased expression of Alpl and Ibsp, but was not associated with differences in early cellular proliferation (as determined by callus PCNA staining at 3d), osteoblastic differentiation (Osx expression at 1d and 3d), chondrogenic gene expression (Acan, Sox9, and Col2α1 expression at 1d and 3d), or bone resorption metrics (callus TRAP staining at 3d, Rankl and Opg expression at 1d and 3d). To evaluate angiogenesis, vWF immunohistochemistry showed that GDC-0449 reduced fracture callus blood vessel density by 55% at 3d, which was associated with increased Hif1α gene expression (+30%). Dynamic histomorphometric analysis demonstrated that GDC-0449 also inhibited lamellar bone formation. Lamellar bone analysis of the loaded limb (directly adjacent to the woven bone callus) showed that GDC-0449

  5. Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.

    PubMed

    Kazmers, Nikolas H; McKenzie, Jennifer A; Shen, Tony S; Long, Fanxin; Silva, Matthew J

    2015-12-01

    Hedgehog (Hh) signaling is critical in developmental osteogenesis, and recent studies suggest it may also play a role in regulating osteogenic gene expression in the post-natal setting. However, there is a void of studies directly assessing the effect of Hh inhibition on post-natal osteogenesis. This study utilized a cyclic loading-induced ulnar stress fracture model to evaluate the hypothesis that Hh signaling contributes to osteogenesis and angiogenesis during stress fracture healing. Immediately prior to loading, adult rats were given GDC-0449 (Vismodegib - a selective Hh pathway inhibitor; 50mg/kg orally twice daily), or vehicle. Hh signaling was upregulated in response to stress fracture at 3 days (Ptch1, Gli1 expression), and was markedly inhibited by GDC-0449 at 1 day and 3 days in the loaded and non-loaded ulnae. GDC-0449 did not affect Hh ligand expression (Shh, Ihh, Dhh) at 1 day, but decreased Shh expression by 37% at 3 days. GDC-0449 decreased woven bone volume (-37%) and mineral density (-17%) at 7 days. Dynamic histomorphometry revealed that the 7 day callus was composed predominantly of woven bone in both groups. The observed reduction in woven bone occurred concomitantly with decreased expression of Alpl and Ibsp, but was not associated with differences in early cellular proliferation (as determined by callus PCNA staining at 3 days), osteoblastic differentiation (Osx expression at 1 day and 3 days), chondrogenic gene expression (Acan, Sox9, and Col2α1 expression at 1 day and 3 days), or bone resorption metrics (callus TRAP staining at 3 days, Rankl and Opg expression at 1 day and 3 days). To evaluate angiogenesis, vWF immunohistochemistry showed that GDC-0449 reduced fracture callus blood vessel density by 55% at 3 days, which was associated with increased Hif1α gene expression (+30%). Dynamic histomorphometric analysis demonstrated that GDC-0449 also inhibited lamellar bone formation. Lamellar bone analysis of the loaded limb (directly adjacent

  6. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  7. Hedgehog signaling pathway and its targets for treatment in basal cell carcinoma

    PubMed Central

    Cucchi, Danilo; Occhione, Maria Anna; Gulino, Alberto; De Smaele, Enrico

    2012-01-01

    Basal cell carcinoma (BCC) of the skin is the most common type of cancer and accounts for up to 40% of all cancers in the US, with a growing incidence rate over recent decades in all developed countries. Surgery is curative for most patients, although it leaves unaesthetic scars, but those that develop locally advanced or metastatic BCC require different therapeutic approaches. Furthermore, patients with BCC present a high risk of developing additional tumors. The increasing economic burden and the morbidity of BCC render primary interest in the development of targeted treatments for this disease. Among the molecular signals involved in the development of BCC, the critical role of the morphogenetic Hedgehog (Hh) pathway has become evident. This pathway is found altered and activated in almost all BCCs, both sporadic and inherited. Given the centrality of the Hh pathway in the pathophysiology of BCC, the primary efforts to identify molecular targets for the topical or systemic treatment of this cancer have focused on the Hh components. Several Hh inhibitors have been so far identified – from the first identified natural cyclopamine to the recently Food and Drug Administration-approved synthetic vismodegib – most of which target the Hh receptor Smoothened (either its function or its translocation to the primary cilium). Other molecules await further characterization (bisamide compounds), while drugs currently approved for other diseases such as itraconazole (an antimicotic agent) and vitamin D3 have been tested on BCC with encouraging results. The outcomes of the numerous ongoing clinical trials are expected to expand the field in the very near future. Further research is needed to obtain drugs targeting downstream components of the Hh pathway (eg, Gli) or to exploit combinatorial therapies (eg, with phosphatidylinositol 3-kinase inhibitors or retinoids) in order to overcome potential drug resistance. PMID:27186130

  8. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    PubMed

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  9. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina.

    PubMed

    Todd, Levi; Fischer, Andy J

    2015-08-01

    Müller glia can be stimulated to de-differentiate and become proliferating progenitor cells that regenerate neurons in the retina. The signaling pathways that regulate the formation of proliferating Müller glia-derived progenitor cells (MGPCs) are beginning to be revealed. The purpose of this study was to investigate whether Hedgehog (Hh) signaling influences the formation of MGPCs in the chick retina. We find that Hh signaling is increased in damaged retinas where MGPCs are known to form. Sonic Hedgehog (Shh) is normally present in the axons of ganglion cells, but becomes associated with Müller glia and MGPCs following retinal damage. Activation of Hh signaling with recombinant human SHH (rhShh) or smoothened agonist (SAG) increased levels of Ptch1, Gli1, Gli2, Gli3, Hes1 and Hes5, and stimulated the formation of proliferating MGPCs in damaged retinas. In undamaged retinas, SAG or rhShh had no apparent effect upon the Müller glia. However, SAG combined with FGF2 potentiated the formation of MGPCs, whereas SAG combined with IGF1 stimulated the nuclear migration of Müller glia, but not the formation of MGPCs. Conversely, inhibition of Hh signaling with KAAD-cyclopamine, Gli antagonists or antibody to Shh reduced numbers of proliferating MGPCs in damaged and FGF2-treated retinas. Hh signaling potentiates Pax6, Klf4 and cFos expression in Müller glia during the formation of MGPCs. We find that FGF2/MAPK signaling recruits Hh signaling into the signaling network that drives the formation of proliferating MGPCs. Our findings implicate Hh signaling as a key component of the network of signaling pathways that promote the de-differentiation of Müller glia and proliferation of MGPCs.

  10. Signaling control of the constitutive androstane receptor (CAR).

    PubMed

    Yang, Hui; Wang, Hongbing

    2014-02-01

    The constitutive androstane receptor (CAR, NR1I3) plays a crucial role in the regulation of drug metabolism, energy homeostasis, and cancer development through modulating the transcription of its numerous target genes. Different from prototypical nuclear receptors, CAR can be activated by either direct ligand binding or ligand-independent (indirect) mechanisms both initiated with nuclear translocation of CAR from the cytoplasm. In comparison to the well-defined ligand-based activation, indirect activation of CAR appears to be exclusively involved in the nuclear translocation through mechanisms yet to be fully understood. Accumulating evidence reveals that without activation, CAR forms a protein complex in the cytoplasm where it can be functionally affected by multiple signaling pathways. In this review, we discuss recent progresses in our understanding of the signaling regulation of CAR nuclear accumulation and activation. We expect that this review will also provide greater insight into the similarity and difference between the mechanisms of direct vs. indirect human CAR activation.

  11. Chondroprotective effects of palmatine on osteoarthritis in vivo and in vitro: A possible mechanism of inhibiting the Wnt/β-catenin and Hedgehog signaling pathways.

    PubMed

    Zhou, Xindie; Lin, Xiaolong; Xiong, Yan; Jiang, Lifeng; Li, Weijun; Li, Jin; Wu, Lidong

    2016-05-01

    The present study aimed to investigate the effect of palmatine (Pal) in a rabbit osteoarthritis (OA) model in vivo and rabbit interleukin-1β (IL-1β)-stimulated chondrocytes in vitro. Appropriate concentrations of Pal were identified by the MTT assay and used to preincubate IL-1β-induced chondrocytes, as well as an activator or inhibitor of Wnt and Hedgehog signaling pathways. Matrix metalloproteinase (MMP)-1, 3, and 13; tissue inhibitor of metalloproteinase (TIMP)-1; collagenase II; aggrecan; and the related molecules of the Wnt/β-catenin and Hedgehog signaling pathways were investigated. Protein expression was detected by Western blot analysis and messenger RNA (mRNA) expression was examined by PCR analysis. Pal (0.3 mL, 100 mg/L) was injected into rabbit knee joints and histological examination, immunohistochemistry, and Mankin scoring of the articular cartilage were performed. Pal (10-100 mg/L) had no effect on chondrocyte viability, decreased the expression of the MMPs, and increased the synthesis of TIMP-1whereas collagenase II and aggrecan were inhibited by IL-1β. When the activator (Licl) and inhibitor (DKK-1) of the Wnt/β-catenin signaling pathway as well as the inhibitor (cyclopamine) of the Hedgehog signaling pathway were added, the Wnt/β-catenin signaling pathway was less inhibited by Pal, and a similar inhibitory effect of cyclopamine on the Hedgehog signaling pathway was evident. Additionally, Pal enhanced the effect of cyclopamine. The histological examination, immunohistochemistry and Mankin scoring also demonstrated the protective effect of Pal, and the inhibition of the Wnt and Hedgehog signaling pathways by Pal. Pal may be useful in the treatment of OA, in which its effect is likely mediated via the Wnt/β-catenin and Hedgehog signaling pathways.

  12. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling

    PubMed Central

    2013-01-01

    Background The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. Results We show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. Conclusion These results provide insight into a poorly

  13. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    PubMed

    Rodova, Mariana; Fu, Junsheng; Watkins, Dara Nall; Srivastava, Rakesh K; Shankar, Sharmila

    2012-01-01

    Dysregulation of the sonic hedgehog (Shh) signaling pathway has been associated with cancer stem cells (CSC) and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN), an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4) as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway. Thus

  14. Targeting hedgehog in hematologic malignancy.

    PubMed

    Irvine, David A; Copland, Mhairi

    2012-03-08

    The Hedgehog pathway is a critical mediator of embryonic patterning and organ development, including hematopoiesis. It influences stem cell fate, differentiation, proliferation, and apoptosis in responsive tissues. In adult organisms, hedgehog pathway activity is required for aspects of tissue maintenance and regeneration; however, there is increasing awareness that abnormal hedgehog signaling is associated with malignancy. Hedgehog signaling is critical for early hematopoietic development, but there is controversy over its role in normal hematopoiesis in adult organisms where it may be dispensable. Conversely, hedgehog signaling appears to be an important survival and proliferation signal for a spectrum of hematologic malignancies. Furthermore, hedgehog signaling may be critical for the maintenance and expansion of leukemic stem cells and therefore provides a possible mechanism to selectively target these primitive cell subpopulations, which are resistant to conventional chemotherapy. Indeed, phase 1 clinical trials of hedgehog pathway inhibitors are currently underway to test this hypothesis in myeloid leukemias. This review covers: (1) the hedgehog pathway and its role in normal and malignant hematopoiesis, (2) the recent development of clinical grade small molecule inhibitors of the pathway, and (3) the potential utility of hedgehog pathway inhibition as a therapeutic strategy in hemato-oncology.

  15. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways.

    PubMed

    Farahmand, L; Darvishi, B; Majidzadeh-A, K; Madjid Ansari, A

    2017-02-01

    Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.

  16. Antagonistic and cooperative actions of Kif7 and Sufu define graded intracellular Gli activities in Hedgehog signaling.

    PubMed

    Law, Kelvin King Lo; Makino, Shigeru; Mo, Rong; Zhang, Xiaoyun; Puviindran, Vijitha; Hui, Chi-Chung

    2012-01-01

    Graded Hedgehog (Hh) signaling governs the balance of Gli transcriptional activators and repressors to specify diverse ventral cell fates in the spinal cord. It remains unclear how distinct intracellular Gli activity is generated. Here, we demonstrate that Sufu acts universally as a negative regulator of Hh signaling, whereas Kif7 inhibits Gli activity in cooperation with, and independent of, Sufu. Together, they deter naïve precursors from acquiring increasingly ventral identity. We show that Kif7 is also required to establish high intracellular Gli activity by antagonizing the Sufu-inhibition of Gli2. Strikingly, by abolishing the negative regulatory action of Sufu, diverse ventral cell fates can be specified in the absence of extracellular Hh signaling. These data suggest that Sufu is the primary regulator of graded Hh signaling and establish that the antagonistic and cooperative actions of Kif7 and Sufu are responsible for setting up distinct Gli activity in ventral cell fate specification.

  17. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma

    PubMed Central

    Cannonier, Shellese A.; Gonzales, Cara B.; Ely, Kim; Guelcher, Scott A.; Sterling, Julie A.

    2016-01-01

    Oral Squamous Cell Carcinoma (OSCC) is the sixth most common cancer worldwide. OSCC invasion into the lymph nodes and mandible correlates with increased rates of recurrence and lower overall survival. Tumors that infiltrate mandibular bone proliferate rapidly and induce bone destruction. While survival rates have increased 12% over the last 20 years, this improvement is attributed to general advances in prevention, earlier detection, and updated treatments. Additionally, despite decades of research, the molecular mechanisms of OSCC invasion into the mandible are not well understood. Parathyroid Hormone-related Protein (PTHrP), has been shown to be essential for mandibular invasion in OSCC animal models, and our previous studies demonstrate that the transcription factor Gli2 increases PTHrP expression in tumor metastasis to bone. In OSCC, we investigated regulators of Gli2, including Hedgehog, TGFβ, and Wnt signaling to elucidate how PTHrP expression is controlled. Here we show that canonical Hedgehog and TGFβ signaling cooperate to increase PTHrP expression and mandibular invasion in a Gli2-dependent manner. Additionally, in an orthotopic model of mandibular invasion, inhibition of Gli2 using shRNA resulted in a significant decrease of both PTHrP expression and bony invasion. Collectively, our findings demonstrate that multiple signaling pathways converge on Gli2 to mediate PTHrP expression and bony invasion, highlighting Gli2 as a therapeutic target to prevent bony invasion in OSCC. PMID:27738315

  18. A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the Drosophila anteroposterior compartment boundary.

    PubMed

    Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian

    2015-11-15

    Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds.

  19. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster

    PubMed Central

    Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer

    2012-01-01

    Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997

  20. Constitutive and ligand-induced EGFR signaling triggers distinct and mutually exclusive downstream signaling networks

    PubMed Central

    Chakraborty, Sharmistha; Li, Li; Puliyappadamba, VineshkumarThidil; Guo, Gao; Hatanpaa, Kimmo J.; Mickey, Bruce; Souza, Rhonda F.; Vo, Peggy; Herz, Joachim; Chen, Mei-Ru; Boothman, David A.; Pandita, Tej K.; Wang, David H.; Sen, Ganes C.; Habib, Amyn A.

    2014-01-01

    EGFR overexpression plays an important oncogenic role in cancer. Regular EGFR protein levels are increased in cancer cells and the receptor then becomes constitutively active. However, downstream signals generated by constitutively activated EGFR are unknown. Here we report that the overexpressed EGFR oscillates between two distinct and mutually exclusive modes of signaling. Constitutive or non-canonical EGFR signaling activates the transcription factor IRF3 leading to expression of IFI27, IFIT1, and TRAIL. Ligand-mediated activation of EGFR switches off IRF3 dependent transcription, activates canonical ERK and Akt signals, and confers sensitivity to chemotherapy and virus-induced cell death. Mechanistically, the distinct downstream signals result from a switch of EGFR associated proteins. EGFR constitutively complexes with IRF3 and TBK1 leading to TBK1 and IRF3 phosphorylation. Addition of EGF dissociates TBK1, IRF3, and EGFR leading to a loss of IRF3 activity, Shc-EGFR association and ERK activation. Finally, we provide evidence for non-canonical EGFR signaling in glioblastoma. PMID:25503978

  1. Discovery of pyrrolo[3,2-c]quinoline-4-one derivatives as novel hedgehog signaling inhibitors.

    PubMed

    Ohashi, Tomohiro; Oguro, Yuya; Tanaka, Toshio; Shiokawa, Zenyu; Shibata, Sachio; Sato, Yoshihiko; Yamakawa, Hiroko; Hattori, Harumi; Yamamoto, Yukiko; Kondo, Shigeru; Miyamoto, Maki; Tojo, Hideaki; Baba, Atsuo; Sasaki, Satoshi

    2012-09-15

    The Hedgehog (Hh) signaling pathway plays a significant role in the regulation of cell growth and differentiation during embryonic development. Since activation of the Hh signaling pathway is implicated in several types of human cancers, inhibitors of this pathway could be promising anticancer agents. Using high throughput screening, thieno[3,2-c]quinoline-4-one derivative 9a was identified as a compound of interest with potent in vitro activity but poor metabolic stability. Our efforts focused on enhancement of in vitro inhibitory activity and metabolic stability, including core ring conversion and side chain optimization. This led to the discovery of pyrrolo[3,2-c]quinoline-4-one derivative 12b, which has a structure distinct from previously reported Hh signaling inhibitors. Compound 12b suppressed stromal Gli1 mRNA expression in a murine model and demonstrated antitumor activity in a murine medulloblastoma allograft model.

  2. Taxane-induced hedgehog signaling is linked to expansion of breast cancer stem-like populations after chemotherapy.

    PubMed

    Sims-Mourtada, Jennifer; Opdenaker, Lynn M; Davis, Joshua; Arnold, Kimberly M; Flynn, Daniel

    2015-11-01

    Recurrence of breast cancer after chemotherapy is thought to arise from resistant breast cancer stem cells which are eventually able to repopulate the tumor. The Hedgehog (HH) signaling pathway has been shown to regulate the proliferation and survival of breast cancer stem cells, and has been shown to promote resistance to chemotherapy through the activation of multi-drug resistance and pro survival pathways. Here we report that exposure of heterogenous breast cancer cell lines to docetaxel (DOC) resulted in release of Sonic Hedgehog ligand (SHH) and activation of the HH pathway as evidenced by increased expression and nuclear translocation of the downstream effector Gli-1 at 4-24 h after DOC treatment. This activation had little effect on the bulk of the tumor cell population as inhibition of HH signaling failed to increase apoptosis in response to DOC. However, HH pathway activation was required for clonogenic growth of cell lines after DOC. Increases in stemness markers as well as mammosphere formation were observed after treatment with DOC suggesting an increase in the breast cancer stem cell populations. These increases were similar to that of cell lines cultured in the presence of recombinant SHH and could be eliminated by co-treatment with HH inhibitors. These results suggest that HH pathway activation induced by DOC treatment does not have a chemosensitizing effect on the heterogeneous tumor population, but may be required for survival and expansion of breast cancer stem cells after chemotherapy.

  3. Statins activate the canonical hedgehog-signaling and aggravate non-cirrhotic portal hypertension, but inhibit the non-canonical hedgehog signaling and cirrhotic portal hypertension.

    PubMed

    Uschner, Frank E; Ranabhat, Ganesh; Choi, Steve S; Granzow, Michaela; Klein, Sabine; Schierwagen, Robert; Raskopf, Esther; Gautsch, Sebastian; van der Ven, Peter F M; Fürst, Dieter O; Strassburg, Christian P; Sauerbruch, Tilman; Diehl, Anna Mae; Trebicka, Jonel

    2015-09-28

    Liver cirrhosis but also portal vein obstruction cause portal hypertension (PHT) and angiogenesis. This study investigated the differences of angiogenesis in cirrhotic and non-cirrhotic PHT with special emphasis on the canonical (Shh/Gli) and non-canonical (Shh/RhoA) hedgehog pathway. Cirrhotic (bile duct ligation/BDL; CCl4 intoxication) and non-cirrhotic (partial portal vein ligation/PPVL) rats received either atorvastatin (15 mg/kg; 7d) or control chow before sacrifice. Invasive hemodynamic measurement and Matrigel implantation assessed angiogenesis in vivo. Angiogenesis in vitro was analysed using migration and tube formation assay. In liver and vessel samples from animals and humans, transcript expression was analyzed using RT-PCR and protein expression using Western blot. Atorvastatin decreased portal pressure, shunt flow and angiogenesis in cirrhosis, whereas atorvastatin increased these parameters in PPVL rats. Non-canonical Hh was upregulated in experimental and human liver cirrhosis and was blunted by atorvastatin. Moreover, atorvastatin blocked the non-canonical Hh-pathway RhoA dependently in activated hepatic steallate cells (HSCs). Interestingly, hepatic and extrahepatic Hh-pathway was enhanced in PPVL rats, which resulted in increased angiogenesis. In summary, statins caused contrary effects in cirrhotic and non-cirrhotic portal hypertension. Atorvastatin inhibited the non-canonical Hh-pathway and angiogenesis in cirrhosis. In portal vein obstruction, statins enhanced the canonical Hh-pathway and aggravated PHT and angiogenesis.

  4. Tumor-Derived Suppressor of Fused Mutations Reveal Hedgehog Pathway Interactions.

    PubMed

    Urman, Nicole M; Mirza, Amar; Atwood, Scott X; Whitson, Ramon J; Sarin, Kavita Y; Tang, Jean Y; Oro, Anthony E

    2016-01-01

    The Hedgehog pathway is a potent regulator of cellular growth and plays a central role in the development of many cancers including basal cell carcinoma (BCC). The majority of BCCs arise from mutations in the Patched receptor resulting in constitutive activation of the Hedgehog pathway. Secondary driver mutations promote BCC oncogenesis and occur frequently due to the high mutational burden resulting from sun exposure of the skin. Here, we uncover novel secondary mutations in Suppressor of Fused (SUFU), the major negative regulator of the Hedgehog pathway. SUFU normally binds to a Hedgehog transcriptional activator, GLI1, in order to prevent it from initiating transcription of Hedgehog target genes. We sequenced tumor-normal pairs from patients with early sporadic BCCs. This resulted in the discovery of nine mutations in SUFU, which were functionally investigated to determine whether they help drive BCC formation. Our results show that four of the SUFU mutations inappropriately activate the Hedgehog pathway, suggesting they may act as driver mutations for BCC development. Indeed, all four of the loss of function SUFU variants were found to disrupt its binding to GLI, leading to constitutive pathway activation. Our results from functional characterization of these mutations shed light on SUFU's role in Hedgehog signaling, tumor progression, and highlight a way in which BCCs can arise.

  5. Tumor-Derived Suppressor of Fused Mutations Reveal Hedgehog Pathway Interactions

    PubMed Central

    Urman, Nicole M.; Mirza, Amar; Atwood, Scott X.; Whitson, Ramon J.; Sarin, Kavita Y.; Tang, Jean Y.; Oro, Anthony E.

    2016-01-01

    The Hedgehog pathway is a potent regulator of cellular growth and plays a central role in the development of many cancers including basal cell carcinoma (BCC). The majority of BCCs arise from mutations in the Patched receptor resulting in constitutive activation of the Hedgehog pathway. Secondary driver mutations promote BCC oncogenesis and occur frequently due to the high mutational burden resulting from sun exposure of the skin. Here, we uncover novel secondary mutations in Suppressor of Fused (SUFU), the major negative regulator of the Hedgehog pathway. SUFU normally binds to a Hedgehog transcriptional activator, GLI1, in order to prevent it from initiating transcription of Hedgehog target genes. We sequenced tumor-normal pairs from patients with early sporadic BCCs. This resulted in the discovery of nine mutations in SUFU, which were functionally investigated to determine whether they help drive BCC formation. Our results show that four of the SUFU mutations inappropriately activate the Hedgehog pathway, suggesting they may act as driver mutations for BCC development. Indeed, all four of the loss of function SUFU variants were found to disrupt its binding to GLI, leading to constitutive pathway activation. Our results from functional characterization of these mutations shed light on SUFU’s role in Hedgehog signaling, tumor progression, and highlight a way in which BCCs can arise. PMID:28030567

  6. Imiquimod directly inhibits Hedgehog signalling by stimulating adenosine receptor/protein kinase A-mediated GLI phosphorylation

    PubMed Central

    Wolff, F; Loipetzberger, A; Gruber, W; Esterbauer, H; Aberger, F; Frischauf, A M

    2013-01-01

    Imiquimod (IMQ), a nucleoside analogue of the imidazoquinoline family, is used in the topical treatment of basal cell carcinoma (BCC) and other skin diseases. It is reported to be a TLR7 and TLR8 agonist and, as such, initiates a Th1 immune response by activating sentinel cells in the vicinity of the tumour. BCC is a hedgehog (HH)-driven malignancy with oncogenic glioma-associated oncogene (GLI) signalling activated in a ligand-independent manner. Here we show that IMQ can also directly repress HH signalling by negatively modulating GLI activity in BCC and medulloblastoma cells. Further, we provide evidence that the repressive effect of IMQ on HH signalling is not dependent on TLR/MYD88 signalling. Our results suggest a mechanism for IMQ engaging adenosine receptors (ADORAs) to control GLI signalling. Pharmacological activation of ADORA with either an ADORA agonist or IMQ resulted in a protein kinase A (PKA)-mediated GLI phosphorylation and reduction in GLI activator levels. The activation of PKA and HH pathway target gene downregulation in response to IMQ were abrogated by ADORA inhibition. Furthermore, activated Smoothened signalling, which positively signals to GLI transcription factors, could be effectively counteracted by IMQ. These results reveal a previously unknown mode of action of IMQ in the treatment of BCC and also suggest a role for ADORAs in the regulation of oncogenic HH signalling. PMID:23995793

  7. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

    PubMed

    Li, Shuangxi; Li, Shuang; Han, Yuhong; Tong, Chao; Wang, Bing; Chen, Yongbin; Jiang, Jin

    2016-06-01

    Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.

  8. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis

    NASA Astrophysics Data System (ADS)

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-05-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.

  9. Small hepatocyte-like progenitor cells may be a Hedgehog signaling pathway-controlled subgroup of liver stem cells

    PubMed Central

    Wang, Zhibin; Li, Wei; Li, Chun; Yang, Yang; Li, Wang; Zhang, Liying; Sun, Shumei; Li, Junxiang; Cai, Yidong

    2016-01-01

    The present study aimed to investigate the expression levels of components of the Hedgehog signaling pathway (HH) during the proliferation of a liver stem cell subgroup, namely small hepatocyte-like progenitor cells (SHPCs). Retrorsine-treated Fisher 344 rats underwent a partial hepatectomy (PH) to induce the proliferation of SHPCs, after which reverse transcription-polymerase chain reaction (PCR), quantitative PCR, immunohistochemistry and western blot analysis were performed to analyze the expression of various components of the HH in primary SHPCs at different times points post-PH. A number of components of the HH, including Indian hedgehog (IHH), patched (PTCH), smoothened and glioma-associated oncogene (GLI)1, 2 and 3, were continuously expressed and showed dynamic changes in proliferating SHPCs. In addition, the expression levels of IHH, PTCH and GLI1 were significantly different as compared with those of the control group at the same time point, and there were significant differences among the various time points in the experimental group (P<0.01). Furthermore, there was an association between the postoperative day and expression levels of HH components in the retrorsine-treated group. An immunohistochemical analysis demonstrated that PTCH was also expressed at the protein level. In conclusion, the results of the present study suggested that the HH was continuously activated during the proliferation of SHPCs, thus indicating that SHPCs may be a subgroup of stem cells that are regulated by the HH. PMID:27703504

  10. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels*

    PubMed Central

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J.

    2015-01-01

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. PMID:26451044

  11. act up controls actin polymerization to alter cell shape and restrict Hedgehog signaling in the Drosophila eye disc.

    PubMed

    Benlali, A; Draskovic, I; Hazelett, D J; Treisman, J E

    2000-04-28

    Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.

  12. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development.

    PubMed

    Tostar, Ulrica; Malm, Carl Johan; Meis-Kindblom, Jeanne M; Kindblom, Lars-Gunnar; Toftgård, Rune; Undén, Anne Birgitte

    2006-01-01

    The naevoid basal cell carcinoma syndrome (NBCCS) is caused by mutations in the hedgehog receptor PTCH gene. It is characterized by developmental defects and a predisposition to the development of certain tumours, such as basal cell carcinoma, medulloblastoma and meningioma, and potentially fetal rhabdomyomas and embryonal rhabdomyosarcomas. This study aimed to analyse PTCH status in an NBCCS patient with fetal rhabdomyoma and to investigate whether deregulation of hedgehog signalling, as shown by altered expression of hedgehog pathway components and/or genetic imbalances, is a general finding in sporadic rhabdomyomas and rhabdomyosarcomas. The NBCCS patient had a novel PTCH germ-line mutation, 1370insT, and developed a fetal rhabdomyoma that harboured a 30 bp in-frame deletion in the second allele resulting in homozygous inactivation of PTCH. Sporadic rhabdomyomas and rhabdomyosarcomas showed overexpression of PTCH (43/43) and GLI1 (41/43) mRNA, as determined by in situ hybridization, indicating ongoing active hedgehog signalling. Immunohistochemical staining revealed a subgroup of fetal rhabdomyomas and embryonal rhabdomyosarcomas (12/34) lacking PTCH immunoreactivity. Four of nine informative fetal rhabdomyomas and embryonal rhabdomyosarcomas showed loss of heterozygosity (LOH) in the PTCH region with two of these (one fetal rhabdomyoma and one embryonal rhabdomyosarcoma) also showing LOH in the SUFU region. These findings suggest that haploinsufficiency for the two tumour suppressor genes PTCH and SUFU, which are both active in the same signalling pathway, may be important for tumour development. Based on our results we propose that the pathogenesis of rhabdomyoblastic tumours, particularly fetal rhabdomyomas and embryonal rhabdomyosarcomas, involves deregulation of the hedgehog signalling pathway.

  13. p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling

    PubMed Central

    Memmi, Elisa Maria; Sanarico, Anna Giulia; Giacobbe, Arianna; Peschiaroli, Angelo; Frezza, Valentina; Cicalese, Angelo; Pisati, Federica; Tosoni, Daniela; Zhou, Huiqing; Tonon, Giovanni; Antonov, Alexey; Melino, Gerry; Pelicci, Pier Giuseppe; Bernassola, Francesca

    2015-01-01

    The predominant p63 isoform, ΔNp63, is a master regulator of normal epithelial stem cell (SC) maintenance. However, in vivo evidence of the regulation of cancer stem cell (CSC) properties by p63 is still limited. Here, we exploit the transgenic MMTV-ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) mouse model of carcinogenesis to dissect the role of p63 in the regulation of mammary CSC self-renewal and breast tumorigenesis. ErbB2 tumor cells enriched for SC-like properties display increased levels of ΔNp63 expression compared with normal mammary progenitors. Down-regulation of p63 in ErbB2 mammospheres markedly restricts self-renewal and expansion of CSCs, and this action is fully independent of p53. Furthermore, transplantation of ErbB2 progenitors expressing shRNAs against p63 into the mammary fat pads of syngeneic mice delays tumor growth in vivo. p63 knockdown in ErbB2 progenitors diminishes the expression of genes encoding components of the Sonic Hedgehog (Hh) signaling pathway, a driver of mammary SC self-renewal. Remarkably, p63 regulates the expression of Sonic Hedgehog (Shh), GLI family zinc finger 2 (Gli2), and Patched1 (Ptch1) genes by directly binding to their gene regulatory regions, and eventually contributes to pathway activation. Collectively, these studies highlight the importance of p63 in maintaining the self-renewal potential of mammary CSCs via a positive modulation of the Hh signaling pathway. PMID:25739959

  14. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway

    PubMed Central

    Zhou, Zhong-guang; Zhang, Chao-ying; Fei, Hong-xin; Zhong, Li-li; Bai, Yun

    2015-01-01

    Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell cycle arrest was detected by flow cytometry; the BxPC-3 xenograft was established to evaluate the tumor growth inhibition of PAMD; hematoxylin-eosin staining was applied to analyze the pathological morphology of tumor tissues; immunohistochemistry (IHC) and Western blot was adopted to detect the protein levels; quantitative real-time polymerase chain reaction was used to determine the mRNA expressions. Results: PAMD shows time-and dose-dependent proliferation inhibition on the BxPC-3 cell, induced G0/G1 phase arrest and cell apoptosis in vitro. PAMD also showed better inhibition of tumor growth and a preferable safety profile compared with chemotherapeutic regimen 5-fluoro-2, 4 (1 H, 3 H) pyrimidinedione in BxPC-3 xenograft in vivo. Furthermore, PAMD directly decreases the protein and mRNA levels of Sonic Hedgehog (Shh) and its downstream transcription factor Gli-1 in the BxPC-3 tumor tissues. Conclusion: The treatment of PAMD displayed Hh signaling pathway blockade through decreasing the protein and mRNA levels of Shh and its downstream transcription factor Gli-1, suggesting a promising strategy in treating human PC. PMID:26600712

  15. Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye.

    PubMed

    Lee, Jiwoon; Willer, Jason R; Willer, Gregory B; Smith, Kierann; Gregg, Ronald G; Gross, Jeffrey M

    2008-07-01

    In this study, we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post-fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development.

  16. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells.

    PubMed

    Hyun, Jeongeun; Wang, Sihyung; Kim, Jieun; Kim, Gi Jin; Jung, Youngmi

    2015-09-15

    Although chorionic plate-derived mesenchymal stem cells (CP-MSCs) were shown to promote liver regeneration, the mechanisms underlying the effect remain unclear. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged liver. MSCs release microRNAs mediating various cellular responses. Hence, we hypothesized that microRNAs from CP-MSCs regulated Hh signaling, which influenced liver regeneration. Livers were obtained from carbon tetrachloride (CCl4)-treated rats transplanted with human CP-MSCs (Tx) or saline (non-Tx). Sonic Hh, one of Hh ligands, increased in CCl4-treated liver, whereas it decreased in CP-MSC-treated liver with CCl4. The expression of Hh-target genes was significantly downregulated in the Tx. Reduced expansion of progenitors and regressed fibrosis were observed in the liver of the Tx rats. CP-MSCs suppressed the expression of Hh and profibrotic genes in co-cultured LX2 (human hepatic stellate cell) with CP-MSCs. MicroRNA-125b targeting smo was retained in exosomes of CP-MSCs. CP-MSCs with microRNA-125b inhibitor failed to attenuate the expression of Hh signaling and profibrotic genes in the activated HSCs. Therefore, these results demonstrated that microRNA-125b from CP-MSCs suppressed the activation of Hh signaling, which promoted the reduced fibrosis, suggesting that microRNA-mediated regulation of Hh signaling contributed to liver regeneration by CP-MSCs.

  17. Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain.

    PubMed

    Sugahara, Fumiaki; Aota, Shin-ichi; Kuraku, Shigehiro; Murakami, Yasunori; Takio-Ogawa, Yoko; Hirano, Shigeki; Kuratani, Shigeru

    2011-03-01

    Dorsoventral (DV) specification is a crucial step for the development of the vertebrate telencephalon. Clarifying the origin of this mechanism will lead to a better understanding of vertebrate central nervous system (CNS) evolution. Based on the lamprey, a sister group of the gnathostomes (jawed vertebrates), we identified three lamprey Hedgehog (Hh) homologues, which are thought to play central signalling roles in telencephalon patterning. However, unlike in gnathostomes, none of these genes, nor Lhx6/7/8, a marker for the migrating interneuron subtype, was expressed in the ventral telencephalon, consistent with the reported absence of the medial ganglionic eminence (MGE) in this animal. Homologues of Gsh2, Isl1/2 and Sp8, which are involved in the patterning of the lateral ganglionic eminence (LGE) of gnathostomes, were expressed in the lamprey subpallium, as in gnathostomes. Hh signalling is necessary for induction of the subpallium identity in the gnathostome telencephalon. When Hh signalling was inhibited, the ventral identity was disrupted in the lamprey, suggesting that prechordal mesoderm-derived Hh signalling might be involved in the DV patterning of the telencephalon. By blocking fibroblast growth factor (FGF) signalling, the ventral telencephalon was suppressed in the lamprey, as in gnathostomes. We conclude that Hh- and FGF-dependent DV patterning, together with the resultant LGE identity, are likely to have been established in a common ancestor before the divergence of cyclostomes and gnathostomes. Later, gnathostomes would have acquired a novel Hh expression domain corresponding to the MGE, leading to the obtainment of cortical interneurons.

  18. The Hedgehog Signaling Networks in Lung Cancer: The Mechanisms and Roles in Tumor Progression and Implications for Cancer Therapy

    PubMed Central

    2016-01-01

    Lung cancer is the most common cause of cancer-related death worldwide and is classified into small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Several gene mutations that contribute to aberrant cell proliferation have been identified in lung adenocarcinoma, a part of NSCLC. Various anticancer drugs that target these mutated molecules have been developed for NSCLC treatment. However, although molecularly targeted drugs are initially effective for patients, the 5-year survival rate remains low because of tumor relapse. Therefore, more effective drugs for lung cancer treatment should be developed. The hedgehog (HH) signaling pathway contributes to organ development and stem cell maintenance, and aberrant activation of this signaling pathway is observed in various cancers including lung cancer. In lung cancer, HH signaling pathway upregulates cancer cell proliferation and maintains cancer stem cells as well as cancer-associated fibroblasts (CAFs). Furthermore, physical contact between CAFs and NSCLC cells induces HH signaling pathway activation in NSCLC cells to enhance their metastatic potential. Therefore, HH signaling pathway inhibitors could be a useful option for lung cancer therapy. PMID:28105432

  19. Manipulations of PKA in chick limb development reveal roles in digit patterning including a positive role in Sonic Hedgehog signaling.

    PubMed

    Tiecke, Eva; Turner, Roisin; Sanz-Ezquerro, Juan Jose; Warner, Anne; Tickle, Cheryll

    2007-05-01

    Sonic Hedgehog (Shh) signaling by the polarizing region, at the posterior of the vertebrate limb bud, is pivotal in determining digit number and identity. Shh establishes a gradient of the bifunctional transcriptional effector, Gli3, with high levels of full-length activator (Gli3A) in the posterior bud, where digits form, and high levels of shorter repressor (Gli3R) in the anterior. Repressor formation depends on protein kinase A (PKA), but in Drosophila, PKA also plays a role in activator function. Increasing PKA levels in chick limb development using Forskolin had no effect on posterior polarizing activity but weak polarizing activity, based on ligand-independent Shh signaling, was induced in anterior limb bud cells resulting in extra digits. Manipulating PKA activity levels directly with a retrovirus expressing activated PKA induced extra digits similar to those induced by Forskolin treatment suggesting that PKA may have a previously unrecognized positive role in Shh signaling in vertebrate limbs. Expressing dominant negative PKA also induced extra, sometimes multiple digits, from anterior limb bud demonstrating the negative role in Shh signaling. PKA levels in the limb bud are high posteriorly and low anteriorly, suggesting that PKA activity may influence the outcome of Shh signaling in normal development.

  20. The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint

    PubMed Central

    Di Magno, Laura; Basile, Alessio; Coni, Sonia; Manni, Simona; Sdruscia, Giulia; D'Amico, Davide; Antonucci, Laura; Infante, Paola; De Smaele, Enrico; Cucchi, Danilo; Ferretti, Elisabetta; Di Marcotullio, Lucia; Screpanti, Isabella; Canettieri, Gianluca

    2016-01-01

    Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs) and its aberrant activation is a leading cause of Medulloblastoma, the most frequent pediatric brain tumor. We show here that the energy sensor AMPK inhibits Hh signaling by phosphorylating a single residue of human Gli1 that is not conserved in other species. Studies with selective agonists and genetic deletion have revealed that AMPK activation inhibits canonical Hh signaling in human, but not in mouse cells. Indeed we show that AMPK phosphorylates Gli1 at the unique residue Ser408, which is conserved only in primates but not in other species. Once phosphorylated, Gli1 is targeted for proteasomal degradation. Notably, we show that selective AMPK activation inhibits Gli1-driven proliferation and that this effect is linked to Ser408 phosphorylation, which represents a key metabolic checkpoint for Hh signaling. Collectively, this data unveil a novel mechanism of inhibition of Gli1 function, which is exclusive for human cells and may be exploited for the treatment of Medulloblastoma or other Gli1 driven tumors. PMID:26843621

  1. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats.

    PubMed

    Yu, Pingping; Wang, Li; Tang, Fanren; Zeng, Li; Zhou, Luling; Song, Xiaosong; Jia, Wei; Chen, Jixiang; Yang, Qin

    2017-01-01

    Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.

  2. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells.

    PubMed

    Chiang, Ming-Fu; Chen, Hsin-Hong; Chi, Chih-Wen; Sze, Chun-I; Hsu, Ming-Ling; Shieh, Hui-Ru; Lin, Chin-Ping; Tsai, Jo-Ting; Chen, Yu-Jen

    2015-03-01

    WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further

  3. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease

    PubMed Central

    Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D. Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness. PMID:28187190

  4. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma.

    PubMed

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-09-15

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors.

  5. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    SciTech Connect

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J.

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  6. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder.

    PubMed

    Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A

    2015-10-01

    Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.

  7. Embryonic tongue morphogenesis in an organ culture model of mouse mandibular arches: blocking Sonic hedgehog signaling leads to microglossia.

    PubMed

    Torii, Daisuke; Soeno, Yuuichi; Fujita, Kazuya; Sato, Kaori; Aoba, Takaaki; Taya, Yuji

    2016-01-01

    Mouse tongue development is initiated with the formation of lateral lingual swellings just before fusion between the mediodorsal surfaces of the mandibular arches at around embryonic day 11.0. Here, we investigated the role of Sonic hedgehog (Shh) signaling in embryonic mouse tongue morphogenesis. For this, we used an organ culture model of the mandibular arches from mouse embryos at embryonic day 10.5. When the Shh signaling inhibitor jervine was added to the culture medium for 24-96 h, the formation of lateral lingual swellings and subsequent epithelial invagination into the mesenchyme were impaired markedly, leading to a hypoplastic tongue with an incomplete oral sulcus. Notably, jervine treatment reduced the proliferation of non-myogenic mesenchymal cells at the onset of forming the lateral lingual swellings, whereas it did not affect the proliferation and differentiation of a myogenic cell lineage, which created a cell community at the central circumferential region of the lateral lingual swellings as seen in vivo and in control cultures lacking the inhibitor. Thus, epithelium-derived Shh signaling stimulates the proliferation of non-myogenic mesenchymal cells essential for forming lateral lingual swellings and contributes to epithelial invagination into the mesenchyme during early tongue development.

  8. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities?

    PubMed

    Rovida, Elisabetta; Stecca, Barbara

    2015-12-01

    The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.

  9. Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation

    PubMed Central

    Martínez-Bosch, Neus; Fernández-Barrena, Maite G.; Moreno, Mireia; Ortiz-Zapater, Elena; André, Sabine; Gabius, Hans-Joachim; Hwang, Rosa F.; Poirier, Françoise; Munné-Collado, Jessica; Iglesias, Mar; Navas, Carolina; Guerra, Carmen; Fernández-Zapico, Martin E.; Navarro, Pilar

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDA) is the most aggressive tumor, showing incidence and mortality values almost identical. Despite remarkable advances in PDA molecular characterization, this disease is still refractory to current treatments. Desmoplastic stroma, a constant hallmark of PDA, has recently emerged as the major responsible for PDA therapeutic resistance, therefore representing a promising target. Galectin-1 (Gal1), a glycan-binding protein, is highly expressed in PDA stroma but its role remains unknown. Here, we aim to understand in vivo Gal1 functions and the molecular pathways responsible for its oncogenic properties. Genetic ablation of Gal1 in Ela-myc mice dampens tumor progression through inhibition of proliferation, angiogenesis, desmoplasia and stimulation of tumor-associated immune response, resulting in a 20% increase on the animal life span. In vitro and in vivo studies unveil that these effects are mediated by modulation of the tumor microenvironment in a non-cell autonomous manner. Importantly, acinar-to-ductal metaplasia, a crucial step for PDA initiation, is also regulated by Gal1. Finally, high-throughput gene expression studies and molecular analysis aimed at identifying the underlying mechanism revealed that Gal1 promotes Hedgehog pathway both in PDA cells and stromal fibroblasts. In summary, our studies define a novel role of Gal1 in PDA tumor epithelium-stroma crosstalk and suggest this lectin as potential molecular target for therapy of neoplasms overexpressing Gal1. PMID:24812270

  10. Hedgehog Signaling Non-Canonical Activated by Pro-Inflammatory Cytokines in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Wang, Yuqiong; Jin, Gang; Li, Quanjiang; Wang, Zhiping; Hu, Weimin; Li, Ping; Li, Shude; Wu, Hongyu; Kong, Xiangyu; Gao, Jun; Li, Zhaoshen

    2016-01-01

    Hedgehog(HH) pathway is found to be activated through a manner of canonical, or the non-canonical HH pathways. Distinct hyperplasia stroma around tumor cells is supposed to express pro-inflammatory cytokines abundantly, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), etc. in pancreatic ductal adenocarcinoma (PDAC) tissues. In this study we observed the effects of TNF-α and IL-1β on HH pathway activation in PDAC cells, and explored their activation manners. Our results showed that pro-inflammatory cytokines, TNF-α and IL-1β, could up-regulate the expression of GLI1 gene, increase its nuclear protein expression and promote malignant cell behaviors including migration, invasion, epithelial-mesenchymal transition (EMT) and drug resistance as well. Moreover, GLI1 promoter-reporter assay in combination with blocking either NF-κB or Smoothened (SMO) suggested that TNF-α and IL-1β could transcriptionally up-regulate expression of GLI1 completely via NF-κB, whereas ablation of SMO could not completely attenuate the regulation effects of TNF-α and IL-1β on GLI1 expression. Collectively, our results indicated that TNF-α and IL-1β in hyperplasia stroma can promote the PDAC cell development by activating HH pathway, through both the canonical and non-canonical HH activation ways. PMID:27877222

  11. Hedgehog signaling regulates drug sensitivity by targeting ABC transporters ABCB1 and ABCG2 in epithelial ovarian cancer.

    PubMed

    Chen, Yi; Bieber, Marcia M; Teng, Nelson N H

    2014-08-01

    A major challenge of successful chemotherapy in ovarian cancer is overcoming intrinsic or acquired multi-drug resistance caused by active drug efflux mediated by ATP-binding cassette (ABC) transporters. Regulation of these transporters in ovarian cancer is poorly understood. We have found that abnormal expression of the hedgehog (Hh) signaling pathway transcription factor Gli1 is involved in the regulation of ABC transporters ABCB1 and ABCG2 in ovarian cancer. Hh is a known regulator of cancer cell proliferation and differentiation in several other types of invasive and metastatic malignancies. Our work has demonstrated that Gli1 is abnormally activated in a portion of ovarian cancers. Inhibition of Gli1 expression decreases ABCB1 and ABCG2 gene expression levels and enhances the response of ovarian cancer cells to certain chemotherapeutic drugs. The underlying mechanism is a direct association of Gli1 with a specific consensus sequence located in the promoter region of ABCB1 and ABCG2 genes. This study provides new understanding of ABC gene regulation by Hh signaling pathway, which may lead to the identification of new markers to detect and to anticipate ovarian cancer chemotherapy drug sensitivity.

  12. miR-326 Is Downstream of Sonic Hedgehog Signaling and Regulates the Expression of Gli2 and Smoothened

    PubMed Central

    Jiang, Zhihua; Cushing, Leah; Lü, Jining

    2014-01-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326–negative feedback loop in regulating the activity of Shh signaling. PMID:24617895

  13. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia

    PubMed Central

    Irvine, David A.; Zhang, Bin; Kinstrie, Ross; Tarafdar, Anuradha; Morrison, Heather; Campbell, Victoria L.; Moka, Hothri A.; Ho, Yinwei; Nixon, Colin; Manley, Paul W.; Wheadon, Helen; Goodlad, John R.; Holyoake, Tessa L.; Bhatia, Ravi; Copland, Mhairi

    2016-01-01

    Targeting the Hedgehog (Hh) pathway represents a potential leukaemia stem cell (LSC)-directed therapy which may compliment tyrosine kinase inhibitors (TKIs) to eradicate LSC in chronic phase (CP) chronic myeloid leukaemia (CML). We set out to elucidate the role of Hh signaling in CP-CML and determine if inhibition of Hh signaling, through inhibition of smoothened (SMO), was an effective strategy to target CP-CML LSC. Assessment of Hh pathway gene and protein expression demonstrated that the Hh pathway is activated in CD34+ CP-CML stem/progenitor cells. LDE225 (Sonidegib), a small molecule, clinically investigated SMO inhibitor, used alone and in combination with nilotinib, inhibited the Hh pathway in CD34+ CP-CML cells, reducing the number and self-renewal capacity of CML LSC in vitro. The combination had no effect on normal haemopoietic stem cells. When combined, LDE225 + nilotinib reduced CD34+ CP-CML cell engraftment in NSG mice and, upon administration to EGFP+ /SCLtTA/TRE-BCR-ABL mice, the combination enhanced survival with reduced leukaemia development in secondary transplant recipients. In conclusion, the Hh pathway is deregulated in CML stem and progenitor cells. We identify Hh pathway inhibition, in combination with nilotinib, as a potentially effective therapeutic strategy to improve responses in CP-CML by targeting both stem and progenitor cells. PMID:27157927

  14. Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant

    PubMed Central

    Matsubara, Yoshiyuki; Nakano, Mikiharu; Kawamura, Kazuki; Tsudzuki, Masaoki; Funahashi, Jun-Ichi; Agata, Kiyokazu; Matsuda, Yoichi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-01-01

    Hereditary Multiple Malformation (HMM) is a naturally occurring, autosomal recessive, homozygous lethal mutation found in Japanese quail. Homozygote embryos (hmm−/−) show polydactyly similar to talpid2 and talpid3 mutants. Here we characterize the molecular profile of the hmm−/− limb bud and identify the cellular mechanisms that cause its polydactyly. The hmm−/− limb bud shows a severe lack of sonic hedgehog (SHH) signaling, and the autopod has 4 to 11 unidentifiable digits with syn-, poly-, and brachydactyly. The Zone of Polarizing Activity (ZPA) of the hmm−/− limb bud does not show polarizing activity regardless of the presence of SHH protein, indicating that either the secretion pathway of SHH is defective or the SHH protein is dysfunctional. Furthermore, mesenchymal cells in the hmm−/− limb bud do not respond to ZPA transplanted from the normal limb bud, suggesting that signal transduction downstream of SHH is also defective. Since primary cilia are present in the hmm−/− limb bud, the causal gene must be different from talpid2 and talpid3. In the hmm−/− limb bud, a high amount of GLI3A protein is expressed and GLI3 protein is localized to the nucleus. Our results suggest that the regulatory mechanism of GLI3 is disorganized in the hmm−/− limb bud. PMID:28083533

  15. RAB23 Mutations in Carpenter Syndrome Imply an Unexpected Role for Hedgehog Signaling in Cranial-Suture Development and Obesity

    PubMed Central

    Jenkins, Dagan ; Seelow, Dominik ; Jehee, Fernanda S. ; Perlyn, Chad A. ; Alonso, Luís G. ; Bueno, Daniela F. ; Donnai, Dian ; Josifiova, Dragana ; Mathijssen, Irene M. J. ; Morton, Jenny E. V. ; Ørstavik, Karen Helene ; Sweeney, Elizabeth ; Wall, Steven A. ; Marsh, Jeffrey L. ; Nürnberg, Peter ; Passos-Bueno, Maria Rita ; Wilkie, Andrew O. M. 

    2007-01-01

    Carpenter syndrome is a pleiotropic disorder with autosomal recessive inheritance, the cardinal features of which include craniosynostosis, polysyndactyly, obesity, and cardiac defects. Using homozygosity mapping, we found linkage to chromosome 6p12.1-q12 and, in 15 independent families, identified five different mutations (four truncating and one missense) in RAB23, which encodes a member of the RAB guanosine triphosphatase (GTPase) family of vesicle transport proteins and acts as a negative regulator of hedgehog (HH) signaling. In 10 patients, the disease was caused by homozygosity for the same nonsense mutation, L145X, that resides on a common haplotype, indicative of a founder effect in patients of northern European descent. Surprisingly, nonsense mutations of Rab23 in open brain mice cause recessive embryonic lethality with neural-tube defects, suggesting a species difference in the requirement for RAB23 during early development. The discovery of RAB23 mutations in patients with Carpenter syndrome implicates HH signaling in cranial-suture biogenesis—an unexpected finding, given that craniosynostosis is not usually associated with mutations of other HH-pathway components—and provides a new molecular target for studies of obesity. PMID:17503333

  16. Inactivation of Sonic Hedgehog Signaling and Polydactyly in Limbs of Hereditary Multiple Malformation, a Novel Type of Talpid Mutant.

    PubMed

    Matsubara, Yoshiyuki; Nakano, Mikiharu; Kawamura, Kazuki; Tsudzuki, Masaoki; Funahashi, Jun-Ichi; Agata, Kiyokazu; Matsuda, Yoichi; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-01-01

    Hereditary Multiple Malformation (HMM) is a naturally occurring, autosomal recessive, homozygous lethal mutation found in Japanese quail. Homozygote embryos (hmm(-/-)) show polydactyly similar to talpid(2) and talpid(3) mutants. Here we characterize the molecular profile of the hmm(-/-) limb bud and identify the cellular mechanisms that cause its polydactyly. The hmm(-/-) limb bud shows a severe lack of sonic hedgehog (SHH) signaling, and the autopod has 4 to 11 unidentifiable digits with syn-, poly-, and brachydactyly. The Zone of Polarizing Activity (ZPA) of the hmm(-/-) limb bud does not show polarizing activity regardless of the presence of SHH protein, indicating that either the secretion pathway of SHH is defective or the SHH protein is dysfunctional. Furthermore, mesenchymal cells in the hmm(-/-) limb bud do not respond to ZPA transplanted from the normal limb bud, suggesting that signal transduction downstream of SHH is also defective. Since primary cilia are present in the hmm(-/-) limb bud, the causal gene must be different from talpid(2) and talpid(3). In the hmm(-/-) limb bud, a high amount of GLI3A protein is expressed and GLI3 protein is localized to the nucleus. Our results suggest that the regulatory mechanism of GLI3 is disorganized in the hmm(-/-) limb bud.

  17. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    PubMed

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  18. Expression pattern of sonic hedgehog signaling and calcitonin gene-related peptide in the socket healing process after tooth extraction.

    PubMed

    Pang, Pai; Shimo, Tsuyoshi; Takada, Hiroyuki; Matsumoto, Kenichi; Yoshioka, Norie; Ibaragi, Soichiro; Sasaki, Akira

    2015-11-06

    Sonic Hedgehog (SHH), a neural development inducer, plays a significant role in the bone healing process. Calcitonin gene-related peptide (CGRP), a neuropeptide marker of sensory nerves, has been demonstrated to affect bone formation. The roles of SHH signaling and CGRP-positive sensory nerves in the alveolar bone formation process have been unknown. Here we examined the expression patterns of SHH signaling and CGRP in mouse socket by immunohistochemistry and immunofluorescence analysis. We found that the expression level of SHH peaked at day 3 and was then decreased at 5 days after tooth extraction. CGRP, PTCH1 and GLI2 were each expressed in a similar pattern with their highest expression levels at day 5 and day 7 after tooth extraction. CGRP and GLI2 were co-expressed in some inflammatory cells and bone forming cells. In some areas, CGRP-positive neurons expressed GLI2. In conclusion, SHH may affect alveolar bone healing by interacting with CGRP-positive sensory neurons and thus regulate the socket's healing process after tooth extraction.

  19. miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened.

    PubMed

    Jiang, Zhihua; Cushing, Leah; Ai, Xingbin; Lü, Jining

    2014-08-01

    Sonic hedgehog (Shh) is expressed and secreted from the embryonic lung epithelium and acts on the adjacent mesenchymal cells via its receptor Patched (Ptch)/Smoothened (Smo) and transcriptional effectors Gli proteins. Genetic studies showed that the Shh pathway plays critical roles in mouse lung development. However, little is known about microRNAs (miRNAs) downstream of Shh in embryonic lungs. Here we profiled miRNAs in embryonic lung cultures treated with cyclopamine, a specific Smo antagonist or with Smo agonist by next-generation of sequencing. We then performed functional screening to examine whether some of these miRNAs can modulate the induction of Gli-responsive luciferase by Shh treatment. These analyses revealed that expression of miR-326 and its host gene, Arrestin β1, is selectively enriched in embryonic lung mesenchymal cells and is specifically influenced by Shh activity. Furthermore, functional analyses showed that miR-326 acts as a negative modulator for Shh signaling by directly targeting Smo and Gli2. Together, these findings suggest a novel miR-326-negative feedback loop in regulating the activity of Shh signaling.

  20. KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling

    PubMed Central

    Schou, Kenneth B.; Mogensen, Johanne B.; Morthorst, Stine K.; Nielsen, Brian S.; Aleliunaite, Aiste; Serra-Marques, Andrea; Fürstenberg, Nicoline; Saunier, Sophie; Bizet, Albane A.; Veland, Iben R.; Akhmanova, Anna; Christensen, Søren T.; Pedersen, Lotte B.

    2017-01-01

    Ciliary membrane composition is controlled by transition zone (TZ) proteins such as RPGRIP1, RPGRIPL and NPHP4, which are vital for balanced coordination of diverse signalling systems like the Sonic hedgehog (Shh) pathway. Activation of this pathway involves Shh-induced ciliary accumulation of Smoothened (SMO), which is disrupted by disease-causing mutations in TZ components. Here we identify kinesin-3 motor protein KIF13B as a novel member of the RPGRIP1N-C2 domain-containing protein family and show that KIF13B regulates TZ membrane composition and ciliary SMO accumulation. KIF13B is upregulated during ciliogenesis and is recruited to the ciliary base by NPHP4, which binds to two distinct sites in the KIF13B tail region, including an RPGRIP1N-C2 domain. KIF13B and NPHP4 are both essential for establishment of a CAV1 membrane microdomain at the TZ, which in turn is required for Shh-induced ciliary SMO accumulation. Thus KIF13B is a novel regulator of ciliary TZ configuration, membrane composition and Shh signalling. PMID:28134340

  1. Sonic hedgehog acts as a negative regulator of {beta}-catenin signaling in the adult tongue epithelium.

    PubMed

    Schneider, Fabian T; Schänzer, Anne; Czupalla, Cathrin J; Thom, Sonja; Engels, Knut; Schmidt, Mirko H H; Plate, Karl H; Liebner, Stefan

    2010-07-01

    Wnt/beta-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/beta-catenin pathway activation in reporter mice and by nuclear beta-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. beta-Catenin activation in APC(min/+) mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses beta-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate beta-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear beta-catenin in the tongue epithelium of Patched(+/-) mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear beta-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce beta-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on beta-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/beta-catenin targets Shh and JAG2 control beta-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC.

  2. Sonic Hedgehog Acts as a Negative Regulator of β-Catenin Signaling in the Adult Tongue Epithelium

    PubMed Central

    Schneider, Fabian T.; Schänzer, Anne; Czupalla, Cathrin J.; Thom, Sonja; Engels, Knut; Schmidt, Mirko H.H.; Plate, Karl H.; Liebner, Stefan

    2010-01-01

    Wnt/β-catenin signaling has been implicated in taste papilla development; however, its role in epithelial maintenance and tumor progression in the adult tongue remains elusive. We show Wnt/β-catenin pathway activation in reporter mice and by nuclear β-catenin staining in the epithelium and taste papilla of adult mouse and human tongues. β-Catenin activation in APCmin/+ mice, which carry a mutation in adenomatous poliposis coli (APC), up-regulates Sonic hedgehog (Shh) and Jagged-2 (JAG2) in the tongue epithelium without formation of squamous cell carcinoma (SCC). We demonstrate that Shh suppresses β-catenin transcriptional activity in a signaling-dependent manner in vitro and in vivo. A similar regulation and function was observed for JAG2, suggesting that both pathways negatively regulate β-catenin, thereby preventing SCC formation in the tongue. This was supported by reduced nuclear β-catenin in the tongue epithelium of Patched+/− mice, exhibiting dominant active Shh signaling. At the invasive front of human tongue cancer, nuclear β-catenin and Shh were increased, suggesting their participation in tumor progression. Interestingly, Shh but not JAG2 was able to reduce β-catenin signaling in SCC cells, arguing for a partial loss of negative feedback on β-catenin transcription in tongue cancer. We show for the first time that the putative Wnt/β-catenin targets Shh and JAG2 control β-catenin signaling in the adult tongue epithelium, a function that is partially lost in lingual SCC. PMID:20508033

  3. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo

    2016-08-01

    Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor.

  4. The hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells

    PubMed Central

    Du, Zhou; Zhou, Feng; Jia, Zengrong; Zheng, Beishi; Han, Shaoliang; Cheng, Jun; Zhu, Guanbao; Huang, Ping

    2016-01-01

    Objective(s): The study aimed to investigate the effects of resveratrol on colorectal cancer HCT116 cells, including cell viability, apoptosis, and migration, and the partial mechanisms focused on hedgehog/gli-1 signaling pathways. Materials and Methods: We chose the appropriate time and concentration of recombinant human Sonic hedgehog (Shh) stimulation by cell viability. The proportion of cell apoptosis was detected by flow cytometry; HCT116 cell migration was measured by scratch test; the expression of Ptch, Smo, and Gli-1 was measured by Western blot analysis. Results: Shh signaling increased HCT116 cell viability and migration, inhibited cell apoptosis, and upregulated the expression of Ptch, Smo, and Gli-1. Resveratrol obviously inhibited HCT116 cell viability and migration, promoted cell apoptosis, and suppressed the protein of Ptch, Smo, and Gli-1. Furthermore, the effects of resveratrol and Shh on human colorectal cancer HCT116 cells were in a dose- and time-dependent manner. Conclusion: The inhibitory effect of resveratrol on HCT116 cells may be mediated by hedgehog/gli-1 signaling pathways. PMID:27917272

  5. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    SciTech Connect

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  6. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  7. Graded hedgehog and fibroblast growth factor signaling independently regulate pituitary cell fates and help establish the pars distalis and pars intermedia of the zebrafish adenohypophysis.

    PubMed

    Guner, Burcu; Ozacar, A Tuba; Thomas, Jeanne E; Karlstrom, Rolf O

    2008-09-01

    The vertebrate adenohypophysis forms as a placode at the anterior margin of the neural plate, requiring both hedgehog (Hh) and fibroblast growth factor (Fgf) mediated cell-cell signaling for induction and survival of endocrine cell types. Using small molecule inhibitors to modulate signaling levels during zebrafish development we show that graded Hh and Fgf signaling independently help establish the two subdomains of the adenohypophysis, the anteriorly located pars distalis (PD) and the posterior pars intermedia (PI). High levels of Hh signaling are required for formation of the PD and differentiation of anterior endocrine cell types, whereas lower levels of Hh signaling are required for formation of the PI and differentiation of posterior endocrine cell types. In contrast, high Fgf signaling levels are required for formation of the PI and posterior endocrine cell differentiation, whereas anterior regions require lower levels of Fgf signaling. Based on live observations and marker analyses, we show that the PD forms first at the midline closest to the central nervous system source of Sonic hedgehog. In contrast the PI appears to form from more lateral/posterior cells close to a central nervous system source of Fgf3. Together our data show that graded Hh and Fgf signaling independently direct induction of the PD and PI and help establish endocrine cell fates along the anterior/posterior axis of the zebrafish adenohypophysis. These data suggest that there are distinct origins and signaling requirements for the PD and PI.

  8. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia.

    PubMed

    Zeng, Xian; Zhao, Hui; Li, Yubin; Fan, Jiajun; Sun, Yun; Wang, Shaofei; Wang, Ziyu; Song, Ping; Ju, Dianwen

    2015-01-01

    The frontline tyrosine kinase inhibitor (TKI) imatinib has revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, drug resistance is the major clinical challenge in the treatment of CML. The Hedgehog (Hh) signaling pathway and autophagy are both related to tumorigenesis, cancer therapy, and drug resistance. This study was conducted to explore whether the Hh pathway could regulate autophagy in CML cells and whether simultaneously regulating the Hh pathway and autophagy could induce cell death of drug-sensitive or -resistant BCR-ABL(+) CML cells. Our results indicated that pharmacological or genetic inhibition of Hh pathway could markedly induce autophagy in BCR-ABL(+) CML cells. Autophagic inhibitors or ATG5 and ATG7 silencing could significantly enhance CML cell death induced by Hh pathway suppression. Based on the above findings, our study demonstrated that simultaneously inhibiting the Hh pathway and autophagy could markedly reduce cell viability and induce apoptosis of imatinib-sensitive or -resistant BCR-ABL(+) cells. Moreover, this combination had little cytotoxicity in human peripheral blood mononuclear cells (PBMCs). Furthermore, this combined strategy was related to PARP cleavage, CASP3 and CASP9 cleavage, and inhibition of the BCR-ABL oncoprotein. In conclusion, this study indicated that simultaneously inhibiting the Hh pathway and autophagy could potently kill imatinib-sensitive or -resistant BCR-ABL(+) cells, providing a novel concept that simultaneously inhibiting the Hh pathway and autophagy might be a potent new strategy to overcome CML drug resistance.

  9. Activation of sonic hedgehog signaling attenuates oxidized low-density lipoprotein-stimulated brain microvascular endothelial cells dysfunction in vitro.

    PubMed

    Jiang, Xiu-Long; Chen, Ting; Zhang, Xu

    2015-01-01

    The study was performed to investigate the role of sonic hedgehog (SHH) in the oxidized low-density lipoprotein (oxLDL)-induced blood-brain barrier (BBB) disruption. The primary mouse brain microvascular endothelial cells (MBMECs) were exposed to oxLDL. The results indicated that treatment of MBMECs with oxLDL decreased the cell viability, and oxidative stress was involved in oxLDL-induce MBMECs dysfunction with increasing intracellular ROS and MDA formation as well as decreasing NO release and eNOS mRNA expression. In addition, SHH signaling components, such as SHH, Smo and Gli1, mRNA and protein levels were significantly decreased after incubation with increasing concentrations of oxLDL. Treatment with oxLDL alone or SHH loss-of-function significantly increased the permeability of MBMECs, and overexpression of SHH attenuated oxLDL-induced elevation of permeability in MBMECs. Furthermore, SHH gain-of-function could reverse oxLDL-induced apoptosis through inhibition caspase3 and caspase8 levels in MBMECs. Taken together, these results demonstrated that the suppression of SHH in MBMECs might contribute to the oxLDL-induced disruption of endothelial barrier. However, the overexpression of SHH could reverse oxLDL-induced endothelial cells dysfunction in vitro.

  10. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice.

    PubMed

    Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel

    2010-11-01

    Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3.

  11. sm"FISH"ing for Hedgehog.

    PubMed

    Drummond, Michael L; Atwood, Scott X

    2017-01-01

    Patched (Ptch) receptors are critical negative regulators of Hedgehog signaling, where Ptch1 loss causes basal cell carcinoma and Ptch1;Ptch2 loss disrupts skin and hair follicle development. Adolphe et al. use single molecule fluorescent in situ hybridization to show quantitatively that Ptch receptors create a Hedgehog signaling gradient that may specify hair follicle development.

  12. Acquisition of 5-fluorouracil resistance induces epithelial-mesenchymal transitions through the Hedgehog signaling pathway in HCT-8 colon cancer cells

    PubMed Central

    LIU, YANJUN; DU, FANGFANG; ZHAO, QIANNAN; JIN, JIAN; MA, XIN; LI, HUAZHONG

    2015-01-01

    Colon cancer has a high incidence in individuals >60-years-old. The commonly used chemotherapeutic agent, 5-fluorouracil (5-FU), has gradually lost its potency in treating colorectal cancer following the acquisition of resistance. Drug resistance is usually associated with epithelial-mesenchymal transitions (EMTs) in cancer cells. In the present study, the EMT phenotypes of two colon cancer cell lines, wild-type (HCT-8/WT) and 5-FU-resistant (HCT-8/5-FU), were characterized following the analysis of cellular migration, proliferation, morphology and molecular changes. In order to further clarify the mechanism of EMT in HCT-8/5-FU cells, the effect of EMT pathway inhibitors upon drug sensitivity was investigated. The results revealed that the Hedgehog signaling pathway inhibitor, GDC0449, reversed drug resistance. Therefore, inhibition of the Hedgehog pathway may provide a novel chemotherapeutic strategy for the treatment of patients with 5-FU-resistant colon cancer. PMID:26137127

  13. Structural and logical analysis of a comprehensive hedgehog signaling pathway to identify alternative drug targets for glioma, colon and pancreatic cancer.

    PubMed

    Chowdhury, Saikat; Pradhan, Rachana N; Sarkar, Ram Rup

    2013-01-01

    Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for

  14. Structural and Logical Analysis of a Comprehensive Hedgehog Signaling Pathway to Identify Alternative Drug Targets for Glioma, Colon and Pancreatic Cancer

    PubMed Central

    Chowdhury, Saikat; Pradhan, Rachana N.; Sarkar, Ram Rup

    2013-01-01

    Hedgehog is an evolutionarily conserved developmental pathway, widely implicated in controlling various cellular responses such as cellular proliferation and stem cell renewal in human and other organisms, through external stimuli. Aberrant activation of this pathway in human adult stem cell line may cause different types of cancers. Hence, targeting this pathway in cancer therapy has become indispensable, but the non availability of detailed molecular interactions, complex regulations by extra- and intra-cellular proteins and cross talks with other pathways pose a serious challenge to get a coherent understanding of this signaling pathway for making therapeutic strategy. This motivated us to perform a computational study of the pathway and to identify probable drug targets. In this work, from available databases and literature, we reconstructed a complete hedgehog pathway which reports the largest number of molecules and interactions to date. Using recently developed computational techniques, we further performed structural and logical analysis of this pathway. In structural analysis, the connectivity and centrality parameters were calculated to identify the important proteins from the network. To capture the regulations of the molecules, we developed a master Boolean model of all the interactions between the proteins and created different cancer scenarios, such as Glioma, Colon and Pancreatic. We performed perturbation analysis on these cancer conditions to identify the important and minimal combinations of proteins that can be used as drug targets. From our study we observed the under expressions of various oncoproteins in Hedgehog pathway while perturbing at a time the combinations of the proteins GLI1, GLI2 and SMO in Glioma; SMO, HFU, ULK3 and RAS in Colon cancer; SMO, HFU, ULK3, RAS and ERK12 in Pancreatic cancer. This reconstructed Hedgehog signaling pathway and the computational analysis for identifying new combinatory drug targets will be useful for

  15. The sonic hedgehog signaling pathway contributes to the development of salivary gland neoplasms regardless of perineural infiltration.

    PubMed

    Vidal, Manuela Torres Andion; Lourenço, Sílvia Vanessa; Soares, Fernando Augusto; Gurgel, Clarissa Araújo; Studart, Eduardo J B; Valverde, Ludmila de Faro; Araújo, Iguaracyra Barreto de Oliveira; Ramos, Eduardo Antônio Gonçalves; Xavier, Flávia Caló de Aquino; Dos Santos, Jean Nunes

    2016-07-01

    The pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (ACC) are common tumors arising from salivary glands whose histopathology is heterogeneous. The sonic hedgehog signaling pathway (Hh) and signal transducer and activator of transcription 3 (STAT3) play important roles in cell proliferation, favoring tumor growth. The aim of this investigation was to study components of the Hh pathway, as well as STAT3 in salivary gland neoplasms in an attempt to add information about the biological characteristics of these neoplasms. We used 9 cases of PA, 17 cases of ACC, and 20 cases of MEC. Using immunohistochemistry, SHH, GLI1, SUFU, HHIP, and STAT3 were investigated. For comparative purposes, MCM3 (cellular proliferation marker) was also included. In PA, there was high expression of cytoplasmic SHH and SUFU and low expression of STAT3 and MCM3. In the ACC, there was high expression of GLI1, HHIP, and STAT3 and low expression of SHH, SUFU, and MCM3. In the MEC, we observed high expression of SHH, GLI1, SUFU, and HHIP and low expression of STAT3 and MCM3. There was a statistically significant difference between SHH (p = 0.0064), STAT3 (p = 0.0003), and MCM3 (p = 0.0257) when all tumors were compared and a higher expression in parenchyma for all tumors when stroma and parenchyma were compared (p < 0.05). These findings suggests a possible role of Hh pathway in the development and maintenance of the cytoarchitectural pattern of PA, ACC, and MEC, as well as the participation of STAT3 in the development of ACC, irrespective perineural infiltration.

  16. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells.

    PubMed

    Tyson, Jennifer A; Goldberg, Ethan M; Maroof, Asif M; Xu, Qing; Petros, Timothy J; Anderson, Stewart A

    2015-04-01

    Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.

  17. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling

    PubMed Central

    Wang, Haiyong; Ning, Zhouyu; Li, Yingyi; Zhu, Xiaoyan; Meng, Zhiqiang

    2016-01-01

    Cancer stem cells (CSCs) are important in cancer, as these cells possess enhanced tumor-forming capabilities and are resistant to current anticancer therapies. Agents with the ability to suppress CSCs are likely to provide novel opportunities for combating tumor proliferation and metastasis. The present study aimed to evaluate the effects of bufalin on pancreatic CSCs in vivo and in vitro. Using a serum-free suspension culture, tumor spheres were enriched in a gemcitabine-resistant human pancreatic cancer cell line, which had a higher percentage of CSCs, and western blotting, flow cytometry, and colony and tumor formation assays were used to demonstrate that these sphere cells exhibited CSC characteristics. Using these cancer stem-like cells as a model, the present study examined the effect of bufalin on pancreatic CSCs. It was demonstrated that bufalin inhibited the number of tumor spheres, and western blotting and immunohistochemical assays showed that the expression levels of CD24 and epithelial specific antigen (ESA) were downregulated by bufalin. Furthermore, in a subcutaneous xenograft model of implanted gemcitabine-resistant MiaPaCa2 cells, bufalin inhibited tumor growth and prolonged the duration of tumor formation. Additionally, the expression levels of CD24 and ESA were inhibited in the bufalin-treated mice. Notably, in another cancer model injected with tumor cells via the tail vein, fewer metastatic lesions were detected in the group in which tumor cells were pretreated with bufalin in vitro, compared with those without pretreatment. Of note, the Hedgehog (Hh) signaling pathway was found to be inhibited in the bufalin-treated cells. Taken together, these results suggested that bufalin suppressed pancreatic CSCs in gemcitabine-resistant MiaPaCa2 cells, and the Hh signaling pathway may be involved in this process. PMID:27432228

  18. Tissue-specific roles for sonic hedgehog signaling in establishing thymus and parathyroid organ fate.

    PubMed

    Bain, Virginia E; Gordon, Julie; O'Neil, John D; Ramos, Isaias; Richie, Ellen R; Manley, Nancy R

    2016-11-01

    The thymus and parathyroids develop from third pharyngeal pouch (3rd pp) endoderm. Our previous studies show that Shh null mice have smaller, aparathyroid primordia in which thymus fate specification extends into the pharynx. SHH signaling is active in both dorsal pouch endoderm and neighboring neural crest (NC) mesenchyme. It is unclear which target tissue of SHH signaling is required for the patterning defects in Shh mutants. Here, we used a genetic approach to ectopically activate or delete the SHH signal transducer Smo in either pp endoderm or NC mesenchyme. Although no manipulation recapitulated the Shh null phenotype, manipulation of SHH signaling in either the endoderm or NC mesenchyme had direct and indirect effects on both cell types during fate specification and organogenesis. SHH pathway activation throughout pouch endoderm activated ectopic Tbx1 expression and partially suppressed the thymus-specific transcription factor Foxn1, identifying Tbx1 as a key target of SHH signaling in the 3rd pp. However, ectopic SHH signaling was insufficient to expand the GCM2-positive parathyroid domain, indicating that multiple inputs, some of which might be independent of SHH signaling, are required for parathyroid fate specification. These data support a model in which SHH signaling plays both positive and negative roles in patterning and organogenesis of the thymus and parathyroids.

  19. Coordinated regulation of dorsal bone morphogenetic protein 4 and ventral Sonic hedgehog signaling specifies the dorso-ventral polarity in the optic vesicle and governs ocular morphogenesis through fibroblast growth factor 8 upregulation.

    PubMed

    Kobayashi, Takuma; Yasuda, Kunio; Araki, Masasuke

    2010-05-01

    Dorsal and ventral specification in the early optic vesicle plays a crucial role in vertebrate ocular morphogenesis, and proper dorsal-ventral polarity in the optic vesicle ensures that distinct structures develop in separate domains within the eye primordium. The polarity is determined progressively during development by coordinated regulation of extraocular dorsal and ventral factors. In the present study, we cultured discrete portions of embryonic chick brains by preparing anterior cephalon, anterior dorsal cephalon and anterior ventral cephalon, and clearly demonstrate that bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) constitute a dorsal-ventral signaling system together with fibroblast growth factor 8 (FGF8). BMP4 and Shh upregulate Tbx5 and Pax2, as reported previously, and at the same time Shh downregulates Tbx5, while BMP4 affects Pax2 expression to downregulate similarly. Shh induces Fgf8 expression in the ventral optic vesicle. This, in turn, determines the distinct boundary of the retinal pigmented epithelium and the neural retina by suppressing Mitf expression. The lens develops only when signals from both the dorsal and ventral regions come across together. Inverted deposition of Shh and BMP4 signals in organ-cultured optic vesicle completely re-organized ocular structures to be inverted. Based on these observations we propose a novel model in which the two signals govern the whole of ocular development when they encounter each other in the ocular morphogenic domain.

  20. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  1. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures.

    PubMed

    Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-07-29

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.

  2. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Pathway Is Induced by Mechanical Load and Reduces the Activity of Hedgehog Signaling in Chondrogenic Micromass Cell Cultures

    PubMed Central

    Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza

    2015-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691

  3. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration.

    PubMed

    Butí, Elisenda; Mesquita, Duarte; Araújo, Sofia J

    2014-01-01

    Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.

  4. Sonic hedgehog elevates N-myc gene expression in neural stem cells.

    PubMed

    Liu, Dongsheng; Wang, Shouyu; Cui, Yan; Shen, Lun; Du, Yanping; Li, Guilin; Zhang, Bo; Wang, Renzhi

    2012-08-05

    Proliferation of neural stem cells is regulated by the secreted signaling molecule sonic hedgehog. In this study, neural stem cells were infected with recombinant adeno-associated virus expressing sonic hedgehog-N-enhanced green fluorescent protein. The results showed that overexpression of sonic hedgehog in neural stem cells induced the increased expression of Gli1 and N-myc, a target gene of sonic hedgehog. These findings suggest that N-myc is a direct downstream target of the sonic hedgehog signal pathway in neural stem cells. Sonic hedgehog and N-myc are important mediators of sonic hedgehog-induced proliferation of neural stem cells.

  5. Oestrogen receptor-alpha regulates non-canonical Hedgehog-signalling in the mammary gland

    PubMed Central

    Okolowsky, Nadia; Furth, Priscilla A.; Hamel, Paul A.

    2014-01-01

    Mesenchymal dysplasia (mes) mice harbour a truncation in the C-terminal region of the Hh-ligand receptor, Patched-1 (mPtch1). While the mes variant of mPtch1 binds to Hh-ligands with an affinity similar to that of wild type mPtch1 and appears to normally regulate canonical Hh-signalling via smoothened, the mes mutation causes, among other non-lethal defects, a block to mammary ductal elongation at puberty. We demonstrated previously Hh-signalling induces the activation of Erk1/2 and c-src independently of its control of smo activity. Furthermore, mammary epithelial cell-directed expression of an activated allele of c-src rescued the block to ductal elongation in mes mice, albeit with delayed kinetics. Given that this rescue was accompanied by an induction in estrogen receptor-alpha (ERα) expression and that complex regulatory interactions between ERα and c-src are required for normal mammary gland development, it was hypothesized that expression of ERα would also overcome the block to mammary ductal elongation at puberty in the mes mouse. We demonstrate here that conditional expression of ERα in luminal mammary epithelial cells on the mes background facilitates ductal morphogenesis with kinetics similar to that of the MMTV-c-srcAct mice. We demonstrate further that Erk1/2 is activated in primary mammary epithelial cells by Shh-ligand and that this activation is blocked by the inhibitor of c-src, PP2, is partially blocked by the ERα inhibitor, ICI 182780 but is not blocked by the smo-inhibitor, SANT-1. These data reveal an apparent Hh-signalling cascade operating through c-src and ERα that is required for mammary gland morphogenesis at puberty. PMID:24769368

  6. A Novel Strategy to Inhibit Hedgehog Signaling and Control Growth of Androgen Independent Prostate Cancer Cells

    DTIC Science & Technology

    2013-06-01

    challenge. Infect Immun, 2005. 73(5): p. 2967-73. 3. Srinivasan, S., et al., Inhibiting TNF- mediated signaling: a novel therapeutic paradigm for androgen...p65 antibody followed by EMSA. This assay showed a strong super shift to a higher molecular weight band in case of both anti-p50 and anti-p65... antibodies , suggesting that the observed NF-kB band consisted of these two subunits. FIGURE 7 Quinazoline drugs are often kinase inhibitors. For example

  7. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    PubMed

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  8. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps.

  9. The Notch Target Hes1 Directly Modulates Gli1 Expression and Hedgehog Signaling: A Potential Mechanism of Therapeutic Resistance

    PubMed Central

    Schreck, Karisa C.; Taylor, Pete; Marchionni, Luigi; Gopalakrishnan, Vidya; Bar, Eli E.; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    Purpose Multiple developmental pathways including Notch, Hedgehog, and Wnt are active in malignant brain tumors such as medulloblastoma and glioblastoma (GBM). This raises the possibility that tumors might compensate for therapy directed against one pathway by upregulating a different one. We investigated whether brain tumors show resistance to therapies against Notch, and whether targeting multiple pathways simultaneously would kill brain tumor cells more effectively than monotherapy. Experimental Design We used GBM neurosphere lines to investigate the effects of a gamma-secretase inhibitor (MRK-003) on tumor growth, and chromatin immunoprecipitation (ChIP) to study the regulation of other genes by Notch targets. We also evaluated the effect of combined therapy with a Hedgehog inhibitor (cyclopamine) in GBM and medulloblastoma lines, and primary human GBM cultures. Results GBM cells are at least partially resistant to long-term MRK-003 treatment, despite ongoing Notch pathway suppression, and show concomitant upregulation of Wnt and Hedgehog activity. The Notch target Hes1, a repressive transcription factor, bound the Gli1 first intron, and may inhibit its expression. Similar results were observed in a melanoma-derived cell line. Targeting Notch and Hedgehog simultaneously induced apoptosis, decreased cell growth, and inhibited colony-forming ability more dramatically than monotherapy. Low-passage neurospheres isolated from freshly resected human GBMs were also highly susceptible to co-inhibition of the two pathways, indicating that targeting multiple developmental pathways can be more effective than monotherapy at eliminating glioblastoma-derived cells. Conclusion Notch may directly suppress Hedgehog via Hes1 mediated inhibition of Gli1 transcription, and targeting both pathways simultaneously may be more effective at eliminating GBMs cells. PMID:21169257

  10. Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling

    SciTech Connect

    Tano, Jean-Yves; Vazquez, Guillermo

    2011-04-08

    Highlights: {yields} We examine the role of constitutive Ca{sup 2+} influx in macrophage survival. {yields} Survival signaling exhibits a mandatory requirement for constitutive Ca{sup 2+} influx. {yields} CAM/CAMKII couples constitutive Ca{sup 2+} influx to survival signaling. -- Abstract: The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NF{kappa}B) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca{sup 2+} influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca{sup 2+} influx in PI3K/AKT and NF{kappa}B signaling. Blocking constitutive function of Ca{sup 2+}-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of I{kappa}B{alpha}, AKT and its downstream target BAD in TNF{alpha}-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNF{alpha}-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca{sup 2+} influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca{sup 2+} influx and activation of survival signaling.

  11. Blockade of constitutively activated ERK signaling enhances cytotoxicity of microtubule-destabilizing agents in tumor cells.

    PubMed

    Tanimura, Susumu; Uchiyama, Aya; Watanabe, Kazushi; Yasunaga, Masahiro; Inada, Yoshiyuki; Kawabata, Takumi; Iwashita, Ken-Ichi; Noda, Sinji; Ozaki, Kei-Ichi; Kohno, Michiaki

    2009-01-16

    The extracellular signal-regulated kinase (ERK) signaling pathway is constitutively activated in many human tumor cell types. Given the cytoprotective role of this pathway, we examined whether its specific blockade might sensitize human tumor cells to the induction of apoptosis by various anticancer drugs. Although blockade of ERK signaling alone did not induce substantial cell death, it resulted in marked and selective enhancement of the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the ERK pathway is constitutively activated. The synergistic activation of c-Jun NH(2)-terminal kinase by the combination of an ERK pathway inhibitor and a microtubule-destabilizing agent appeared to be responsible, at least in part, for this effect. These results suggest that administration of the combination of an ERK pathway inhibitor and a microtubule-destabilizing agent is a potential chemotherapeutic strategy for the treatment of tumor cells with constitutive activation of the ERK pathway.

  12. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    SciTech Connect

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.; Kopelovich, Levy; Pressey, Joseph G.; Athar, Mohammad

    2013-06-14

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  13. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells.

    PubMed

    Bao, Cheng; Namgung, Hyeju; Lee, Jaehoo; Park, Hyun-Chang; Ko, Jiwon; Moon, Heejung; Ko, Hyuk Wan; Lee, Hong Jin

    2014-04-30

    In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.

  14. The PRKCI and SOX2 Oncogenes are Co-amplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma

    PubMed Central

    Justilien, Verline; Walsh, Michael P.; Ali, Syed A.; Thompson, E. Aubrey; Murray, Nicole R.; Fields, Alan P.

    2014-01-01

    SUMMARY We report that two oncogenes co-amplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). PKCι phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog Acyl Transferase (HHAT), which catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT, and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell autonomous Hh signaling axis. PMID:24525231

  15. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex.

    PubMed

    Komada, Munekazu

    2012-06-01

    Sonic hedgehog (Shh) acts as a morphogen in normal development of various vertebrate tissues and organs. Shh signaling is essential for patterning and cell-fate specification, particularly in the central nervous system. Shh signaling plays different roles depending on its concentration, area, and timing of exposure. During the development of the neocortex, a low level of Shh is expressed in the neural stem/progenitor cells as well as in mature neurons in the dorsal telencephalon. Shh signaling in neocortex development has been shown to regulate cell cycle kinetics of radial glial cells and intermediate progenitor cells, thereby maintaining the proliferation, survival and differentiation of neurons in the neocortex. During the development of the telencephalon, endogenous Shh signaling is involved in the transition of slow-cycling neural stem cells to fast-cycling neural progenitor cells. It seems that high-level Shh signaling in the ventral telencephalon is essential for ventral specification, while low-level Shh signaling in the dorsal telencephalon plays important roles in the fine-tuning of cell cycle kinetics. The Shh levels and multiple functions of Shh signaling are important for proper corticogenesis in the developing brain. The present paper discusses the roles of Shh signaling in the proliferation and differentiation of neural stem/progenitor cells.

  16. Gli2a protein localization reveals a role for Iguana/DZIP1 in primary ciliogenesis and a dependence of Hedgehog signal transduction on primary cilia in the zebrafish

    PubMed Central

    2010-01-01

    Background In mammalian cells, the integrity of the primary cilium is critical for proper regulation of the Hedgehog (Hh) signal transduction pathway. Whether or not this dependence on the primary cilium is a universal feature of vertebrate Hedgehog signalling has remained contentious due, in part, to the apparent divergence of the intracellular transduction pathway between mammals and teleost fish. Results Here, using a functional Gli2-GFP fusion protein, we show that, as in mammals, the Gli2 transcription factor localizes to the primary cilia of cells in the zebrafish embryo and that this localization is modulated by the activity of the Hh pathway. Moreover, we show that the Igu/DZIP1protein, previously implicated in the modulation of Gli activity in zebrafish, also localizes to the primary cilium and is required for its proper formation. Conclusion Our findings demonstrate a conserved role of the primary cilium in mediating Hedgehog signalling activity across the vertebrate phylum and validate the use of the zebrafish as a representative model for the in vivo analysis of vertebrate Hedgehog signalling. PMID:20487519

  17. Use of a Conditional Ubr5 Mutant Allele to Investigate the Role of an N-End Rule Ubiquitin-Protein Ligase in Hedgehog Signalling and Embryonic Limb Development

    PubMed Central

    Kinsella, Elaine; Dora, Natalie; Mellis, David; Lettice, Laura; Deveney, Paul

    2016-01-01

    Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling. PMID:27299863

  18. Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines

    PubMed Central

    Bai, Xiao-Yan; Zhang, Xu-Chao; Yang, Su-Qing; An, She-Juan; Chen, Zhi-Hong; Su, Jian; Xie, Zhi; Gou, Lan-Ying; Wu, Yi-Long

    2016-01-01

    Aberrant activation of the hedgehog (Hh) signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT) and cancer stem-like cell (CSC) maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR) signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC) cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001) in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001). These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs. PMID:26943330

  19. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis.

    PubMed

    Chen, Kuang-Yao; Chiu, Cheng-Hsun; Wang, Lian-Chen

    2017-02-07

    Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants.

  20. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis

    PubMed Central

    Chen, Kuang-Yao; Chiu, Cheng-Hsun; Wang, Lian-Chen

    2017-01-01

    Angiostrongylus cantonensis, the rat lungworm, is an important aetiologic agent of eosinophilic meningitis and meningoencephalitis in humans. Co-culturing astrocytes with soluble antigens of A. cantonensis activated the Sonic hedgehog (Shh) signalling pathway and inhibited the apoptosis of astrocytes via the activation of Bcl-2. This study was conducted to determine the roles of the Shh signalling pathway, apoptosis, and oxidative stress in astrocytes after treatment with excretory-secretory products (ESP) from A. cantonensis fifth-stage larvae. Although astrocyte viability was significantly decreased after ESP treatment, the expression of Shh signalling pathway related proteins (Shh, Ptch-1 and Gli-1) was significantly increased. However, apoptosis in astrocytes was significantly decreased after activation of the Shh signalling pathway. Moreover, superoxide and hydrogen superoxide levels in astrocytes were significantly reduced after the activation of Shh pathway signalling due to increasing levels of the antioxidants catalase and superoxide dismutase. These findings indicate that the anti-apoptotic effects of the Shh signalling pathway in the astrocytes of mice infected with A. cantonensis are due to reduced levels of oxidative stress caused by the activation of antioxidants. PMID:28169282

  1. Network modeling of TGFβ signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation.

    PubMed

    Steinway, Steven Nathaniel; Zañudo, Jorge G T; Ding, Wei; Rountree, Carl Bart; Feith, David J; Loughran, Thomas P; Albert, Reka

    2014-11-01

    Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site, invade surrounding tissue, and establish distant metastases. A hallmark of EMT is the loss of E-cadherin expression, and one major signal for the induction of EMT is TGFβ, which is dysregulated in up to 40% of hepatocellular carcinoma (HCC). We have constructed an EMT network of 70 nodes and 135 edges by integrating the signaling pathways involved in developmental EMT and known dysregulations in invasive HCC. We then used discrete dynamic modeling to understand the dynamics of the EMT network driven by TGFβ. Our network model recapitulates known dysregulations during the induction of EMT and predicts the activation of the Wnt and Sonic hedgehog (SHH) signaling pathways during this process. We show, across multiple murine (P2E and P2M) and human HCC cell lines (Huh7, PLC/PRF/5, HLE, and HLF), that the TGFβ signaling axis is a conserved driver of mesenchymal phenotype HCC and confirm that Wnt and SHH signaling are induced in these cell lines. Furthermore, we identify by network analysis eight regulatory feedback motifs that stabilize the EMT process and show that these motifs involve cross-talk among multiple major pathways. Our model will be useful in identifying potential therapeutic targets for the suppression of EMT, invasion, and metastasis in HCC.

  2. The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos

    2015-01-01

    The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601

  3. DYRK1B blocks canonical and promotes non-canonical Hedgehog signaling through activation of the mTOR/AKT pathway

    PubMed Central

    Singh, Rajeev; Dhanyamraju, Pavan Kumar; Lauth, Matthias

    2017-01-01

    Hedgehog (Hh) signaling plays important roles in embryonic development and in tumor formation. Apart from the well-established stimulation of the GLI family of transcription factors, Hh ligands promote the phosphorylation and activation of mTOR and AKT kinases, yet the molecular mechanism underlying these processes are unknown. Here, we identify the DYRK1B kinase as a mediator between Hh signaling and mTOR/AKT activation. In fibroblasts, Hh signaling induces DYRK1B protein expression, resulting in activation of the mTOR/AKT kinase signaling arm. Furthermore, DYRK1B exerts positive and negative feedback regulation on the Hh pathway itself: It negatively interferes with SMO-elicited canonical Hh signaling, while at the same time it provides positive feed-forward functions by promoting AKT-mediated GLI stability. Due to the fact that the mTOR/AKT pathway is itself subject to strong negative feedback regulation, pharmacological inhibition of DYRK1B results in initial upregulation followed by downregulation of AKT phosphorylation and GLI stabilization. Addressing this issue therapeutically, we show that a pharmacological approach combining a DYRK1B antagonist with an mTOR/AKT inhibitor results in strong GLI1 targeting and in pronounced cytotoxicity in human pancreatic and ovarian cancer cells. PMID:27903983

  4. Noggin-Mediated Retinal Induction Reveals a Novel Interplay Between Bone Morphogenetic Protein Inhibition, Transforming Growth Factor β, and Sonic Hedgehog Signaling.

    PubMed

    Messina, Andrea; Lan, Lei; Incitti, Tania; Bozza, Angela; Andreazzoli, Massimiliano; Vignali, Robert; Cremisi, Federico; Bozzi, Yuri; Casarosa, Simona

    2015-08-01

    It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)β signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFβ and SHH signaling.

  5. The role of the sonic hedgehog signaling pathway in early brain injury after experimental subarachnoid hemorrhage in rats.

    PubMed

    Li, Tao; Zhang, Jie; Liu, Rong-Yao; Lian, Zhi-Gang; Chen, Xiao-Lin; Ma, Li; Sun, Hao-Min; Zhao, Yuan-Li

    2013-09-27

    Previous studies have demonstrated that the sonic hedgehog (Shh) pathway plays a neuro-protective role. However, whether the Shh pathway is induced by subarachnoid hemorrhage (SAH) has not been investigated. We sought to investigate Shh activation in the cortex in the early stage of SAH, and assessed the effect of cyclopamine (a specific inhibitor of the Shh pathway) on Shh pathway regulation and evaluated the impact of cyclopamine on SAH. We found that the Shh pathway was up-regulated in the cortex after SAH, and that blocking the Shh pathway increased cell apoptosis. Early brain damages, including brain edema, blood-brain barrier impairment, and cortical apoptosis were significantly aggravated following with cyclopamine treatment compared with vehicle treatment. Our results suggest that the Shh pathway should be activated in the brain after SAH, and plays a beneficial role in SAH development, possibly by inhibiting cerebral oxidative stress through induction of antioxidant and detoxifying enzymes.

  6. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  7. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    NASA Astrophysics Data System (ADS)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  8. Cloning of zebrafish nkx6.2 and a comprehensive analysis of the conserved transcriptional response to Hedgehog/Gli signaling in the zebrafish neural tube

    PubMed Central

    Guner, Burcu; Karlstrom, Rolf O.

    2007-01-01

    Sonic Hedgehog (Shh) signaling helps pattern the vertebrate neural tube, in part by regulating the dorsal/ventral expression of a number of homeodomain containing transcription factors. These Hh responsive genes have been divided into two classes, with Class II genes being activated by Hh signaling and Class I genes being repressed by Hh signaling. While the transcriptional response to varying Hh levels is well defined in chick and mouse, it is only partially described in zebrafish, despite the fact that zebrafish has emerged as a powerful genetic system for the study of neural patterning. To better characterize the Hh response in the zebrafish neural tube, we cloned the zebrafish Class II Hh target genes nkx2.9 and nkx6.2. We then analyzed the expression of a number of Class I and Class II Hh responsive genes in wild type, Hh mutant, and Hh over-expressing zebrafish embryos. We show that expression of Class I and Class II genes is highly conserved in the vertebrate neural tube. Further, ventral-most Class II gene expression was completely lost in all Hh pathway mutants analyzed, indicating high levels of Hh signaling are blocked in all of these mutants. In contrast, more dorsally expressed genes were variably affected in different Hh pathway mutants, indicating mid-levels of Hh signaling are differentially affected. This comprehensive expression study provides an important tool for the characterization of Hh signaling in zebrafish and provides a sensitive assay for determining the degree to which newly identified zebrafish mutants affect Hh signaling. PMID:17307034

  9. Developmental hypothyroxinemia and hypothyroidism reduce proliferation of cerebellar granule neuron precursors in rat offspring by downregulation of the sonic hedgehog signaling pathway.

    PubMed

    Wang, Yuan; Wang, Yi; Dong, Jing; Wei, Wei; Song, Binbin; Min, Hui; Yu, Ye; Lei, Xibing; Zhao, Ming; Teng, Weiping; Chen, Jie

    2014-06-01

    Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during development result in dysfunction of the central nervous system, affecting psychomotor and motor function, although the underlying mechanisms causing these alterations are still unclear. Therefore, our aim is to study the effects of developmental hypothyroxinemia, caused by mild ID, and developmental hypothyroidism, caused by severe ID or methimazole (MMZ), on the proliferation of cerebellar granule neuron precursors (CGNPs), an excellent experimental model of cerebellar development and function. The sonic hedgehog (Shh) signaling pathway is essential for CGNP proliferation, and as such, its activation is also investigated here. A maternal hypothyroxinemia model was established in Wistar rats by administrating a mild ID diet, and two maternal hypothyroidism models were developed either by administrating a severe ID diet or MMZ water. Our results showed that hypothyroxinemia and hypothyroidism reduced proliferation of CGNPs on postnatal day (PN) 7, PN14, and PN21. Accordingly, the mean intensity of proliferating cell nuclear antigen and Ki67 nuclear antigen immunofluorescence was reduced in the mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of the Shh signaling pathway on PN7, PN14, and PN21. Our study supports the hypothesis that developmental hypothyroxinemia induced by mild ID, and hypothyroidism induced by severe ID or MMZ, reduce the proliferation of CGNPs, which may be ascribed to the downregulation of the Shh signaling pathway.

  10. Sonic hedgehog released from scratch-injured astrocytes is a key signal necessary but not sufficient for the astrocyte de-differentiation.

    PubMed

    Yang, Hao; Feng, Guo-Dong; Olivera, Cathy; Jiao, Xi-Ying; Vitale, Angela; Gong, Ju; You, Si-Wei

    2012-09-01

    Recent studies demonstrated that mature atrocytes have the capacity for de-differentiating into neural stem/progenitor cells (NSPCs) in vitro and in vivo. However, it is still unknown what signals endow astroglial cells with a de-differentiation potential. Furthermore, the signaling molecules and underlying mechanism that confer astrocytes with the competence of NSPC phenotypes have not been completely elucidated. Here, we found that sonic hedgehog (Shh) production in astrocytes following mechanical injury was significantly elevated, and that incubation of astrocyes with the injured astrocyte conditioned medium (ACM) causes astrocytes to gradually lose their immunophenotypical profiles, and acquire NSPC characteristics, as demonstrated by down-regulation of typical astrocytic markers (GFAP and S100) and up-regulation of markers that are generally expressed in NSCs, (nestin, Sox2, and CD133). ACM treated astrocytes exhibit self-renewal capacity and multipotency similar to NSPCs. Concomitantly, in addition to Ptc, there was a significant up-regulation of the Shh downstream signal components Gli2 and Cyclin D1 which are involved in cell proliferation, dramatic changes in cell morphology, and the disruption of cell-cycle G1 arrest. Conversely, the depletion of Shh by administration of its neutralizing antibody (Shh n-Ab) effectively inhibited the de-differentiation process. Strikingly, Shh alone had little effect on astrocyte de-differentiation to NSPCs. These data above suggest that Shh is a key instructive molecule while other molecules secreted from insulted astrocytes may synergistically promote the de-differentiation event.

  11. Characterization of the human oncogene SCL/TAL1 interrupting locus (Stil) mediated Sonic hedgehog (Shh) signaling transduction in proliferating mammalian dopaminergic neurons

    SciTech Connect

    Sun, Lei; Carr, Aprell L.; Li, Ping; Lee, Jessica; McGregor, Mary; Li, Lei

    2014-07-11

    Highlights: • Stil is a human oncogene that is conserved in vertebrate species. • Stil functions in the Shh pathway in mammalian cells. • The expression of Stil is required for mammalian dopaminergic cell proliferation. - Abstract: The human oncogene SCL/TAL1 interrupting locus (Stil) is highly conserved in all vertebrate species. In humans, the expression of Stil is involved in cancer cell survival, apoptosis and proliferation. In this research, we investigated the roles of Stil expression in cell proliferation of mammalian dopaminergic (DA) PC12 cells. Stil functions through the Sonic hedgehog (Shh) signal transduction pathway. Co-immunoprecipitation tests revealed that STIL interacts with Shh downstream components, which include SUFU and GLI1. By examining the expression of Stil, Gli1, CyclinD2 (cell-cycle marker) and PCNA (proliferating cell nuclear antigen), we found that up-regulation of Stil expression (transfection with overexpression plasmids) increased Shh signaling transduction and PC12 cell proliferation, whereas down-regulation of Stil expression (by shRNA) inhibited Shh signaling transduction, and thereby decreased PC12 cell proliferation. Transient transfection of PC12 cells with Stil knockdown or overexpression plasmids did not affect PC12 cell neural differentiation, further indicating the specific roles of Stil in cell proliferation. The results from this research suggest that Stil may serve as a bio-marker for neurological diseases involved in DA neurons, such as Parkinson’s disease.

  12. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction.

    PubMed

    Nika, Konstantina; Soldani, Cristiana; Salek, Mogjiborahman; Paster, Wolfgang; Gray, Adrian; Etzensperger, Ruth; Fugger, Lars; Polzella, Paolo; Cerundolo, Vincenzo; Dushek, Omer; Höfer, Thomas; Viola, Antonella; Acuto, Oreste

    2010-06-25

    T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to approximately 40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-zeta phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors.

  13. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense.

    PubMed

    Yamada, Taisho; Horimoto, Hiromasa; Kameyama, Takeshi; Hayakawa, Sumio; Yamato, Hiroaki; Dazai, Masayoshi; Takada, Ayato; Kida, Hiroshi; Bott, Debbie; Zhou, Angela C; Hutin, David; Watts, Tania H; Asaka, Masahiro; Matthews, Jason; Takaoka, Akinori

    2016-06-01

    Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic activity of many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood. Here we demonstrate that constitutive AHR signaling negatively regulates the type I interferon (IFN-I) response during infection with various types of virus. Virus-induced IFN-β production was enhanced in AHR-deficient cells and mice and resulted in restricted viral replication. We found that AHR upregulates expression of the ADP-ribosylase TIPARP, which in turn causes downregulation of the IFN-I response. Mechanistically, TIPARP interacted with the kinase TBK1 and suppressed its activity by ADP-ribosylation. Thus, this study reveals the physiological importance of endogenous activation of AHR signaling in shaping the IFN-I-mediated innate response and, further, suggests that the AHR-TIPARP axis is a potential therapeutic target for enhancing antiviral responses.

  14. The sonic hedgehog signaling pathway stimulates anaplastic thyroid cancer cell motility and invasiveness by activating Akt and c-Met.

    PubMed

    Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Heiden, Katherine B; Xing, Mingzhao; Li, Yi; Prinz, Richard A; Xu, Xiulong

    2016-03-01

    The sonic hedgehog (Shh) pathway is highly activated in thyroid neoplasms and promotes thyroid cancer stem-like cell phenotype, but whether the Shh pathway regulates thyroid tumor cell motility and invasiveness remains unknown. Here, we report that the motility and invasiveness of two anaplastic thyroid tumor cell lines, KAT-18 and SW1736, were inhibited by two inhibitors of the Shh pathway (cyclopamine and GANT61). Consistently, the cell motility and invasiveness was decreased by Shh and Gli1 knockdown, and was increased by Gli1 overexpression in KAT-18 cells. Mechanistic studies revealed that Akt and c-Met phosphorylation was decreased by a Gli1 inhibitor and by Shh and Gli1 knockdown, but was increased by Gli1 overexpression. LY294002, a PI-3 kinase inhibitor, and a c-Met inhibitor inhibited the motility and invasiveness of Gli1-transfected KAT-18 cells more effectively than the vector-transfected cells. Knockdown of Snail, a transcription factor regulated by the Shh pathway, led to decreased cell motility and invasiveness in KAT-18 and SW1736 cells. However, key epithelial-to-mesenchymal transition (EMT) markers including E-cadherin and vimentin as well as Slug were not affected by cyclopamine and GANT61 in either SW1736 or WRO82, a well differentiated follicular thyroid carcinoma cell line. Our data suggest that the Shh pathway-stimulated thyroid tumor cell motility and invasiveness is largely mediated by AKT and c-Met activation with little involvement of EMT.

  15. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model.

    PubMed

    Lisovsky, Alexandra; Zhang, David K Y; Sefton, Michael V

    2016-08-01

    Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration.

  16. Lycium barbarum Polysaccharides Protect against Trimethyltin Chloride-Induced Apoptosis via Sonic Hedgehog and PI3K/Akt Signaling Pathways in Mouse Neuro-2a Cells.

    PubMed

    Zhao, Wanyun; Pan, Xiaoqi; Li, Tao; Zhang, Changchun; Shi, Nian

    2016-01-01

    Trimethyltin chloride (TMT) is a classic neurotoxicant that can cause severe neurodegenerative diseases. Some signaling pathways involving cell death play pivotal roles in the central nervous system. In this study, the role of Sonic Hedgehog (Shh) and PI3K/Akt pathways in TMT-induced apoptosis and protective effect of Lycium barbarum polysaccharides (LBP) on mouse neuro-2a (N2a) cells were investigated. Results showed that TMT treatment significantly enhanced apoptosis, upregulated proapoptotic Bax, downregulated antiapoptotic Bcl-2 expression, and increased caspase-3 activity in a dose-dependent manner in N2a cells. TMT induced oxidative stress in cells, performing reactive oxygen species (ROS) and malondialdehyde (MDA) excessive generation, and superoxide dismutase (SOD) activity reduction. TMT significantly decreased phosphorylated glycogen synthase kinase-3β (GSK-3β) and inhibited Shh and PI3K/Akt pathways. However, the addition of LBP upregulated GSK-3β phosphorylation, activated Shh and PI3K/Akt pathways, and eventually reduced apoptosis and oxidative stress caused by TMT. The interaction between Shh and PI3K/Akt pathways was clarified by specific PI3K inhibitor LY294002 or Shh inhibitor GDC-0449. Moreover, LY294002 and GDC-0449 pretreatment both induced phosphorylated GSK-3β downregulation and significantly promoted apoptosis induced by TMT. These results suggest that LBP could reduce TMT-induced N2a cells apoptosis by regulating GSK-3β phosphorylation, Shh, and PI3K/Akt signaling pathways.

  17. Principal function of mineralocorticoid signaling suggested by constitutive knockout of the mineralocorticoid receptor in medaka fish

    PubMed Central

    Sakamoto, Tatsuya; Yoshiki, Madoka; Takahashi, Hideya; Yoshida, Masayuki; Ogino, Yukiko; Ikeuchi, Toshitaka; Nakamachi, Tomoya; Konno, Norifumi; Matsuda, Kouhei; Sakamoto, Hirotaka

    2016-01-01

    As in osmoregulation, mineralocorticoid signaling is implicated in the control of brain-behavior actions. Nevertheless, the understanding of this role is limited, partly due to the mortality of mineralocorticoid receptor (MR)-knockout (KO) mice due to impaired Na+ reabsorption. In teleost fish, a distinct mineralocorticoid system has only been identified recently. Here, we generated a constitutive MR-KO medaka as the first adult-viable MR-KO animal, since MR expression is modest in osmoregulatory organs but high in the brain of adult medaka as for most teleosts. Hyper- and hypo-osmoregulation were normal in MR-KO medaka. When we studied the behavioral phenotypes based on the central MR localization, however, MR-KO medaka failed to track moving dots despite having an increase in acceleration of swimming. These findings reinforce previous results showing a minor role for mineralocorticoid signaling in fish osmoregulation, and provide the first convincing evidence that MR is required for normal locomotor activity in response to visual motion stimuli, but not for the recognition of these stimuli per se. We suggest that MR potentially integrates brain-behavioral and visual responses, which might be a conserved function of mineralocorticoid signaling through vertebrates. Importantly, this fish model allows for the possible identification of novel aspects of mineralocorticoid signaling. PMID:27897263

  18. Homeodomains, Hedgehogs, and Happiness.

    PubMed

    Scott, Matthew P

    2016-01-01

    Developmental biologists have had a spectacular quarter century of discoveries, building on many decades of work earlier, discovering molecular, cellular, and genetic mechanisms that underlie the magical process by which an egg becomes a plant or animal. Among the discoveries were homeodomains, DNA-binding domains that allow transcription factors to recognize their target genes, and the Hedgehog signaling pathway, which is used in many organs and tissues for communication among cells. The experience of unveiling the mechanisms and molecules connected to both of these findings has been remarkable, joyful, difficult, and a time of great teamwork and collaboration within and between laboratory groups. More than ever it is possible to discern the evolutionary processes, and their mechanisms, that led to the diversity of life on earth. A huge amount of work remains to be done to obtain a broad understanding of what happened and how development works.

  19. Comparison of cortical and white matter traumatic brain injury models reveals differential effects in the subventricular zone and divergent Sonic hedgehog signaling pathways in neuroblasts and oligodendrocyte progenitors.

    PubMed

    Mierzwa, Amanda J; Sullivan, Genevieve M; Beer, Laurel A; Ahn, Sohyun; Armstrong, Regina C

    2014-01-01

    The regenerative capacity of the central nervous system must be optimized to promote repair following traumatic brain injury (TBI) and may differ with the site and form of damage. Sonic hedgehog (Shh) maintains neural stem cells and promotes oligodendrogenesis. We examined whether Shh signaling contributes to neuroblast (doublecortin) or oligodendrocyte progenitor (neural/glial antigen 2 [NG2]) responses in two distinct TBI models. Shh-responsive cells were heritably labeled in vivo using Gli1-CreER(T2);R26-YFP bitransgenic mice with tamoxifen administration on Days 2 and 3 post-TBI. Injury to the cerebral cortex was produced with mild controlled cortical impact. Yellow fluorescent protein (YFP) cells decreased in cortical lesions. Total YFP cells increased in the subventricular zone (SVZ), indicating Shh pathway activation in SVZ cells, including doublecortin-labeled neuroblasts. The alternate TBI model produced traumatic axonal injury in the corpus callosum. YFP cells decreased within the SVZ and were rarely double labeled as NG2 progenitors. NG2 progenitors increased in the cortex, with a similar pattern in the corpus callosum. To further test the potential of NG2 progenitors to respond through Shh signaling, Smoothened agonist was microinjected into the corpus callosum to activate Shh signaling. YFP cells and NG2 progenitors increased in the SVZ but were not double labeled. This result indicates that either direct Smoothened activation in NG2 progenitors does not signal through Gli1 or that Smoothened agonist acts indirectly to increase NG2 progenitors. Therefore, in all conditions, neuroblasts exhibited differential Shh pathway utilization compared with oligodendrocyte progenitors. Notably, cortical versus white matter damage from TBI produced opposite responses of Shh-activated cells within the SVZ.

  20. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects.

  1. Oestrogen receptor-α contributes to the regulation of the hedgehog signalling pathway in ERα-positive gastric cancer

    PubMed Central

    Kameda, C; Nakamura, M; Tanaka, H; Yamasaki, A; Kubo, M; Tanaka, M; Onishi, H; Katano, M

    2010-01-01

    Background: Oestrogen receptor-alpha (ERα) is highly expressed in diffuse-type gastric cancer and oestrogen increases the proliferation of ERα-positive gastric cancer. However, a detailed mechanism by which oestrogen increases the proliferation of these cells is still unclear. Methods: We used 17-β-oestradiol (E2) as a stimulator against the ERα pathway. Pure anti-oestrogen drug ICI 182 780 (ICI) and small interfering RNA against ERα (ERα siRNA) were used as inhibitors. Cyclopamine (Cyc) was used as the hedgehog (Hh) pathway inhibitor. Two human ERα-positive gastric cancer cells were used as target cells. Effects of the stimulator and inhibitor on E2-induced cell proliferation were also examined. Results: In ERα-positive cells, E2 increased not only cell proliferation but also one of the ligands of the Hh pathway, Shh expression. 17-β-Oestradiol-induced cell proliferation was suppressed by ICI, ERα siRNA or Cyc. The increased expression of Shh induced by E2 was suppressed by ICI and ERα siRNA but not by Cyc. Furthermore, recombinant Shh activated the Hh pathway and increased cell proliferation, whereas anti-Shh antibody suppressed E2-induced cell proliferation. When a relationship between ERα and Shh expressions was analysed using surgically resected gastric cancer specimens, a positive correlation was found, suggesting a linkage between the ERα and Hh pathways. Conclusion: Our data indicate that activation of the ERα pathway promotes cell proliferation by activating the Hh pathway in a ligand-dependent manner through Shh induction of ERα-positive gastric cancer. PMID:20087349

  2. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling.

    PubMed

    Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A C J; Harberd, Nicholas P

    2015-09-01

    Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.

  3. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs

    NASA Astrophysics Data System (ADS)

    Lindemann, Stephan W.; Yost, Christian C.; Denis, Melvin M.; McIntyre, Thomas M.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2004-05-01

    The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor , which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.

  4. Hedgehog Signaling Pathway Is Active in GBM with GLI1 mRNA Expression Showing a Single Continuous Distribution Rather than Discrete High/Low Clusters

    PubMed Central

    Biswas, Nidhan K.; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N.; Deb, Sumit; Saha, Suniti K.; Chowdhury, Anup K.; Ghosh, Subhashish; Rudin, Charles M.; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression—as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution—unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the “high-Hh” cluster of MB but 5.6 fold higher than that of the “low-Hh” cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them. PMID:25775002

  5. Widening the mutation spectrum of EVC and EVC2: ectopic expression of Weyer variants in NIH 3T3 fibroblasts disrupts Hedgehog signaling.

    PubMed

    Valencia, Maria; Lapunzina, Pablo; Lim, Derek; Zannolli, Raffaella; Bartholdi, Deborah; Wollnik, Bernd; Al-Ajlouni, Othman; Eid, Suhair S; Cox, Helen; Buoni, Sabrina; Hayek, Joseph; Martinez-Frias, Maria L; Antonio, Perez-Aytes; Temtamy, Samia; Aglan, Mona; Goodship, Judith A; Ruiz-Perez, Victor L

    2009-12-01

    Autosomal recessive Ellis-van Creveld syndrome and autosomal dominant Weyer acrodental dysostosis are allelic conditions caused by mutations in EVC or EVC2. We performed a mutation screening study in 36 EvC cases and 3 cases of Weyer acrodental dysostosis, and identified pathogenic changes either in EVC or in EVC2 in all cases. We detected 40 independent EVC/EVC2 mutations of which 29 were novel changes in Ellis-van Creveld cases and 2 were novel mutations identified in Weyer pedigrees. Of interest one EvC patient had a T>G nucleotide substitution in intron 7 of EVC (c.940-150T>G), which creates a new donor splice site and results in the inclusion of a new exon. The T>G substitution is at nucleotide +5 of the novel 5' splice site. The three Weyer mutations occurred in the final exon of EVC2 (exon 22), suggesting that specific residues encoded by this exon are a key part of the protein. Using murine versions of EVC2 exon 22 mutations we demonstrate that the expression of a Weyer variant, but not the expression of a truncated protein that mimics an Ellis-van Creveld syndrome mutation, impairs Hedgehog signal transduction in NIH 3T3 cells in keeping with its dominant effect.

  6. LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway.

    PubMed

    Zhou, Mingli; Hou, Yixuan; Yang, Guanglun; Zhang, Hailong; Tu, Gang; Du, Yan-e; Wen, Siyang; Xu, Liyun; Tang, Xi; Tang, Shifu; Yang, Li; Cui, Xiaojiang; Liu, Manran

    2016-01-01

    Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewal capacity and limitless proliferative potential as well as high invasion and migration capacity. These cells are commonly associated with epithelial-mesenchymal transition (EMT), which is also critical for tumor metastasis. Recent studies illustrate a direct link between EMT and stemness of cancer cells. Long non-coding RNAs (lncRNAs) have emerged as important new players in the regulation of multiple cellular processes in various diseases. To date, the role of lncRNAs in EMT-associated CSC stemness acquisition and maintenance remains unclear. In this study, we discovered that a set of lncRNAs were dysregulated in Twist-positive mammosphere cells using lncRNA microarray analysis. Multiple lncRNAs-associated canonical signaling pathways were identified via bioinformatics analysis. Especially, the Shh-GLI1 pathway associated lncRNA-Hh, transcriptionally regulated by Twist, directly targets GAS1 to stimulate the activation of hedgehog signaling (Hh). The activated Hh increases GLI1 expression, and enhances the expression of SOX2 and OCT4 to play a regulatory role in CSC maintenance. Thus, the mammosphere-formation efficiency (MFE) and the self-renewal capacity in vitro, and oncogenicity in vivo in Twist-positive breast cancer cells are elevated. lncRNA-Hh silence in Twist-positive breast cells attenuates the activated Shh-GLI1 signaling and decreases the CSC-associated SOX and OCT4 levels, thus reduces the MFE and tumorigenesis of transplanted tumor. Our results reveal that lncRNAs function as an important regulator endowing Twist-induced EMT cells to gain the CSC-like stemness properties.

  7. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  8. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer.

    PubMed

    Agyeman, Akwasi; Mazumdar, Tapati; Houghton, Janet A

    2012-08-01

    Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1(Ser343), activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.

  9. Drosophila ciD encodes a hybrid Pangolin/Cubitus interruptus protein that diverts the Wingless into the Hedgehog signaling pathway.

    PubMed

    Schweizer, L; Basler, K

    1998-11-01

    The Hedgehog (Hh) and Wingless (Wg) signaling pathways play important roles in animal development. The activities of the two pathways depend on each other during Drosophila embryogenesis. In the embryonic segment, Wg is required in anterior cells to sustain Hh secretion in adjacent posterior cells. Hh input in turn is necessary for anterior cells to maintain wg expression. The Hh and Wg pathways are mediated by the transcription factors Cubitus interruptus (Ci) and Pangolin/TCF (Pan), respectively. Coincidentally, pan and ci are adjacent genes on the fourth chromosome in a head-to-head orientation. Our genetic and in situ hybridization data indicate that ciD is a mutation affecting both ci and pan. Molecular analysis revealed that the ciD allele is caused by an inversion event that swapped the promoter regions and the first exons of the two genes. The ci gene in ciD is controlled by the ubiquitous pan promoter and encodes a hybrid Ci protein that carries the N-terminal region of Pan. This domain has previously been shown to bind to the b-catenin homolog Armadillo (Arm), raising the possibility that Wg input, in addition to Hh input, modulates the activity of the hybrid CiD protein. Indeed, we found that Wg signaling induces the expression of the Hh target gene patched (ptc) in ciD animals. We provide evidence that this effect depends on the ability of the CiD protein to bind Arm. Genetic and molecular data indicate that wild-type Pan and CiD compete for binding to Arm, leading to a compromised transduction of the Wg signal in heterozygous ciD/+ animals and to a dramatic enhancement of the gain-of-function activity of CiD in homozygous mutants. Thus, the Hh and the Wg pathways are affected by the ciD mutation, and the CiD fusion protein integrates the activities of both.

  10. Constitutively Active Lck Kinase in T Cells Drives Antigen Receptor Signal Transduction

    PubMed Central

    Nika, Konstantina; Soldani, Cristiana; Salek, Mogjiborahman; Paster, Wolfgang; Gray, Adrian; Etzensperger, Ruth; Fugger, Lars; Polzella, Paolo; Cerundolo, Vincenzo; Dushek, Omer; Höfer, Thomas; Viola, Antonella; Acuto, Oreste

    2010-01-01

    Summary T cell antigen receptor (TCR) and coreceptor ligation is thought to initiate signal transduction by inducing activation of the kinase Lck. Here we showed that catalytically active Lck was present in unstimulated naive T cells and thymocytes and was readily detectable in these cells in lymphoid organs. In naive T cells up to ∼40% of total Lck was constitutively activated, part of which was also phosphorylated on the C-terminal inhibitory site. Formation of activated Lck was independent of TCR and coreceptors but required Lck catalytic activity and its maintenance relied on monitoring by the HSP90-CDC37 chaperone complex to avoid degradation. The amount of activated Lck did not change after TCR and coreceptor engagement; however it determined the extent of TCR-ζ phosphorylation. Our findings suggest a dynamic regulation of Lck activity that can be promptly utilized to initiate T cell activation and have implications for signaling by other immune receptors. PMID:20541955

  11. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1

    PubMed Central

    Lorberbaum, David S; Ramos, Andrea I; Peterson, Kevin A; Carpenter, Brandon S; Parker, David S; De, Sandip; Hillers, Lauren E; Blake, Victoria M; Nishi, Yuichi; McFarlane, Matthew R; Chiang, Ason CY; Kassis, Judith A; Allen, Benjamin L; McMahon, Andrew P; Barolo, Scott

    2016-01-01

    The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure—one of the oldest cis-regulatory features discovered in animal genomes—explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways. DOI: http://dx.doi.org/10.7554/eLife.13550.001 PMID:27146892

  12. The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression

    DTIC Science & Technology

    2007-02-01

    tomatidine , a structurally similar but non-specific compound for hedgehog signaling did not affect cell growth. In contrast, cell growth of HepG2 was...hedgehog signaling status (our unpublished observation), and was, thus, not used in this study. Tomatidine (2 mM in 0.5% FBS DMEM, Sigma Cat# T2909), a...inhibition was specific because addition of tomatidine , a structurally similar but non-specific compound for hedgehog signaling, did not affect cell growth

  13. Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1.

    PubMed

    Lin, Zhongxiao; Sheng, Hansong; You, Chaoguo; Cai, Ming; Zhang, Yiping; Yu, Li Sheng; Yu, Xiaoming; Lin, Jian; Zhang, Nu

    2017-01-01

    Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) transcription factor is considered as a mediator of the SHH signaling pathway in MB cells. Therefore, the present study investigated whether the SHH signaling pathway promotes the apoptosis of MB cells via downregulation of Gli1. GANT61, a novel Gli1 inhibitor, is known to have an in vitro activity against tumors. In the current study, Daoy cells were treated with different concentrations of GANT61 for 24 h, and the effect on cell proliferation was assayed by cell counting kit-8 assay. In addition, the cell cycle progression and apoptosis were assayed by flow cytometry analysis and hematoxylin-eosin (HE) staining. The effects of GANT61 treatment on SHH signaling pathway at the mRNA level were assayed by polymerase chain reaction (PCR). To further elucidate the inhibitory effects of GANT61 on the expression of Gli1 and CyclinD1, their protein levels were examined by western blot and immunofluorescence. The results indicated that GANT61 significantly inhibited the proliferation of Daoy cells in a dose-dependent manner, compared with the control group (P<0.05). HE staining revealed that cells had increasingly abnormal protuberance with increasing GANT61 concentration. Flow cytometry analysis also demonstrated that GANT61 induced G1/S arrest and apoptosis of Daoy cells in a dose-dependent manner (P<0.05). Gli1 and CyclinD1 mRNA expression levels were downregulated by GANT61 treatment (P<0.05); similarly, their protein levels were downregulated by GANT61 treatment in a dose-dependent manner (P<0.05). In conclusion, Gli1 expression was significantly associated with CyclinD1 expression

  14. Inhibition of the CyclinD1 promoter in response to sonic hedgehog signaling pathway transduction is mediated by Gli1

    PubMed Central

    Lin, Zhongxiao; Sheng, Hansong; You, Chaoguo; Cai, Ming; Zhang, Yiping; Yu, Li Sheng; Yu, Xiaoming; Lin, Jian; Zhang, Nu

    2017-01-01

    Medulloblastoma (MB) is the most common malignant tumor of the central nervous system in children. Accumulating evidence suggests a major role for the activation of the sonic hedgehog (SHH) signaling pathway in the development of MB cells; however, the mechanisms underlying the effect of this pathway on tumor survival and growth remain poorly understood. The Gli family zinc finger 1 (Gli1) transcription factor is considered as a mediator of the SHH signaling pathway in MB cells. Therefore, the present study investigated whether the SHH signaling pathway promotes the apoptosis of MB cells via downregulation of Gli1. GANT61, a novel Gli1 inhibitor, is known to have an in vitro activity against tumors. In the current study, Daoy cells were treated with different concentrations of GANT61 for 24 h, and the effect on cell proliferation was assayed by cell counting kit-8 assay. In addition, the cell cycle progression and apoptosis were assayed by flow cytometry analysis and hematoxylin-eosin (HE) staining. The effects of GANT61 treatment on SHH signaling pathway at the mRNA level were assayed by polymerase chain reaction (PCR). To further elucidate the inhibitory effects of GANT61 on the expression of Gli1 and CyclinD1, their protein levels were examined by western blot and immunofluorescence. The results indicated that GANT61 significantly inhibited the proliferation of Daoy cells in a dose-dependent manner, compared with the control group (P<0.05). HE staining revealed that cells had increasingly abnormal protuberance with increasing GANT61 concentration. Flow cytometry analysis also demonstrated that GANT61 induced G1/S arrest and apoptosis of Daoy cells in a dose-dependent manner (P<0.05). Gli1 and CyclinD1 mRNA expression levels were downregulated by GANT61 treatment (P<0.05); similarly, their protein levels were downregulated by GANT61 treatment in a dose-dependent manner (P<0.05). In conclusion, Gli1 expression was significantly associated with CyclinD1 expression

  15. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    PubMed Central

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  16. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling.

    PubMed

    Goetz, Sarah C; Bangs, Fiona; Barrington, Chloe L; Katsanis, Nicholas; Anderson, Kathryn V

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.

  17. Constitutive Phosphorylation of Interferon Receptor A-Associated Signaling Proteins in Systemic Lupus Erythematosus

    PubMed Central

    Ramírez-Vélez, Gabriela; Medina, Francisco; Ramírez-Montaño, Luis; Zarazúa-Lozada, Abraham; Hernández, Ramiro; Llorente, Luis; Moreno, José

    2012-01-01

    Background Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity. Methodology/Principal Findings Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC. Conclusions/Significance These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold. PMID:22859983

  18. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells

    PubMed Central

    Vishnoi, Kanchan; Mahata, Sutapa; Tyagi, Abhishek; Pandey, Arvind; Verma, Gaurav; Jadli, Mohit; Singh, Tejveer; Singh, Sukh Mahendra; Bharti, Alok C.

    2016-01-01

    Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6. PMID:27678330

  19. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells.

    PubMed

    Vishnoi, Kanchan; Mahata, Sutapa; Tyagi, Abhishek; Pandey, Arvind; Verma, Gaurav; Jadli, Mohit; Singh, Tejveer; Singh, Sukh Mahendra; Bharti, Alok C

    2016-09-28

    Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell's sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6.

  20. Rho GTPase signaling promotes constitutive expression and release of TGF-β2 by human trabecular meshwork cells.

    PubMed

    Pervan, Cynthia L; Lautz, Jonathan D; Blitzer, Andrea L; Langert, Kelly A; Stubbs, Evan B

    2016-05-01

    Elevated intraocular pressure (IOP) is causally implicated in the pathophysiology of primary open-angle glaucoma (POAG). The molecular mechanisms responsible for elevated IOP remain elusive, but may involve aberrant expression and signaling of transforming growth factor (TGF)-β2 within the trabecular meshwork (TM). Consistent with previously published studies, we show here that exogenous addition of TGF-β2 to cultured porcine anterior segments significantly attenuates outflow facility in a time-dependent manner. By comparison, perfusing segments with a TGFβRI/ALK-5 antagonist (SB-431542) unexpectedly elicited a significant and sustained increase in outflow facility, implicating a role for TM-localized constitutive expression and release of TGF-β2. Consistent with this thesis, cultured primary or transformed (GTM3) quiescent human TM cells were found to constitutively express and secrete measurable amounts of biologically-active TGF-β2. Disrupting monomeric GTPase post-translational prenylation and activation with lovastatin or GGTI-298 markedly reduced constitutive TGF-β2 expression and release. Specifically, inhibiting the Rho subfamily of GTPases with C3 exoenzyme similarly reduced constitutive expression and secretion of TGF-β2. These findings suggest that Rho GTPase signaling, in part, regulates constitutive expression and release of biologically-active TGF-β2 from human TM cells. Localized constitutive expression and release of TGF-β2 by TM cells may promote or exacerbate elevation of IOP in POAG.

  1. Metastable nematic hedgehogs

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.

    1996-07-01

    For nematic liquid crystals, we study the local stability of a radial hedgehog against biaxial perturbations. Our analysis employs the Landau - de Gennes functional to describe the free energy stored in a ball, whose radius is a parameter of the model. We find that a radial hedgehog may be either unstable or metastable, depending on the values of the elastic constants. For unstable hedgehogs, we give an explicit expression for the radius of the ball within which the instability manifests itself: it can be interpreted as the size of the biaxial core of the defect; it is of the same order of magnitude as the radius of the disclination ring predicted by Penzenstadler and Trebin's model. The metastable hedgehogs predicted by our model are the major novelty of the paper. They tell us that we may also expect truly uniaxial point defects, whose core contains no biaxial structure.

  2. Identification of a signaling cascade that maintains constitutive delta opioid receptor incompetence in peripheral sensory neurons.

    PubMed

    Brackley, Allison Doyle; Sarrami, Shayda; Gomez, Ruben; Guerrero, Kristi A; Jeske, Nathaniel A

    2017-04-05

    Mu opioid receptor (MOR) agonists are often used to treat severe pain, but can result in adverse side effects. To circumvent systemic side effects, targeting peripheral opioid receptors is an attractive alternative treatment for severe pain. Activation of the delta opioid receptor (DOR) produces similar analgesia with reduced side effects. However, until primed by inflammation, peripheral DOR is analgesically incompetent, raising interest in the mechanism. We recently identified a novel role for G protein-coupled receptor kinase 2 (GRK2) that renders DOR analgesically incompetent at the plasma membrane. However, the mechanism that maintains constitutive GRK2 association with DOR is unknown. Protein kinase A (PKA) phosphorylation of GRK2 at Ser685 targets it to the plasma membrane. A-kinase anchoring protein 79/150 (AKAP), residing at the plasma membrane in neurons, scaffolds PKA to target proteins to mediate downstream signal. Therefore, we sought to determine whether GRK2-mediated DOR desensitization is directed by PKA via AKAP scaffolding. Membrane fractions from cultured rat sensory neurons following AKAP siRNA-transfection and from AKAP-knockout mice, had less PKA activity, GRK2 Ser685 phosphorylation, and GRK2 plasma membrane targeting than controls. Site-directed mutagenesis revealed that GRK2 Ser685 phosphorylation drives GRK2s association with plasma membrane-associated DOR. Moreover, overexpression studies with AKAP mutants indicated that impaired AKAP-mediated PKA scaffolding significantly reduces DOR-GRK2 association at the plasma membrane and consequently increases DOR activity in sensory neurons without a priming event. These findings suggest that AKAP scaffolds PKA to increase plasma membrane targeting and phosphorylation of GRK2 to maintain DOR analgesic incompetence in peripheral sensory neurons.

  3. Constitutive activation of NF-κB signaling by NOTCH1 mutations in chronic lymphocytic leukemia.

    PubMed

    Xu, Zhen-Shu; Zhang, Ju-Shun; Zhang, Jing-Yan; Wu, Shun-Quan; Xiong, Dong-Lian; Chen, Hui-Jun; Chen, Zhi-Zhe; Zhan, Rong

    2015-04-01

    NOTCH1 mutations occur in approximately 10% of patients with chronic lymphocytic leukemia (CLL). However, the relationship between the genetic aberrations and tumor cell drug resistance or disease progression remains unclear. Frameshift deletions were detected by gene sequencing in the NOTCH1 PEST domain in three naive CLL patients. These mutations were associated with chromosomal abnormalities including trisomy 12 or 13q deletion. Of note, one of the patients developed Richter's transformation during FCR treatment. Immunofluorescent and western blot analyses revealed a markedly higher intracellular domain of NOTCH (ICN) expression in the mutated cells compared with their unmutated counterparts and normal CD19+ B lymphocytes (P<0.01 and P<0.001, respectively). In addition, strong DNA-κB binding activities were observed in the mutant cells by gel shift assays. RT-PCR analysis revealed elevated RelA mRNA expression in the mutant cells, while RelB levels were variable. Reduced levels of RelA and RelB mRNA were observed in unmutated CLL and normal B cells. Compared to unmutated CLL and normal B cells, increased apoptosis occurred in the mutant cells in the presence of GSI (ICN inhibitor) and PDTC (NF-κB inhibitor), particularly under the synergistic effects of the two drugs (P=0.03). Moreover, IKKα and IKKβ, the active components in the NF-κB pathway, were markedly inhibited following prolonged treatment with GSI and PDTC. These results suggested that NOTCH1 mutations constitutively activate the NF-κB signaling pathway in CLL, which is likely related to ICN overexpression, indicating NOTCH1 and NF-κB as potential therapeutic targets in the treatment of CLL.

  4. Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA

    PubMed Central

    Tabata, Toshihide; Araishi, Kenji; Hashimoto, Kouichi; Hashimotodani, Yuki; van der Putten, Herman; Bettler, Bernhard; Kano, Masanobu

    2004-01-01

    Type B γ-aminobutyric acid receptor (GABABR) is a G protein-coupled receptor that regulates neurotransmitter release and neuronal excitability throughout the brain. In various neurons, GABABRs are concentrated at excitatory synapses. Although these receptors are assumed to respond to GABA spillover from neighboring inhibitory synapses, their function is not fully understood. Here we show a previously undescribed function of GABABR exerted independent of GABA. In cerebellar Purkinje cells, interaction of GABABR with extracellular Ca2+ (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Ca}}_{{\\mathrm{o}}}^{2+}\\end{equation*}\\end{document}) leads to a constitutive increase in the glutamate sensitivity of metabotropic glutamate receptor 1 (mGluR1). mGluR1 sensitization is clearly mediated by GABABR because it is absent in GABABR1 subunit-knockout cells. However, the mGluR1 sensitization does not require Gi/o proteins that mediate the GABABR's classical functions. Moreover, coimmunoprecipitation reveals complex formation between GABABR and mGluR1 in the cerebellum. These findings demonstrate that GABABR can act as \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{Ca}}_{{\\mathrm{o}}}^{2+}\\end{equation*}\\end{document}-dependent cofactors to enhance neuronal metabotropic glutamate signaling. PMID:15550547

  5. Localization of Sonic hedgehog secreting and receiving cells in the developing and adult rat adrenal cortex.

    PubMed

    Guasti, Leonardo; Paul, Alex; Laufer, Ed; King, Peter

    2011-04-10

    Sonic hedgehog signaling was recently demonstrated to play an important role in murine adrenal cortex development. The organization of the rat adrenal differs from that of the mouse, with the zona glomerulosa and zona fasciculata separated by an undifferentiated zone in the rat, but not in the mouse. In the present study we aimed to determine the mRNA expression patterns of Sonic hedgehog and the hedgehog signaling pathway components Patched-1 and Gli1 in the developing and adult rat adrenal. Sonic hedgehog expression was detected at the periphery of the cortex in cells lacking CYP11B1 and CYP11B2 expression, while signal-receiving cells were localized in the overlying capsule mesenchyme. Using combined in situ hybridization and immunohistochemistry we found that the cells expressing Sonic hedgehog lie between the CYP11B2 and CYP11B1 layers, and thus Sonic hedgehog expression defines one cell population of the undifferentiated zone.

  6. Potential anti-aging agents suppress the level of constitutive mTOR- and DNA damage- signaling.

    PubMed

    Halicka, H Dorota; Zhao, Hong; Li, Jiangwei; Lee, Yong-Syu; Hsieh, Tze-Chen; Wu, Joseph M; Darzynkiewicz, Zbigniew

    2012-12-01

    Two different mechanisms are considered to be the primary cause of aging. Cumulative DNA damage caused by reactive oxygen species (ROS), the by-products of oxidative phosphorylation, is one of these mechanisms (ROS concept). Constitutive stimulation of mitogen- and nutrient-sensing mTOR/S6 signaling is the second mechanism (TOR concept). The flow- and laser scanning- cytometric methods were developed to measure the level of the constitutive DNA damage/ROS- as well as of mTOR/S6- signaling in individual cells. Specifically, persistent activation of ATM and expression of γH2AX in untreated cells appears to report constitutive DNA damage induced by endogenous ROS. The level of phosphorylation of Ser235/236-ribosomal protein (RP), of Ser2448-mTOR and of Ser65-4EBP1, informs on constitutive signaling along the mTOR/S6 pathway. Potential gero-suppressive agents rapamycin, metformin, 2-deoxyglucose, berberine, resveratrol, vitamin D3 and aspirin, all decreased the level of constitutive DNA damage signaling as seen by the reduced expression of γH2AX in proliferating A549, TK6, WI-38 cells and in mitogenically stimulated human lymphocytes. They all also decreased the level of intracellular ROS and mitochondrial trans-membrane potential ΔΨm, the marker of mitochondrial energizing as well as reduced phosphorylation of mTOR, RP-S6 and 4EBP1. The most effective was rapamycin. Although the primary target of each on these agents may be different the data are consistent with the downstream mechanism in which the decline in mTOR/S6K signaling and translation rate is coupled with a decrease in oxidative phosphorylation, (revealed by ΔΨm) that leads to reduction of ROS and oxidative DNA damage. The decreased rate of translation induced by these agents may slow down cells hypertrophy and alleviate other features of cell aging/senescence. Reduction of oxidative DNA damage may lower predisposition to neoplastic transformation which otherwise may result from errors in repair of DNA

  7. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop.

    PubMed

    Mokrosiński, Jacek; Frimurer, Thomas M; Sivertsen, Bjørn; Schwartz, Thue W; Holst, Birgitte

    2012-09-28

    Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.

  8. Addressing PXR liabilities of phthalazine-based hedgehog/smoothened antagonists using novel pyridopyridazines.

    PubMed

    Kaizerman, Jacob A; Aaron, Wade; An, Songzhu; Austin, Richard; Brown, Matt; Chong, Angela; Huang, Tom; Hungate, Randall; Jiang, Ben; Johnson, Michael G; Lee, Gary; Lucas, Brian S; Orf, Jessica; Rong, Minqing; Toteva, Maria M; Wickramasinghe, Dineli; Xu, Guifen; Ye, Qiuping; Zhong, Wendy; McMinn, Dustin L

    2010-08-01

    Pyridopyridazine antagonists of the hedgehog signaling pathway are described. Designed to optimize our previously described phthalazine smoothened antagonists, a representative compound eliminates a PXR liability while retaining potency and in vitro metabolic stability. Moreover, the compound has improved efficacy in a hedgehog/smoothened signaling mouse pharmacodynamic model.

  9. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.

    PubMed

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  10. The hedgehog system in ovarian follicles of cattle selected for twin ovulations and births: evidence of a link between the IGF and hedgehog systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hedgehog signaling is involved in regulation of ovarian function in Drosophila but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or the...

  11. Calcium-sensing receptors signal constitutive macropinocytosis and facilitate the uptake of NOD2 ligands in macrophages

    PubMed Central

    Canton, Johnathan; Schlam, Daniel; Breuer, Christian; Gütschow, Michael; Glogauer, Michael; Grinstein, Sergio

    2016-01-01

    Macropinocytosis can be induced in several cell types by stimulation with growth factors. In selected cell types, notably macrophages and dendritic cells, macropinocytosis occurs constitutively, supporting the uptake of antigens for subsequent presentation. Despite their different mode of initiation and contrasting physiological roles, it is tacitly assumed that both types of macropinocytosis are mechanistically identical. We report that constitutive macropinocytosis is stringently calcium dependent, while stimulus-induced macropinocytosis is not. Extracellular calcium is sensed by G-protein-coupled calcium-sensing receptors (CaSR) that signal macropinocytosis through Gα-, phosphatidylinositol 3-kinase and phospholipase C. These pathways promote the recruitment of exchange factors that stimulate Rac and/or Cdc42, driving actin-dependent formation of ruffles and macropinosomes. In addition, the heterologous expression of CaSR in HEK293 cells confers on them the ability to perform constitutive macropinocytosis. Finally, we show that CaSR-induced constitutive macropinocytosis facilitates the sentinel function of macrophages, promoting the efficient delivery of ligands to cytosolic pattern-recognition receptors. PMID:27050483

  12. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells.

    PubMed

    Turkson, James; Zhang, Shumin; Mora, Linda B; Burns, Audrey; Sebti, Said; Jove, Richard

    2005-09-23

    Previous studies have established constitutive activation of Stat3 protein as one of the molecular changes required for tumorigenesis. To develop novel therapeutics for tumors harboring constitutively active Stat3, compounds from the NCI 2000 diversity set were evaluated for inhibition of Stat3 DNA-binding activity in vitro. Of these, a novel platinum (IV) compound, IS3 295, interacted with Stat3 and inhibited its binding to specific DNA-response elements. Further analysis suggested noncompetitive-type kinetics for the inhibition of Stat3 binding to DNA. In human and mouse tumor cell lines with constitutively active Stat3, IS3 295 selectively attenuated Stat3 signaling, thereby inducing cell growth arrest at G0/G1 phase and apoptosis. Moreover, in transformed cells, IS3 295 repressed expression of cyclin D1 and bcl-xL, two of the known Stat3-regulated genes that are overexpressed in malignant cells, suggesting that IS3 295 mediates anti-tumor cell activity in part by blocking Stat3-mediated sub-version of cell growth and apoptotic signals. Together, our findings provide evidence for the inhibition of Stat3 activity and biological functions by IS3 295 through interaction with Stat3 protein. This study represents a significant advance in small molecule-based approaches to target Stat3 and suggests potential new applications for platinum (IV) complexes as modulators of the Stat3 pathway for cancer therapy.

  13. Glucocorticoid receptor signaling contributes to constitutive activation of the noncanonical NF-κB pathway in term human placenta.

    PubMed

    Wang, Bingbing; Palomares, Kristy; Parobchak, Nataliya; Cece, John; Rosen, Max; Nguyen, Anh; Rosen, Todd

    2013-02-01

    Our recent study demonstrated that constitutively activated RelB/NF-κB2 positively regulates the CRH in the human placenta. In the current study, we explored the role of the glucocorticoid receptor (GR) signaling in constitutive activation of the noncanonical NF-κB pathway. A glucocorticoid response element (GRE) motif search suggests that both NF-κB inducing kinase (NIK) and RelB genes, which are key regulators of the noncanonical NF-κB pathway, have a putative GRE within their promoter, approximately 1 kb upstream from the transcription start site. By using chromatin immunoprecipitation assay we identified that the GR and phosphorylated GR at Ser211 were associated with the GREs of both NIK and RelB. Dexamethasone stimulated expression of NIK, RelB, NF-κB2 as well as CRH and cyclooxygenase-2 (COX-2). Repression of GR by short interfering RNA resulted in inhibition of NIK, RelB, NF-κB2, CRH, and COX-2. In addition, depletion of GR attenuated glucocorticoid-mediated up-regulation of NIK, RelB, NF-κB2, CRH, and COX-2. Furthermore, siRNA specifically targeting NIK down-regulated CRH and COX-2. Taken together, these results suggest that constitutive activation of the noncanonical NF-κB pathway in term human placenta is driven by the GR signaling, which in turn up-regulates placental CRH and other NF-κB-responsive genes.

  14. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways.

    PubMed

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-Jkappa-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  15. Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways

    SciTech Connect

    Talora, Claudio; Cialfi, Samantha; Segatto, Oreste; Morrone, Stefania; Kim Choi, John; Frati, Luigi; Paolo Dotto, Gian; Gulino, Alberto; Screpanti, Isabella . E-mail: isabella.screpanti@uniroma1.it

    2005-05-01

    Notch signaling plays a key role in cell-fate determination and differentiation in different organisms and cell types. Several reports suggest that Notch signaling may be involved in neoplastic transformation. However, in primary keratinocytes, Notch1 can function as a tumor suppressor. Similarly, in HPV-positive cervical cancer cells, constitutively active Notch1 signaling was found to cause growth suppression. Activated Notch1 in these cells represses viral E6/E7 expression through AP-1 down-modulation, resulting in increased p53 expression and a block of pRb hyperphosphorylation. Here we show that in cervical cancer cell lines in which Notch1 ability to repress AP-1 activity is impaired, Notch1-enforced expression elicits an alternative pathway leading to growth arrest. Indeed, activated Notch1 signaling suppresses activity of the helix-loop-helix transcription factor E47, via ERK1/2 activation, resulting in inhibition of cell cycle progression. Moreover, we found that RBP-J{kappa}-dependent Notch signaling is specifically repressed in cervical cancer cells and this repression could provide one such mechanism that needs to be activated for cervical carcinogenesis. Finally, we show that inhibition of endogenous Notch1 signaling, although results in a proliferative advantage, sensitizes cervical cancer cell lines to drug-induced apoptosis. Together, our results provide novel molecular insights into Notch1-dependent growth inhibitory effects, counteracting the transforming potential of HPV.

  16. The Hedgehog receptor patched functions in multidrug transport and chemotherapy resistance.

    PubMed

    Bidet, Michel; Tomico, Amandine; Martin, Patrick; Guizouarn, Hélène; Mollat, Patrick; Mus-Veteau, Isabelle

    2012-11-01

    Most anticancer drugs fail to eradicate tumors, leading to the development of drug resistance and disease recurrence. The Hedgehog signaling plays a crucial role during embryonic development, but is also involved in cancer development, progression, and metastasis. The Hedgehog receptor Patched (Ptc) is a Hedgehog signaling target gene that is overexpressed in many cancer cells. Here, we show a link between Ptc and resistance to chemotherapy, and provide new insight into Ptc function. Ptc is cleared from the plasma membrane upon interaction with its ligand Hedgehog, or upon treatment of cells with the Hedgehog signaling antagonist cyclopamine. In both cases, after incubation of cells with doxorubicin, a chemotherapeutic agent that is used for the clinical management of recurrent cancers, we observed an inhibition of the efflux of doxorubicin from Hedgehog-responding fibroblasts, and an increase of doxorubicin accumulation in two different cancer cell lines that are known to express aberrant levels of Hedgehog signaling components. Using heterologous expression system, we stringently showed that the expression of human Ptc conferred resistance to growth inhibition by several drugs from which chemotherapeutic agents such as doxorubicin, methotrexate, temozolomide, and 5-fluorouracil. Resistance to doxorubicin correlated with Ptc function, as shown using mutations from Gorlin's syndrome patients in which the Ptc-mediated effect on Hedgehog signaling is lost. Our results show that Ptc is involved in drug efflux and multidrug resistance, and suggest that Ptc contributes to chemotherapy resistance of cancer cells.

  17. RAS and Hedgehog--partners in crime.

    PubMed

    Lauth, Matthias

    2011-06-01

    Both RAS and Hedgehog (HH) pathway activation can be found in approximately one third of all cancers. In many cases, this activation occurs in the same tumor types, suggesting a positive impact of a simultaneous activation of RAS and HH on tumor development. This review aims to summarize the current knowledge about the molecular and functional crosstalk of RAS and HH signaling in the development of hyperproliferative disease.

  18. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.

    PubMed

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-12-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.

  19. Mathematical model of cAMP-dependent signaling pathway in constitutive and UV-induced melanogenesis

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Peshkova, Anna Y.

    2002-07-01

    Cascade of reactions of cAMP-dependent signaling pathway in melanocytes is investigated by mathematical modeling. Model takes into account (alpha) -melanocyte stimulating hormone binding to melanocortin-1 receptor, adenylate cyclase activation by G-protein, increase of the intracellular cAMP concentration, PKA activation by cAMP, CREB phosphorylation by PKA, microphthalmia gene expression, microphthalmia binding to tyrosinase gene promoter, increase of tyrosinase synthesis. Positive and negative feedback loops of this system are analyzed.

  20. Sonic hedgehog patterning during cerebellar development.

    PubMed

    De Luca, Annarita; Cerrato, Valentina; Fucà, Elisa; Parmigiani, Elena; Buffo, Annalisa; Leto, Ketty

    2016-01-01

    The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.

  1. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.

    PubMed

    Garner, Jo Meagan; Fan, Meiyun; Yang, Chuan He; Du, Ziyun; Sims, Michelle; Davidoff, Andrew M; Pfeffer, Lawrence M

    2013-09-06

    Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.

  2. CT-2576, an inhibitor of phospholipid signaling, suppresses constitutive and induced expression of human immunodeficiency virus.

    PubMed Central

    Leung, D W; Peterson, P K; Weeks, R; Gekker, G; Chao, C C; Kaplan, A H; Balantac, N; Tompkins, C; Underiner, G E; Bursten, S

    1995-01-01

    Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication. Images Fig. 1 Fig. 3 Fig. 5 PMID:7761405

  3. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity.

    PubMed

    Turkson, James; Zhang, Shumin; Palmer, Jay; Kay, Heidi; Stanko, Joseph; Mora, Linda B; Sebti, Said; Yu, Hua; Jove, Richard

    2004-12-01

    DNA-alkylating agents that are platinum complexes induce apoptotic responses and have wide application in cancer therapy. The potential for platinum compounds to modulate signal transduction events that contribute to their therapeutic outcome has not been extensively examined. Among the signal transducer and activator of transcription (STAT) proteins, Stat3 activity is frequently up-regulated in many human tumors. Various lines of evidence have established a causal role for aberrant Stat3 activity in malignant transformation and provided validation for its targeting in the development of small-molecule inhibitors as novel cancer therapeutics. We report here that platinum-containing compounds disrupt Stat3 signaling and suppress its biological functions. The novel platinum (IV) compounds, CPA-1, CPA-7, and platinum (IV) tetrachloride block Stat3 activity in vitro at low micromolar concentrations. In malignant cells that harbor constitutively activated Stat3, CPA-1, CPA-7, and platinum (IV) tetrachloride inhibit cell growth and induce apoptosis in a manner that reflects the attenuation of persistent Stat3 activity. By contrast, cells that do not contain persistent Stat3 activity are marginally affected or are not affected by these compounds. Moreover, CPA-7 induces the regression of mouse CT26 colon tumor, which correlates with the abrogation of persistent Stat3 activity in tumors. Thus, the modulation of oncogenic signal transduction pathways, such as Stat3, may be one of the key molecular mechanisms for the antitumor effects of platinum (IV)-containing complexes.

  4. Application of sonic hedgehog to the developing chick limb.

    PubMed

    Tiecke, Eva; Tickle, Cheryll

    2007-01-01

    Here, we describe methods for applying Sonic hedgehog (Shh) to developing chick limbs. The Sonic hedgehog gene is expressed in the polarizing region, a signaling region at the posterior margin of the limb bud and application of Shh-expressing cells or Shh protein to early limb buds mimics polarizing region signaling. The polarizing region (or zone of polarizing activity) is involved in one of the best known cell-cell interactions in vertebrate embryos and is pivotal in controlling digit number and pattern. At later stages of limb development, the application of Shh protein to the regions between digit primordia can induce changes in digit morphogenesis.

  5. Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer.

    PubMed

    Bordeau, Brandon M; Ciulla, Daniel A; Callahan, Brian P

    2016-09-20

    Abiraterone, a potent inhibitor of the human enzyme CYP17A1 (cytochrome P450c17), provides a last line of defense against ectopic androgenesis in advanced prostate cancer. Herein we report an unprecedented off-target interaction between abiraterone and oncogenic hedgehog proteins. Our experiments indicate that abiraterone and its structural congener, galeterone, can replace cholesterol as a substrate in a specialized biosynthetic event of hedgehog proteins, known as cholesterolysis. The off-target reaction generates covalent hedgehog-drug conjugates. Cell-based reporter assays indicate that these conjugates activate hedgehog signaling when present in the low nanomolar range. Because hedgehog signaling is implicated in prostate cancer progression, and abiraterone is administered to treat advanced stages of the disease, this off-target interaction may have therapeutic significance.

  6. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling1[OPEN

    PubMed Central

    Yasumura, Yuki; Pierik, Ronald; Kelly, Steven; Sakuta, Masaaki; Voesenek, Laurentius A.C.J.; Harberd, Nicholas P.

    2015-01-01

    Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants. PMID:26243614

  7. Non-Canonical Hh Signaling in Cancer-Current Understanding and Future Directions.

    PubMed

    Gu, Dongsheng; Xie, Jingwu

    2015-08-27

    As a major regulatory pathway for embryonic development and tissue patterning, hedgehog signaling is not active in most adult tissues, but is reactivated in a number of human cancer types. A major milestone in hedgehog signaling in cancer is the Food and Drug Administration (FDA) approval of a smoothened inhibitor Vismodegib for treatment of basal cell carcinomas. Vismodegib can block ligand-mediated hedgehog signaling, but numerous additional clinical trials have failed to show significant improvements in cancer patients. Amounting evidence indicate that ligand-independent hedgehog signaling plays an essential role in cancer. Ligand-independent hedgehog signaling, also named non-canonical hedgehog signaling, generally is not sensitive to smoothened inhibitors. What we know about non-canonical hedgehog signaling in cancer, and how should we prevent its activation? In this review, we will summarize recent development of non-canonical hedgehog signaling in cancer, and will discuss potential ways to prevent this type of hedgehog signaling.

  8. Novel Hedgehog pathway targets against basal cell carcinoma

    SciTech Connect

    Tang, Jean Y. So, P.-L.; Epstein, Ervin H.

    2007-11-01

    The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting that agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence.

  9. Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.

    PubMed

    Xu, Tao; Zhang, Honglai; Park, Sung-Soo; Venneti, Sriram; Kuick, Rork; Ha, Kimberly; Michael, Lowell Evan; Santi, Mariarita; Uchida, Chiyoko; Uchida, Takafumi; Srinivasan, Ashok; Olson, James M; Dlugosz, Andrzej A; Camelo-Piragua, Sandra; Rual, Jean-François

    2017-03-01

    Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis.

  10. Sonic hedgehog functions upstream of disrupted-in-schizophrenia 1 (disc1): implications for mental illness

    PubMed Central

    Boyd, Penelope J.; Cunliffe, Vincent T.; Roy, Sudipto; Wood, Jonathan D.

    2015-01-01

    ABSTRACT DISRUPTED-IN-SCHIZOPHRENIA (DISC1) has been one of the most intensively studied genetic risk factors for mental illness since it was discovered through positional mapping of a translocation breakpoint in a large Scottish family where a balanced chromosomal translocation was found to segregate with schizophrenia and affective disorders. While the evidence for it being central to disease pathogenesis in the original Scottish family is compelling, recent genome-wide association studies have not found evidence for common variants at the DISC1 locus being associated with schizophrenia in the wider population. It may therefore be the case that DISC1 provides an indication of biological pathways that are central to mental health issues and functional studies have shown that it functions in multiple signalling pathways. However, there is little information regarding factors that function upstream of DISC1 to regulate its expression and function. We herein demonstrate that Sonic hedgehog (Shh) signalling promotes expression of disc1 in the zebrafish brain. Expression of disc1 is lost in smoothened mutants that have a complete loss of Shh signal transduction, and elevated in patched mutants which have constitutive activation of Shh signalling. We previously demonstrated that disc1 knockdown has a dramatic effect on the specification of oligodendrocyte precursor cells (OPC) in the hindbrain and Shh signalling is known to be essential for the specification of these cells. We show that disc1 is prominently expressed in olig2-positive midline progenitor cells that are absent in smo mutants, while cyclopamine treatment blocks disc1 expression in these cells and mimics the effect of disc1 knock down on OPC specification. Various features of a number of psychiatric conditions could potentially arise through aberrant Hedgehog signalling. We therefore suggest that altered Shh signalling may be an important neurodevelopmental factor in the pathobiology of mental illness. PMID

  11. Constitutive TLR4 signalling in intestinal epithelium reduces tumor load by increasing apoptosis in APC(Min/+) mice.

    PubMed

    Li, Y; Teo, W L; Low, M J; Meijer, L; Sanderson, I; Pettersson, S; Greicius, G

    2014-01-16

    The microbial pattern-recognizing Toll-like receptors (TLRs) are major signal transducers known to shape and influence the postnatal maturation of host intestinal epithelium. Perturbations in this intricate host-microbe cross-talk have been reported to be associated with uncontrolled epithelial cell growth and thus potential cancer development by mechanisms which are largely unknown. We therefore generated transgenic mice carrying a constitutively active TLR4 (CD4-TLR4) linked to an intestinal epithelial cell-specific promoter. Ex vivo analysis of transgenic crypt-villus organoid cultures revealed an increased proliferative capacity and a lowered cyclooxygenase 2 (Cox-2) expression in these organoids compared with wild-type control cultures. Introducing the CD4-TLR4 transgene into APC(Min/+) mice (CD4-TLR4-APC(Min/+)), a model of colorectal carcinoma, resulted in a dramatic drop in tumor load as compared with control APC(Min/+) mice. Intestinal tumors from CD4-TLR4-APC(Min/+) mice displayed reduced Cox-2 protein, elevated interferon β expression and increased caspase-3 activity, which correlated with increased apoptosis in vivo. Thus, our data reveal that host microbiota-mediated signal transduction via TLR4 in intestinal epithelial cells is far more complex than what is previously reported.

  12. The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution

    PubMed Central

    Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.

    2008-01-01

    Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp

  13. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage.

    PubMed

    Xie, Guojiang; Wang, Hangwei; Yan, Zhipeng; Cai, Linyan; Zhou, Guixuan; He, Wanzhong; Paus, Ralf; Yue, Zhicao

    2015-03-01

    Chemotherapeutic agents induce complex tissue responses in vivo and damage normal organ functions. Here we use the feather follicle to investigate details of this damage response. We show that cyclophosphamide treatment, which causes chemotherapy-induced alopecia in mice and man, induces distinct defects in feather formation: feather branching is transiently and reversibly disrupted, thus leaving a morphological record of the impact of chemotherapeutic agents, whereas the rachis (feather axis) remains unperturbed. Similar defects are observed in feathers treated with 5-fluorouracil or taxol but not with doxorubicin or arabinofuranosyl cytidine (Ara-C). Selective blockade of cell proliferation was seen in the feather branching area, along with a downregulation of sonic hedgehog (Shh) transcription, but not in the equally proliferative rachis. Local delivery of the Shh inhibitor, cyclopamine, or Shh silencing both recapitulated this effect. In mouse hair follicles, those chemotherapeutic agents that disrupted feather formation also downregulated Shh gene expression and induced hair loss, whereas doxorubicin or Ara-C did not. Our results reveal a mechanism through which chemotherapeutic agents damage rapidly proliferating epithelial tissue, namely via the cell population-specific, Shh-dependent inhibition of proliferation. This mechanism may be targeted by future strategies to manage chemotherapy-induced tissue damage.

  14. Galectin-1 induces invasion and the epithelial-mesenchymal transition in human gastric cancer cells via non-canonical activation of the hedgehog signaling pathway

    PubMed Central

    Chong, Yang; Tang, Dong; Gao, Jun; Jiang, Xuetong; Xu, Chuanqi; Xiong, Qingquan; Huang, Yuqin; Wang, Jie; Zhou, Huaicheng; Shi, Youquan; Wang, Daorong

    2016-01-01

    Galectin-1 (Gal-1) has been reported to be an independent prognostic indicator of poor survival in gastric cancer and overexpression of Gal-1 enhances the invasiveness of gastric cancer cells. However, the downstream mechanisms by which Gal-1 promotes invasion remains unclear. Moreover, the function of Gal-1 in the epithelial-mesenchymal transition (EMT) in gastric cancer has not yet been elucidated. In this study, we observed Gal-1 expression was upregulated and positively associated with metastasis and EMT markers in 162 human gastric cancer tissue specimens. In vitro studies showed Gal-1 induced invasion, the EMT phenotype and activated the non-canonical hedgehog (Hh) pathway in gastric cancer cell lines. Furthermore, our data revealed that Gal-1 modulated the non-canonical Hh pathway by increasing the transcription of glioma-associated oncogene-1 (Gli-1) via a Smoothened (SMO)-independent manner, and that upregulation of Gal-1 was strongly associated with gastric cancer metastasis. We conclude that Gal-1 promotes invasion and the EMT in gastric cancer cells via activation of the non-canonical Hh pathway, suggesting Gal-1 could represent a promising therapeutic target for the prevention and treatment of gastric cancer metastasis. PMID:27835885

  15. Itraconazole Side Chain Analogues: Structure–Activity Relationship Studies for Inhibition of Endothelial Cell Proliferation, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, and Hedgehog Signaling

    PubMed Central

    Shi, Wei; Nacev, Benjamin A.; Aftab, Blake T.; Head, Sarah; Rudin, Charles M.; Liu, Jun O.

    2012-01-01

    Itraconazole is an antifungal drug that was recently found to possess potent antiangiogenic activity and anti-hedgehog (Hh) pathway activity. To search for analogues of itraconazole with greater potency and to understand the structure–activity relationship in both antiangiogenic and Hh targeting activity, 25 itraconazole side chain analogues were synthesized and assayed for inhibition of endothelial cell proliferation and Gli1 transcription in a medulloblastoma (MB) culture. Through this analysis, we have identified analogues with increased potency for inhibiting endothelial cell proliferation and the Hh pathway, as well as VEGFR2 glycosylation that was recently found to be inhibited by itraconazole. An SAR analysis of these activities revealed that potent activity of the analogues against VEGFR2 glycosylation was generally driven by side chains of at least four carbons in composition with branching at the α or β position. SAR trends for targeting the Hh pathway were divergent from those related to HUVEC proliferation or VEGFR2 glycosylation. These results also suggest that modification of the sec-butyl side chain can lead to enhancement of the biological activity of itraconazole. PMID:21936514

  16. Yin-Yang strands of PCAF/Hedgehog axis in cancer control.

    PubMed

    Infante, Paola; Canettieri, Gianluca; Gulino, Alberto; Di Marcotullio, Lucia

    2014-08-01

    PCAF (p300/CBP associated factor) harbors acetyltransferase and a recently identified ubiquitylation activity that regulates gene expression in response to genotoxic stress or mitogenic signals. We highlight the dual role of PCAF in the control of Hedgehog signaling, a master regulator of tissue development, stemness, and tumorigenesis. By promoting histone acetylation at Hedgehog/GLI1 target gene promoters or direct ubiquitylation and proteolysis of GLI1, the PCAF/GLI1 axis stands as a promising therapeutic target for Hedgehog-dependent tumors.

  17. Antiferromagnetic hedgehogs with superconducting cores

    SciTech Connect

    Goldbart, P.M.; Sheehy, D.E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  18. Antiferromagnetic hedgehogs with superconducting cores

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul M.; Sheehy, Daniel E.

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang's SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to ``escape'' into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined.

  19. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  20. Beyond the scalpel: targeting hedgehog in skin cancer prevention.

    PubMed

    Rudin, Charles M

    2010-01-01

    This perspective places the article by Tang et al. in this issue of the journal (beginning on page 25) in the context of recent work defining the hedgehog signaling pathway as a central etiologic factor and as a therapeutic target in basal cell cancer. Tang et al. show that inhibition of cyclooxygenase activity, either genetically (in a relevant mouse model) or pharmacologically (in the mouse and in patients highly predisposed to develop basal cell skin cancers), may suppress basal cell carcinogenesis. This new study of cyclooxygenase inhibition, together with recent data on the efficacy of hedgehog pathway inhibition, offers new hope for patients at a high risk for basal cell cancer.

  1. Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development

    ERIC Educational Resources Information Center

    Barsoum, Ivraym Boshra

    2009-01-01

    Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…

  2. Inhibition of APP gamma-secretase restores Sonic Hedgehog signaling and neurogenesis in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Giacomini, Andrea; Stagni, Fiorenza; Trazzi, Stefania; Guidi, Sandra; Emili, Marco; Brigham, Elizabeth; Ciani, Elisabetta; Bartesaghi, Renata

    2015-10-01

    Neurogenesis impairment starting from early developmental stages is a key determinant of intellectual disability in Down syndrome (DS). Previous evidence provided a causal relationship between neurogenesis impairment and malfunctioning of the mitogenic Sonic Hedgehog (Shh) pathway. In particular, excessive levels of AICD (amyloid precursor protein intracellular domain), a cleavage product of the trisomic gene APP (amyloid precursor protein) up-regulate transcription of Ptch1 (Patched1), the Shh receptor that keeps the pathway repressed. Since AICD results from APP cleavage by γ-secretase, the goal of the current study was to establish whether treatment with a γ-secretase inhibitor normalizes AICD levels and restores neurogenesis in trisomic neural precursor cells. We found that treatment with a selective γ-secretase inhibitor (ELND006; ELN) restores proliferation in neurospheres derived from the subventricular zone (SVZ) of the Ts65Dn mouse model of DS. This effect was accompanied by reduction of AICD and Ptch1 levels and was prevented by inhibition of the Shh pathway with cyclopamine. Treatment of Ts65Dn mice with ELN in the postnatal period P3-P15 restored neurogenesis in the SVZ and hippocampus, hippocampal granule cell number and synapse development, indicating a positive impact of treatment on brain development. In addition, in the hippocampus of treated Ts65Dn mice there was a reduction in the expression levels of various genes that are transcriptionally regulated by AICD, including APP, its origin substrate. Inhibitors of γ-secretase are currently envisaged as tools for the cure of Alzheimer's disease because they lower βamyloid levels. Current results provide novel evidence that γ-secretase inhibitors may represent a strategy for the rescue of neurogenesis defects in DS.

  3. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling.

    PubMed

    Yang, Hui; Garzel, Brandy; Heyward, Scott; Moeller, Timothy; Shapiro, Paul; Wang, Hongbing

    2014-02-01

    Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase- and extracellular signal-regulated kinase 1/2-dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates.

  4. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  5. Hedgehogs in the dowser state.

    PubMed

    Pieranski, Pawel; Čopar, Simon; Godinho, Maria Helena; Dazza, Mallory

    2016-12-01

    We show how to easily generate point defects called hedgehogs, in the so-called quasi-planar texture --the dowser state-- of a nematic layer confined between surfaces with homeotropic anchoring conditions. We point out that the dowser texture can be preserved infinitely in spite of its higher energy with respect to the homogeneous homeotropic texture. For topological reasons the dowser state in a squeezed droplet must contain at least one hedgehog. We submitted this hedgehog to a rotating magnetic field and controlled the continuous evolution, transitioning continuously between radial, hyperbolic and circular hedgehogs, which, just as in previous experiments by Lavrentovich et al., are topologically equivalent states. The dynamics of this transformation is shown to be directly sensitive to energy costs of different geometric configurations of the hedgehog defect and therefore can be used as a rough probe for elastic constants; knowing the principal elastic constants K1,2,3, one can retrieve information about the K24 constant. We propose also a method of generation of hedgehog pairs by application of a Poiseuille flow to a dowser state wound by a rotating magnetic field.

  6. Extracellular Signal-Regulated Kinase Is an Endogenous Signal Retaining the Nuclear Constitutive Active/Androstane Receptor (CAR) in the Cytoplasm of Mouse Primary Hepatocytes

    PubMed Central

    Koike, Chika; Moore, Rick; Negishi, Masahiko

    2007-01-01

    The nuclear receptor constitutive active/androstane receptor (CAR) is sequestered in the cytoplasm of liver cells before its activation by therapeutic drugs and xenobiotics such as phenobarbital (PB) and 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) in mouse liver, the regulatory mechanism of which remains poorly understood. Given the finding that epidermal growth factor repressed PB activation of CAR-mediated transcription (Mol Pharmacol 65:172–180, 2004), here we investigated the regulatory role of hepatocyte growth factor (HGF)-mediated signal in sequestering CAR in the cytoplasm of mouse primary hepatocytes. HGF treatment effectively repressed the induction of endogenous CYP2b10 gene by PB and TCPOBOP in mouse primary hepatocytes. On the other hand, inhibition by 1,4-diamino-2,3-dicyano-1,4-bis(methyl-thio)butadiene (U0126) of an HGF downstream kinase mitogen-activated protein kinase kinase (MEK) induced the Cyp2b10 gene and up-regulated the CAR-regulated promoter activity in the absence of TCPOBOP. HGF treatment increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in the cytosol, thus decreasing the TCPOBOP-induced nuclear accumulation of CAR. In contrast, U0126 dephosphorylated ERK1/2 and increased nuclear CAR accumulation in the absence of TCPOBOP. These results are consistent with the conclusion that the HGF-dependent phosphorylation of ERK1/2 is the endogenous signal that sequesters CAR in the cytoplasm of mouse primary hepatocytes. PMID:17314319

  7. The Sonic hedgehog gradient in the developing limb.

    PubMed

    Tickle, Cheryll; Barker, Heather

    2013-01-01

    A gradient of Sonic hedgehog (Shh) plays a major role in specifying the antero-posterior pattern of structures that develop in the distal part of the vertebrate limb, in particular, the antero-posterior pattern of the digits. Classical embryological experiments identified the polarizing region (or zone of polarizing activity, ZPA), a signaling region at the posterior margin of the early chick wing bud and, consistent with a model in which production of a diffusible morphogen specifies antero-posterior positional information, polarizing region signaling was shown to be dose dependent and long range. It is now well established that the vertebrate hedgehog gene, Sonic hedgehog (Shh), which encodes a secreted protein, is expressed in the polarizing region of the chick wing and that Shh signaling has the same characteristics as polarizing region signaling. Shh expression at the posterior of the early limb bud and the mechanism of Shh signal transduction are conserved among vertebrates including mammals. However, it is unlikely that a simple Shh gradient is responsible for digit pattern formation in mammalian limbs and there is still little understanding of how positional information specified by Shh signaling is encoded and translated into digit anatomy. Alterations in Shh signaling underlie some congenital limb abnormalities and also changes in timing and extent of Shh signaling appear to be related to the evolution of morphological diversity of vertebrate limbs.

  8. The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog.

    PubMed

    Juraver-Geslin, Hugo A; Gómez-Skarmeta, José Luis; Durand, Béatrice C

    2014-12-01

    In this study, we investigated the gene regulatory network that governs formation of the Zona limitans intrathalamica (ZLI), a signaling center that secretes Sonic Hedgehog (Shh) to control the growth and regionalization of the caudal forebrain. Using loss- and gain-of-function, explants and grafting experiments in amphibians, we demonstrate that barhl2 acts downstream of otx2 and together with the iroquois (irx)-3 gene in establishment of the ZLI compartment initiated by Shh influence. We find that the presumptive (pre)-ZLI domain expresses barhl2, otx2 and irx3, whereas the thalamus territory caudally bordering the pre-ZLI expresses barhl2, otx2 and irx1/2 and early on irx3. We demonstrate that Barhl2 activity is required for determination of the ZLI and thalamus fates and that within the p2 alar plate the ratio of Irx3 to Irx1/2 contributes to ZLI specification and size determination. We show that when continuously exposed to Shh, neuroepithelial cells coexpressing barhl2, otx2 and irx3 acquire two characteristics of the ZLI compartment-the competence to express shh and the ability to segregate from anterior neural plate cells. In contrast, neuroepithelial cells expressing barhl2, otx2 and irx1/2, are not competent to express shh. Noteworthy in explants, under Shh influence, ZLI-like cells segregate from thalamic-like cells. Our study establishes that Barhl2 activity plays a key role in p2 alar plate patterning, specifically ZLI formation, and provides new insights on establishment of the signaling center of the caudal forebrain.

  9. Anti-apoptotic role of sonic hedgehog on blood platelets.

    PubMed

    Kumari, Sharda; Chaurasia, Susheel N; Kumar, Kailash; Dash, Debabrata

    2014-12-01

    Sonic hedgehog (Shh) is an essential morphogen involved in vertebrate organogenesis. Perturbation of Hh signaling is associated with pathological consequences like tumor formation and chronic lung fibrosis. Platelets are highly sensitive circulating blood cells responsible for hemostasis, while hyperactivity of these cells lead to morbidities like ischemic heart diseases and stroke. Despite being terminally differentiated cells with life span of 10-12 days, platelets have recently been shown to respond to Wnt ligand, another developmental signal similar to Shh. In this study, we demonstrate that components of Shh signaling, Patched and Gli3, are expressed in human platelets consistent with existence of functional Hedgehog signaling in these cells. Shh had potent inhibitory effect on platelet apoptosis induced by ABT-737 or thrombin through attenuation of caspase-3 activity. The Shh-mediated pathway may thus represent a novel endogenous mechanism for regulating platelet activity and life span.

  10. Aberrations and therapeutics involving the developmental pathway Hedgehog in pancreatic cancer.

    PubMed

    Kelleher, Fergal C; McDermott, Raymond

    2012-01-01

    To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. A PubMed search from 2000 to 2010 and literature-based references were sourced. It was found that in 2009 a genetic analysis of pancreatic cancers discovered that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Second, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) have shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Third, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compressed the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourth, it has been found that ligand-dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. In conclusion, aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  11. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis.

    PubMed

    Stopper, Geffrey F; Richards-Hrdlicka, Kathryn L; Wagner, Günter P

    2016-03-01

    The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.

  12. Hedgehog-regulated atypical PKC promotes phosphorylation and activation of Smoothened and Cubitus interruptus in Drosophila

    PubMed Central

    Jiang, Kai; Liu, Yajuan; Fan, Junkai; Epperly, Garretson; Gao, Tianyan; Jiang, Jin; Jia, Jianhang

    2014-01-01

    Smoothened (Smo) is essential for transduction of the Hedgehog (Hh) signal in both insects and vertebrates. Cell surface/cilium accumulation of Smo is thought to play an important role in Hh signaling, but how the localization of Smo is controlled remains poorly understood. In this study, we demonstrate that atypical PKC (aPKC) regulates Smo phosphorylation and basolateral accumulation in Drosophila wings. Inactivation of aPKC by either RNAi or a mutation inhibits Smo basolateral accumulation and attenuates Hh target gene expression. In contrast, expression of constitutively active aPKC elevates basolateral accumulation of Smo and promotes Hh signaling. The aPKC-mediated phosphorylation of Smo at Ser680 promotes Ser683 phosphorylation by casein kinase 1 (CK1), and these phosphorylation events elevate Smo activity in vivo. Moreover, aPKC has an additional positive role in Hh signaling by regulating the activity of Cubitus interruptus (Ci) through phosphorylation of the Zn finger DNA-binding domain. Finally, the expression of aPKC is up-regulated by Hh signaling in a Ci-dependent manner. Our findings indicate a direct involvement of aPKC in Hh signaling beyond its role in cell polarity. PMID:25349414

  13. Sonic Hedgehog regulates thymic epithelial cell differentiation

    PubMed Central

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L.; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-01-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus. PMID

  14. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    PubMed

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  15. Constitutive activation of CaMKKα signaling is sufficient but not necessary for mTORC1 activation and growth in mouse skeletal muscle.

    PubMed

    Ferey, Jeremie L A; Brault, Jeffrey J; Smith, Cheryl A S; Witczak, Carol A

    2014-10-15

    Skeletal muscle loading/overload stimulates the Ca²⁺-activated, serine/threonine kinase Ca²⁺/calmodulin-dependent protein kinase kinase-α (CaMKKα); yet to date, no studies have examined whether CaMKKα regulates muscle growth. The purpose of this study was to determine if constitutive activation of CaMKKα signaling could stimulate muscle growth and if so whether CaMKKα is essential for this process. CaMKKα signaling was selectively activated in mouse muscle via expression of a constitutively active form of CaMKKα using in vivo electroporation. After 2 wk, constitutively active CaMKKα expression increased muscle weight (~10%) and protein content (~10%), demonstrating that activation of CaMKKα signaling can stimulate muscle growth. To determine if active CaMKKα expression stimulated muscle growth via increased mammalian target of rapamycin complex 1 (mTORC1) signaling and protein synthesis, [³H]phenylalanine incorporation into proteins was assessed with or without the mTORC1 inhibitor rapamycin. Constitutively active CaMKKα increased protein synthesis ~60%, and this increase was prevented by rapamycin, demonstrating a critical role for mTORC1 in this process. To determine if CaMKKα is essential for growth, muscles from CaMKKα knockout mice were stimulated to hypertrophy via unilateral ablation of synergist muscles (overload). Surprisingly, compared with wild-type mice, muscles from CaMKKα knockout mice exhibited greater growth (~15%) and phosphorylation of the mTORC1 substrate 70-kDa ribosomal protein S6 kinase (Thr³⁸⁹; ~50%), demonstrating that CaMKKα is not essential for overload-induced mTORC1 activation or muscle growth. Collectively, these results demonstrate that activation of CaMKKα signaling is sufficient but not necessary for activation of mTORC1 signaling and growth in mouse skeletal muscle.

  16. Smoothened regulation in response to Hedgehog stimulation

    PubMed Central

    Jiang, Kai; Jia, Jianhang

    2016-01-01

    The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation. PMID:26973699

  17. Hedgehog signaling in bone regulates whole-body energy metabolism through a bone-adipose endocrine relay mediated by PTHrP and adiponectin.

    PubMed

    Zhang, Xu; Cheng, Qianni; Wang, Yixiang; Leung, Po Sing; Mak, Kinglun Kingston

    2017-02-01

    Bone plays a role in energy metabolism, but the interplay between bone and other organs in this process is not completely understood. Here, we show that upregulated Hh signaling in bones results in increased whole-body energy expenditure, white adipose tissue (WAT) browning, hypoglycemia and skeletal muscle atrophy. We found that Hh signaling induces PTHrP secretion from bones and causes WAT browning. Injection of PTHrP-neutralizing antibody attenuates WAT browning and improves the circulating blood glucose level while high-fat diet treatment only rescues hypoglycemia. Furthermore, bone-derived PTHrP stimulates adiponectin secretion in WAT and results in systemic increase of fatty acid oxidation and glucose uptake. Mechanistically, PTHrP activates both PKA/cAMP and Akt/Foxo pathways for Ucp1 expression in WAT. PTHrP couples adiponectin actions to activate the AMPK pathway in the skeletal muscles and liver, respectively, for fatty acid oxidation. Our findings establish a new bone-adipose hormonal relay that regulates whole-body energy metabolism.

  18. Peroxiredoxin 2 is essential for maintaining cancer stem cell-like phenotype through activation of Hedgehog signaling pathway in colon cancer

    PubMed Central

    Wang, Rong; Wei, Jinlai; Zhang, Shouru; Wu, Xingye; Guo, Jinbao; Liu, Maoxi; Du, Kunli; Xu, Jun; Peng, Linglong; Lv, Zhenbing; You, Wenxian; Xiong, Yongfu; Fu, Zhongxue

    2016-01-01

    Cancer stem cells (CSCs) are a key target for reducing tumor growth, metastasis, and recurrence. Redox status is a critical factor in the maintenance of CSCs, and the antioxidant enzyme Peroxiredoxin 2 (Prdx2) plays an important role in the development of colon cancer. Therefore, we investigated the contribution of Prdx2 to the maintenance of stemness of colon CSCs. Here, we used short-hairpin RNAs and a Prdx2-overexpression vector to determine the effects of Prdx2. We demonstrated that knockdown of Prdx2 reduced the self-renewal and sphere formation and resulted in increased 5-FU-induced apoptosis in human colon CSCs. Prdx2 overexpression induced reversion of the self-renewal and sphere formation. Furthermore, the effects of Prdx2 resulted in an altered expression of stemness associated with the Hh/Gli1 signaling pathway. Finally, knockdown of Prdx2 in CD133+ cells reduced the volume of xenograft tumors in BALB/c-nu mice. Taken together, colon CSCs overexpress Prdx2, which promotes their stem cell properties via the Hh/Gli1 signaling pathway. The results suggest that Prdx2 may be an effective therapeutic target for the elimination of CSCs in colorectal cancer. PMID:27894099

  19. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain

    PubMed Central

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-01-01

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI: http://dx.doi.org/10.7554/eLife.19735.001 PMID:27864883

  20. Targeting the hedgehog pathway for gallbladder cancer therapy?

    PubMed

    Mittal, Balraj; Yadav, Saurabh

    2016-02-01

    Gallbladder carcinoma is a fatal malignancy of hepatobiliary tract that is generally diagnosed at advanced stages of cancer because of its asymptomatic nature. Advanced GBC tumors are unresectable with poor prognosis. Improvement in GBC patient care requires better understanding of the biological signaling pathways and application of newly discovered drugs for cancer therapy. Herein, we discuss the possibilities and challenges in targeting the hedgehog pathway in gallbladder cancer therapy based on recent developments in the area.

  1. Hedgehog Pathway Antagonist 5E1 Binds Hedgehog at the Pseudo-active Site

    PubMed Central

    Maun, Henry R.; Wen, Xiaohui; Lingel, Andreas; de Sauvage, Frederic J.; Lazarus, Robert A.; Scales, Suzie J.; Hymowitz, Sarah G.

    2010-01-01

    Proper hedgehog (Hh) signaling is crucial for embryogenesis and tissue regeneration. Dysregulation of this pathway is associated with several types of cancer. The monoclonal antibody 5E1 is a Hh pathway inhibitor that has been extensively used to elucidate vertebrate Hh biology due to its ability to block binding of the three mammalian Hh homologs to the receptor, Patched1 (Ptc1). Here, we engineered a murine:human chimeric 5E1 (ch5E1) with similar Hh-binding properties to the original murine antibody. Using biochemical, biophysical, and x-ray crystallographic studies, we show that, like the regulatory receptors Cdon and Hedgehog-interacting protein (Hhip), ch5E1 binding to Sonic hedgehog (Shh) is enhanced by calcium ions. In the presence of calcium and zinc ions, the ch5E1 binding affinity increases 10–20-fold to tighter than 1 nm primarily because of a decrease in the dissociation rate. The co-crystal structure of Shh bound to the Fab fragment of ch5E1 reveals that 5E1 binds at the pseudo-active site groove of Shh with an epitope that largely overlaps with the binding site of its natural receptor antagonist Hhip. Unlike Hhip, the side chains of 5E1 do not directly coordinate the Zn2+ cation in the pseudo-active site, despite the modest zinc-dependent increase in 5E1 affinity for Shh. Furthermore, to our knowledge, the ch5E1 Fab-Shh complex represents the first structure of an inhibitor antibody bound to a metalloprotease fold. PMID:20504762

  2. Mammary gland tumors in captive African hedgehogs.

    PubMed

    Raymond, J T; Gerner, M

    2000-04-01

    From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs.

  3. The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis

    PubMed Central

    Mar, BG; Amakye, D; Aifantis, I; Buonamici, S

    2015-01-01

    Hedgehog (Hh) is a developmental signaling pathway in which Hh ligands bind Patched (Ptch), which relieves its inhibition of Smoothened (Smo), allowing the Gli family of transcription factors to translocate to the nucleus and activate Hh target genes. The role of Hh signaling in hematopoiesis is controversial and ill defined. Although some groups observed self-renewal defects with decreased replating and reduced efficiency of secondary murine transplants, other groups reported no hematopoietic phenotypes, which may be related to the timing of Hh abrogation. In malignant hematopoiesis, most attention has been focused on the role of Hh signaling in chronic myeloid leukemia (CML), considered by many to be a stem cell disorder that bears the constitutively active BCR-ABL tyrosine kinase. Despite the elimination of most leukemia cells through BCR-ABL inhibition, most patients remain PCR positive, suggesting that the putative CML stem cell may be resistant to kinase antagonism. Groups are now exploring the Hh pathway as an alternate pathway supporting CML stem cell survival. Knockdown or inhibition of Smo abrogates or delays the appearance of CML in several in vitro and in vivo models. These data have lead to clinical trials using BCR-ABL kinase and novel Smo inhibitors in combination. PMID:21660044

  4. Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina1[W

    PubMed Central

    Sánchez-Vallet, Andrea; López, Gemma; Ramos, Brisa; Delgado-Cerezo, Magdalena; Riviere, Marie-Pierre; Llorente, Francisco; Fernández, Paula Virginia; Miedes, Eva; Estevez, José Manuel; Grant, Murray; Molina, Antonio

    2012-01-01

    Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi. PMID:23037505

  5. Expression of constitutively active Akt/protein kinase B signals GLUT4 translocation in the absence of an intact actin cytoskeleton.

    PubMed

    Eyster, Craig A; Duggins, Quwanza S; Olson, Ann Louise

    2005-05-06

    The actin cytoskeleton has been shown to be required for insulin-dependent GLUT4 translocation; however, the role that the actin network plays is unknown. Actin may play a role in formation of an active signaling complex, or actin may be required for movement of vesicles to the plasma membrane surface. To distinguish between these possibilities, we examined the ability of myr-Akt, a constitutively active form of Akt that signals GLUT4 translocation to the plasma membrane in the absence of insulin, to signal translocation of an HA-GLUT4-GFP reporter protein in the presence or absence of an intact cytoskeleton in 3T3-L1 adipocytes. Expression of myr-Akt signaled the redistribution of the GLUT4 reporter protein to the cell surface in the absence or presence of 10 microm latrunculin B, a concentration sufficient to completely inhibit insulin-dependent redistribution of the GLUT4 reporter to the cell surface. These data suggest that the actin network plays a primary role in organization of the insulin-signaling complex. To further support this conclusion, we measured the activation of known signaling proteins using a saturating concentration of insulin in cells pretreated without or with 10 microm latrunculin B. We found that latrunculin treatment did not affect insulin-dependent tyrosine phosphorylation of the insulin receptor beta-subunit and IRS-1 but completely inhibited activation of Akt/PKB enzymatic activity. Phosphorylation of Akt/PKB at Ser-473 and Thr-308 was inhibited by latrunculin B treatment, indicating that the defect in signaling lies prior to Akt/PKB activation. In summary, our data support the hypothesis that the actin network plays a role in organization of the insulin-signaling complex but is not required for vesicle trafficking and/or fusion.

  6. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2006-02-01

    UGSM-2 cells were determined to be tetraploid by comparison to ploidy number of known diploid cells: freshly isolated splenocytes from the spleen of a...propagated continuously without evi- dence of crisis. Immortalized mouse cells are typically tetraploid and these cells remained stably tetraploid for... tetraploid (Fig. 1B). Recent studies revealed that INK4a/ MEFs can acquire chromosomal rearrangements at high passage [29]. To assess tumorigenicity

  7. Sonic Hedgehog Signaling Promotes Tumor Growth

    DTIC Science & Technology

    2007-02-01

    phase. PloidyAnalysis UGSM-2 cells were determined to be tetraploid by comparison to ploidy number of known diploid cells: freshly isolated splenocytes...continuously without evi- dence of crisis. Immortalized mouse cells are typically tetraploid and these cells remained stably tetraploid for over 100...line, UGSM-2, was selected for use in subsequent experi- ments. Like the parent mixed cell population, UGSM-2 cellswere found to be stably tetraploid

  8. Cytologic diagnosis of diseases of hedgehogs.

    PubMed

    Juan-Sallés, Carles; Garner, Michael M

    2007-01-01

    This article focuses on neoplastic diseases because they may be the most frequent disease processes in captive hedgehogs according to the literature and authors' case files and the most common cases submitted for cytologic diagnosis in these species, particularly the African hedgehog (Atelerix albiventris).

  9. "Atypical" regulation of Hedgehog-dependent cancers.

    PubMed

    Atwood, Scott X; Oro, Anthony E

    2014-02-10

    Growing evidence indic