Sample records for constraction operation shutdown

  1. Effects of Hypoxia on Animal Burrow Constraction and Consequent Effects on Sediment Redox Profiles (SETAC08)

    EPA Science Inventory

    We investigated the effects of mild hypoxia on the burrowing behavior of three marine species (the hard clam Mercenaria mercenaria, the polychaete worm Nereis virens, and the amphipod Leptocheirus plumulosus) and consequent effects on sediment redox profiles. Animals were introdu...

  2. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  3. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  4. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  5. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  6. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  7. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  8. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  9. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  10. 40 CFR 62.15150 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 62.15150 Section 62.15150 Protection of... § 62.15150 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  11. 40 CFR 60.1695 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1695 Section 60.1695 Protection of... Requirements § 60.1695 What happens to the operating requirements during periods of startup, shutdown, and... municipal waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or...

  12. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  13. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  14. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  15. 40 CFR 68.52 - Operating procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Initial startup; (2) Normal operations; (3) Temporary operations; (4) Emergency shutdown and operations; (5) Normal shutdown; (6) Startup following a normal or emergency shutdown or a major change that... are updated, if necessary, whenever a major change occurs and prior to startup of the changed process. ...

  16. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  17. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  18. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  19. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  20. 40 CFR 60.1205 - What happens to the operating requirements during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements during periods of startup, shutdown, and malfunction? 60.1205 Section 60.1205 Protection of... requirements during periods of startup, shutdown, and malfunction? (a) The operating requirements of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  1. Defense.gov Special Report: Government Shutdown - What You Need to Know

    Science.gov Websites

    Department is taking to plan for a possible government shutdown. Document Plan for Agency Operations During agencies should plan for a potential shutdown. Document Guidance for Continuation of Operations in The Contingency Plan Guidance for Continuation of Essential Operations in the Absence of Available Appropriations

  2. Reactor shutdown experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cletcher, J.W.

    1995-10-01

    This is a regular report of summary statistics relating to recent reactor shutdown experience. The information includes both number of events and rates of occurence. It was compiled from data about operating events that were entered into the SCSS data system by the Nuclear Operations Analysis Center at the Oak ridge National Laboratory and covers the six mont period of July 1 to December 31, 1994. Cumulative information, starting from May 1, 1994, is also reported. Updates on shutdown events included in earlier reports is excluded. Information on shutdowns as a function of reactor power at the time of themore » shutdown for both BWR and PWR reactors is given. Data is also discerned by shutdown type and reactor age.« less

  3. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...

  4. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... startup, shutdown, and malfunction. These instances are deviations from the emission limits, operating... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period you identify as a startup, shutdown, or malfunction...

  5. Task 4 completion report for 40 Kilowatt grid connected modification contract

    NASA Technical Reports Server (NTRS)

    Vogt, J. H.

    1983-01-01

    Startup, operation in grid connect mode, shutdown from grid connects, operation in isolated mode, shutdown from isolated mode, steady state operation, mode transfers, and voltage disconnects are addressed.

  6. Fuel cell system logic for differentiating between rapid and normal shutdown commands

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2000-01-01

    A method of controlling the operation of a fuel cell system wherein each shutdown command for the system is subjected to decision logic which determines whether the command should be a normal shutdown command or rapid shutdown command. If the logic determines that the shutdown command should be a normal shutdown command, then the system is shutdown in a normal step-by-step process in which the hydrogen stream is consumed within the system. If the logic determines that the shutdown command should be a rapid shutdown command, the hydrogen stream is removed from the system either by dumping to atmosphere or routing to storage.

  7. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  8. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  9. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  10. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  11. 40 CFR 63.8691 - How do I demonstrate continuous compliance with the operating limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating limit in Table 5 to this subpart that applies to you. This includes periods of startup, shutdown... §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction... of startup, shutdown, or malfunction are violations, according to the provisions in § 63.6(e). [68 FR...

  12. Dioxins from medical waste incineration: Normal operation and transient conditions.

    PubMed

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  13. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  14. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  15. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... constructed, and reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and... taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction plan, this information shall be included in a semi-annual startup, shutdown and...

  16. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  17. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  18. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  19. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plan, the owner or operator may use the standard operating procedures manual for the battery, provided... startup, shutdown, and malfunction plan that describes procedures for operating the battery, including... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  20. 40 CFR 63.310 - Requirements for startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES National Emission Standards for Coke Oven Batteries § 63.310 Requirements for startups, shutdowns... or operator shall operate and maintain the coke oven battery and its pollution control equipment... operator of a coke oven battery shall develop, according to paragraph (c) of this section, a written...

  1. 40 CFR 63.102 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in § 63.101 of this subpart), malfunction, or non-operation of the chemical manufacturing process... subpart G of this part apply. However, if a start-up, shutdown, malfunction or period of non-operation of... part during the start-up, shutdown, malfunction or period of non-operation. For example, if there is an...

  2. 40 CFR 63.1354 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup, shutdown, and... report. Reports shall only be required if a startup, shutdown, or malfunction occurred during the...

  3. Confirmation of shutdown cooling effects

    NASA Astrophysics Data System (ADS)

    Sato, Kotaro; Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-01

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO2 fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO2 and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  4. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  5. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...

  6. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in § 63.2251. The... are not operating, or during periods of startup, shutdown, and malfunction. Startup and shutdown...

  7. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  8. 40 CFR 63.1164 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... written extension of compliance. (c) Periodic startup, shutdown, and malfunction reports. Section 63.6(e... by the standard at all times, including during any period of startup, shutdown, or malfunction...)(3) of subpart A of this part, the owner or operator shall develop a written startup, shutdown, and...

  9. NUMBER AND TYPE OF OPERATING CYCLES FOR THE FFTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, D. C.

    1969-05-15

    The choice of materials and other vessel design decisions necessary to provide the desired life expectancy for the FTR vessel are partially dependent upon estimates of the number and type of reactor shutdowns and startups which may be anticipated. Current estimates of these so-called "cycles" are given, including scram frequency, experimental outage frequency, standard shutdowns and startups, and rapid controlled shutdowns. Also discussed are abnormal heatup or cooldown, and tentative goals for temperature controls. MTR, ETR, and typical PRTR operating histories are tabulated.

  10. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  11. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  12. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  13. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  14. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Performance Testing ...

  15. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  16. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  17. 40 CFR 60.3025 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups, shutdowns, or malfunctions. Model Rule—Performance...

  18. 40 CFR 63.1367 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) of subpart A of this part. (3) Startup, shutdown, and malfunction plan. The owner or operator of an affected source shall develop a written startup, shutdown, and malfunction plan as specified in § 63.6(e)(3... during periods of startup, shutdown, and malfunction and a program for corrective action for a...

  19. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...

  20. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., is not exceeded, except during periods of startup and shutdown when the temperature limit may be... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by... periods of startup/shutdown when the temperature limit may be exceeded by no more than 10 percent. (b) The...

  1. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  2. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  3. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  4. 40 CFR 60.4860 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Do the emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.4860 Section... emission limits, emission standards, and operating limits apply during periods of startup, shutdown, and...

  5. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  6. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  7. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  8. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  9. 40 CFR 63.1101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation. A unit operation may have more than one batch emission episode per batch cycle. For example, a... shutdowns and during periods not associated with a shutdown. Examples of activities that can generate... management units such as an air flotation unit, clarifier, or biological treatment unit. Examples of an oil...

  10. 76 FR 20707 - Notice of Possible Shutdown of Investigative Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... receives funding and the period of the shutdown ends, all schedules will resume starting with the day on... if the Commission resumes operations by April 14, 2011. Should the shutdown not end before April 14.... The Commission's World Wide Web site, at http://www.usitc.gov , will be updated to the extent...

  11. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...

  12. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during CISWI unit startups, shutdowns, or malfunctions. (b) Each...

  13. 40 CFR 60.2685 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup...-Emission Limitations and Operating Limits § 60.2685 What happens during periods of startup, shutdown, and... startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3 hours. Effective Date...

  14. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  15. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  16. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  17. 40 CFR 63.9814 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beginning and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction... (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction. (1) The... section. This includes periods of startup, shutdown, and malfunction. (1) The total operating time of each...

  18. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...

  19. 40 CFR 63.1346 - Operating limits for kilns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not exceeded, except during periods of startup/shutdown when the temperature limit may be exceeded by..., except during periods of startup/shutdown when the temperature limit may be exceeded by no more than 10... performance test, with or without the raw mill operating, is not exceeded, except during periods of startup...

  20. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  1. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  2. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...

  3. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  4. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  5. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  6. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  7. 40 CFR 62.14645 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What happens during periods of startup... Limits § 62.14645 What happens during periods of startup, shutdown, and malfunction? (a) The emission limitations and operating limits apply at all times except during periods of CISWI unit startup, shutdown, or...

  8. 40 CFR Table 1 to Subpart Aaaa of... - Applicability of NESHAP General Provisions to Subpart AAAA

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reconstructed sources 63.6(e) Operation and maintenance requirements, startup, shutdown and malfunction plan...(b)(2)(i)-(b)(2)(v) General recordkeeping requirements 63.10(d)(5) If actions taken during a startup, shutdown and malfunction plan are consistent with the procedures in the startup, shutdown and malfunction...

  9. 40 CFR 63.5555 - How do I demonstrate continuous compliance with the emission limits, operating limits, and work...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... periods of startup, shutdown, and malfunction. These instances are deviations from the emission limits...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you... Administrator will determine whether deviations that occur during a period you identify as a startup, shutdown...

  10. 75 FR 48283 - Liability for Termination of Single-Employer Plans; Treatment of Substantial Cessation of Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... self- reporting of events that PBGC now learns of only through its own investigations and may enable... to retire sooner upon learning of a shutdown that would eliminate her job, the separation would be the result of the shutdown; whereas if (before learning of the shutdown) she had been planning to...

  11. A 100 kW experimental wind turbine: Simulation of starting, overspeed, and shutdown characteristics

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.

    1976-01-01

    The ERDA/NASA 100 kW experimental wind turbine is modeled on a digital computer in order to study the performance of a wind turbine under operating conditions. Simulation studies of starting, overspeed, and shutdown performance were made. From these studies operating procedures, precautions, and limitations are prescribed.

  12. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...

  13. 40 CFR 60.2918 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What happens during periods of startup... Emission Limitations and Operating Limits § 60.2918 What happens during periods of startup, shutdown, and malfunction? The emission limitations and operating limits apply at all times except during OSWI unit startups...

  14. Startup, Shutdown, & Malfunction (SSM) Emissions

    EPA Pesticide Factsheets

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  15. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  16. Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.

    2017-09-01

    KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.

  17. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  18. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  19. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  20. 40 CFR 60.5180 - Do the emission limits, emission standards, and operating limits apply during periods of startup...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards, and operating limits apply during periods of startup, shutdown, and malfunction? 60.5180 Section... startup, shutdown, and malfunction? The emission limits and standards apply at all times and during... concentration limit using CO CEMS, the correction to 7 percent oxygen does not apply during periods of startup...

  1. Startup, Shutdown, & Malfunction (SSM) Emissions at Industrial Facilities

    EPA Pesticide Factsheets

    EPA issued a final action to ensure states have plans in place that are fully consistent with the Clean Air Act and recent court decisions concerning startup, shutdown and malfunction (SSM) operations.

  2. Burnable absorber arrangement for fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Townsend, D.B.

    1986-12-16

    This patent describes a boiling water reactor core whose operation is characterized by a substantial proportion of steam voids with concomitantly reduced moderation toward the top of the core when the reactor is in its hot operating condition. The reduced moderation leads to slower burnup and greater conversion ratio in an upper core region so that when the reactor is in its cold shut down condition the resulting relatively increased moderation in the upper core region is accompanied by a reactivity profile that peaks in the upper core region. A fuel assembly is described comprising; a component of fissile materialmore » distributed over a substantial axial extent of the fuel assembly; and a component of neutron absorbing material having an axial distribution characterized by an enhancement in an axial zone of the fuel assembly, designated the cold shutdown control zone, corresponding to at least a portion of the axial region of the core when the cold shutdown reactivity peaks. The aggregate amount of neutron absorbing material in the cold shutdown zone of the fuel assembly is greater than the aggregate amount of neutron absorbing material in the axial zones of the fuel assembly immediately above and immediately below the cold shutdown control zone whereby the cold shutdown reactivity peak is reduced relative to the cold shutdown reactivity in the zones immediately above and immediately below the cold shutdown control zone. The cold shutdown zone has an axial extent measured from the bottom of the fuel assembly in the range between 68-88 percent of the height of the fissile material in the fuel assembly.« less

  3. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  4. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  5. 40 CFR Table 2 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(ii)(H) Application for approval Type and quantity of HAP, operating parameters No All sources emit... listed below. § 63.6(e)(3) Operation and maintenance requirements Startup, shutdown, and malfunction plan requirements No Subpart TTTT does not have any startup, shutdown, and malfunction plan requirements. § 63.6(f...

  6. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices E (Sections E.1--E.8). Volume 2, Part 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. The authors recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful.« less

  7. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.

    PubMed

    Tejima, Hajime; Nishigaki, Masahide; Fujita, Yasuyuki; Matsumoto, Akihiro; Takeda, Nobuo; Takaoka, Masaki

    2007-01-01

    Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.

  8. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  9. Method for conducting electroless metal-plating processes

    DOEpatents

    Petit, George S.; Wright, Ralph R.

    1978-01-01

    This invention is an improved method for conducting electroless metal-plating processes in a metal tank which is exposed to the plating bath. The invention solves a problem commonly encountered in such processes: how to determine when it is advisable to shutdown the process in order to clean and/or re-passivate the tank. The new method comprises contacting the bath with a current-conducting, non-catalytic probe and, during plating operations, monitoring the gradually changing difference in electropotential between the probe and tank. It has been found that the value of this voltage is indicative of the extent to which nickel-bearing decomposition products accumulate on the tank. By utilizing the voltage to determine when shutdown for cleaning is advisable, the operator can avoid premature shutdown and at the same time avoid prolonging operations to the point that spontaneous decomposition occurs.

  10. Rigorous-two-Steps scheme of TRIPOLI-4® Monte Carlo code validation for shutdown dose rate calculation

    NASA Astrophysics Data System (ADS)

    Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime

    2017-09-01

    After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.

  11. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.L.; Musicki, Z.; Kohut, P.

    1994-06-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitativemore » results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.« less

  12. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks

    USGS Publications Warehouse

    Tiedeman, Claire; Lacombe, Pierre J.; Goode, Daniel J.

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  13. Controlled shutdown of a fuel cell

    DOEpatents

    Clingerman, Bruce J.; Keskula, Donald H.

    2002-01-01

    A method is provided for the shutdown of a fuel cell system to relieve system overpressure while maintaining air compressor operation, and corresponding vent valving and control arrangement. The method and venting arrangement are employed in a fuel cell system, for instance a vehicle propulsion system, comprising, in fluid communication, an air compressor having an outlet for providing air to the system, a combustor operative to provide combustor exhaust to the fuel processor.

  14. Improved refractory performance through partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linck, F.E.; Peters, D.

    1995-12-31

    From the early designs and construction of Circulating Fluidized Bed (CFB) boilers, many improvements have been made based upon observations of performance. Included in these improvements have been the refractory linings. The early refractory linings were subjected to extreme fluctuations in temperatures as the units experienced up and down conditions. As the designs were improved refractory failures were mostly due to the operating conditions and other mechanical stresses rather than continual shutdowns and startups. More recent problems observed with refractory linings are localized areas of high erosion, corrosion and cracking which result in hot spots and eventual shutdowns for repair.more » Today the objective of refractory suppliers and installers is to strive towards planned shutdowns rather than emergency shutdowns. This can be accomplished through partnerships between operations, material suppliers and installers. In essence, the concept is a cooperative effort between these groups to solve the variety of refractory problems in order to achieve longer refractory lining performance and less chance for emergency shutdowns. The reliability of the refractory lining is dependent on the successful combination of the material selected, proper design and the installation of the refractory material. Where these three elements combine, the lining has the best chance of performing its intended purpose.« less

  15. Fermilab | Science

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter

  16. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  17. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  18. 40 CFR 63.2250 - What are the general requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except during periods of process unit or control device startup, shutdown, and malfunction; prior to process unit initial startup; and during the routine control device maintenance exemption specified in... practice requirements are not operating, or during periods of startup, shutdown, and malfunction. Startup...

  19. 40 CFR 63.1354 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... owner or operator during a startup, shutdown, or malfunction of an affected source (including actions taken to correct a malfunction) are consistent with the procedures specified in the source's startup... information in a semiannual report. Reports shall only be required if a startup, shutdown, or malfunction...

  20. Enhancing Efficiency of Safeguards at Facilities that are Shutdown or Closed-Down, including those being Decommissioned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, B.; Stern, W.; Colley, J.

    International Atomic Energy Agency (IAEA) safeguards involves verification activities at a wide range of facilities in a variety of operational phases (e.g., under construction, start-up, operating, shutdown, closed-down, and decommissioned). Safeguards optimization for each different facility type and operational phase is essential for the effectiveness of safeguards implementation. The IAEA’s current guidance regarding safeguards for the different facility types in the various lifecycle phases is provided in its Design Information Examination (DIE) and Verification (DIV) procedure. 1 Greater efficiency in safeguarding facilities that are shut down or closed down, including those being decommissioned, could allow the IAEA to use amore » greater portion of its effort to conduct other verification activities. Consequently, the National Nuclear Security Administration’s Office of International Nuclear Safeguards sponsored this study to evaluate whether there is an opportunity to optimize safeguards approaches for facilities that are shutdown or closed-down. The purpose of this paper is to examine existing safeguards approaches for shutdown and closed-down facilities, including facilities being decommissioned, and to seek to identify whether they may be optimized.« less

  1. Design of automatic startup and shutdown logic for a Brayton-cycle 2- to 15-kilowatt engine

    NASA Technical Reports Server (NTRS)

    Vrancik, J. E.; Bainbridge, R. C.

    1975-01-01

    The NASA Lewis Research Center is conducting a closed-Brayton-cycle power conversion system technology program in which a complete power system (engine) has been designed and demonstrated. This report discusses the design of automatic startup and shutdown logic circuits as a modification to the control system presently used in this demonstration engine. This modification was primarily intended to make starting the engine as simple and safe as possible and to allow the engine to be run unattended. In the modified configuration the engine is started by turning the control console power on and pushing the start button after preheating the gas loop. No other operator action is required to effect a complete startup. Shutdown, if one is required, is also effected by a simple stop button. The automatic startup and shutdown of the engine have been successfully and purposefully demonstrated more than 50 times at the Lewis Research Center during 10,000 hours of unattended operation. The net effect of this modification is an engine that can be safely started and stopped by relatively untrained personnel. The approach lends itself directly to remote unattended operation.

  2. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Transient modeling of the thermohydraulic behavior of high temperature heat pipes for space reactor applications

    NASA Technical Reports Server (NTRS)

    Hall, Michael L.; Doster, Joseph M.

    1986-01-01

    Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.

  4. Fermilab | Contact Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter

  5. Fermilab | About Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram

  6. Vision for Time-Varying Images

    DTIC Science & Technology

    2012-05-01

    YOC:lbabry consisting ofSIFf feztures ( lo ~. 2004) Is constracted by rannlng k-means on :1 random set of lm:~gt:S cont21nlng examples from 211 clu.ses of...demtxlngofthed:au. Ls used to wlupllb. The p2lh from the root to a lo f ln a decisiOn tree Is a con· JUnction or loc:d deciSions on feature nJues and :as a...oomplose q..Jikelibood of oor model il pea by: N t. - los n p( ... . , ..... , .,)p(z.) •x• N • toe n p(r.~ • • r., B)p(1.18)1’(•.) . x o N

  7. Fermilab | About Fermilab

    Science.gov Websites

    news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark energy ADMX discoveries Questions for the universe Ask a scientist Tevatron Tevatron Timeline Tevatron accelerator Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book

  8. 46 CFR 153.296 - Emergency shutdown stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...

  9. Fermilab | Visit Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book check on holiday hours or check the Lederman Science Center website. Groups of six or more must book a

  10. Fermilab | Resources for

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Science Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For

  11. Fermilab | Contact Fermilab | Email Fermilab

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book , Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact

  12. 40 CFR 63.1590 - What reports must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...

  13. 40 CFR 60.11 - Compliance with standards and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (meaning those fugitive-type emission sources subject only to an opacity standard). (c) The opacity standards set forth in this part shall apply at all times except during periods of startup, shutdown... startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and...

  14. 40 CFR 63.1590 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... continuing compliance; (iv) The type and quantity of HAP emitted by your POTW treatment plant; (v) A... notification of performance tests; a performance test report; a startup, shutdown, and malfunction report; and... prior to beginning operation of your new or reconstructed POTW. You must also submit a startup, shutdown...

  15. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  16. Optimization of Treatment to Conserve Water at the US Naval Academy

    DTIC Science & Technology

    2009-05-06

    Established 1845 • 1,160 Acres • 3.46 MGD Iron Removal WTP : • Constructed 1971 • Modifications in 1998 & 2004 5/6/2009 Source Water: • 3 wells...5/6/2009 5/6/2009 Title 5/6/2009 WTP Operations: • Manned 24/7 but operated 14 hrs/day • 1.8 MGD average production • 50,000 g/hr blow-down from...experience for future on-site facility 16 Title/Group/Section,etc. 5/6/2009 5/6/2009 Minimize Plant Shutdowns: • Most WTPs operate best 24/7 • Ea. shut-down

  17. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.

  18. 25 CFR 226.28 - Shutdown, abandonment, and plugging of wells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OSAGE RESERVATION LANDS FOR OIL AND GAS MINING Cessation of Operations § 226.28 Shutdown, abandonment... production of oil and/or gas has been demonstrated to the satisfaction of the Superintendent. Lessee shall... the means by which the well bore is to be protected, and the contemplated eventual disposition of the...

  19. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  20. 46 CFR 153.408 - Tank overflow control.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... automatic shutdown system must: (1) Be independent of one-another; and (2) Operate on loss of power. (c) The... lettering as specified for the warning sign in § 153.955. (e) A tank overflow alarm must be audible and... loading is controlled on the tankship. (f) The automatic shutdown system or tank overflow alarm must be...

  1. Fermilab | Science | Questions for the Universe | Einstein's Dream of

    Science.gov Websites

    Navbar Toggle Search Search Home About Science Jobs Contact Phone Book Newsroom Newsroom News and Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Home Contact Phone Book Fermilab at Work For Industry Jobs Interact Facebook Twitter Instagram Google

  2. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  3. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  4. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  5. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  6. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  7. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  8. 40 CFR 60.2120 - What happens during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What happens during periods of startup... 1, 2001 Emission Limitations and Operating Limits § 60.2120 What happens during periods of startup... during CISWI unit startups, shutdowns, or malfunctions. (b) Each malfunction must last no longer than 3...

  9. 40 CFR 63.7720 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation and maintenance requirements in this subpart at all times, except during periods of startup... process and emissions control equipment. (c) You must develop a written startup, shutdown, and malfunction plan according to the provisions in § 63.6(e)(3). The startup, shutdown, and malfunction plan also must...

  10. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine

    NASA Astrophysics Data System (ADS)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2017-01-01

    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  11. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods.

    PubMed

    Wang, Hou Chuan; Hwang, Jyh Feng; Chi, Kai Hsien; Chang, Moo Been

    2007-04-01

    The PCDD/F concentrations and removal efficiencies achieved with air pollution control devices (APCDs) during different operating periods (start-up, normal operation, and shut-down) at an existing municipal waste incinerator (MWI) in Taiwan are evaluated via stack sampling and analysis. The MWI investigated is equipped with electrostatic precipitators (EP), wet scrubbers (WS), and selective catalytic reduction system (SCR) as APCDs. The sampling results indicate that the PCDD/F concentrations at the EP inlet during start-up period were 15 times higher than that measured during normal operation period. The PCDD/F concentration observed at shut-down period was close to that measured at normal operation period. The CO concentration was between 400 and 1000 ppm during start-up period, which was about 50 times higher compared with the normal operation. Hence, combustion condition significantly affected the PCDD/F formation concentration during the waste incineration process. In addition, the distributions of the PCDD/F congeners were similar at different operating periods. During the normal operation and shut-down periods, the EP decreases the PCDD/F concentration (based on TEQ) by 18.4-48.6%, while the removal efficiency of PCDD/Fs achieved with SCR system reaches 99.3-99.6%. Nevertheless, the PCDD/F removal efficiency achieved with SCR was only 42% during the 19-h start-up period due to the low SCR operating temperature (195 degrees C).

  12. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY...) Accession No. ML13340A009), for the Crystal River Unit 3 Nuclear Generating Plant (CR-3). The PSDAR provides.... until 9 p.m., EST, at the Crystal River Nuclear Plant Training Center/Emergency Operations Facility...

  13. Fermilab | Tritium at Fermilab | Tritium released into the air and disposed

    Science.gov Websites

    Science Jobs Contact Phone Book Newsroom Newsroom News and features Press releases Photo gallery Fact Tevatron experiments Tevatron operation Shutdown process For the media Video of shutdown event Guest book Security, Privacy, Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry

  14. Buffer thermal energy storage for a solar Brayton engine

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    A study has been completed on the application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine. To aid in the study, a computer program was written for complete transient/stead-state Brayton cycle performance. The results indicated that thermal storage can afford a significant decrease in the number of engine shutdowns as compared to operating without thermal storage. However, the number of shutdowns does not continuously decrease as the storage material weight increases. In fact, there appears to be an optimum weight for minimizing the number of shutdowns.

  15. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  16. System Study: Residual Heat Removal 1998-2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in themore » RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.« less

  17. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOEpatents

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  18. Analysis of activation and shutdown contact dose rate for EAST neutral beam port

    NASA Astrophysics Data System (ADS)

    Chen, Yuqing; Wang, Ji; Zhong, Guoqiang; Li, Jun; Wang, Jinfang; Xie, Yahong; Wu, Bin; Hu, Chundong

    2017-12-01

    For the safe operation and maintenance of neutral beam injector (NBI), specific activity and shutdown contact dose rate of the sample material SS316 are estimated around the experimental advanced superconducting tokamak (EAST) neutral beam port. Firstly, the neutron emission intensity is calculated by TRANSP code while the neutral beam is co-injected to EAST. Secondly, the neutron activation and shutdown contact dose rates for the neutral beam sample materials SS316 are derived by the Monte Carlo code MCNP and the inventory code FISPACT-2007. The simulations indicate that the primary radioactive nuclides of SS316 are 58Co and 54Mn. The peak contact dose rate is 8.52 × 10-6 Sv/h after EAST shutdown one second. That is under the International Thermonuclear Experimental Reactor (ITER) design values 1 × 10-5 Sv/h.

  19. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.

    1994-08-01

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. Thismore » report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10{sup {minus}6}/year.« less

  1. Government Shutdown: Operations of Department of Defense During a Lapse in Appropriations

    DTIC Science & Technology

    2011-04-01

    proactive in working with creditors to reschedule debt repayments under these circumstances… c. Military personnel: During a shutdown of DoD activities due...creditors to reschedule debt repayments under these circumstances. The key point that both the creditor and the soldier should remember is that the...including Uniformed Services Treatment Facilities) including doctors, nurses , medical technicians, dentists, and essential support personnel (cooks

  2. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  3. PCDD/F emissions during startup and shutdown of a hazardous waste incinerator.

    PubMed

    Li, Min; Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2017-08-01

    Compared with municipal solid waste incineration, studies on the PCDD/F emissions of hazardous waste incineration (HWI) under transient conditions are rather few. This study investigates the PCDD/F emission level, congener profile and removal efficiency recorded during startup and shutdown by collecting flue gas samples at the bag filter inlet and outlet and at the stack. The PCDD/F concentration measured in the stack gas during startup and shutdown were 0.56-4.16 ng I-TEQ Nm -3 and 1.09-3.36 ng I-TEQ Nm -3 , respectively, far exceeding the present codes in China. The total amount of PCDD/F emissions, resulting from three shutdown-startup cycles of this HWI-unit is almost equal to that generated during one year under normal operating conditions. Upstream the filter, the PCDD/F in the flue gas is mainly in the particle phase; however, after being filtered PCDD/F prevails in the gas phase. The PCDD/F fraction in the gas phase even exceeds 98% after passing through the alkaline scrubber. Especially higher chlorinated PCDD/F accumulate on inner walls of filters and ducts during these startup periods and could be released again during normal operation, significantly increasing PCDD/F emissions. Copyright © 2017. Published by Elsevier Ltd.

  4. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 5: Analysis of core damage frequency from seismic events for plant operational state 5 during a refueling outage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budnitz, R.J.; Davis, P.R.; Ravindra, M.K.

    In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Sandia National Laboratories studying a boiling water reactor (Grand Gulf), and the other at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1). Both the Sandia and Brookhaven projects have examined only accidents initiated by internal plant faults---so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling outage conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. Thismore » report covers the seismic analysis at Grand Gulf. All of the many systems modeling assumptions, component non-seismic failure rates, and human effort rates that were used in the internal-initiator study at Grand Gulf have been adopted here, so that the results of the study can be as comparable as possible. Both the Sandia study and this study examine only one shutdown plant operating state (POS) at Grand Gulf, namely POS 5 representing cold shutdown during a refueling outage. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POS 5. The results of the analysis are that the core-damage frequency for earthquake-initiated accidents during refueling outages in POS 5 is found to be quite low in absolute terms, less than 10{sup {minus}7}/year.« less

  5. Transesophageal echocardiography probe shutdown in a patient with hyperthermia.

    PubMed

    Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant

    2016-01-01

    The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever.

  6. Transesophageal echocardiography probe shutdown in a patient with hyperthermia

    PubMed Central

    Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant

    2016-01-01

    The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever. PMID:26952152

  7. 40 CFR 60.2635 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...

  8. 40 CFR 60.2070 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...

  9. 40 CFR 63.9565 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limitation (including any operating limit) in this subpart during startup, shutdown, or malfunction.... Examples include hexane, toluene, and trichloroethylene. Initial startup means the first time that equipment is put into operation. Initial startup does not include operation solely for testing equipment...

  10. 40 CFR 63.9565 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitation (including any operating limit) in this subpart during startup, shutdown, or malfunction.... Examples include hexane, toluene, and trichloroethylene. Initial startup means the first time that equipment is put into operation. Initial startup does not include operation solely for testing equipment...

  11. 40 CFR 63.9565 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitation (including any operating limit) in this subpart during startup, shutdown, or malfunction.... Examples include hexane, toluene, and trichloroethylene. Initial startup means the first time that equipment is put into operation. Initial startup does not include operation solely for testing equipment...

  12. 40 CFR 63.9565 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limitation (including any operating limit) in this subpart during startup, shutdown, or malfunction.... Examples include hexane, toluene, and trichloroethylene. Initial startup means the first time that equipment is put into operation. Initial startup does not include operation solely for testing equipment...

  13. Claus sulfur recovery unit startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parnell, D.C.

    1973-08-01

    Because of the recent emphasis on reducing sulfur emissions to the atmosphere, Claus-type sulfur recovery units are becoming more prevalent throughout the industry. Many plants, including refinery, chemical, and natural gasoline units, are being required to install Claus sulfur recovery facilities to meet pollution requirements. Although Claus units in some cases cannot alone meet the most rigid air pollution codes currently being enforced, they are still the most economical and practical method for recovering about 94 to 97% of the sulfur from hydrogen sulfide rich gases. For best operation and longer service life, proper startup and shutdown procedures for thesemore » sulfur recovery units should be followed. On all startups and shutdowns, these units require considerable operator attention; improper operation during these critical phases can affect overall plant efficiency.« less

  14. 40 CFR 60.53c - Operator training and qualification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following subjects: (i) Environmental concerns, including pathogen destruction and types of emissions; (ii) Basic combustion principles, including products of combustion; (iii) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (iv...

  15. 40 CFR 60.53c - Operator training and qualification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following subjects: (i) Environmental concerns, including pathogen destruction and types of emissions; (ii) Basic combustion principles, including products of combustion; (iii) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (iv...

  16. Efforts to control radiation build-up in Ringhals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, K.; Aronsson, P.O.; Erixon, O.

    1995-03-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the newmore » (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.« less

  17. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may come from plans you developed for other purposes such as a Standard Operating Procedure manual or... source is operational. The SSM plan provides detailed procedures for operating and maintaining your...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  18. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may come from plans you developed for other purposes such as a Standard Operating Procedure manual or... source is operational. The SSM plan provides detailed procedures for operating and maintaining your...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  19. 40 CFR 60.4810 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(1)(x) of this section. (i) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, sewage sludge feeding, and shutdown procedures...

  20. 40 CFR 60.2635 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) through (xi) of this section. (i) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv...

  1. 40 CFR 62.14595 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation of air pollution... the incinerator and air pollution control devices. (vii) Actions to correct malfunctions or conditions... requirements. (xiii) Methods to continuously monitor CISWI unit and air pollution control device operating...

  2. 40 CFR 62.14595 - What are the operator training and qualification requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation of air pollution... the incinerator and air pollution control devices. (vii) Actions to correct malfunctions or conditions... requirements. (xiii) Methods to continuously monitor CISWI unit and air pollution control device operating...

  3. Electricity-market price and nuclear power plant shutdown: Evidence from California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C. K.; Ho, T.; Zarnikau, J.

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market pricemore » data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010-December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation.« less

  4. Investigation into the High Voltage Shutdown of the Oxygen Generator System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Carpenter, Joyce E.; Gentry, Gregory J.; Diderich, Greg S.; Roy, Robert J.; Golden, John L.; VanKeuren, Steve; Steele, John W.; Rector, Tony J.; Varsik, Jerome D.; Montefusco, Daniel J.; hide

    2012-01-01

    The Oxygen Generation System (OGS) Hydrogen Dome Assembly Orbital Replacement Unit (ORU) serial number 00001 suffered a cell stack high-voltage shutdown on July 5, 2010. The Hydrogen Dome Assembly ORU was removed and replaced with the on-board spare ORU serial number 00002 to maintain OGS operation. The Hydrogen Dome Assembly ORU was returned from ISS on STS-133/ULF-5 in March 2011 with test, teardown and evaluation (TT&E) and failure analysis to follow.

  5. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Hood, Texas Site. Project Description,

    DTIC Science & Technology

    1985-07-01

    and Operation 132 6.7.5 Safety 135 6.7.6 System Control Description 136 6.7.6.1 Coal Gasification 136 6.7.6.2 Gas Cooling, Cleaning and Compression...the hydrogen content. The gas is then desulfurized and heated before final polishing and feeding to the fuel cell. Receiving compressed fuel gas and...4 CO Shift 1 Stretford Desulfurizer 3 Gas Compressors 3 Material Handling(3) 3 Subtotal 39 Scheduled Shutdown 14 Total Annual Shutdown 53

  6. Shutdown-induced tensile stress in monolithic miniplates as a possible cause of plate pillowing at very high burnup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Pavel G; Ozaltun, Hakan; Robinson, Adam Brady

    2014-04-01

    Post-irradiation examination of Reduced Enrichment for Research and Test Reactors (RERTR)-12 miniplates showed that in-reactor pillowing occurred in at least 4 plates, rendering performance of these plates unacceptable. To address in-reactor failures, efforts are underway to define the mechanisms responsible for in-reactor pillowing, and to suggest improvements to the fuel plate design and operational conditions. To achieve these objectives, the mechanical response of monolithic fuel to fission and thermally-induced stresses was modeled using a commercial finite element analysis code. Calculations of stresses and deformations in monolithic miniplates during irradiation and after the shutdown revealed that the tensile stress generated inmore » the fuel increased from 2 MPa to 100 MPa at shutdown. The increase in tensile stress at shutdown possibly explains in-reactor pillowing of several RERTR-12 miniplates irradiated to the peak local burnup of up to 1.11x1022 fissions/cm3 . This paper presents the modeling approach and calculation results, and compares results with post-irradiation examinations and mechanical testing of irradiated fuel. The implications for the safe use of the monolithic fuel in research reactors are discussed, including the influence of fuel burnup and power on the magnitude of the shutdown-induced tensile stress.« less

  7. Study on regional air quality impact from a chemical plant emergency shutdown.

    PubMed

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-06-01

    Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, R.D.

    1997-01-21

    The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functionalmore » requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).« less

  9. 14 CFR 121.565 - Engine inoperative: Landing; reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...

  10. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the procedures may come from plans you developed for other purposes such as a Standard Operating... as long as the source is operational. The SSM plan provides detailed procedures for operating and...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  11. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the procedures may come from plans you developed for other purposes such as a Standard Operating... as long as the source is operational. The SSM plan provides detailed procedures for operating and...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  12. 40 CFR 63.2852 - What is a startup, shutdown, and malfunction plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the procedures may come from plans you developed for other purposes such as a Standard Operating... as long as the source is operational. The SSM plan provides detailed procedures for operating and...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  13. 14 CFR 121.565 - Engine inoperative: Landing; reporting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...

  14. 14 CFR 121.565 - Engine inoperative: Landing; reporting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...

  15. 14 CFR 121.565 - Engine inoperative: Landing; reporting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine inoperative: Landing; reporting. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.565 Engine... engine fails or whenever an engine is shutdown to prevent possible damage, the pilot in command must land...

  16. 40 CFR 63.5320 - How does my affected major source comply with the HAP emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... all times, including periods of startup, shutdown, and malfunction. (b) You must always operate and... record monthly the pounds of each type of finish applied for each leather product process operation and...

  17. 40 CFR 63.5320 - How does my affected major source comply with the HAP emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... all times, including periods of startup, shutdown, and malfunction. (b) You must always operate and... record monthly the pounds of each type of finish applied for each leather product process operation and...

  18. Self-actuated shutdown system for a commercial size LMFBR. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupen, C.F.G.

    1978-08-01

    A Self-Actuated Shutdown System (SASS) is defined as a reactor shutdown system in which sensors, release mechanisms and neutron absorbers are contained entirely within the reactor core structure, where they respond inherently to abnormal local process conditions, by shutting down the reactor, independently of the plant protection system (PPS). It is argued that a SASS, having a response time similar to that of the PPS, would so reduce the already very low probability of a failure-to-scram event that costly design features, derived from core disruptive accident analysis, could be eliminated. However, the thrust of the report is the feasibility andmore » reliability of the in-core SASS hardware to achieve sufficiently rapid shutdown. A number of transient overpower and transient undercooling-responsive systems were investigated leading to the selection of a primary candidate and a backup concept. During a transient undercooling event, the recommended device is triggered by the associated rate of change of pressure, whereas the alternate concept responds to the reduction in core pressure drop and requires calibration and adjustment by the operators to accommodate changes in reactor power.« less

  19. 40 CFR 63.8445 - How do I conduct performance tests and establish operating limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... startup, shutdown, or malfunction, as specified in § 63.7(e)(1). (f) You must conduct at least three... changes. (ii) The type of monitoring device or procedure that will be used. (iii) The operating parameters...

  20. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...

  1. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...

  2. Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, K.; Katayama-Yoshida, H.

    2014-02-21

    Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less

  3. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/ startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  4. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  5. 33 CFR 127.305 - Operations Manual.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... security personnel; (e) A description of the security systems for the marine transfer area for LNG; (f) The...) Transfer operations start-up and shutdown; (3) Security violations; and (4) The communications systems; and... Section 127.305 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  6. User interface and operational issues with thermionic space power systems

    NASA Technical Reports Server (NTRS)

    Dahlberg, R. C.; Fisher, C. R.

    1987-01-01

    Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.

  7. 40 CFR 63.1542 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and is indirectly heated from below and contains molten lead for the purpose of drossing, refining, or... smelter that is associated with lead smelting or refining but is not the primary exhaust stream and is not... lead smelter in which drossing or refining operations occur, or casting operations occur. Shutdown...

  8. 40 CFR 63.1542 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and is indirectly heated from below and contains molten lead for the purpose of drossing, refining, or... smelter that is associated with lead smelting or refining but is not the primary exhaust stream and is not... lead smelter in which drossing or refining operations occur, or casting operations occur. Shutdown...

  9. 40 CFR 60.4910 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sludge Incineration Units Recordkeeping and Reporting § 60.4910 What records must I keep? You must...) Procedures for receiving, handling, and feeding sewage sludge. (iii) Incinerator startup, shutdown, and... to sewage sludge. (x) For each qualified operator and other plant personnel who may operate the unit...

  10. 40 CFR 60.4910 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Sludge Incineration Units Recordkeeping and Reporting § 60.4910 What records must I keep? You must...) Procedures for receiving, handling, and feeding sewage sludge. (iii) Incinerator startup, shutdown, and... to sewage sludge. (x) For each qualified operator and other plant personnel who may operate the unit...

  11. 40 CFR 60.4910 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Sludge Incineration Units Recordkeeping and Reporting § 60.4910 What records must I keep? You must...) Procedures for receiving, handling, and feeding sewage sludge. (iii) Incinerator startup, shutdown, and... to sewage sludge. (x) For each qualified operator and other plant personnel who may operate the unit...

  12. 40 CFR 60.4910 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sludge Incineration Units Recordkeeping and Reporting § 60.4910 What records must I keep? You must...) Procedures for receiving, handling, and feeding sewage sludge. (iii) Incinerator startup, shutdown, and... to sewage sludge. (x) For each qualified operator and other plant personnel who may operate the unit...

  13. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  14. 40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... using . . . You must meet these operating limits except during periods of startup and shutdown . . . 1... the injection rate operating limit by 0.5). 5. Any other add-on air pollution control type. This... equal to 10 percent opacity (daily block average). 6. Fuel analysis Maintain the fuel type or fuel...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankamo, T.; Kim, I.S.; Yang, Ji Wu

    Failures in the auxiliary feedwater (AFW) system of pressurized water reactors (PWRs) are considered to involve substantial risk whether a decision is made to either continue power operation while repair is being done, or to shut down the plant to undertake repairs. Technical specification action requirements usually require immediate plant shutdown in the case of multiple failures in the system (in some cases, immediate repair of one train is required when all AFW trains fail). This paper presents a probabilistic risk assessment-based method to quantitatively evaluate and compare both the risks of continued power operation and of shutting the plantmore » down, given known failures in the system. The method is applied to the AFW system for four different PWRs. Results show that the risk of continued power operation and plant shutdown both are substantial, but the latter is larger than the former over the usual repair time. This was proven for four plants with different designs: two operating Westinghouse plants, one operating Asea-Brown Boveri Combustion Engineering Plant, and one of evolutionary design. The method can be used to analyze individual plant design and to improve AFW action requirements using risk-informed evaluations.« less

  16. Impact induced response spectrum for the safety evaluation of the high flux isotope reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.J.

    1997-05-01

    The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism.more » An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.« less

  17. 33 CFR 154.310 - Operations manual: Contents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the piping subject to the tests required by § 156.170(c)(4) of this chapter, and the locations of...; and (2) A description of the vapor control system's design and operation including the: (i) Vapor line... sulfur); (v) Alarms and shutdown devices; and (vi) Pre-transfer equipment inspection requirements. (c...

  18. 40 CFR 63.2861 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vegetable oil production process. (3) Each listed oilseed type processed during the 12 calendar months... oilseed type processed during the 12 operating months period for which you determined the deviation. (4....10(e)(3)(iii). (c) Periodic startup, shutdown, and malfunction report. If you choose to operate your...

  19. Optimized dispatch in a first-principles concentrating solar power production model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less

  20. 40 CFR 62.14610 - How do I maintain my operator qualification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... startup and shutdown procedures, waste charging, and ash handling. (c) Inspection and maintenance. (d...

  1. 40 CFR 62.14610 - How do I maintain my operator qualification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... startup and shutdown procedures, waste charging, and ash handling. (c) Inspection and maintenance. (d...

  2. Emission characteristics and vapour/particulate phase distributions of PCDD/F in a hazardous waste incinerator under transient conditions

    PubMed Central

    Wang, Chao; Cen, Kefa; Ni, Mingjiang; Li, Xiaodong

    2018-01-01

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emission characteristics and vapour/particulate phase partitions under three continued operation conditions, i.e. shut-down, start-up and after start-up, were investigated by sampling stack gas. The results indicated that the PCDD/F emission levels were 0.40–18.03 ng I-TEQ Nm−3, much higher than the annual monitoring level (0.016 ng I-TEQ Nm−3). Additionally, the PCDD/F emission levels in start-up were higher than the other two conditions. Furthermore, the PCDD/F congener profiles differed markedly between shut-down and start-up, and the chlorination degree of PCDD/F increased in shut-down and decreased evidently in start-up. Moreover, PCDD/F vapour/particulate phase distributions varied significantly under three transient conditions. The PCDD/F vapour phase proportion decreased as the shut-down process continued, then increased as the start-up process proceeded, finally more than 98% of the PCDD/F congeners were distributed in the vapour phase after start-up. The correlations between log(Cv/Cs) versus log pL0 of each PCDD/F congener in stack gas were disorganized in shut-down, and trend to a linear distribution after start-up. Besides, polychlorinated biphenyl emissions show behaviour similar to that of PCDD/F, and the lower chlorinated congeners have a stronger relationship with 2,3,7,8-PCDD/Fs, such as M1CB and D2CB. PMID:29410821

  3. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area

    NASA Astrophysics Data System (ADS)

    Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2018-03-01

    Turnaround operations (start-up and shutdown) are critical operations in olefin plants, which emit large quantities of VOCs, NOx and CO. The emission has great potentials to impact the ozone level in ozone nonattainment areas. This study demonstrates a novel practice to minimize the ozone impact through coordinated scheduling of turnaround operations from multiple olefin plants located in Houston, Texas, an ozone nonattainment area. The study considered two olefin plants scheduled to conduct turnaround operations: one start-up and one shutdown, simultaneously on the same day within a five-hour window. Through dynamic simulations of the turnaround operations using ASPEN Plus Dynamics and air quality simulations using CAMx, the study predicts the ozone impact from the combined effect of the two turnaround operations under different starting-time scenarios. The simulations predict that the ozone impact from planned turnaround operations ranges from a maximum of 11.4 ppb to a minimum of 1.4 ppb. Hence, a reduction of up to 10.0 ppb can be achieved on a single day based on the selected two simulation days. This study demonstrates a cost-effective and environmentally benign ozone control practice for relevant stakeholders, including environmental agencies, regional plant operators, and local communities.

  4. Modeling startup and shutdown transient of the microlinear piezo drive via ANSYS

    NASA Astrophysics Data System (ADS)

    Azin, A. V.; Bogdanov, E. P.; Rikkonen, S. V.; Ponomarev, S. V.; Khramtsov, A. M.

    2017-02-01

    The article describes the construction-design of the micro linear piezo drive intended for a peripheral cord tensioner in the reflecting surface shape regulator system for large-sized transformable spacecraft antenna reflectors. The research target -the development method of modeling startup and shutdown transient of the micro linear piezo drive. This method is based on application software package ANSYS. The method embraces a detailed description of the calculation stages to determine the operating characteristics of the designed piezo drive. Based on the numerical solutions, the time characteristics of the designed piezo drive are determined.

  5. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  6. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  7. A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

  8. 76 FR 64285 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-02-99 and TAE 125...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... amended the Airworthiness Limitation Section (ALS) of the Operation & Maintenance Manual OM-02-02 to... shutdowns of the engine(s). TAE has also amended the ALS of the Operation & Maintenance Manual OM- 02-01 to...-E000702 and has amended the Airworthiness Limitation Section (ALS) of the Operation & Maintenance Manual...

  9. 40 CFR 60.165 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to 100 percent opacity. (2) A continuous monitoring system to monitor and record sulfur dioxide... startup, shutdown, and malfunction are not to be included within the 1.5 percent. [41 FR 2338, Jan. 15...

  10. RHETT/EPDM Performance Characterization

    NASA Technical Reports Server (NTRS)

    Haag, T.; Osborn, M.

    1998-01-01

    The 0.6 kW Electric Propulsion Demonstration Module (EPDM) flight thruster system was tested in a large vacuum facility for performance measurements and functional checkout. The thruster was operated at a xenon flow rate of 3.01 mg/s, which was supplied through a self-contained propellant system. All power was provided through a flight-packaged power processing unit, which was mounted in vacuum on a cold plate. The thruster was cycled through 34 individual startup and shutdown sequences. Operating periods ranged from 3 to 3600 seconds. The system responded promptly to each command sequence and there were no involuntary shutdowns. Direct thrust measurements indicated that steady state thrust was temperature sensitive, and varied from a high of 41.7 mN at 16 C, to a low of 34.8 mN at 110 C. Short duration thruster firings showed rapid response and good repeatability.

  11. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  12. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    NASA Technical Reports Server (NTRS)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  13. Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    MSadoques, George, Jr.; Makel, Darby B.

    2005-01-01

    This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, C. LEE COOK DIV., DOVER CORP., STATIC PAC SYSTEM, PHASE I REPORT

    EPA Science Inventory

    The Static Pac was verified at a natural gas compressor station operated by ANR Pipeline Company. The test was carried out on two engines (8-cylinder, 2000 hp), each with two reciprocating compressors operating in parallel (4 in. rods). The evaluation focused on two shutdown proc...

  15. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  16. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  17. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  18. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  19. 40 CFR 62.14422 - What are the requirements for a training course that is not part of a State-approved program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subjects: (1) Environmental concerns, including pathogen destruction and types of emissions; (2) Basic combustion principles, including products of combustion; (3) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (4) Combustion...

  20. 40 CFR 63.2861 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... address of the vegetable oil production process. (3) Each listed oilseed type processed during the 12... oilseed type processed during the 12 operating months period for which you determined the deviation. (4....10(e)(3)(iii). (c) Periodic startup, shutdown, and malfunction report. If you choose to operate your...

  1. 40 CFR 62.14422 - What are the requirements for a training course that is not part of a State-approved program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) Environmental concerns, including pathogen destruction and types of emissions; (2) Basic combustion principles, including products of combustion; (3) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (4) Combustion...

  2. 40 CFR 63.2861 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... address of the vegetable oil production process. (3) Each listed oilseed type processed during the 12... oilseed type processed during the 12 operating months period for which you determined the deviation. (4....10(e)(3)(iii). (c) Periodic startup, shutdown, and malfunction report. If you choose to operate your...

  3. 40 CFR 62.14422 - What are the requirements for a training course that is not part of a State-approved program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subjects: (1) Environmental concerns, including pathogen destruction and types of emissions; (2) Basic combustion principles, including products of combustion; (3) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (4) Combustion...

  4. 40 CFR 62.14422 - What are the requirements for a training course that is not part of a State-approved program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) Environmental concerns, including pathogen destruction and types of emissions; (2) Basic combustion principles, including products of combustion; (3) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (4) Combustion...

  5. 40 CFR 62.14422 - What are the requirements for a training course that is not part of a State-approved program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (1) Environmental concerns, including pathogen destruction and types of emissions; (2) Basic combustion principles, including products of combustion; (3) Operation of the type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures; (4) Combustion...

  6. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... malfunction plan, design, and operating history. (2) Retain or add these permit requirements to the permit to... information including the source's startup, shutdown, and malfunction plan, design, and operating history; and...

  7. 33 CFR 150.15 - What must the operations manual include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from the mooring; (iii) Prohibition on mooring at the deep water port or SPM; and (iv) Shutdown of all..., including records, reports and dissemination of “lessons learned”. (3) Documentation of the following...

  8. 40 CFR 60.4375 - What reports must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). Excess emissions must be reported for all periods of unit operation, including start-up, shutdown, and...), you must submit a written report of the results of each performance test before the close of business...

  9. A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.

    ERIC Educational Resources Information Center

    Perley, Gordon F.

    This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

  10. Comparing shut-down strategies for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Oyarce, Alejandro; Zakrisson, Erik; Ivity, Matthew; Lagergren, Carina; Ofstad, Axel Baumann; Bodén, Andreas; Lindbergh, Göran

    2014-05-01

    Application of system strategies for mitigating carbon corrosion of the catalyst support in proton exchange fuel cells (PEMFCs) is a requirement for PEMFC systems, especially in the case of systems for transport application undergoing thousands of start-ups and shut-downs (SU/SD) during its lifetime. This study compares several of the most common shut-down strategies for 1100 cycles SU/SD cycles at 70 °C and 80% RH using commercially available fuel cell components. Each cycle simulates a prolonged shut-down, i.e. finishing each cycle with air filled anode and cathode. Furthermore, all start-ups are unprotected, i.e. introducing the H2 rich gas into an air filled anode. Finally, each cycle also includes normal fuel cell operation at 0.5 A cm-2 using synthetic reformate/air. H2 purge of the cathode and O2 consumption using a load were found to be the most effective strategies. The degradation rate using the H2 purge strategy was 23 μV cycle-1 at 0.86 A cm-2 using H2 and air at the anode and cathode, respectively. This degradation rate may be regarded as a generally low value, especially considering that this value also includes the degradation rate caused by unprotected start-ups.

  11. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  12. The analysis of ballistic capabilities for countering disturbances associated with temporary emergency electric propulsion shutdown

    NASA Astrophysics Data System (ADS)

    Konstantinov, M. S.; Nguyen, D. N.

    2016-12-01

    The paper analyzes the possibility for countering ballistic perturbations of the interplanetary transfer trajectory of the spacecraft with electric propulsion (EP) associated with the temporary impossibility of the normal use of the EP in phases of the heliocentric transfer. The main result of the present study is the method for the determination of a new nominal trajectory, at any point of which the allowed duration of the emergency shutdown of electric propulsion is large enough. The numerical analysis is given for one of the possible scenarios of spacecraft injection into the operational heliocentric orbit for solar research.

  13. Production and integration of the ATLAS Insertable B-Layer

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Albert, J.; Alberti, F.; Alex, M.; Alimonti, G.; Alkire, S.; Allport, P.; Altenheiner, S.; Ancu, L. S.; Anderssen, E.; Andreani, A.; Andreazza, A.; Axen, B.; Arguin, J.; Backhaus, M.; Balbi, G.; Ballansat, J.; Barbero, M.; Barbier, G.; Bassalat, A.; Bates, R.; Baudin, P.; Battaglia, M.; Beau, T.; Beccherle, R.; Bell, A.; Benoit, M.; Bermgan, A.; Bertsche, C.; Bertsche, D.; Bilbao de Mendizabal, J.; Bindi, F.; Bomben, M.; Borri, M.; Bortolin, C.; Bousson, N.; Boyd, R. G.; Breugnon, P.; Bruni, G.; Brossamer, J.; Bruschi, M.; Buchholz, P.; Budun, E.; Buttar, C.; Cadoux, F.; Calderini, G.; Caminada, L.; Capeans, M.; Carney, R.; Casse, G.; Catinaccio, A.; Cavalli-Sforza, M.; Červ, M.; Cervelli, A.; Chau, C. C.; Chauveau, J.; Chen, S. P.; Chu, M.; Ciapetti, M.; Cindro, V.; Citterio, M.; Clark, A.; Cobal, M.; Coelli, S.; Collot, J.; Crespo-Lopez, O.; Dalla Betta, G. F.; Daly, C.; D'Amen, G.; Dann, N.; Dao, V.; Darbo, G.; DaVia, C.; David, P.; Debieux, S.; Delebecque, P.; De Lorenzi, F.; de Oliveira, R.; Dette, K.; Dietsche, W.; Di Girolamo, B.; Dinu, N.; Dittus, F.; Diyakov, D.; Djama, F.; Dobos, D.; Dondero, P.; Doonan, K.; Dopke, J.; Dorholt, O.; Dube, S.; Dzahini, D.; Egorov, K.; Ehrmann, O.; Einsweiler, K.; Elles, S.; Elsing, M.; Eraud, L.; Ereditato, A.; Eyring, A.; Falchieri, D.; Falou, A.; Fausten, C.; Favareto, A.; Favre, Y.; Feigl, S.; Fernandez Perez, S.; Ferrere, D.; Fleury, J.; Flick, T.; Forshaw, D.; Fougeron, D.; Franconi, L.; Gabrielli, A.; Gaglione, R.; Gallrapp, C.; Gan, K. K.; Garcia-Sciveres, M.; Gariano, G.; Gastaldi, T.; Gavrilenko, I.; Gaudiello, A.; Geffroy, N.; Gemme, C.; Gensolen, F.; George, M.; Ghislain, P.; Giangiacomi, N.; Gibson, S.; Giordani, M. P.; Giugni, D.; Gjersdal, H.; Glitza, K. W.; Gnani, D.; Godlewski, J.; Gonella, L.; Gonzalez-Sevilla, S.; Gorelov, I.; Gorišek, A.; Gössling, C.; Grancagnolo, S.; Gray, H.; Gregor, I.; Grenier, P.; Grinstein, S.; Gris, A.; Gromov, V.; Grondin, D.; Grosse-Knetter, J.; Guescini, F.; Guido, E.; Gutierrez, P.; Hallewell, G.; Hartman, N.; Hauck, S.; Hasi, J.; Hasib, A.; Hegner, F.; Heidbrink, S.; Heim, T.; Heinemann, B.; Hemperek, T.; Hessey, N. P.; Hetmánek, M.; Hinman, R. R.; Hoeferkamp, M.; Holmes, T.; Hostachy, J.; Hsu, S. C.; Hügging, F.; Husi, C.; Iacobucci, G.; Ibragimov, I.; Idarraga, J.; Ikegami, Y.; Ince, T.; Ishmukhametov, R.; Izen, J. M.; Janoška, Z.; Janssen, J.; Jansen, L.; Jeanty, L.; Jensen, F.; Jentzsch, J.; Jezequel, S.; Joseph, J.; Kagan, H.; Kagan, M.; Karagounis, M.; Kass, R.; Kastanas, A.; Kenney, C.; Kersten, S.; Kind, P.; Klein, M.; Klingenberg, R.; Kluit, R.; Kocian, M.; Koffeman, E.; Korchak, O.; Korolkov, I.; Kostyukhina-Visoven, I.; Kovalenko, S.; Kretz, M.; Krieger, N.; Krüger, H.; Kruth, A.; Kugel, A.; Kuykendall, W.; La Rosa, A.; Lai, C.; Lantzsch, K.; Lapoire, C.; Laporte, D.; Lari, T.; Latorre, S.; Leyton, M.; Lindquist, B.; Looper, K.; Lopez, I.; Lounis, A.; Lu, Y.; Lubatti, H. J.; Maeland, S.; Maier, A.; Mallik, U.; Manca, F.; Mandelli, B.; Mandić, I.; Marchand, D.; Marchiori, G.; Marx, M.; Massol, N.; Mättig, P.; Mayer, J.; McGoldrick, G.; Mekkaoui, A.; Menouni, M.; Menu, J.; Meroni, C.; Mesa, J.; Michal, S.; Miglioranzi, S.; Mikuž, M.; Miucci, A.; Mochizuki, K.; Monti, M.; Moore, J.; Morettini, P.; Morley, A.; Moss, J.; Muenstermann, D.; Murray, P.; Nakamura, K.; Nellist, C.; Nelson, D.; Nessi, M.; Nisius, R.; Nordberg, M.; Nuiry, F.; Obermann, T.; Ockenfels, W.; Oide, H.; Oriunno, M.; Ould-Saada, F.; Padilla, C.; Pangaud, P.; Parker, S.; Pelleriti, G.; Pernegger, H.; Piacquadio, G.; Picazio, A.; Pohl, D.; Polini, A.; Pons, X.; Popule, J.; Portell Bueso, X.; Potamianos, K.; Povoli, M.; Puldon, D.; Pylypchenko, Y.; Quadt, A.; Quayle, B.; Rarbi, F.; Ragusa, F.; Rambure, T.; Richards, E.; Riegel, C.; Ristic, B.; Rivière, F.; Rizatdinova, F.; RØhne, O.; Rossi, C.; Rossi, L. P.; Rovani, A.; Rozanov, A.; Rubinskiy, I.; Rudolph, M. S.; Rummler, A.; Ruscino, E.; Sabatini, F.; Salek, D.; Salzburger, A.; Sandaker, H.; Sannino, M.; Sanny, B.; Scanlon, T.; Schipper, J.; Schmidt, U.; Schneider, B.; Schorlemmer, A.; Schroer, N.; Schwemling, P.; Sciuccati, A.; Seidel, S.; Seiden, A.; Šícho, P.; Skubic, P.; Sloboda, M.; Smith, D. S.; Smith, M.; Sood, A.; Spencer, E.; Stramaglia, M.; Strauss, M.; Stucci, S.; Stugu, B.; Stupak, J.; Styles, N.; Su, D.; Takubo, Y.; Tassan, J.; Teng, P.; Teixeira, A.; Terzo, S.; Therry, X.; Todorov, T.; Tomášek, M.; Toms, K.; Travaglini, R.; Trischuk, W.; Troncon, C.; Troska, G.; Tsiskaridze, S.; Tsurin, I.; Tsybychev, D.; Unno, Y.; Vacavant, L.; Verlaat, B.; Vigeolas, E.; Vogt, M.; Vrba, V.; Vuillermet, R.; Wagner, W.; Walkowiak, W.; Wang, R.; Watts, S.; Weber, M. S.; Weber, M.; Weingarten, J.; Welch, S.; Wenig, S.; Wensing, M.; Wermes, N.; Wittig, T.; Wittgen, M.; Yildizkaya, T.; Yang, Y.; Yao, W.; Yi, Y.; Zaman, A.; Zaidan, R.; Zeitnitz, C.; Ziolkowski, M.; Zivkovic, V.; Zoccoli, A.; Zwalinski, L.

    2018-05-01

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  14. 40 CFR 65.154 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which it is part, as specified in 40 CFR 63.100(k) (if the referencing subpart is 40 CFR part 63... anticipated in the scrubber during representative operating conditions other than startups, shutdowns, or...

  15. 75 FR 37471 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ...,'' Revision 2, and Nuclear Energy [Institute] (NEI) 00- 01, ``Guidance for Post-Fire Safe-Shutdown Circuit... environmental impact statement or environmental assessment need be prepared for these amendments. If the...

  16. Effect of load transients on SOFC operation—current reversal on loss of load

    NASA Astrophysics Data System (ADS)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  17. 33 CFR 155.780 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...

  18. 33 CFR 155.780 - Emergency shutdown.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...

  19. 33 CFR 155.780 - Emergency shutdown.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...

  20. 33 CFR 155.780 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...

  1. 33 CFR 155.780 - Emergency shutdown.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the vessel to stop the flow of oil or hazardous material. (b) The means to stop the flow may be a pump control, a quick-acting, power actuated valve, or an operating procedure. If an emergency pump control is... through the stopped pump. (c) The means to stop the flow must be operable from the cargo deck, cargo...

  2. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.

  3. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION, AND MAINTENANCE OF THE THERMO JARRELL ASH ICAP 61-975 PLASMA ATOMCOMP EMISSION SPECTROMETER (BCO-L-8.0)

    EPA Science Inventory

    The purpose of this SOP is to detail the procedures for the start-up, operation, calibration, shut-down, and maintenance of the Thermo Jarrell Ash ICAP 61-975 Plasma AtomComp Emission Spectrometer. These procedures were used in determining the trace target metals Al, As, Ba, Cd,...

  4. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  5. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  6. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  7. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction. 63... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and... develop a written startup, shutdown, and malfunction plan that describes, in detail, procedures for...

  8. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  9. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  10. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  11. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  12. 40 CFR 60.1220 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...

  13. SNAP 10A FS-3 reactor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawley, J.P.; Johnson, R.A.

    1966-08-15

    SNAP 10FS-3 was the first flight-qualified SNAP reactor system to be operated in a simulated space environment. Prestart-up qualification testing, automatic start-up, endurance period performance, extended operation test and reactor shutdown are described as they affected, or were affected by, overall reactor performance. Performance of the reactor control system and the diagnostic instrumentation is critically evaluted.

  14. Accident diagnosis system based on real-time decision tree expert system

    NASA Astrophysics Data System (ADS)

    Nicolau, Andressa dos S.; Augusto, João P. da S. C.; Schirru, Roberto

    2017-06-01

    Safety is one of the most studied topics when referring to power stations. For that reason, sensors and alarms develop an important role in environmental and human protection. When abnormal event happens, it triggers a chain of alarms that must be, somehow, checked by the control room operators. In this case, diagnosis support system can help operators to accurately identify the possible root-cause of the problem in short time. In this article, we present a computational model of a generic diagnose support system based on artificial intelligence, that was applied on the dataset of two real power stations: Angra1 Nuclear Power Plant and Santo Antônio Hydroelectric Plant. The proposed system processes all the information logged in the sequence of events before a shutdown signal using the expert's knowledge inputted into an expert system indicating the chain of events, from the shutdown signal to its root-cause. The results of both applications showed that the support system is a potential tool to help the control room operators identify abnormal events, as accidents and consequently increase the safety.

  15. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  16. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  17. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients

    NASA Astrophysics Data System (ADS)

    Baraldi, Piero; Di Maio, Francesco; Rigamonti, Marco; Zio, Enrico; Seraoui, Redouane

    2015-06-01

    Empirical methods for fault diagnosis usually entail a process of supervised training based on a set of examples of signal evolutions "labeled" with the corresponding, known classes of fault. However, in practice, the signals collected during plant operation may be, very often, "unlabeled", i.e., the information on the corresponding type of occurred fault is not available. To cope with this practical situation, in this paper we develop a methodology for the identification of transient signals showing similar characteristics, under the conjecture that operational/faulty transient conditions of the same type lead to similar behavior in the measured signals evolution. The methodology is founded on a feature extraction procedure, which feeds a spectral clustering technique, embedding the unsupervised fuzzy C-means (FCM) algorithm, which evaluates the functional similarity among the different operational/faulty transients. A procedure for validating the plausibility of the obtained clusters is also propounded based on physical considerations. The methodology is applied to a real industrial case, on the basis of 148 shut-down transients of a Nuclear Power Plant (NPP) steam turbine.

  18. Rail Transit Winterization Technology and Systems Operations Study

    DOT National Transportation Integrated Search

    1980-09-01

    The severe winters of 1977-1978 and 1978-1979 caused all snowbelt transit systems to experience a variety of problems which resulted in impaired service ranging from systems delays to complete system shutdowns. The scope of this report includes a sum...

  19. Are You Ready for Y2K?

    ERIC Educational Resources Information Center

    Day, C. William

    1999-01-01

    Examines the planning process to identify equipment or systems within an educational facility that could be Y2K sensitive. Discusses developing a contingency plan to prevent operational shutdown. Concluding comments describe a simple Y2K equipment-testing procedure. (GR)

  20. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Average-day carbon monoxide, total hydrocarbon, and NO/sub x/ aircraft emissions and fuel use estimates (apportioned to takeoff, taxi, idle, and landing) for departure and arrival at Los Angeles and San Francisco International Airports were compared with emissions level and fuel use estimates for four emission reduction strategies (tow aircraft between runways and gates, shutdown one engine during taxiing, control departure time, and assign runways to minimize taxiing distance). The best strategy, the shutdown of one engine while taxiing, produces substantial emission reductions, cost benefits owing to fuel savings, and no apparent safety problems; aircraft towing reduced emissions significantly, but introducedmore » a number of safety problems.« less

  1. 75 FR 22868 - Withdrawal of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Characterization of Seismic Sources and Determination of Safe Shutdown Earthquake Ground Motion.'' FOR FURTHER.... Nuclear Regulatory Commission (NRC) is withdrawing RG 1.165, ``Identification and Characterization of... alter the licensing basis of any currently operating reactor or any of the currently issued early site...

  2. 40 CFR 60.2660 - What site-specific documentation is required?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required? 60.2660 Section 60.2660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR..., handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction procedures. (4) Procedures for maintaining proper combustion air supply levels. (5) Procedures for operating the incinerator and...

  3. 40 CFR 60.3019 - What site-specific documentation is required?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required? 60.3019 Section 60.3019 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...) Incinerator startup, shutdown, and malfunction procedures. (4) Procedures for maintaining proper combustion air supply levels. (5) Procedures for operating the incinerator and associated air pollution control...

  4. 40 CFR 265.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...

  5. 40 CFR 264.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 264.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall...

  6. Smart accelerometer

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1992-02-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  7. Smart accelerometer

    NASA Astrophysics Data System (ADS)

    Bozeman, Richard J., Jr.

    1994-05-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  9. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  10. Fact Sheet: Proposed Rule: State Plans to Address Emissions During Startup, Shutdown, and Malfunction (SSM)

    EPA Pesticide Factsheets

    On February 12, 2013, the U.S. Environmental Protection Agency (EPA) proposed a rule that would ensure states have plans in place that require industrial facilities across the country to follow air pollution rules during SSM operations.

  11. Fact Sheet: Supplemental Proposal: State Plans to Address Emissions during Startup, Shutdown and Malfunction (SSM)

    EPA Pesticide Factsheets

    On September 5, 2014, EPA proposed a rule supplementing and revising its February 2013 proposal to ensure states have plans in place that require industrial facilities across the country to follow air pollution rules during SSM operations.

  12. 40 CFR 63.361 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limitation (including any operating limit) or work practice standard in this subpart during startup, shutdown... date means the date of promulgation in the Federal Register notice. Initial startup date means the date... types for the purpose of controlling these emissions with a single control device. Maximum ethylene...

  13. 40 CFR 63.361 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limitation (including any operating limit) or work practice standard in this subpart during startup, shutdown... date means the date of promulgation in the Federal Register notice. Initial startup date means the date... types for the purpose of controlling these emissions with a single control device. Maximum ethylene...

  14. 40 CFR 63.1516 - Reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Reports. 63.1516 Section 63.1516... Standards for Hazardous Air Pollutants for Secondary Aluminum Production Notifications, Reports, and Records § 63.1516 Reports. (a) Startup, shutdown, and malfunction plan/reports. The owner or operator must...

  15. 40 CFR 63.1516 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Reports. 63.1516 Section 63.1516... Standards for Hazardous Air Pollutants for Secondary Aluminum Production Notifications, Reports, and Records § 63.1516 Reports. (a) Startup, shutdown, and malfunction plan/reports. The owner or operator must...

  16. 40 CFR 63.1516 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Reports. 63.1516 Section 63.1516... Hazardous Air Pollutants for Secondary Aluminum Production Notifications, Reports, and Records § 63.1516 Reports. (a) Startup, shutdown, and malfunction plan/reports. The owner or operator must develop a written...

  17. 40 CFR 63.1516 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Reports. 63.1516 Section 63.1516... Standards for Hazardous Air Pollutants for Secondary Aluminum Production Notifications, Reports, and Records § 63.1516 Reports. (a) Startup, shutdown, and malfunction plan/reports. The owner or operator must...

  18. 40 CFR 63.1516 - Reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Reports. 63.1516 Section 63.1516... Hazardous Air Pollutants for Secondary Aluminum Production Notifications, Reports, and Records § 63.1516 Reports. (a) Startup, shutdown, and malfunction plan/reports. The owner or operator must develop a written...

  19. 40 CFR 62.14620 - What site-specific documentation is required?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Operator Training and Qualification § 62.14620 What...) Procedures for receiving, handling, and charging waste. (3) Incinerator startup, shutdown, and malfunction...

  20. NASA Advanced Radiator Technology Development

    NASA Astrophysics Data System (ADS)

    Koester, J. Kent; Juhasz, Albert J.

    1994-07-01

    A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.

  1. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki; Anshari, Rio

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environmentmore » such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.« less

  2. Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Anshari, Rio

    2012-06-01

    Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

  3. Effect of extended and daily short-term starvation/shut-down events on the performance of a biofilter treating toluene vapors.

    PubMed

    Jiménez, Lucero; Arriaga, Sonia; Muñoz, Raúl; Aizpuru, Aitor

    2017-12-01

    Industrial emissions of Volatile Organic Compounds are usually discontinuous. To assess the impact of interruptions in pollutant supply on the performance of biological treatment systems, two identical biofilters previously operated under continuous toluene loadings were subjected for 110 days to extended (12, 24, 36, 48, 60, 72, 84 and 96 h) and for a week to daily (8 h on, 16 h off) toluene starvation/shutdown events. One biofilter was operated under complete shutdowns (both air and toluene supply were interrupted), while the other maintained the air supply under toluene starvation. The biofilter operated under complete shutdowns was able to withstand both the extended and daily pollutant interruptions, while starvation periods >24 h severely impacted the performance of the other biofilter, with a removal efficiency decrease from 97.7 ± 0.1% to 45.4 ± 6.7% at the end of the extended starvation periods. This deterioration was likely due to a reduction in liquid lixiviation (from a total volume of 2380 mL to 1800 mL) mediated by the countercurrent airflow during the starvation periods. The presence of air under toluene starvation also favored the accumulation of inactive biomass, thus increasing the pressure drop from 337 to 700 mm H 2 O.m -1 , while decreasing the wash out of acidic by-products with a significantly higher pH of leachates (Student paired t-test <0.05). This study confirmed the need to prevent the accumulation of inhibitory compounds produced during process perturbation in order to increase biofiltration robustness. Process operation with sufficient drainage in the packing material and the absence of countercurrent airflow are highly recommended during toluene deprivation periods. Copyright © 2017. Published by Elsevier Ltd.

  4. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOEpatents

    Schmidt, Mark Christopher

    2000-01-01

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  5. Microwave system performance for a solar power satellite during startup/shutdown operations

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Berlin, L. A.

    1979-01-01

    The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.

  6. 40 CFR 63.1111 - Startup, shutdown, and malfunction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction. 63.1111 Section 63.1111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Control Technology Standards § 63.1111 Startup, shutdown, and malfunction. (a) Startup, shutdown, and...

  7. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  8. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time.

    PubMed

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  9. 46 CFR 134.170 - Operating manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; (iii) Wave height; (iv) Wave period; (v) Wind; (vi) Current; (vii) Temperatures; and (viii) Other environmental factors. (4) The heaviest loads allowable on deck. (5) Information on the use of any special cross... (vii) Access to different compartments and decks. (12) A list of shutdown locations for emergencies and...

  10. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... control that might interfere with the evaluation of the operation of the exhaust gas temperature sensor... allowable low water level. Run the engine until the exhaust gas temperature sensor activates the safety...

  11. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... control that might interfere with the evaluation of the operation of the exhaust gas temperature sensor... allowable low water level. Run the engine until the exhaust gas temperature sensor activates the safety...

  12. 10 CFR 50.82 - Termination of license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licensees whose decommissioning plan approval activities have been relegated to notice of opportunity for a... decommissioning activities required in paragraphs (a)(4)(ii) and (a)(5) of this section shall not apply, and any... permanent cessation of operations, the licensee shall submit a post-shutdown decommissioning activities...

  13. Impact of shutting down en route primary radars within CONUS interior

    DOT National Transportation Integrated Search

    1993-06-01

    The Impact on the Air Traffic Control (ATC) operations resulting from the shutdown of alt en route primary radars : (except for ARSR-4s) within the CONUS interior will result in loss of real-time weather data and aircraft skin tracking, : over 33 per...

  14. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  15. Calculation of Internal Pressures in the Fuel Tube of a Nuclear Reactor

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B. M.; Allen, G.

    1952-01-01

    General procedures for computing internal pressures in fuel tubes of nuclear reactors are described and the effects on the pressure of varying neutron flux, fissioning material, and operating temperatures are discussed. A general proof is given that during pile operation each fission product is monotonically increasing and therefore a maximum amount of all elements is present at the time of shit down. The post-shutdown build-up of elements that are held in check during pile operation because of their inordinately high capture cross sections is calculated quantitatively. An account of chemical interactions between the many fission-product elements and the resulting effect on the total pressure completes the discussion. The general methods are illustrated by calculations applied to a system consisting of 90 percent enriched U235 in the form of UO2 packed into a hollow metal cylinder or "pin", operating at a flux of 8 x 10(exp 14) at 2000 F. Calculations of the pressure inside a pin are made with and without a sodium metal heat-transfer additive. The bulk of the pressure is shown to depend on the four elements, xenon, krypton, rubidium, and cesium; the amount of free oxygen, however, was also significant. For a shutdown time of 10(exp 6) seconds, the pressure was about 100 atmospheres.

  16. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  17. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  18. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  19. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  20. 40 CFR 63.762 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Startups, shutdowns, and malfunctions... Facilities § 63.762 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of non...

  1. 40 CFR 63.1272 - Startups, shutdowns, and malfunctions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Startups, shutdowns, and malfunctions... Facilities § 63.1272 Startups, shutdowns, and malfunctions. (a) The provisions set forth in this subpart shall apply at all times except during startups or shutdowns, during malfunctions, and during periods of...

  2. Stability of lanthanum oxide-based H 2S sorbents in realistic fuel processor/fuel cell operation

    NASA Astrophysics Data System (ADS)

    Valsamakis, Ioannis; Si, Rui; Flytzani-Stephanopoulos, Maria

    We report that lanthana-based sulfur sorbents are an excellent choice as once-through chemical filters for the removal of trace amounts of H 2S and COS from any fuel gas at temperatures matching those of solid oxide fuel cells. We have examined sorbents based on lanthana and Pr-doped lanthana with up to 30 at.% praseodymium, having high desulfurization efficiency, as measured by their ability to remove H 2S from simulated reformate gas streams to below 50 ppbv with corresponding sulfur capacity exceeding 50 mg S g sorbent -1 at 800 °C. Intermittent sorbent operation with air-rich boiler exhaust-type gas mixtures and with frequent shutdowns and restarts is possible without formation of lanthanide oxycarbonate phases. Upon restart, desulfurization continues from where it left at the end of the previous cycle. These findings are important for practical applications of these sorbents as sulfur polishing units of fuel gases in the presence of small or large amounts of water vapor, and with the regular shutdown/start-up operation practiced in fuel processors/fuel cell systems, both stationary and mobile, and of any size/scale.

  3. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  4. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  5. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  6. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  7. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  8. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  9. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  10. 40 CFR 62.15165 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...

  11. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  12. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  13. 40 CFR 60.1710 - What happens to the emission limits during periods of startup, shutdown, and malfunction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...

  14. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  15. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heaters without water level controls) must be tested by interrupting the feed water supply. Manual reset... alarm and visible indicator must be verified. The shutdown times must be verified. (3) Fuel supply... draft loss interlock switch must be tested to ensure proper operation. The draft limit control must...

  16. Magnetic bearings for a high-performance optical disk buffer, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The operating instructions for the magnetic bearings of a high-performance optical disk buffer are provided. Among the topics that are discussed are the following: front panel layout, turn-on procedure, shut-down procedure, and latch-up protection. Additionally, comprehensive engineering drawings are presented for the design.

  17. To appropriate such funds as may be necessary to ensure certain important functions of the Government continue during a Governmentwide shutdown, and for other purposes.

    THOMAS, 113th Congress

    Rep. Latham, Tom [R-IA-3

    2013-09-20

    House - 10/04/2013 Referred to the Subcommittee on Department Operations, Oversight, and Nutrition. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. 40 CFR 60.107 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...

  19. 40 CFR 60.107 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...

  20. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...

  1. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...

  2. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...

  3. 46 CFR 61.35-3 - Required tests and checks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... controls must control and cycle the unit in the proper manner and sequence. Proper prepurge, ignition...) Limit controls. Shutdown caused by the limit controls must be verified. (9) Water level controls. Water level controls must be tested by slowly lowering the water level in the boiler. Each operating water...

  4. 75 FR 39707 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... consistent with the expected practice of fatigue management. Maintenance The NRC staff does not consider... September 21, 2009 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML092720178... understanding the effects of fire and fire suppressants on safe shutdown capability; (4) performing maintenance...

  5. 40 CFR 63.1312 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1312 Definitions. (a) The following....111) Owner or operator (§ 63.2) Performance evaluation (§ 63.2) Performance test (§ 63.2) Permitting...-up, shutdown, and malfunction plan (§ 63.101) State (§ 63.2) Stationary Source (§ 63.2) Surge control...

  6. Fermilab | Tevatron | Tevatron Operation

    Science.gov Websites

    Book Newsroom Newsroom News and features Press releases Photo gallery Fact sheets and brochures Media media Video of shutdown event Guest book Tevatron Impact June 11, 2012 About the symposium Symposium , Legal Use of Cookies Quick Links Home Contact Phone Book Fermilab at Work For Industry Jobs Interact

  7. 40 CFR 60.1665 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...

  8. 40 CFR 62.15120 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...

  9. Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting

    NASA Astrophysics Data System (ADS)

    Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.

    2002-01-01

    The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase took approximately 22 seconds, and the shutdown sputtering phase took approximately 32 seconds. Results from the experiment were correlated with the Boeing ISS vent plume model.

  10. The implementation of fail-operative functions in integrated digital avionics systems

    NASA Technical Reports Server (NTRS)

    Osoer, S. S.

    1976-01-01

    System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.

  11. Task 12 data dump (phase 2) OME integrated thrust chamber test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.; Pauckert, R. P.

    1974-01-01

    The characteristics and performance of the orbit maneuvering engine for the space shuttle are discussed. Emphasis is placed on the regeneratively cooled thrust chamber of the engine. Tests were conducted to determine engine operating parameters during the start, shutdown, and restart. Characteristics of the integrated thrust chamber and the performance and thermal conditions for blowdown operation without supplementary boundary layer cooling were investigated. The results of the test program are presented.

  12. Hazard Analysis of Pollution Abatement Techniques. Volume I

    DTIC Science & Technology

    1974-06-01

    present hazards during startup/shutdown operations when filling or emptying the diatomaceous earth filters, or when filling or emptying the carbon...columns. Frictional initi- I ation modes can occur in the filter due to movement of diatomaceous earth 1< over a sufficiently dry TN~T layer. nie b...said operation. .,I addition, contaminaited diatomaceous earth should not be handled in a dry condition. Spent carbon, as well as spent earth , should be

  13. Consortium Requirements Engineering Guidebook

    DTIC Science & Technology

    1993-12-01

    re- quirements among developers or contractors, acquisition managers, and users. A CoRE specification serves as both the test -to and design-to...that are used for the following purposes: (1) the button labeled SELF TEST allows the operator to check the FLMS’s output hardware while the system is...shut down; and (2) the button labeled RESET allows the system to be brought back into normal operation following a shutdown or testing as long as the

  14. Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BEVINS, R.R.

    This study is a requirements document that presents analysis for the functional description for the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment. The requirements in this study apply to the first phase of the W314 Project. This document has been updated during the definitive design portion of the first phase of the W314 Project to capture additional software requirements and is planned to be updated duringmore » the second phase of the W314 Project to cover the second phase of the project's scope.« less

  15. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  16. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant.

    PubMed

    De Gisi, Sabino; Chiarelli, Agnese; Tagliente, Luca; Notarnicola, Michele

    2018-03-01

    A methodology based on the ISO 14031:2013 guideline has been developed and applied to a full-scale fluidized bed waste to energy plant (WtE) burning solid recovered fuel (SRF). With reference to 3years of operation, the data on energy and environmental performance, on raw materials consumptions such as sand and diesel fuel, accidental reasons of plant shutdown, have been acquired and analyzed. The obtained results have allowed to quantify the energy and environmental performance of the WtE plant under investigation by varying the amount and mixings of the inlet waste, available in form of thickened and fluff (similar to coriander) SRF. In terms of the energy performance, the fluidized bed technology applied to the SRF was able to guarantee an adequate production of electricity (satisfying the market demands), showing a relative flexibility with respect to the inlet waste. In terms of net energy production efficiency, the plant showed values in the range of 13.8-14.9% in line with similar installations. In terms of the environmental performance, the adoption of a cleaning system based on SNCR (Selective Non Catalitic Reduction)+semi-dry scrubbing+Fabric filter generated emissions usually well below the limits set by the EU Directive 2000/76/EC as well as the Italian Law 46/2014 (more restrictive) with reference to all the key parameters. In terms of the plant shutdown, the majority of problems focused on the combustion chamber and boiler due to the erosion of the refractory material of the furnace as well as to the breaking of the superheaters of the boiler. In contrast, the mechanical and electrical causes, along with those related to the control and instrumentation system, were of secondary importance. The sand bed de-fluidization was also among the leading causes of a frequent plant shutdown. In particular, results showed how although the SRF presents standard characteristics, the use of different mixtures may affect the number of plant shutdowns. The full-scale data highlighted how the lower the rate of fluff in the mixture was, the greater the number of plant shutdown due to sand bed de-fluidization was. Finally, the aspects in terms of the energy, environmental protection and raw material consumption have been discussed with reference to similar WtE plants such as Robbins (Chicago, USA), Lidköping (Sweden), Toshima (Tokyo, Japan), Madrid (Spain), Dundee (Scotland, UK) and Valene (Mantes la Jolie, France). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  18. 40 CFR 63.2450 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values are available for at least two of the 15-minute periods during an hour when calibration, quality... during periods of startup, shutdown, and malfunction (SSM), and you must meet the requirements specified...., continuous process vents, batch process vents, storage tanks, transfer operations, and waste management units...

  19. 40 CFR 63.2450 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... values are available for at least two of the 15-minute periods during an hour when calibration, quality..., except during periods of startup, shutdown, and malfunction (SSM), and you must meet the requirements...., continuous process vents, batch process vents, storage tanks, transfer operations, and waste management units...

  20. 46 CFR 154.1842 - Cargo system: Controls and alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo system: Controls and alarms. 154.1842 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1842 Cargo system: Controls and alarms. The master shall ensure that the cargo emergency shut-down system and the...

  1. 46 CFR 154.1842 - Cargo system: Controls and alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo system: Controls and alarms. 154.1842 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1842 Cargo system: Controls and alarms. The master shall ensure that the cargo emergency shut-down system and the...

  2. 40 CFR 63.10000 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil... of startup and shutdown; however, for coal-fired, liquid oil-fired, or solid oil-derived fuel-fired...

  3. 40 CFR 63.1312 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....111) Owner or operator (§ 63.2) Performance evaluation (§ 63.2) Performance test (§ 63.2) Permitting...-up, shutdown, and malfunction plan (§ 63.101) State (§ 63.2) Stationary Source (§ 63.2) Surge control vessel (§ 63.161) Temperature monitoring device (§ 63.111) Test method (§ 63.2) Treatment process (§ 63...

  4. 77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ..., stack, storage, or fugitive emissions point; and/or are design, equipment, work practice, or operational... procedures designed to minimize emissions of THC for each start-up and shutdown scenario anticipated for all... designed and maintained can sometimes fail and that such failure can sometimes cause an exceedance of the...

  5. 78 FR 20144 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Research. The test results concluded that the Hemyc ERFBS does not provide the level of protection expected... information that that you do not want to be publicly disclosed in your comment submission. The NRC will post... to the credited post-fire safe-shutdown capability which remains materially unchanged from the...

  6. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... description of control device maintenance performed while the control device was offline and the kiln controlled by the control device was operating, including the information specified in paragraphs (c)(5)(i) through (iii) of this section. (i) The date and time when the control device was shutdown and restarted...

  7. 40 CFR 63.6155 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... duration of each startup, shutdown, or malfunction as required in § 63.10(b)(2)(i). (4) Records of the occurrence and duration of each malfunction of the air pollution control equipment, if applicable, as... records required in Table 5 of this subpart to show continuous compliance with each operating limitation...

  8. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  9. Design and test status for life support applications of SPE oxygen generation systems. [Solid Polymer Electrolyte

    NASA Technical Reports Server (NTRS)

    Titterington, W. A.; Erickson, A. C.

    1975-01-01

    An advanced six-man rated oxygen generation system has been fabricated and tested as part of a NASA/JSC technology development program for a long lived, manned spacecraft life support system. Details of the design and tests results are presented. The system is based on the Solid Polymer Electrolyte (SPE) water electrolysis technology and its nominal operating conditions are 2760 kN/sq m (400 psia) and 355 K (180 F) with an electrolysis module current density capability up to 350 mA/sq cm (326 ASF). The system is centered on a 13-cell SPE water electrolysis module having a single cell active area of 214 sq cm (33 sq in) and it incorporates instrumentation and controls for single pushbutton automatic startup/shutdown, component fault detection and isolation, and self-contained sensors and controls for automatic safe emergency shutdown. The system has been tested in both the orbital cyclic and continuous mode of operation. Various parametric tests have been completed to define the system capability for potential application in spacecraft environmental systems.

  10. Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing

    NASA Technical Reports Server (NTRS)

    Grondahl, Clayton

    2006-01-01

    This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.

  11. Defense.gov Special Report: Government Shutdown

    Science.gov Websites

    reached. Government shutdown avoided. Business as usual for all DOD employees. Deal Averts Shutdown Continuing Resolution (PDF) Deputy Secretary Lynn Message OMB Director Memo to Agencies (PDF) DOD Contingency

  12. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor rectifier must have a high temperature alarm or shutdown, except as provided in § 111.33-11. ...

  13. ERDA/NASA 100 kilowatt mod-o wind turbine operations and performance. [at the NASA Plum Brook Station, Ohio

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Richards, T. R.

    1977-01-01

    The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.

  14. Design and testing of a self-actuated shut down system for the protection of liquid metal fast breeder reactors (LMFBRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, J.; Sowa, E.S.

    1977-04-01

    The design and testing of a simple and reliable Self-Actuated Shutdown System (SASS) for the protection of Liquid Metal Fast Breeder Reactors (LMFBRs) is described. A ferromagnetic Curie temperature permanent magnet holding device has been selected for the design of the Self-Actuated Shutdown System in order to enhance the safety of liquid metal cooled fast reactors (LMFBRs). The self-actuated, self-contained device operates such that accident conditions, resulting in increased coolant temperature or neutron flux reduce the magnetic holding force suspending a neutron absorber above the core by raising the temperature of the trigger mechanism above the Curie point. Neutron absorbermore » material is then inserted into the core, under gravity, terminating the accident. Two possible design variations of the selected concept are presented.« less

  15. The 2013 US Government Shutdown (#Shutdown) and health: an emerging role for social media.

    PubMed

    Merchant, Raina M; Ha, Yoonhee P; Wong, Charlene A; Schwartz, H Andrew; Sap, Maarten; Ungar, Lyle H; Asch, David A

    2014-12-01

    In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, "We're sorry, but we will not be tweeting or responding to @replies during the shutdown. We'll be back as soon as possible!" These "last tweets" and the millions of responses they generated revealed social media's role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health.

  16. Control assembly for controlling a fuel cell system during shutdown and restart

    DOEpatents

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  17. 40 CFR 63.4900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...

  18. 40 CFR 63.4900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...

  19. 40 CFR 63.4900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and add-on control device to comply with the emission limitations in § 63.4890, you must develop a... SSMP must address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation...

  20. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  1. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  2. 77 FR 24845 - Approval and Promulgation of Implementation Plans; South Dakota; Regional Haze State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... various pollution controls in its BART analysis for Big Stone I, its cost impact analysis is skewed in... took into account the State's consideration of environmental impacts when reviewing the Big Stone I SO... shutdown are part of normal operations at facilities like Big Stone, and because these emissions impact...

  3. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  4. 33 CFR 154.812 - Facility requirements for vessel liquid overfill protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intrinsically safe cargo tank level sensor system complying with 46 CFR 39.20-9(b) as its only means of overfill... shutdown signal from the cargo tank level sensor system that: (1) Closes the remotely operated cargo vapor...) Electrical continuity of the cargo tank level sensor system is lost; (2) Activates an alarm which is audible...

  5. 40 CFR 63.4352 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shutdown, or malfunction of the emission capture system, add-on control device, or web coating/printing... specified in Table 2 to this subpart, then you must assume that the emission capture system and add-on..., thinning, and cleaning materials applied during a deviation on a controlled web coating/printing operation...

  6. 40 CFR 60.482-10 - Standards: Closed vent systems and control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for which... unit shutdown. (i) If a vapor collection system or closed vent system is operated under a vacuum, it is... would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (f)(1...

  7. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  8. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  9. 40 CFR Table 4 to Subpart Cccc of... - Summary of Reporting Requirements a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements • Waste management plan • Anticipated date of initial startup § 60.2190 Startup notification Prior to initial startup • Type of waste to be burned• Maximum design waste burning capacity • Anticipated... occurred during a period of startup, shutdown, or malfunction § 60.2215 and 60.2220 Qualified operator...

  10. 33 CFR 154.2022 - Certification, recertification, or operational review-certifying entity responsibilities, generally.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alarm and shutdown shown on the piping and instrumentation diagrams (P&IDs) and reviewed in the hazard... cleaning facility; and that (5) The automatic liquid block valve successfully stops flow of liquid to the... automatically stop the cargo flow to each transfer hose simultaneously, in the event an upset condition occurs...

  11. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  12. Monitoring, safety systems for LNG and LPG operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    True, W.R.

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  13. Security Police Career Ladders AFSCs 811X0, 811X2, and 811X2A.

    DTIC Science & Technology

    1984-11-01

    MONITORS (GRP658) PERCENT MEMBERS PERFORMING TASKS (N=186) J424 PERFORM SPCDS OPERATOR REACTIONS TO SENSOR ALARM, LINE FAULT, OR UNIQUE LINE FAULT...MESSAGES 96 J426 PERFORM SPCDS VERIFICATION PROCEDURES 96 J423 PERFORM SMALL PERMANENT COMMUNICATIONS DISPLAY SEGMENT ( SPCDS ) SHUT-DOWN PROCEDURES 92 J425...PERFORM SPCDS START-UP PROCEDURES 91 J419 PERFORM BISS OPERATOR REACTION TO PRIME POWER LOSS OR SEVERE WEATHER WARNINGS 91 E192 MAKE ENTRIES ON AF

  14. STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David; Maldonado, G Ivan; Primm, Trent

    2010-01-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positionsmore » since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.« less

  15. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David; Maldonado, G Ivan; Primm, Trent

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positionsmore » since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.« less

  16. Improving Understanding of Hydraulic Fracturing-Related Induced Seismicity: A Case for Regulating based on Ground Motion

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Bosman, K.; Baig, A. M.; Viegas, G. F.

    2016-12-01

    In response to a number of high-profile incidents of induced seismicity related to petroleum operations, several jurisdictions have enacted regulations requiring modification or temporary shut-down of operations of wells near significant earthquakes. However, these regulations are based on earthquake magnitude alone, and generally local (or Richter) magnitude (ML) if specified at all. We discuss two earthquakes which occurred near Fox Creek, Alberta, Canada, in close proximity to hydraulic fracturing operations, as examples of some complications which may arise in analyzing suspected induced events. For an event that occurred on June 13, 2015, detailed magnitude assessments were performed by two groups in addition to moment magnitude (MW) estimates from the USGS and NRCan. The resulting magnitudes vary between MW3.9- 4.6, thus some estimates would trigger the shut-down regulations in Alberta (M > 4), while some merely require operational modifications (2 < M < 4). Using data from the RAVEN network, we have analyzed an event which occurred on January 12, 2016. We calculate a magnitude of MW4.3 for this event, which agrees within error with estimates from NRCan (MW4.4) and the USGS (Mb4.2). All magnitude estimates for the January 12, 2016 event exceed the threshold for operational shut-down in Alberta. Comparing the spectral amplitude measured at each station to existing standards from the former United States Bureau of Mines and the Uniform Building Code, we determine that structures within 35km of the epicenter may experience light damage due to this earthquake, depending on local soil conditions. Stress drops observed for the events analyzed were 6MPa and 13MPa, in line with typical tectonic events and in contrast to the low values observed for suspected wastewater-injection induced events. This suggests the events were driven by stress redistribution rather than direct influence of fluids. Theoretical source spectra illustrate the profound effect of stress drop on ground motion. Due to the extreme difficulty of predicting the source characteristics of future induced events, regulating based on magnitude alone appears to be an overly simplistic approach. Regulations incorporating observed ground motion provide a more appropriate method of assessing the potential damage resulting from induced seismicity.

  17. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  18. The 2013 US Government Shutdown (#Shutdown) and Health: An Emerging Role for Social Media

    PubMed Central

    Ha, Yoonhee P.; Wong, Charlene A.; Schwartz, H. Andrew; Sap, Maarten; Ungar, Lyle H.; Asch, David A.

    2014-01-01

    In October 2013, multiple United States (US) federal health departments and agencies posted on Twitter, “We’re sorry, but we will not be tweeting or responding to @replies during the shutdown. We’ll be back as soon as possible!” These “last tweets” and the millions of responses they generated revealed social media’s role as a forum for sharing and discussing information rapidly. Social media are now among the few dominant communication channels used today. We used social media to characterize the public discourse and sentiment about the shutdown. The 2013 shutdown represented an opportunity to explore the role social media might play in events that could affect health. PMID:25322303

  19. Incorporation of Startup, Shutdown, and Malfunction Plans into Source's Title V Permits

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. Clarification - State Implementation Plans (SIPs): Policy Regarding Excess Emissions During Malfunctions, Startup, and Shutdown

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  1. State Implementation Plans: Policy Regarding Excess Emissions During Malfunctions, Startup, and Shutdown

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  2. Policy on Excess Emissions During Startup, Shutdown, Maintenance and Malfunctions

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  3. Policy on Excess Emissions During Startup, Shutdown, Maintenance, and Malfunctions

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  4. 40 CFR 52.1183 - Visibility protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excess emissions that occurs during startups, shutdowns, and malfunctions of the unit, the nature and... that occurs during startups, shutdowns, and malfunctions of the unit, the nature and cause of any... startup, shutdown, and malfunction. (viii) All CEMS required by this section must meet the minimum data...

  5. The management of large cabling campaigns during the Long Shutdown 1 of LHC

    NASA Astrophysics Data System (ADS)

    Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.

    2014-03-01

    The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.

  6. Turbofan compressor dynamics during afterburner transients

    NASA Technical Reports Server (NTRS)

    Kurkov, A. P.

    1975-01-01

    The effects of afterburner light-off and shut-down transients on compressor stability were investigated. Experimental results are based on detailed high-response pressure and temperature measurements on the Tf30-p-3 turbofan engine. The tests were performed in an altitude test chamber simulating high-altitude engine operation. It is shown that during both types of transients, flow breaks down in the forward part of the fan-bypass duct. At a sufficiently low engine inlet pressure this resulted in a compressor stall. Complete flow breakdown within the compressor was preceded by a rotating stall. At some locations in the compressor, rotating stall cells initially extended only through part of the blade span. For the shutdown transient, the time between first and last detected occurrence of rotating stall is related to the flow Reynolds number. An attempt was made to deduce the number and speed of propagation of rotating stall cells.

  7. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  8. 33 CFR 127.1205 - Emergency shutdown.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Equipment § 127.1205 Emergency shutdown. (a) Each... elements that melt at less than 105 °C (221 °F) and activate the emergency shutdown, or have a sensor that...

  9. 76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  10. Operational Characteristics of an Accelerator Driven Fissile Solution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpland, Robert Herbert

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less

  11. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  12. 40 CFR 63.4900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the provisions in § 63.6(e)(1)(i). (c) If your affected source uses an emission capture system and add... address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation equipment...

  13. 40 CFR 63.4900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the provisions in § 63.6(e)(1)(i). (c) If your affected source uses an emission capture system and add... address the startup, shutdown, and corrective actions in the event of a malfunction of the emission capture system or the add-on control device. The SSMP must also address any coating operation equipment...

  14. 10 CFR Appendix B to Subpart A of... - Environmental Effect of Renewing the Operating License of a Nuclear Power Plant

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...). Aquatic Ecology (for all plants) Refurbishment 1 SMALL. During plant shutdown and refurbishment there will... cooling ponds and is not expected to be a problem during the license renewal term. Aquatic Ecology (for...)(ii)(B). Aquatic Ecology (for plants with cooling-tower-based heat dissipation systems) Entrainment of...

  15. 78 FR 48201 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2013-01; Guidance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... following the earthquake and shutdown of the operating units, however, the first large tsunami wave inundated the site, followed by additional waves. The tsunami caused extensive damage to site facilities and..., and after some period of time at the other units. Unit 6 retained the function of one air-cooled EDG...

  16. 78 FR 3039 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-06; Performing a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... following the earthquake and shutdown of the operating units, however, the first large tsunami wave inundated the site, followed by additional waves. The tsunami caused extensive damage to site facilities and..., and after some period of time at the other units. Unit 6 retained the function of one air-cooled EDG...

  17. Recent GPS Results at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less

  18. Commissioning of the first chambers of the CMS GE1/1 muon station

    NASA Astrophysics Data System (ADS)

    Ressegotti, Martina; CMS Muon Group

    2017-12-01

    The upgrades of the LHC planned in the next years will increase the instantaneous luminosity up to 5 × 1034 cm -2 s -1 after Long Shutdown 3, a value about five times higher than the nominal one for which the CMS experiment was designed. The resulting larger rate of interactions will produce a higher pileup environment that will challenge the trigger system of the CMS experiment in its original configuration, in particular in the endcap region. As part of the upgrade program of the CMS muon endcaps, additional muon detectors based on Gas Electron Multiplier (GEM) technology will be installed, in order to be able to sustain a physics program during high-luminosity operation without performance losses. The installation of the GE1/1 station is scheduled for Long Shutdown 2 in 2019-2020 already a demonstrator composed of five superchambers has been installed during the Extended Year-End Technical Stop at the beginning of 2017. Its goal is to test the system’s operational conditions and also to demonstrate the integration of the GE1/1 chambers into the CMS online system. The status of the installation and commissioning of the GE1/1 demonstrator is presented.

  19. Factors defining value and direction of thermal pressure between the mine shafts and impact of the general mine natural draught on ventilation process of underground mining companies

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. V.; Alymenko, N. I.; Kamenskikh, A. A.; Alymenko, D. N.; Nikolaev, V. A.; Petrov, A. I.

    2017-10-01

    The article specifies measuring data of air parameters and its volume flow in the shafts and on the surface, collected in BKPRU-2 (Berezniki potash plant and mine 2) («Uralkali» PJSC) in normal operation mode, after shutdown of the main mine fan (GVU) and within several hours. As a result of the test it has been established that thermal pressure between the mine shafts is active continuously regardless of the GVU operation mode or other draught sources. Also it has been discovered that depth of the mine shafts has no impact on thermal pressure value. By the same difference of shaft elevation marks and parameters of outer air between the shafts, by their different depth, thermal pressure of the same value will be active. Value of the general mine natural draught defined as an algebraic sum of thermal pressure values between the shafts depends only on the difference of temperature and pressure of outer air and air in the shaft bottoms on condition of shutdown of the air handling system (unit-heaters, air conditioning systems).

  20. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  1. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  2. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  3. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  4. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  5. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  6. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  7. 46 CFR 111.33-7 - Alarms and shutdowns.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Alarms and shutdowns. 111.33-7 Section 111.33-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-7 Alarms and shutdowns. Each power semiconductor...

  8. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  9. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  10. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  11. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  12. 40 CFR 52.271 - Malfunction, startup, and shutdown regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Malfunction, startup, and shutdown regulations. 52.271 Section 52.271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.271 Malfunction, startup, and shutdown regulations. (a)...

  13. 77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...

  14. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  15. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  16. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  17. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information... requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and malfunction report if...

  18. 78 FR 20855 - State Implementation Plans: Response to Petition for Rulemaking; Findings of Substantial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... SIP Calls To Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... SIP Calls to Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and... Amend Provisions Applying to Excess Emissions During Periods of Startup, Shutdown, and Malfunction...

  19. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  20. 40 CFR 65.6 - Startup, shutdown, and malfunction plan and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Startup, shutdown, and malfunction... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE General Provisions § 65.6 Startup... Group 2A or Group 2B process vents. (b) Startup, shutdown, and malfunction plan—(1) Description and...

  1. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  2. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  3. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  4. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  5. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  6. 40 CFR 63.10 - Recordkeeping and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relevant records for such source of— (i) The occurrence and duration of each startup or shutdown when the startup or shutdown causes the source to exceed any applicable emission limitation in the relevant... startup or shutdown when the source exceeded applicable emission limitations in a relevant standard and...

  7. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  8. 40 CFR 63.8635 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of report and beginning and ending dates of the reporting period. (4) If you had a startup, shutdown... section. This includes periods of startup, shutdown, malfunction, and routine control device maintenance... (e)(1) through (13) of this section. This includes periods of startup, shutdown, malfunction, and...

  9. Catalysis in high-temperature fuel cells.

    PubMed

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  10. 30 CFR 57.8534 - Shutdown or failure of auxiliary fans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shutdown or failure of auxiliary fans. 57.8534... Ventilation Underground Only § 57.8534 Shutdown or failure of auxiliary fans. (a) Auxiliary fans installed and... fan maintenance or fan adjustments where air quality is maintained in compliance with the applicable...

  11. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...

  12. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  13. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  14. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  15. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  16. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown, and...

  17. 40 CFR 63.9040 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to you. This includes periods of startup, shutdown, and malfunction. These instances are deviations... during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the... determine whether deviations that occur during a period of startup, shutdown, or malfunction are violations...

  18. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  19. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  20. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  1. 40 CFR Table 7 to Subpart Aaaaa of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... If you had a startup, shutdown or malfunction during the reporting period and you took actions...) Semiannually according to the requirements in § 63.7131(b). 2. An immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent...

  2. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  3. 40 CFR Table 15 to Subpart Xxxx of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....6010(f). c. If you had a startup, shutdown or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include... you meet the requirements for annual reporting in § 63.6010(f). 2. Immediate startup, shutdown, and...

  4. 40 CFR 63.1570 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control equipment. (d) You must develop a written startup, shutdown, and malfunction plan (SSMP) according... includes periods of startup, shutdown, and malfunction. You also must report each instance in which you did...), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you...

  5. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  6. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  7. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  8. 40 CFR 63.9641 - What reports must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and ending dates of the reporting period. (4) If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan... information in paragraphs (b)(7)(i) and (ii) of this section. This includes periods of startup, shutdown, and...

  9. 77 FR 69507 - Proposed Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ..., ``Revise Shutdown Margin Definition To Address Advanced Fuel Designs'' AGENCY: Nuclear Regulatory... Shutdown Margin Definition to Address Advanced Fuel Designs.'' DATES: Comment period expires on December 19... address newer BWR fuel designs, which may be more reactive at shutdown temperatures above 68[emsp14][deg]F...

  10. Expanded scope of training and education programs at the UFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernetson, W.G.; Whaley, P.M.

    1985-01-01

    Historically, the University of Florida Training Reactor (UFTR) has been used to train both hot and cold license reactor operator candidates in intensive two- and three-week training programs consisting of a correlated set of classroom lectures, hands-on reactor operations, and laboratory exercises. These training programs provide nuclear plant operating staff with fundamental operational experience in understanding, controlling, and evaluating subcritical multiplication, reactivity effects, reactivity manipulations, and reactor operations; a sufficient number of startups and shutdowns is also assured. The UDTR is also used in a nuclear engineering course entitled ''Principles of Nuclear Reactor Operations.'' The purpose of this paper ismore » to report the results of efforts to redirect and refine tractor operations educational and training programs at the UFTR.« less

  11. Long-term energy capture and the effects of optimizing wind turbine operating strategies

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Formica, W. J.

    1982-01-01

    Methods of increasing energy capture without affecting the turbine design were investigated. The emphasis was on optimizing the wind turbine operating strategy. The operating strategy embodies the startup and shutdown algorithm as well as the algorithm for determining when to yaw (rotate) the axis of the turbine more directly into the wind. Using data collected at a number of sites, the time-dependent simulation of a MOD-2 wind turbine using various, site-dependent operating strategies provided evidence that site-specific fine tuning can produce significant increases in long-term energy capture as well as reduce the number of start-stop cycles and yawing maneuvers, which may result in reduced fatigue and subsequent maintenance.

  12. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva, J. F.; Carlos, S.; Martorell, S.

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primarymore » coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)« less

  13. Purification of liquid metal systems with sodium coolant from oxygen using getters

    NASA Astrophysics Data System (ADS)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  14. DOE/NASA Mod-0 100KW wind turbine test results

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.

    1978-01-01

    The Wind Turbine demonstrates the capability of automatic unattended operation, including startup, achieving synchronism, and shutdown as dictated by wind conditions. During the course of these operations, a wealth of engineering data was generated. Some of the data which is associated with rotor and machine dynamics problems encountered, and the machine modifications incorporated as a solution are presented. These include high blade loads due to tower shadow, excessive nacelle yawing motion, and power oscillations. The results of efforts to correlate measured wind velocity with power output and wind turbine loads are also discussed.

  15. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  16. Preliminary results of the mission profile life test of a 30 cm Hg bombardment thruster

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; James, E. L.

    1979-01-01

    Long term tests were performed on a 30 cm Hg bombardment thruster and a power processing unit to determine lifetime characteristics. The thruster performance data and other operational characteristics taken at various times during the test segment are presented and evaluated with the life limiting mechanisms: discharge chamber erosion, deposition and spalling, external erosion, cathode degradation, and propellant isolator leakage. The control algorithms for thruster start up, steady state operation, throttle, detection and correction of off normal conditions, and shutdown are discussed.

  17. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  18. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  19. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  20. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  1. 40 CFR 63.8248 - What other requirements must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... startup, shutdown, and malfunction. (2) You must report each instance in which you did not meet each work practice standard in § 63.8192 that applies to you. This includes periods of startup, shutdown, and... value was out of range. (b) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63...

  2. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  3. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  4. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  5. 40 CFR Table 14 to Subpart Wwww of... - Requirements for Reports

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements in § 63.5910(b). c. The information in § 63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan Semiannually according to the requirements in § 63.5910(b). 2. An immediate startup, shutdown...

  6. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  7. 40 CFR 63.7835 - What other requirements must I meet to demonstrate continuous compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that applies to you. This includes periods of startup, shutdown, and malfunction. You also must report...) Startups, shutdowns, and malfunctions. (1) Consistent with §§ 63.6(e) and 63.7(e)(1), deviations that occur during a period of startup, shutdown, or malfunction are not violations if you demonstrate to the...

  8. Martins Creek S. E. S. 800-MW Units 3 and 4: design and operating experience with axial-flow FD and ID fans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curley, C.C.; Overas, A.J.

    1976-01-01

    The design and performance of the variable-pitch axial-flow forced-draft and induced-draft fans used in two 820MW generating units at the Martins Creek Power Plant are described. Information is included on fan design; silencers; mechanical and metallurgical testing; insulation; performance testing; start-up and shutdown procedures; and maintenance. (LCL)

  9. 40 CFR 63.7540 - How do I demonstrate continuous compliance with the emission limits and work practice standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... listed in Tables 2 through 4 to this subpart at all times except during periods of startup, shutdown and... operating limits. (2) You must keep records of the type and amount of all fuels burned in each boiler or process heater during the reporting period to demonstrate that all fuel types and mixtures of fuels burned...

  10. 40 CFR 63.11223 - How do I demonstrate continuous compliance with the work practice and management practice standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a part of the tune-up of the boiler. (iii) The type and amount of fuel used over the 12 months prior... tune-up, the tune-up must be conducted within one week of startup. (c) If you own or operate an... must minimize the boiler's time spent during startup and shutdown following the manufacturer's...

  11. 40 CFR 63.7540 - How do I demonstrate continuous compliance with the emission limits and work practice standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... listed in Tables 2 through 4 to this subpart at all times except during periods of startup, shutdown and... operating limits. (2) You must keep records of the type and amount of all fuels burned in each boiler or process heater during the reporting period to demonstrate that all fuel types and mixtures of fuels burned...

  12. 40 CFR 63.7540 - How do I demonstrate continuous compliance with the emission limits and work practice standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... listed in Tables 2 through 4 to this subpart at all times except during periods of startup, shutdown and... operating limits. (2) You must keep records of the type and amount of all fuels burned in each boiler or process heater during the reporting period to demonstrate that all fuel types and mixtures of fuels burned...

  13. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.

  14. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  15. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment draft regulatory guide (DG), DG-1272, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method that the NRC staff considers acceptable for use in complying with the Commission's requirements regarding the submission of a post-shutdown decommissioning activities report (PSDAR).

  16. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  17. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  18. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  19. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

  20. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...

Top