NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu
2000-08-01
The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.
Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors
NASA Astrophysics Data System (ADS)
Chen, Shi-Zhi; Wu, Gang; Xing, Tuo; Feng, De-Cheng
2018-01-01
Monitoring prestressing forces is essential for prestressed concrete box girder bridges. However, the current monitoring methods used for prestressing force were not applicable for a box girder neither because of the sensor’s setup being constrained or shear lag effect not being properly considered. Through combining with the previous analysis model of shear lag effect in the box girder, this paper proposed an indirect monitoring method for on-site determination of prestressing force in a concrete box girder utilizing the distributed long-gauge fiber Bragg grating sensor. The performance of this method was initially verified using numerical simulation for three different distribution forms of prestressing tendons. Then, an experiment involving two concrete box girders was conducted to study the feasibility of this method under different prestressing levels preliminarily. The results of both numerical simulation and lab experiment validated this method’s practicability in a box girder.
NASA Technical Reports Server (NTRS)
Nicely, Julie M.; Anderson, Daniel C.; Canty, Timothy P.; Salawitch, Ross J.; Wolfe, Glenn M.; Apel, Eric C.; Arnold, Steve R.; Atlas, Elliot L.; Blake, Nicola J.; Bresch, James F.;
2016-01-01
Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January-February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO +NO2) by a factor of 2, resulting in OHCOL approx.30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January-February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP.
NASA Astrophysics Data System (ADS)
Stone, Daniel; Sherwen, Tomás; Evans, Mathew J.; Vaughan, Stewart; Ingham, Trevor; Whalley, Lisa K.; Edwards, Peter M.; Read, Katie A.; Lee, James D.; Moller, Sarah J.; Carpenter, Lucy J.; Lewis, Alastair C.; Heard, Dwayne E.
2018-03-01
The chemistry of the halogen species bromine and iodine has a range of impacts on tropospheric composition, and can affect oxidising capacity in a number of ways. However, recent studies disagree on the overall sign of the impacts of halogens on the oxidising capacity of the troposphere. We present simulations of OH and HO2 radicals for comparison with observations made in the remote tropical ocean boundary layer during the Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009. We use both a constrained box model, using detailed chemistry derived from the Master Chemical Mechanism (v3.2), and the three-dimensional global chemistry transport model GEOS-Chem. Both model approaches reproduce the diurnal trends in OH and HO2. Absolute observed concentrations are well reproduced by the box model but are overpredicted by the global model, potentially owing to incomplete consideration of oceanic sourced radical sinks. The two models, however, differ in the impacts of halogen chemistry. In the box model, halogen chemistry acts to increase OH concentrations (by 9.8 % at midday at the Cape Verde Atmospheric Observatory), while the global model exhibits a small increase in OH at the Cape Verde Atmospheric Observatory (by 0.6 % at midday) but overall shows a decrease in the global annual mass-weighted mean OH of 4.5 %. These differences reflect the variety of timescales through which the halogens impact the chemical system. On short timescales, photolysis of HOBr and HOI, produced by reactions of HO2 with BrO and IO, respectively, increases the OH concentration. On longer timescales, halogen-catalysed ozone destruction cycles lead to lower primary production of OH radicals through ozone photolysis, and thus to lower OH concentrations. The global model includes more of the longer timescale responses than the constrained box model, and overall the global impact of the longer timescale response (reduced primary production due to lower O3 concentrations) overwhelms the shorter timescale response (enhanced cycling from HO2 to OH), and thus the global OH concentration decreases. The Earth system contains many such responses on a large range of timescales. This work highlights the care that needs to be taken to understand the full impact of any one process on the system as a whole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petiteau, Antoine; Babak, Stanislav; Sesana, Alberto
Gravitational wave (GW) signals from coalescing massive black hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space-based GW observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters, we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated with the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here themore » possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low-redshift (z < 3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a {Lambda}CDM universe, and we use data from the Millennium simulation to model the galaxy distribution in the LISA error box. We show that, assuming that all the other cosmological parameters are known, the parameter w describing the dark energy equation of state can be constrained to a 4%-8% level (2{sigma} error), competitive with current uncertainties obtained by type Ia supernovae measurements, providing an independent test of our cosmological model.« less
NASA Astrophysics Data System (ADS)
Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.
2016-12-01
The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Thinking inside the Box Constrained Creativity and New Technology
ERIC Educational Resources Information Center
Gill, Bradley
2012-01-01
Thinking outside of the box is a standard cliche for creativity. Yet an awareness of the boxed nature of new media can empower young students to think creatively about design. This article is a reflection of one teacher who led a group of young students in a series of lessons based on basic design principles related to technology. It is based on…
NASA Astrophysics Data System (ADS)
Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.
2017-06-01
In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.
Rossi X-Ray Timing Explorer All-Sky Monitor Localization of SGR 1627-41
NASA Astrophysics Data System (ADS)
Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.
1999-07-01
The fourth unambiguously identified soft gamma repeater (SGR), SGR 1627-41, was discovered with the BATSE instrument on 1998 June 15. Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6° segment of a narrow (19") annulus. We present two bursts from this source observed by the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer. We use the ASM data to further constrain the source location to a 5' long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3 arcmin of the supernova remnant G337.0-0.1. The probability that a supernova remnant would fall so close to the error box purely by chance is ~5%.
RXTE All-Sky Monitor Localization of SGR 1627-41
NASA Astrophysics Data System (ADS)
Smith, D. A.; Bradt, H. V.; Levine, A. M.
1999-09-01
The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally
2015-12-08
We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.; ...
2017-01-26
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Topology-Aware Performance Optimization and Modeling of Adaptive Mesh Refinement Codes for Exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Cy P.; Bachan, John D.; Kenny, Joseph P.
Here, we introduce a topology-aware performance optimization and modeling workflow for AMR simulation that includes two new modeling tools, ProgrAMR and Mota Mapper, which interface with the BoxLib AMR framework and the SSTmacro network simulator. ProgrAMR allows us to generate and model the execution of task dependency graphs from high-level specifications of AMR-based applications, which we demonstrate by analyzing two example AMR-based multigrid solvers with varying degrees of asynchrony. Mota Mapper generates multiobjective, network topology-aware box mappings, which we apply to optimize the data layout for the example multigrid solvers. While the sensitivity of these solvers to layout and executionmore » strategy appears to be modest for balanced scenarios, the impact of better mapping algorithms can be significant when performance is highly constrained by network hop latency. Furthermore, we show that network latency in the multigrid bottom solve is the main contributing factor preventing good scaling on exascale-class machines.« less
Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems
2013-11-01
development of a class of “gradient free” optimization techniques; these include local approaches, such as a Nelder- Mead simplex search (c.f. [73]), and global...1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization method [73]. 39 the Non-dominated Sorting Genetic Algorithm...Kober, and Jan Peters. Model-free inverse reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2011. [12] George
"Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange
NASA Astrophysics Data System (ADS)
Webber, Sam; Ellis, Susan; Fagereng, Åke
2018-04-01
What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
Lepton flavor violating B meson decays via a scalar leptoquark
NASA Astrophysics Data System (ADS)
Sahoo, Suchismita; Mohanta, Rukmani
2016-06-01
We study the effect of scalar leptoquarks in the lepton flavor violating B meson decays induced by the flavor-changing transitions b →q li+lj- with q =s , d . In the standard model, these transitions are extremely rare as they are either two-loop suppressed or proceed via box diagrams with tiny neutrino masses in the loop. However, in the leptoquark model, they can occur at tree level and are expected to have significantly large branching ratios. The leptoquark parameter space is constrained using the experimental limits on the branching ratios of Bq→l+l- processes. Using such constrained parameter space, we predict the branching ratios of LFV semileptonic B meson decays, such as B+→K+(π+)li+lj-, B+→(K*+,ρ+)li+lj-, and Bs→ϕ li+lj-, which are found to be within the experimental reach of LHCb and the upcoming Belle II experiments. We also investigate the rare leptonic KL ,S→μ+μ-(e+e-) and KL→μ∓e± decays in the leptoquark model.
Assimilating Ferry Box data into the Aegean Sea model
NASA Astrophysics Data System (ADS)
Korres, G.; Ntoumas, M.; Potiris, M.; Petihakis, G.
2014-12-01
Operational monitoring and forecasting of marine environmental conditions is a necessary tool for the effective management and protection of the marine ecosystem. It requires the use of multi-variable real-time measurements combined with advanced physical and ecological numerical models. Towards this, a FerryBox system was originally installed and operated in the route Piraeus-Heraklion in 2003 for one year. Early 2012 the system was upgraded and moved to a new high-speed ferry traveling daily in the same route as before. This route is by large traversing the Cretan Sea being the largest and deepest basin (2500 m) in the south Aegean Sea. The HCMR Ferry Box is today the only one in the Mediterranean and thus it can be considered as a pilot case. The analysis of FerryBox SST and SSS in situ data revealed the presence of important regional and sub-basin scale physical phenomena, such as wind-driven coastal upwelling and the presence of a mesoscale cyclone to the north of Crete. In order to assess the impact of the FerryBox SST data in constraining the Aegean Sea hydrodynamic model which is part of the POSEIDON forecasting system, the in situ data were assimilated using an advanced multivariate assimilation scheme based on the Singular Evolutive Extended Kalman (SEEK) filter, a simplified square-root extended Kalman filter that operates with low-rank error covariance matrices as a way to reduce the computational burden. Thus during the period mid-August 2012-mid January 2013 in addition to the standard assimilating parameters, daily SST data along the ferryboat route from Piraeus to Heraklion were assimilated into the model. Inter-comparisons between the control run of the system (model run that uses only the standard data set of observations) and the experiment where the observational data set is augmented with the FerryBox SST data produce interesting results. Apart from the improvement of the SST error, the additional assimilation of daily of FerryBox SST observations is found to have a significant impact on the correct representation of the dynamical dipole in the central Cretan Sea and other dynamic features of the South Aegean Sea, which is then depicted in the decrease of the basin wide SSH RMS error.
NASA Astrophysics Data System (ADS)
Schroeder, J.; Crawford, J. H.; Fried, A.; Weinheimer, A. J.; Blake, D. R.; Blake, N. J.; Wisthaler, A.; Lee, G.; Ahn, J. Y.
2017-12-01
The Seoul Metropolitan Area (SMA) has a population of 24 million and frequently experiences unhealthy levels of ozone (O3). In this work, data from the Korea-United States Air Quality Study (KORUS-AQ, May 2 - June 11, 2016) were used to constrain a 0-D photochemical box model, allowing for calculation of key photochemical parameters related to O3 chemistry in the SMA. During KORUS-AQ, the NASA DC-8 flew 20 research flights over the Korean Peninsula. Routine overflights of the SMA in the morning, midday, and afternoon allowed for evaluation of diurnal photochemical tendencies in both the urban core of Seoul and surrounding areas. During KORUS-AQ, the SMA experienced 39 days where the max 8-hour O3 exceeded the Korean AQS value of 60 ppbv. Box model calculations constrained with high-frequency data from the DC-8 show that rates of net O3 production (P(O3)) in urban Seoul were similar to outlying metropolitan areas across all times of day, with the highest median values occurring around midday in both cases ( 15 ppbv/hr). Although mixing ratios of key ozone precursors such as NOx and reactive VOCs were substantially higher in urban Seoul than outlying areas, net P(O3) was sustained across the region due to non-linearities in O3 chemistry. Box model calculations show that urban Seoul was strongly radical-limited, while outlying areas were either slightly NOx-limited or near the `transition' area. This suggests that P(O3) can be mitigated in urban Seoul by reducing VOC emissions, but regional air quality would benefit from reductions in both NOx and VOCs. Box model simulations of the response of P(O3) to omitting select VOCs suggest that reactive aromatics - particularly toluene, which had a median mixing ratio of 2 ppbv across SMA - contributed most to radical abundances ( 60%) and P(O3), and reductions in aromatic emissions would be most effective towards reducing P(O3). Biogenics and light alkenes account for 25% and 10% of radical abundances in the SMA, respectively. Vertical profiles over the SMA show that O3 levels above 60 ppbv were ubiquitous throughout the free troposphere. Because of this, full compliance with the Korean 8-hr O3 Standard of 60 ppbv may rely on broader action across East Asia to reduce the regional background, while reductions in local emissions would still be expected to reduce the number of `extreme' O3 events.
Stellar nucleosynthesis and chemical evolution of the solar neighborhood
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1988-01-01
Current theoretical models of nucleosynthesis (N) in stars are reviewed, with an emphasis on their implications for Galactic chemical evolution. Topics addressed include the Galactic population II red giants and early N; N in the big bang; star formation, stellar evolution, and the ejection of thermonuclearly evolved debris; the chemical evolution of an idealized disk galaxy; analytical solutions for a closed-box model with continuous infall; and nuclear burning processes and yields. Consideration is given to shell N in massive stars, N related to degenerate cores, and the types of observational data used to constrain N models. Extensive diagrams, graphs, and tables of numerical data are provided.
Large-scale Density Structures in Magneto-rotational Disk Turbulence
NASA Astrophysics Data System (ADS)
Youdin, Andrew; Johansen, A.; Klahr, H.
2009-01-01
Turbulence generated by the magneto-rotational instability (MRI) is a strong candidate to drive accretion flows in disks, including sufficiently ionized regions of protoplanetary disks. The MRI is often studied in local shearing boxes, which model a small section of the disk at high resolution. I will present simulations of large, stratified shearing boxes which extend up to 10 gas scale-heights across. These simulations are a useful bridge to fully global disk simulations. We find that MRI turbulence produces large-scale, axisymmetric density perturbations . These structures are part of a zonal flow --- analogous to the banded flow in Jupiter's atmosphere --- which survives in near geostrophic balance for tens of orbits. The launching mechanism is large-scale magnetic tension generated by an inverse cascade. We demonstrate the robustness of these results by careful study of various box sizes, grid resolutions, and microscopic diffusion parameterizations. These gas structures can trap solid material (in the form of large dust or ice particles) with important implications for planet formation. Resolved disk images at mm-wavelengths (e.g. from ALMA) will verify or constrain the existence of these structures.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Valdes, Paul J.; Kaplan, Jed O.
2018-04-01
The observed rise in atmospheric methane (CH4) from 375 ppbv during the Last Glacial Maximum (LGM: 21,000 years ago) to 680 ppbv during the late preindustrial era is not well understood. Atmospheric chemistry considerations implicate an increase in CH4 sources, but process-based estimates fail to reproduce the required amplitude. CH4 stable isotopes provide complementary information that can help constrain the underlying causes of the increase. We combine Earth System model simulations of the late preindustrial and LGM CH4 cycles, including process-based estimates of the isotopic discrimination of vegetation, in a box model of atmospheric CH4 and its isotopes. Using a Bayesian approach, we show how model-based constraints and ice core observations may be combined in a consistent probabilistic framework. The resultant posterior distributions point to a strong reduction in wetland and other biogenic CH4 emissions during the LGM, with a modest increase in the geological source, or potentially natural or anthropogenic fires, accounting for the observed enrichment of δ13CH4.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-12-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium.
A nonlinear isobologram model with Box-Cox transformation to both sides for chemical mixtures.
Chen, D G; Pounds, J G
1998-01-01
The linear logistical isobologram is a commonly used and powerful graphical and statistical tool for analyzing the combined effects of simple chemical mixtures. In this paper a nonlinear isobologram model is proposed to analyze the joint action of chemical mixtures for quantitative dose-response relationships. This nonlinear isobologram model incorporates two additional new parameters, Ymin and Ymax, to facilitate analysis of response data that are not constrained between 0 and 1, where parameters Ymin and Ymax represent the minimal and the maximal observed toxic response. This nonlinear isobologram model for binary mixtures can be expressed as [formula: see text] In addition, a Box-Cox transformation to both sides is introduced to improve the goodness of fit and to provide a more robust model for achieving homogeneity and normality of the residuals. Finally, a confidence band is proposed for selected isobols, e.g., the median effective dose, to facilitate graphical and statistical analysis of the isobologram. The versatility of this approach is demonstrated using published data describing the toxicity of the binary mixtures of citrinin and ochratoxin as well as a new experimental data from our laboratory for mixtures of mercury and cadmium. PMID:9860894
An ergonomics approach model to prevention of occupational musculoskeletal injuries.
Koltan, Altan
2009-01-01
The objective of this study was to prevent occupational musculoskeletal injuries. Our workers stacked boxes of ceramics weighing 10-27 kg, making low back pain common in our enterprise. In all the stacking stations, recommended weight limits (RWL) were separately calculated using the revised National Institute for Occupational Health lifting equation. Since the boxes weighed significantly more than the RWL, we developed a new ergonomic design that completely changed the stacking process. The load put on the workers' waist vertebrae in the new and the old stacking methods was compared to evaluate the success of the new ergonomic design, using Newton's third law of motion. Thanks to the new ergonomic design, the load on the workers' vertebrae decreased by 80%. Due to its simple technology and its very low cost compared to robots, the new ergonomic design can be commonly used in enterprises with repeated and constraining stacking.
NASA Technical Reports Server (NTRS)
Carozza, David A.; Mysak, Lawrence A.; Schmidt, Gavin A.
2011-01-01
An atmospheric CH4 box model coupled to a global carbon cycle box model is used to constrain the carbon emission associated with the PETM and assess the role of CH4 during this event. A range of atmospheric and oceanic emission scenarios representing different amounts, rates, and isotopic signatures of emitted carbon are used to model the PETM onset. The first 3 kyr of the onset, a pre-isotope excursion stage, is simulated by the atmospheric release of 900 to 1100 Pg C CH4 with a delta C-13 of -22 to - 30 %. For a global average warming of 3 deg C, a release of CO2 to the ocean and CH4 to the atmosphere totalling 900 to 1400 Pg C, with a delta C-13 of -50 to -60%, simulates the subsequent 1 -kyr isotope excursion stage. To explain the observations, the carbon must have been released over at most 500 years. The first stage results cannot be associated with any known PETM hypothesis. However, the second stage results are consistent with a methane hydrate source. More than a single source of carbon is required to explain the PETM onset.
Airborne Remote sensing of the OH tropospheric column with an Integrated Path Differential LIDAR.
NASA Astrophysics Data System (ADS)
Hanisco, T. F.; Liang, Q.; Nicely, J. M.; Brune, W. H.; Miller, D. O.; Thames, A. B.
2017-12-01
The Hydroxyl radical, OH, is central to the photochemistry that controls tropospheric oxidation including the removal of atmospheric methane. Measurements of this important species are thus critical to testing our understanding and for constraining model results. Until now, tropospheric measurements have been limited to airborne or ground-based in situ instruments best suited to test photochemical box models. However, because of the growing recognition of the importance of the global methane abundance, we have a growing need to better quantify OH at the regional to global scales that are best sampled with airborne or space-based remote sensing instruments. To address this need, we have developed an instrument concept and have begun work on a laser transmitter for an airborne integrated path differential absorption LIDAR for the detection of OH. We will describe the instrument and present the expected performance characteristics. As a demonstration, we will use measurements from the recent ATOM-1 NASA airborne campaign to show measured OH columns can be used to constrain regional and global models.
Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O' studied by neutron total scattering
NASA Astrophysics Data System (ADS)
Shoemaker, Daniel P.; Seshadri, Ram; Hector, Andrew L.; Llobet, Anna; Proffen, Thomas; Fennie, Craig J.
2010-04-01
The oxide pyrochlore Bi2Ti2O6O' is known to be associated with large displacements of Bi and O' atoms from their ideal crystallographic positions. Neutron total scattering, analyzed in both reciprocal and real space, is employed here to understand the nature of these displacements. Rietveld analysis and maximum entropy methods are used to produce an average picture of the structural nonideality. Local structure is modeled via large-box reverse Monte Carlo simulations constrained simultaneously by the Bragg profile and real-space pair distribution function. Direct visualization and statistical analyses of these models show the precise nature of the static Bi and O' displacements. Correlations between neighboring Bi displacements are analyzed using coordinates from the large-box simulations. The framework of continuous symmetry measures has been applied to distributions of O'Bi4 tetrahedra to examine deviations from ideality. Bi displacements from ideal positions appear correlated over local length scales. The results are consistent with the idea that these nonmagnetic lone-pair containing pyrochlore compounds can be regarded as highly structurally frustrated systems.
Cosmicflows Constrained Local UniversE Simulations
NASA Astrophysics Data System (ADS)
Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo
2016-01-01
This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.
Socially transmitted diffusion of a novel behaviour from subordinate chimpanzees
Watson, Stuart K; Reamer, Lisa A; Mareno, Mary Catherine; Vale, Gillian; Harrison, Rachel A; Lambeth, Susan P; Schapiro, Steven J; Whiten, Andrew
2017-01-01
Chimpanzees (Pan troglodytes) demonstrate much cultural diversity in the wild, yet a majority of novel behaviours do not become group-wide traditions. Since many such novel behaviours are introduced by low-ranking individuals, a bias toward copying dominant individuals (‘rank-bias’) has been proposed as an explanation for their limited diffusion. Previous experimental work showed that chimpanzees (Pan troglodytes) preferentially copy dominant over low-rank models. We investigated whether low ranking individuals may nevertheless successfully seed a beneficial behaviour as a tradition if there are no ‘competing’ models. In each of four captive groups, either a single high-rank (HR, n=2) or a low-rank (LR, n=2) chimpanzee model was trained on one method of opening a two-action puzzle-box, before demonstrating the trained method in a group context. This was followed by eight hours of group-wide, open-access to the puzzle-box. Successful manipulations and observers of each manipulation were recorded. Barnard’s exact tests showed that individuals in the LR groups used the seeded method as their first-choice option at significantly above chance levels, whereas those in the HR groups did not. Furthermore, individuals in the LR condition used the seeded method on their first attempt significantly more often than those in the HR condition. A network-based diffusion analysis revealed that the best supported statistical models were those in which social transmission occurred only in groups with subordinate models. Finally, we report an innovation by a subordinate individual that built cumulatively on existing methods of opening the puzzle-box and was subsequently copied by a dominant observer. These findings illustrate that chimpanzees are motivated to copy rewarding novel behaviours that are demonstrated by subordinate individuals and that, in some cases, social transmission may be constrained by high-rank demonstrators. PMID:28171684
Four-parameter potential box with inverse square singular boundaries
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Taiwo, T. J.
2018-03-01
Using the Tridiagonal Representation Approach (TRA), we obtain solutions (energy spectrum and corresponding wavefunctions) for a four-parameter potential box with inverse square singularity at the boundaries. It could be utilized in physical applications to replace the widely used one-parameter infinite square potential well (ISPW). The four parameters of the potential provide an added flexibility over the one-parameter ISPW to control the physical features of the system. The two potential parameters that give the singularity strength at the boundaries are naturally constrained to avoid the inherent quantum anomalies associated with the inverse square potential.
Thermohaline circulation: a missing equation and its climate-change implications
NASA Astrophysics Data System (ADS)
Ou, Hsien-Wang
2018-01-01
We formulate a box model of coupled ocean-atmosphere to examine the differential fields interactive with the thermohaline circulation (THC) and their response to global warming. We discern a robust convective bound on the atmospheric heat transport, which would divide the climate regime into warm and cold branches; but unlike the saline mode of previous box models, the cold state, if allowed, has the same-signed—though weaker—density contrast and THC as the present climate, which may explain its emergence from coupled general circulation models. We underscore the nondeterminacy of the THC due to random eddy shedding and apply the fluctuation theorem to constrain the shedding rate, thus closing the problem. The derivation reveals an ocean propelled toward the maximum entropy production (MEP) on millennial timescale (termed "MEP-adjustment"), the long timescale arising from the compounding effect of microscopic fluctuations in the shedding rate and their slight probability bias. Global warming may induce hysteresis between the two branches, like that seen in GCMs, but the cold transition is far more sensitive to the moistening than the heating effects as the latter would be countered by the hydrological feedback. The uni- or bi-modality of the current state—hence whether the THC may recover after the cold transition—depends on the global-mean convective flux and may not be easily assessed due to its observed uncertainty.
Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements
NASA Technical Reports Server (NTRS)
Danilin, M. Y.; Rodriguez, J. M.; Hu, W.; Ko, M. K. W.; Weisenstein, D. K.; Kumer, J. B.; Mergenthaler, J. L.; Russell, J. M., III; Koike, M.; Yue, G. K.
1998-01-01
We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCI, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approximately 17-47 km) altitude range and over 10 degree latitude bins from 70 deg S to 70 deg N. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and CIONO2; (2) from the N2O-NOy correlation, (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approximately 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements
NASA Technical Reports Server (NTRS)
Danilin, M. Y.; Rodriquez, J. M.; Hu, W.; Ko, M. K. W.; Weisenstein, D. K.; Mergenthaler, J. L.; Russell, J. M., III; Koike, M.; Yue, G. K.
1998-01-01
We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include: N2O, HNO3 and ClONO2 (Cryogen Limb Array Etalon Spectrometer (CLAES), version 7), temperature, methane, ozone, H2O, HCl, NO and NO2 (HALogen Occultation Experiment (HALOE), version 18). The analysis is carried out for the data from January 1992 to September 1994 in the 100-1 mbar (approx.17-47 km) altitude range and over 10 degree latitude bins from 70degS to 70degN. Temporal-spatial evolution of aerosol surface area density (SAD) is adopted according to the Stratospheric Aerosol and Gas Experiment (SAGE) 11 data. A diurnal steady-state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NO(y)) is obtained by three different methods: (1) as a sum of the UARS measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NO(y) correlation, and (3) from the CH4-NO(y) correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared to the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years. However, the model underestimates the NO2 content, particularly, in the 30-7 mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground based measurements at 45degS and 45degN are also presented. Our analysis indicates that ground-based and HALOE v. 18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at mid-latitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45degS suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool
Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.
2016-01-01
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845
Implementation and verification of global optimization benchmark problems
NASA Astrophysics Data System (ADS)
Posypkin, Mikhail; Usov, Alexander
2017-12-01
The paper considers the implementation and verification of a test suite containing 150 benchmarks for global deterministic box-constrained optimization. A C++ library for describing standard mathematical expressions was developed for this purpose. The library automate the process of generating the value of a function and its' gradient at a given point and the interval estimates of a function and its' gradient on a given box using a single description. Based on this functionality, we have developed a collection of tests for an automatic verification of the proposed benchmarks. The verification has shown that literary sources contain mistakes in the benchmarks description. The library and the test suite are available for download and can be used freely.
Initial mass function of planetesimals formed by the streaming instability
NASA Astrophysics Data System (ADS)
Schäfer, Urs; Yang, Chao-Chin; Johansen, Anders
2017-01-01
The streaming instability is a mechanism to concentrate solid particles into overdense filaments that undergo gravitational collapse and form planetesimals. However, it remains unclear how the initial mass function of these planetesimals depends on the box dimensions of numerical simulations. To resolve this, we perform simulations of planetesimal formation with the largest box dimensions to date, allowing planetesimals to form simultaneously in multiple filaments that can only emerge within such large simulation boxes. In our simulations, planetesimals with sizes between 80 km and several hundred kilometers form. We find that a power law with a rather shallow exponential cutoff at the high-mass end represents the cumulative birth mass function better than an integrated power law. The steepness of the exponential cutoff is largely independent of box dimensions and resolution, while the exponent of the power law is not constrained at the resolutions we employ. Moreover, we find that the characteristic mass scale of the exponential cutoff correlates with the mass budget in each filament. Together with previous studies of high-resolution simulations with small box domains, our results therefore imply that the cumulative birth mass function of planetesimals is consistent with an exponentially tapered power law with a power-law exponent of approximately -1.6 and a steepness of the exponential cutoff in the range of 0.3-0.4.
Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E
2016-08-01
The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.
NASA Astrophysics Data System (ADS)
Kirchner, J. W.
2016-01-01
Methods for estimating mean transit times from chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) commonly assume that catchments are stationary (i.e., time-invariant) and homogeneous. Real catchments are neither. In a companion paper, I showed that catchment mean transit times estimated from seasonal tracer cycles are highly vulnerable to aggregation error, exhibiting strong bias and large scatter in spatially heterogeneous catchments. I proposed the young water fraction, which is virtually immune to aggregation error under spatial heterogeneity, as a better measure of transit times. Here I extend this analysis by exploring how nonstationarity affects mean transit times and young water fractions estimated from seasonal tracer cycles, using benchmark tests based on a simple two-box model. The model exhibits complex nonstationary behavior, with striking volatility in tracer concentrations, young water fractions, and mean transit times, driven by rapid shifts in the mixing ratios of fluxes from the upper and lower boxes. The transit-time distribution in streamflow becomes increasingly skewed at higher discharges, with marked increases in the young water fraction and decreases in the mean water age, reflecting the increased dominance of the upper box at higher flows. This simple two-box model exhibits strong equifinality, which can be partly resolved by simple parameter transformations. However, transit times are primarily determined by residual storage, which cannot be constrained through hydrograph calibration and must instead be estimated by tracer behavior. Seasonal tracer cycles in the two-box model are very poor predictors of mean transit times, with typical errors of several hundred percent. However, the same tracer cycles predict time-averaged young water fractions (Fyw) within a few percent, even in model catchments that are both nonstationary and spatially heterogeneous (although they may be biased by roughly 0.1-0.2 at sites where strong precipitation seasonality is correlated with precipitation tracer concentrations). Flow-weighted fits to the seasonal tracer cycles accurately predict the flow-weighted average Fyw in streamflow, while unweighted fits to the seasonal tracer cycles accurately predict the unweighted average Fyw. Young water fractions can also be estimated separately for individual flow regimes, again with a precision of a few percent, allowing direct determination of how shifts in a catchment's hydraulic regime alter the fraction of water reaching the stream by fast flowpaths. One can also estimate the chemical composition of idealized "young water" and "old water" end-members, using relationships between young water fractions and solute concentrations across different flow regimes. These results demonstrate that mean transit times cannot be estimated reliably from seasonal tracer cycles and that, by contrast, the young water fraction is a robust and useful metric of transit times, even in catchments that exhibit strong nonstationarity and heterogeneity.
Hanck, Sarah E; Blankenship, Kim M; Irwin, Kevin S; West, Brooke S; Kershaw, Trace
2008-05-01
The accuracy of behavioral data related to risk for HIV and other sexually transmitted infections is prone to misreporting because of social desirability effects. Because computer-assisted approaches are not always feasible, a noncomputerized interview method for reducing social desirability effects is needed. The previous performance of alternative methods has been limited to aggregate data or constrained by the simplicity of dichotomous-only responses. We designed and tested a "polling box" method for case-attributable, multiple-response survey items in a low literacy population. A cross-sectional survey was conducted with 812 female sex workers in Andhra Pradesh, India. For a subset of questions embedded in a face-to-face survey questionnaire, every third participant was provided graphical response cards upon which to mark their answer and place in a polling box outside the view of the interviewer. Multiple logistic regression analysis was used to test for response differences to questions about socially undesirable, socially desirable, or sensitivity-neutral behaviors in the 2 interview methods. Polling box participants demonstrated higher reporting of risky sexual behaviors and lower reporting of condom use, with no conclusive response patterns among sensitivity-neutral items. Our findings suggest that the polling box approach provides a promising technique for improving the accurate reporting of sensitive behaviors among a low-literacy population in a resource poor setting. Additional research is needed to test logistical adaptations of the polling box approach.
Ignorance is a bliss: Mathematical structure of many-box models
NASA Astrophysics Data System (ADS)
Tylec, Tomasz I.; Kuś, Marek
2018-03-01
We show that the propositional system of a many-box model is always a set-representable effect algebra. In particular cases of 2-box and 1-box models, it is an orthomodular poset and an orthomodular lattice, respectively. We discuss the relation of the obtained results with the so-called Local Orthogonality principle. We argue that non-classical properties of box models are the result of a dual enrichment of the set of states caused by the impoverishment of the set of propositions. On the other hand, quantum mechanical models always have more propositions as well as more states than the classical ones. Consequently, we show that the box models cannot be considered as generalizations of quantum mechanical models and seeking additional principles that could allow us to "recover quantum correlations" in box models are, at least from the fundamental point of view, pointless.
A scale-invariant cellular-automata model for distributed seismicity
NASA Technical Reports Server (NTRS)
Barriere, Benoit; Turcotte, Donald L.
1991-01-01
In the standard cellular-automata model for a fault an element of stress is randomly added to a grid of boxes until a box has four elements, these are then redistributed to the adjacent boxes on the grid. The redistribution can result in one or more of these boxes having four or more elements in which case further redistributions are required. On the average added elements are lost from the edges of the grid. The model is modified so that the boxes have a scale-invariant distribution of sizes. The objective is to model a scale-invariant distribution of fault sizes. When a redistribution from a box occurs it is equivalent to a characteristic earthquake on the fault. A redistribution from a small box (a foreshock) can trigger an instability in a large box (the main shock). A redistribution from a large box always triggers many instabilities in the smaller boxes (aftershocks). The frequency-size statistics for both main shocks and aftershocks satisfy the Gutenberg-Richter relation with b = 0.835 for main shocks and b = 0.635 for aftershocks. Model foreshocks occur 28 percent of the time.
NASA Astrophysics Data System (ADS)
Chen, G. W.; Omenzetter, P.
2016-04-01
This paper presents the implementation of an updating procedure for the finite element model (FEM) of a prestressed concrete continuous box-girder highway off-ramp bridge. Ambient vibration testing was conducted to excite the bridge, assisted by linear chirp sweepings induced by two small electrodynamic shakes deployed to enhance the excitation levels, since the bridge was closed to traffic. The data-driven stochastic subspace identification method was executed to recover the modal properties from measurement data. An initial FEM was developed and correlation between the experimental modal results and their analytical counterparts was studied. Modelling of the pier and abutment bearings was carefully adjusted to reflect the real operational conditions of the bridge. The subproblem approximation method was subsequently utilized to automatically update the FEM. For this purpose, the influences of bearing stiffness, and mass density and Young's modulus of materials were examined as uncertain parameters using sensitivity analysis. The updating objective function was defined based on a summation of squared values of relative errors of natural frequencies between the FEM and experimentation. All the identified modes were used as the target responses with the purpose of putting more constrains for the optimization process and decreasing the number of potentially feasible combinations for parameter changes. The updated FEM of the bridge was able to produce sufficient improvements in natural frequencies in most modes of interest, and can serve for a more precise dynamic response prediction or future investigation of the bridge health.
Nagendran, Myura; Toon, Clare D; Davidson, Brian R; Gurusamy, Kurinchi Selvan
2014-01-17
Surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time consuming, costly, and of variable effectiveness. Training using a box model physical simulator - either a video box or a mirrored box - is an option to supplement standard training. However, the impact of this modality on trainees with no prior laparoscopic experience is unknown. To compare the benefits and harms of box model training versus no training, another box model, animal model, or cadaveric model training for surgical trainees with no prior laparoscopic experience. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to May 2013. We included all randomised clinical trials comparing box model trainers versus no training in surgical trainees with no prior laparoscopic experience. We also included trials comparing different methods of box model training. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager for analysis. For each outcome, we calculated the standardised mean difference (SMD) with 95% confidence intervals (CI) based on intention-to-treat analysis whenever possible. Twenty-five trials contributed data to the quantitative synthesis in this review. All but one trial were at high risk of bias. Overall, 16 trials (464 participants) provided data for meta-analysis of box training (248 participants) versus no supplementary training (216 participants). All the 16 trials in this comparison used video trainers. Overall, 14 trials (382 participants) provided data for quantitative comparison of different methods of box training. There were no trials comparing box model training versus animal model or cadaveric model training. Box model training versus no training: The meta-analysis showed that the time taken for task completion was significantly shorter in the box trainer group than the control group (8 trials; 249 participants; SMD -0.48 seconds; 95% CI -0.74 to -0.22). Compared with the control group, the box trainer group also had lower error score (3 trials; 69 participants; SMD -0.69; 95% CI -1.21 to -0.17), better accuracy score (3 trials; 73 participants; SMD 0.67; 95% CI 0.18 to 1.17), and better composite performance scores (SMD 0.65; 95% CI 0.42 to 0.88). Three trials reported movement distance but could not be meta-analysed as they were not in a format for meta-analysis. There was significantly lower movement distance in the box model training compared with no training in one trial, and there were no significant differences in the movement distance between the two groups in the other two trials. None of the remaining secondary outcomes such as mortality and morbidity were reported in the trials when animal models were used for assessment of training, error in movements, and trainee satisfaction. Different methods of box training: One trial (36 participants) found significantly shorter time taken to complete the task when box training was performed using a simple cardboard box trainer compared with the standard pelvic trainer (SMD -3.79 seconds; 95% CI -4.92 to -2.65). There was no significant difference in the time taken to complete the task in the remaining three comparisons (reverse alignment versus forward alignment box training; box trainer suturing versus box trainer drills; and single incision versus multiport box model training). There were no significant differences in the error score between the two groups in any of the comparisons (box trainer suturing versus box trainer drills; single incision versus multiport box model training; Z-maze box training versus U-maze box training). The only trial that reported accuracy score found significantly higher accuracy score with Z-maze box training than U-maze box training (1 trial; 16 participants; SMD 1.55; 95% CI 0.39 to 2.71). One trial (36 participants) found significantly higher composite score with simple cardboard box trainer compared with conventional pelvic trainer (SMD 0.87; 95% CI 0.19 to 1.56). Another trial (22 participants) found significantly higher composite score with reverse alignment compared with forward alignment box training (SMD 1.82; 95% CI 0.79 to 2.84). There were no significant differences in the composite score between the intervention and control groups in any of the remaining comparisons. None of the secondary outcomes were adequately reported in the trials. The results of this review are threatened by both risks of systematic errors (bias) and risks of random errors (play of chance). Laparoscopic box model training appears to improve technical skills compared with no training in trainees with no previous laparoscopic experience. The impacts of this decreased time on patients and healthcare funders in terms of improved outcomes or decreased costs are unknown. There appears to be no significant differences in the improvement of technical skills between different methods of box model training. Further well-designed trials of low risk of bias and random errors are necessary. Such trials should assess the impacts of box model training on surgical skills in both the short and long term, as well as clinical outcomes when the trainee becomes competent to operate on patients.
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Modeling Gas-Aerosol Processes during MILAGRO 2006
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Chapman, E. G.; Easter, R. C.; Fast, J. D.; Flocke, F.; Kleinman, L. I.; Madronich, S.; Springston, S. R.; Voss, P. B.; Weinheimer, A.
2007-12-01
Significant gas-aerosol interactions are expected in the Mexico City outflow due to formation of various semi- volatile secondary inorganic and organic gases that can partition into the particulate phase and due to various heterogeneous chemical processes. A number of T0-T1-T2 Lagrangian transport episodes during the MILAGRO campaign provide focused modeling opportunities to elucidate the roles of various chemical and physical processes in the evolution of the primary trace gases and aerosol particles emitted in Mexico City over a period of 4-8 hours. Additionally, one long-range Lagrangian transport episode on March 18-19, 2006, as characterized by the Controlled Meteorological (CMET) balloon trajectories, presents an excellent opportunity to model evolution of Mexico City pollutants over 26 hours. The key tools in our analysis of these Lagrangian episodes include a comprehensive Lagrangian box-model and the WRF-chem model based on the new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), which simulates gas-phase photochemistry, heterogeneous reactions, equilibrium particulate phase-state and water content, and dynamic gas-particle partitioning for size- resolved aerosols. Extensive gas, aerosol, and meteorological measurements onboard the G1 and C130 aircraft and T0, T1, and T2 ground sites will be used to initialize, constrain, and evaluate the models. For the long-range transport event, in-situ vertical profiles of wind vectors from repeated CMET balloon soundings in the Mexico City outflow will be used to nudge the winds in the WRF-chem simulation. Preliminary model results will be presented with the intention to explore further collaborative opportunities to use additional gas and particulate measurements to better constrain and evaluate the models.
Formaldehyde Production From Isoprene Oxidation Across NOx Regimes
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.;
2016-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a prompt yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv(exp. -10), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Formaldehyde production from isoprene oxidation across NOx regimes
Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.; Lee, B. H.; Lerner, B. M.; Lopez-Hilifiker, F.; Mao, J.; Marvin, M. R.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.
2018-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a “prompt” yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 – 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv−1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO. PMID:29619046
Formaldehyde production from isoprene oxidation across NOx regimes.
Wolfe, G M; Kaiser, J; Hanisco, T F; Keutsch, F N; de Gouw, J A; Gilman, J B; Graus, M; Hatch, C D; Holloway, J; Horowitz, L W; Lee, B H; Lerner, B M; Lopez-Hilifiker, F; Mao, J; Marvin, M R; Peischl, J; Pollack, I B; Roberts, J M; Ryerson, T B; Thornton, J A; Veres, P R; Warneke, C
2016-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NO x (= NO + NO 2 ). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NO x values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv -1 ), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NO x dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NO x values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R
2016-12-01
Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N 2 , but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N 2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN 2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN 2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO 2 , and (c) atmospheric oxygenation could have initiated a stepwise pN 2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN 2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N 2 and O 2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.
NASA Astrophysics Data System (ADS)
Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan
2018-04-01
Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.
Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients. PMID:24624047
Crash energy absorption of two-segment crash box with holes under frontal load
NASA Astrophysics Data System (ADS)
Choiron, Moch. Agus; Sudjito, Hidayati, Nafisah Arina
2016-03-01
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.
A white-box model of S-shaped and double S-shaped single-species population growth
Kalmykov, Lev V.
2015-01-01
Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717
Nitrogen Species in the Post-Pinatubo Stratosphere: Model Analysis Utilizing UARS Measurements
NASA Technical Reports Server (NTRS)
Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wen-Jie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russel, James M., III; Koike, Makoto; Yue, Glenn K.
1999-01-01
We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100-to 1-mbar (approx. 17-47 km) altitude range and over 10 degrees latitude bins from 70 S to 70 N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOy) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOy correlation, and (3) from the CH4-NOy correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NOx/NOy ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NOx after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx.23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 S and 45 N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
NASA Technical Reports Server (NTRS)
Danilin, Michael Y.; Rodriguez, Jose M.; Hu, Wenjie; Ko, Malcolm K. W.; Weisenstein, Debra K.; Kumer, John B.; Mergenthaler, John L.; Russell, James M., III; Koike, Makoto; Yue, Glenn K.
1999-01-01
We present an analysis of the impact of heterogeneous chemistry on the partitioning of nitrogen species measured by the Upper Atmosphere Research Satellite (UARS) instruments. The UARS measurements utilized include N2O, HNO3, and ClONO2 from the cryogenic limb array etalon spectrometer (CLAES), version 7 (v.7), and temperature, methane, ozone, H2O, HCl, NO and NO2 from the halogen occultation experiment (HALOE), version 18. The analysis is carried out for the UARS data obtained between January 1992 and September 1994 in the 100- to 1-mbar (approx. 17-47 km) altitude range and over 10 deg latitude bins from 70 deg S to 70 deg N. The spatiotemporal evolution of aerosol surface area density (SAD) is adopted from analysis of the Stratospheric Aerosol and Gas Experiment (SAGE) II data. A diurnal steady state photochemical box model, constrained by the temperature, ozone, H2O, CH4, aerosol SAD, and columns of O2 and O3 above the point of interest, has been used as the main tool to analyze these data. Total inorganic nitrogen (NOY) is obtained by three different methods: (1) as a sum of the UARS-measured NO, NO2, HNO3, and ClONO2; (2) from the N2O-NOY correlation; and (3) from the CH4-NOY correlation. To validate our current understanding of stratospheric heterogeneous chemistry for post-Pinatubo conditions, the model-calculated monthly averaged NO(x)/NO(y) ratios and the NO, NO2, and HNO3 profiles are compared with the UARS-derived data. In general, the UARS-constrained box model captures the main features of nitrogen species partitioning in the post-Pinatubo years, such as recovery of NO(x) after the eruption, their seasonal variability and vertical profiles. However, the model underestimates the NO2 content, particularly in the 30- to 7-mbar (approx. 23-32 km) range. Comparisons of the calculated temporal behavior of the partial columns of NO2 and HNO3 and ground-based measurements at 45 deg S and 45 deg N are also presented. Our analysis indicates that ground-based and HALOE v.18 measurements of the NO2 vertical columns are consistent within the range of their uncertainties and are systematically higher (up to 50%) than the model results at midlatitudes in both hemispheres. Reasonable agreement is obtained for HNO3 columns at 45 deg S, suggesting some problems with nitrogen species partitioning in the model. Outstanding uncertainties are discussed.
Origin and propagation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Cesarsky, Catherine J.; Ormes, Jonathan F.
1987-01-01
The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.
Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Saewung; Kim, So-Young; Lee, Meehye
Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Gangzhou, and Beijing are surrounded by densely forested areas and recent research has consistently demonstrated the importance of biogenic volatile organic compounds from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical concentrations, undermine our ability to assess regional photochemical air pollution problems. We present an observational dataset of CO, NOX, SO2, ozone, HONO, andmore » VOCs (anthropogenic and biogenic) from Taehwa Research Forest (TRF) near the Seoul Metropolitan Area (SMA) in early June 2012. The data show that TRF is influenced both by aged pollution and fresh BVOC emissions. With the dataset, we diagnose HOx (OH, HO2, and RO2) distributions calculated with the University of Washington Chemical Box Model (UWCM v 2.1). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that 1) different model simulation scenarios cause systematic differences in HOX distributions especially OH levels (up to 2.5 times) and 2) radical destruction (HO2+HO2 or HO2+RO2) could be more efficient than radical recycling (HO2+NO) especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone-VOC-NOX sensitivity and oxidation product formation rates. Overall, the VOC limited regime in ozone photochemistry is predicted but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO2 levels are positively correlated with OVOCs production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher than expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.« less
NASA Astrophysics Data System (ADS)
Kenagy, H. S.; Sparks, T.; Ebben, C. J.; Wooldridge, P. J.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J. A.; McDuffie, E. E.; Fibiger, D. L.; Brown, S. S.; Montzka, D. D.; Weinheimer, A. J.; Apel, E. C.; Jaegle, L.; Cohen, R. C.
2017-12-01
The study of the lifetime and fate of NOx (=NO + NO2) is important for understanding its persistence and distribution. This requires an understanding of the balance of NOx sinks. Although urban NOx lifetimes are relatively well understood during summertime conditions, wintertime NOx chemistry has been comparatively less studied. We used measurements of NOx and its oxidation products from the aircraft-based WINTER (Wintertime INvestigation of Transport, Emissions, and Reactivity) campaign over the northeastern US during February-March 2015 to help constrain NOx lifetime during wintertime conditions when days are shorter, actinic flux is reduced, and temperatures are colder. By analyzing the marine outflow from the NYC-DC corridor, we learn that wintertime NOx has a long lifetime, is much longer-lived during the day than at night, and its lifetime is controlled during both periods by NOx conversion to nitric acid (HNO3) as the primary NOx sink. We also employ a two-box model to constrain the wintertime plume dilution rate and HNO3 deposition rate. Additionally, analysis of the nighttime Ox budget suggests that approximately 10% of O3 is lost overnight through N2O5 dark reactions that produce HNO3.
An Isopycnal Box Model with predictive deep-ocean structure for biogeochemical cycling applications
NASA Astrophysics Data System (ADS)
Goodwin, Philip
2012-07-01
To simulate global ocean biogeochemical tracer budgets a model must accurately determine both the volume and surface origins of each water-mass. Water-mass volumes are dynamically linked to the ocean circulation in General Circulation Models, but at the cost of high computational load. In computationally efficient Box Models the water-mass volumes are simply prescribed and do not vary when the circulation transport rates or water mass densities are perturbed. A new computationally efficient Isopycnal Box Model is presented in which the sub-surface box volumes are internally calculated from the prescribed circulation using a diffusive conceptual model of the thermocline, in which upwelling of cold dense water is balanced by a downward diffusion of heat. The volumes of the sub-surface boxes are set so that the density stratification satisfies an assumed link between diapycnal diffusivity, κd, and buoyancy frequency, N: κd = c/(Nα), where c and α are user prescribed parameters. In contrast to conventional Box Models, the volumes of the sub-surface ocean boxes in the Isopycnal Box Model are dynamically linked to circulation, and automatically respond to circulation perturbations. This dynamical link allows an important facet of ocean biogeochemical cycling to be simulated in a highly computationally efficient model framework.
Crash energy absorption of two-segment crash box with holes under frontal load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choiron, Moch Agus, E-mail: agus-choiron@ub.ac.id; Sudjito,; Hidayati, Nafisah Arina
Crash box is one of the passive safety components which designed as an impact energy absorber during collision. Crash box designs have been developed in order to obtain the optimum crashworthiness performance. Circular cross section was first investigated with one segment design, it rather influenced by its length which is being sensitive to the buckling occurrence. In this study, the two-segment crash box design with additional holes is investigated and deformation behavior and crash energy absorption are observed. The crash box modelling is performed by finite element analysis. The crash test components were impactor, crash box, and fixed rigid base.more » Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. Crash box length of 100 mm and frontal crash velocity of 16 km/jam are selected. Crash box material of Aluminum Alloy is used. Based on simulation results, it can be shown that holes configuration with 2 holes and ¾ length locations have the largest crash energy absorption. This condition associated with deformation pattern, this crash box model produces axisymmetric mode than other models.« less
Gurusamy, Kurinchi Selvan; Nagendran, Myura; Toon, Clare D; Davidson, Brian R
2014-03-01
Surgical training has traditionally been one of apprenticeship, where the surgical trainee learns to perform surgery under the supervision of a trained surgeon. This is time consuming, costly, and of variable effectiveness. Training using a box model physical simulator is an option to supplement standard training. However, the value of this modality on trainees with limited prior laparoscopic experience is unknown. To compare the benefits and harms of box model training for surgical trainees with limited prior laparoscopic experience versus standard surgical training or supplementary animal model training. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, and Science Citation Index Expanded to May 2013. We planned to include all randomised clinical trials comparing box model trainers versus other forms of training including standard laparoscopic training and supplementary animal model training in surgical trainees with limited prior laparoscopic experience. We also planned to include trials comparing different methods of box model training. Two authors independently identified trials and collected data. We analysed the data with both the fixed-effect and the random-effects models using Review Manager 5. For each outcome, we calculated the risk ratio (RR), mean difference (MD), or standardised mean difference (SMD) with 95% confidence intervals (CI) based on intention-to-treat analysis whenever possible. We identified eight trials that met the inclusion criteria. One trial including 17 surgical trainees did not contribute to the meta-analysis. We included seven trials (249 surgical trainees belonging to various postgraduate years ranging from year one to four) in which the participants were randomised to supplementary box model training (122 trainees) versus standard training (127 trainees). Only one trial (50 trainees) was at low risk of bias. The box trainers used in all the seven trials were video trainers. Six trials were conducted in USA and one trial in Canada. The surgeries in which the final assessments were made included laparoscopic total extraperitoneal hernia repairs, laparoscopic cholecystectomy, laparoscopic tubal ligation, laparoscopic partial salpingectomy, and laparoscopic bilateral mid-segment salpingectomy. The final assessments were made on a single operative procedure.There were no deaths in three trials (0/82 (0%) supplementary box model training versus 0/86 (0%) standard training; RR not estimable; very low quality evidence). The other trials did not report mortality. The estimated effect on serious adverse events was compatible with benefit and harm (three trials; 168 patients; 0/82 (0%) supplementary box model training versus 1/86 (1.1%) standard training; RR 0.36; 95% CI 0.02 to 8.43; very low quality evidence). None of the trials reported patient quality of life. The operating time was significantly shorter in the supplementary box model training group versus the standard training group (1 trial; 50 patients; MD -6.50 minutes; 95% CI -10.85 to -2.15). The proportion of patients who were discharged as day-surgery was significantly higher in the supplementary box model training group versus the standard training group (1 trial; 50 patients; 24/24 (100%) supplementary box model training versus 15/26 (57.7%) standard training; RR 1.71; 95% CI 1.23 to 2.37). None of the trials reported trainee satisfaction. The operating performance was significantly better in the supplementary box model training group versus the standard training group (seven trials; 249 trainees; SMD 0.84; 95% CI 0.57 to 1.10).None of the trials compared box model training versus animal model training or versus different methods of box model training. There is insufficient evidence to determine whether laparoscopic box model training reduces mortality or morbidity. There is very low quality evidence that it improves technical skills compared with standard surgical training in trainees with limited previous laparoscopic experience. It may also decrease operating time and increase the proportion of patients who were discharged as day-surgery in the first total extraperitoneal hernia repair after box model training. However, the duration of the benefit of box model training is unknown. Further well-designed trials of low risk of bias and random errors are necessary. Such trials should assess the long-term impact of box model training on clinical outcomes and compare box training with other forms of training.
NASA Astrophysics Data System (ADS)
Wienkers, A. F.; Ogilvie, G. I.
2018-07-01
Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.
Global and Local Stress Analyses of McDonnell Douglas Stitched/RFI Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Wang, John T.
1996-01-01
This report contains results of structural analyses performed in support of the NASA structural testing of an all-composite stitched/RFI (resin film infusion) wing stub box. McDonnell Douglas Aerospace Company designed and fabricated the wing stub box. The analyses used a global/local approach. The global model contains the entire test article. It includes the all-composite stub box, a metallic load-transition box and a metallic wing-tip extension box. The two metallic boxes are connected to the inboard and outboard ends of the composite wing stub box, respectively. The load-transition box was attached to a steel and concrete vertical reaction structure and a load was applied at the tip of the extension box to bend the wing stub box upward. The local model contains an upper cover region surrounding three stringer runouts. In that region, a large nonlinear deformation was identified by the global analyses. A more detailed mesh was used for the local model to obtain more accurate analysis results near stringer runouts. Numerous analysis results such as deformed shapes, displacements at selected locations, and strains at critical locations are included in this report.
Wu, Junjun; Zhang, Xia; Zhou, Peng; Huang, Jiaying; Xia, Xiudong; Li, Wei; Zhou, Ziyu; Chen, Yue; Liu, Yinghao; Dong, Mingsheng
2017-11-01
Previous studies have made many exciting achievements on pushing the functional reversal of beta-oxidation cycle (r-BOX) to more widespread adoption for synthesis of a wide variety of fuels and chemicals. However, the redox cofactor requirement for the efficient operation of r-BOX remains unclear. In this work, the metabolic efficiency of r-BOX for medium-chain fatty acid (C 6 -C 10 , MCFA) production was optimized by redox cofactor engineering. Stoichiometric analysis of the r-BOX pathway and further experimental examination identified NADH as a crucial determinant of r-BOX process yield. Furthermore, the introduction of formate dehydrogenase from Candida boidinii using fermentative inhibitor byproduct formate as a redox NADH sink improved MCFA titer from initial 1.2g/L to 3.1g/L. Moreover, coupling of increasing the supply of acetyl-CoA with NADH to achieve fermentative redox balance enabled product synthesis at maximum titers. To this end, the acetate re-assimilation pathway was further optimized to increase acetyl-CoA availability associated with the new supply of NADH. It was found that the acetyl-CoA synthetase activity and intracellular ATP levels constrained the activity of acetate re-assimilation pathway, and 4.7g/L of MCFA titer was finally achieved after alleviating these two limiting factors. To the best of our knowledge, this represented the highest titer reported to date. These results demonstrated that the key constraint of r-BOX was redox imbalance and redox engineering could further unleash the lipogenic potential of this cycle. The redox engineering strategies could be applied to acetyl-CoA-derived products or other bio-products requiring multiple redox cofactors for biosynthesis. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Distinguishing between MSSM and NMSSM through Δ F = 2 processes
NASA Astrophysics Data System (ADS)
Kumar, Jacky; Paraskevas, Michael
2016-10-01
We study deviations between MSSM and Z 3-invariant NMSSM, with respect to their predictions in Δ F = 2 processes. We find that potentially significant effects arise either from the well known double-penguin diagrams, due to the extra scalar NMSSM states, or from neutralino-gluino box contributions, due to the extended neutralino sector. Both are discussed to be effective in the large tan β regime. Enhanced genuine-NMSSM contributions in double penguins are expected for a light singlet spectrum (CP-even, CP-odd), while the magnitude of box effects is primarily controlled through singlino mixing. The latter is found to be typically subleading (but non-negligible) for λ ≲ 0 .5, however it can become dominant for λ ˜ O(1) . We also study the low tan β regime, where a distinction between MSSM and NMSSM can come instead due to experimental constraints, acting differently on the allowed parameter space of each model. To this end, we incorporate the LHC Run-I limits from H → Z Z, A → h Z and H ± → τ ν non-observation along with Higgs observables and set (different) upper bounds for new physics contributions in Δ F = 2 processes. We find that a ˜ 25% contribution in Δ M s( d) is still possible for MFV models, however such a large effect is nowadays severely constrained for the case of MSSM, due to stronger bounds on the charged Higgs masses.
Modular vaccine packaging increases packing efficiency
Norman, Bryan A.; Rajgopal, Jayant; Lim, Jung; Gorham, Katrin; Haidari, Leila; Brown, Shawn T.; Lee, Bruce Y.
2015-01-01
Background Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular “inner packs” for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. Methods We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. Results Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. Conclusions Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide. PMID:25957666
Clevin, Lotte; Grantcharov, Teodor P
2008-01-01
Laparoscopic box model trainers have been used in training curricula for a long time, however data on their impact on skills acquisition is still limited. Our aim was to validate a low cost box model trainer as a tool for the training of skills relevant to laparoscopic surgery. Randomised, controlled trial (Canadian Task Force Classification I). University Hospital. Sixteen gynaecologic residents with limited laparoscopic experience were randomised to a group that received a structured box model training curriculum, and a control group. Performance before and after the training was assessed in a virtual reality laparoscopic trainer (LapSim and was based on objective parameters, registered by the computer system (time, error, and economy of motion scores). Group A showed significantly greater improvement in all performance parameters compared with the control group: economy of movement (p=0.001), time (p=0.001) and tissue damage (p=0.036), confirming the positive impact of box-trainer curriculum on laparoscopic skills acquisition. Structured laparoscopic skill training on a low cost box model trainer improves performance as assessed using the VR system. Trainees who used the box model trainer showed significant improvement compared to the control group. Box model trainers are valid tools for laparoscopic skills training and should be implemented in the comprehensive training curricula in gynaecology.
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
Alteration of Box-Jenkins methodology by implementing genetic algorithm method
NASA Astrophysics Data System (ADS)
Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad
2015-02-01
A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.
Acceleration techniques in the univariate Lipschitz global optimization
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela
2016-10-01
Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.
Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia
NASA Astrophysics Data System (ADS)
Hotinski, Roberta M.; Kump, Lee R.; Najjar, Raymond G.
2000-06-01
The geologic record preserves evidence that vast regions of ancient oceans were once anoxic, with oxygen levels too low to sustain animal life. Because anoxic conditions have been postulated to foster deposition of petroleum source rocks and have been implicated as a kill mechanism in extinction events, the genesis of such anoxia has been an area of intense study. Most previous models of ocean oxygen cycling proposed, however, have either been qualitative or used closed-system approaches. We reexamine the question of anoxia in open-system box models in order to test the applicability of closed-system results over long timescales and find that open and closed-system modeling results may differ significantly on both short and long timescales. We also compare a scenario with basinwide diffuse upwelling (a three-box model) to a model with upwelling concentrated in the Southern Ocean (a four-box model). While a three-box modeling approach shows that only changes in high-latitude convective mixing rate and character of deepwater sources are likely to cause anoxia, four-box model experiments indicate that slowing of thermohaline circulation, a reduction in wind-driven upwelling, and changes in high-latitude export production may also cause dysoxia or anoxia in part of the deep ocean on long timescales. These results suggest that box models must capture the open-system and vertically stratified nature of the ocean to allow meaningful interpretations of long-lived episodes of anoxia.
Akdemir, Ali; Ergenoğlu, Ahmet Mete; Yeniel, Ahmet Özgür; Sendağ, Fatih
2013-01-01
Box model trainers have been used for many years to facilitate the improvement of laparoscopic skills. However, there are limited data available on box trainers and their impact on skill acquisition, assessed by virtual reality systems. Twenty-two Postgraduate Year 1 gynecology residents with no laparoscopic experience were randomly divided into one group that received structured box model training and a control group. All residents performed a salpingectomy on LapSim before and after the training. Performances before and after the training were assessed using LapSim and were recorded using objective parameters, registered by a computer system (time, damage, and economy of motion scores). There were initially no differences between the two groups. The box trainer group showed significantly greater improvement in time (p=0.01) and economy of motion scores (p=0.001) compared with the control group post-training. The present study confirmed the positive effect of low cost box model training on laparoscopic skill acquisition as assessed using LapSim. Novice surgeons should obtain practice on box trainers and teaching centers should make efforts to establish training laboratories.
Testing fast photochemical theory during TRACE-P based on measurements of OH, HO2, and CH2O
NASA Astrophysics Data System (ADS)
Olson, Jennifer R.; Crawford, J. H.; Chen, G.; Fried, A.; Evans, M. J.; Jordan, C. E.; Sandholm, S. T.; Davis, D. D.; Anderson, B. E.; Avery, M. A.; Barrick, J. D.; Blake, D. R.; Brune, W. H.; Eisele, F. L.; Flocke, F.; Harder, H.; Jacob, D. J.; Kondo, Y.; Lefer, B. L.; Martinez, M.; Mauldin, R. L.; Sachse, G. W.; Shetter, R. E.; Singh, H. B.; Talbot, R. W.; Tan, D.
2004-08-01
Measurements of several short-lived photochemical species (e.g., OH, HO2, and CH2O) were obtained from the DC-8 and P3-B aircraft during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. To assess fast photochemical theory over the east Asian coast and western Pacific, these measurements are compared to predictions using a photochemical time-dependent box model constrained by coincident measurements of long-lived tracers and physical parameters. Both OH and HO2 are generally overpredicted by the model throughout the troposphere, which is a different result from previous field campaigns. The calculated-to-observed ratio of OH shows an altitude trend, with OH overpredicted by 80% in the upper troposphere and by 40-60% in the middle troposphere. Boundary layer and lower tropospheric OH ratios decrease from middle tropospheric values to 1.07 for the DC-8 and to 0.70 for the P3-B. HO2 measured on the DC-8 is overpredicted by a median of 23% and shows no trend in the agreement with altitude. Three subsets of data which compose 12% of the HO2 measurements represent outliers with respect to calculated-to-observed ratios: stratospherically influenced air, upper tropospheric data with NO > 135 pptv, and data from within clouds. Pronounced underpredictions of both HO2 and OH were found for stratospherically influenced air, which is in contrast to previous studies showing good agreement of predicted and observed HOx in the stratosphere. Observational evidence of heterogeneous uptake of HO2 within low and middle tropospheric clouds is presented, though there is no indication of significant HO2 uptake within higher-altitude clouds. Model predictions of CH2O are in good agreement with observations in the median for background concentrations, but a large scatter exists. Factors contributing to this scatter are examined, including the limited availability of some important constraining measurements, particularly CH3OOH. Some high concentrations of CH2O near the coast are underpredicted by the box model as a result of the inherent neglect of transport effects of CH2O and its precursors via the steady state assumption; however, these occurrences are limited to ˜1% of the data. For the vast majority of the atmosphere, transport is unimportant in the budget of CH2O, which may be considered to be in steady state.
NASA Astrophysics Data System (ADS)
Kolandaivelu, K. P.; Lowell, R. P.
2015-12-01
To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.
SimpleBox 4.0: Improving the model while keeping it simple….
Hollander, Anne; Schoorl, Marian; van de Meent, Dik
2016-04-01
Chemical behavior in the environment is often modeled with multimedia fate models. SimpleBox is one often-used multimedia fate model, firstly developed in 1986. Since then, two updated versions were published. Based on recent scientific developments and experience with SimpleBox 3.0, a new version of SimpleBox was developed and is made public here: SimpleBox 4.0. In this new model, eight major changes were implemented: removal of the local scale and vegetation compartments, addition of lake compartments and deep ocean compartments (including the thermohaline circulation), implementation of intermittent rain instead of drizzle and of depth dependent soil concentrations, adjustment of the partitioning behavior for organic acids and bases as well as of the value for enthalpy of vaporization. In this paper, the effects of the model changes in SimpleBox 4.0 on the predicted steady-state concentrations of chemical substances were explored for different substance groups (neutral organic substances, acids, bases, metals) in a standard emission scenario. In general, the largest differences between the predicted concentrations in the new and the old model are caused by the implementation of layered ocean compartments. Undesirable high model complexity caused by vegetation compartments and a local scale were removed to enlarge the simplicity and user friendliness of the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thomas J. Urbanik; Edmond P. Saliklis
2002-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...
How much can we trust a geological model underlying a subsurface hydrological investigation?
NASA Astrophysics Data System (ADS)
Wellmann, Florian; de la Varga, Miguel; Schaaf, Alexander; Burs, David
2017-04-01
Geological models often provide an important basis for subsequent hydrological investigations. As these models are generally built with a limited amount of information, they can contain significant uncertainties - and it is reasonable to assume that these uncertainties can potentially influence subsequent hydrological simulations. However, the investigation of uncertainties in geological models is not straightforward - and, even though recent advances have been made in the field, there is no out-of-the-box implementation to analyze uncertainties in a standard geological modeling package. We present here results of recent developments to address this problem with an efficient implementation of a geological modeling method for complex structural models, integrated in a Bayesian inference framework. The implemented geological modeling approach is based on a full 3-D implicit interpolation that directly respects interface positions and orientation measurements, as well as the influence of faults. In combination, the approach allows us to generate ensembles of geological model realizations, constrained by additional information in the form of likelihood functions to ensure consistency with additional geological aspects (e.g. sequence continuity, topology, fault network consistency), and we demonstrate the potential of the method in an exemplified case study. With this approach, we aim to contribute to a better understanding of the influence of geological uncertainties on subsurface hydrological investigations.
An investigation of turbulent transport in the extreme lower atmosphere
NASA Technical Reports Server (NTRS)
Koper, C. A., Jr.; Sadeh, W. Z.
1975-01-01
A model in which the Lagrangian autocorrelation is expressed by a domain integral over a set of usual Eulerian autocorrelations acquired concurrently at all points within a turbulence box is proposed along with a method for ascertaining the statistical stationarity of turbulent velocity by creating an equivalent ensemble to investigate the flow in the extreme lower atmosphere. Simultaneous measurements of turbulent velocity on a turbulence line along the wake axis were carried out utilizing a longitudinal array of five hot-wire anemometers remotely operated. The stationarity test revealed that the turbulent velocity is approximated as a realization of a weakly self-stationary random process. Based on the Lagrangian autocorrelation it is found that: (1) large diffusion time predominated; (2) ratios of Lagrangian to Eulerian time and spatial scales were smaller than unity; and, (3) short and long diffusion time scales and diffusion spatial scales were constrained within their Eulerian counterparts.
NASA Astrophysics Data System (ADS)
Lépinoux, J.; Sigli, C.
2018-01-01
In a recent paper, the authors showed how the clusters free energies are constrained by the coagulation probability, and explained various anomalies observed during the precipitation kinetics in concentrated alloys. This coagulation probability appeared to be a too complex function to be accurately predicted knowing only the cluster distribution in Cluster Dynamics (CD). Using atomistic Monte Carlo (MC) simulations, it is shown that during a transformation at constant temperature, after a short transient regime, the transformation occurs at quasi-equilibrium. It is proposed to use MC simulations until the system quasi-equilibrates then to switch to CD which is mean field but not limited by a box size like MC. In this paper, we explain how to take into account the information available before the quasi-equilibrium state to establish guidelines to safely predict the cluster free energies.
NASA Astrophysics Data System (ADS)
Wang, W.; Lee, C.; Cochran, K. K.; Armstrong, R. A.
2016-02-01
Sinking particles play a pivotal role transferring material from the surface to the deeper ocean via the "biological pump". To quantify the extent to which these particles aggregate and disaggregate, and thus affect particle settling velocity, we constructed a box model to describe organic matter cycling. The box model was fit to chloropigment data sampled in the 2005 MedFlux project using Indented Rotating Sphere sediment traps operating in Settling Velocity (SV) mode. Because of the very different pigment compositions of phytoplankton and fecal pellets, chloropigments are useful as proxies to record particle exchange. The maximum likelihood statistical method was used to estimate particle aggregation, disaggregation, and organic matter remineralization rate constants. Eleven settling velocity categories collected by SV sediment traps were grouped into two sinking velocity classes (fast- and slow-sinking) to decrease the number of parameters that needed to be estimated. Organic matter degradation rate constants were estimated to be 1.2, 1.6, and 1.1 y^-1, which are equivalent to degradation half-lives of 0.60, 0.45, and 0.62 y^-1, at 313, 524, and 1918 m, respectively. Rate constants of chlorophyll a degradation to pheopigments (pheophorbide, pheophytin, and pyropheophorbide) were estimated to be 0.88, 0.93, and 1.2 y^-1, at 313, 524, and 1918 m, respectively. Aggregation rate constants varied little with depth, with the highest value being 0.07 y^-1 at 524 m. Disaggregation rate constants were highest at 524 m (14 y^-1) and lowest at 1918 m (9.6 y^-1)
Evaluation of numerical models by FerryBox and Fixed Platform in-situ data in the southern North Sea
NASA Astrophysics Data System (ADS)
Haller, M.; Janssen, F.; Siddorn, J.; Petersen, W.; Dick, S.
2015-02-01
FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface biogeochemical measurements along selected tracks on a regular basis. Within the European FerryBox Community, several FerryBoxes are operated by different institutions. Here we present a comparison of model simulations applied to the North Sea with FerryBox temperature and salinity data from a transect along the southern North Sea and a more detailed analysis at three different positions located off the English East coast, at the Oyster Ground and in the German Bight. In addition to the FerryBox data, data from a Fixed Platform of the MARNET network are applied. Two operational hydrodynamic models have been evaluated for different time periods: results of BSHcmod v4 are analysed for 2009-2012, while simulations of FOAM AMM7 NEMO have been available from MyOcean data base for 2011 and 2012. The simulation of water temperatures is satisfying; however, limitations of the models exist, especially near the coast in the southern North Sea, where both models are underestimating salinity. Statistical errors differ between the models and the measured parameters, as the root mean square error (rmse) accounts for BSHcmod v4 to 0.92 K, for AMM7 only to 0.44 K. For salinity, BSHcmod is slightly better than AMM7 (0.98 and 1.1 psu, respectively). The study results reveal weaknesses of both models, in terms of variability, absolute levels and limited spatial resolution. In coastal areas, where the simulation of the transition zone between the coasts and the open ocean is still a demanding task for operational modelling, FerryBox data, combined with other observations with differing temporal and spatial scales serve as an invaluable tool for model evaluation and optimization. The optimization of hydrodynamical models with high frequency regional datasets, like the FerryBox data, is beneficial for their subsequent integration in ecosystem modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genova, Alessandro, E-mail: alessandro.genova@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu; Ceresoli, Davide, E-mail: davide.ceresoli@cnr.it
2016-06-21
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that aremore » linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH{sup •} radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH{sup •} radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.« less
Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele
2016-06-21
In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.
A Simulation of an Energy-Efficient Home.
ERIC Educational Resources Information Center
McLeod, Richard J.; And Others
1981-01-01
A shoe box is converted into a model home to demonstrate the energy efficiency of various insulation measures. Included are instructions for constructing the model home from a shoe box, insulating the shoe box, several activities involving different insulation measures, extensions of the experiment, and post-lab discussion topics. (DS)
A Review of the Ginzburg-Syrovatskii's Galactic Cosmic-Ray Propagation Model and its Leaky-Box Limit
NASA Technical Reports Server (NTRS)
Barghouty, A. F.
2012-01-01
Phenomenological models of galactic cosmic-ray propagation are based on a diffusion equation known as the Ginzburg-Syrovatskii s equation, or variants (or limits) of this equation. Its one-dimensional limit in a homogeneous volume, known as the leaky-box limit or model, is sketched here. The justification, utility, limitations, and a typical numerical implementation of the leaky-box model are examined in some detail.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Does Terrestrial Carbon Explain Lake Superior Model-Data pCO2 Discrepancy?
NASA Astrophysics Data System (ADS)
Bennington, V.; McKinley, G. A.; Atilla, N.; Kimura, N.; Urban, N.; Wu, C.; Desai, A.
2008-12-01
As part of the CyCLeS project, a three-dimensional hydrodynamic model (MITgcm) was coupled to a medium- complexity ecosystem model and applied to Lake Superior in order to constrain the seasonal cycle of lake pCO2 and air-lake fluxes of CO2. Previous estimates of CO2 emissions from the lake, while very large, were based on field measurements of very limited spatial and temporal extent. The model allows a more realistic extrapolation from the limited data by incorporation of lake-wide circulation and food web dynamics. A large discrepancy (200 uatm) between observations and model-predicted pCO2 during spring suggests a significant input of terrestrial carbon into the lake. The physical model has 10-km horizontal resolution with 29 vertical layers, ten of which are in the top 50 m of the water column. The model is forced by interpolated meteorological data obtained from land-based weather stations, buoys, and other measurements. Modeled surface temperatures compare well to satellite- based surface water temperature images derived from NOAA AVHRR (Advanced Very High Resolution Radiometer), though there are regional patterns of bias that suggest errors in the heat flux forcing. Growth of two classes of phytoplankton is modeled as a function of temperature, light, and nutrients. One grazer preys upon all phytoplankton. The cycles of carbon and phosphorous are explicitly modeled throughout the water column. The model is able to replicate the observed seasonal cycle of lake chlorophyll and the deep chlorophyll maximum. The model is unable to capture the magnitude of observed CO2 super-saturation during spring without considering external carbon inputs to the lake. Simple box model results suggest that the estimated pool of terrestrial carbon in the lake (17 TgC) must remineralize with a timescale of months during spring in order to account for the model/data pCO2 difference. River inputs and enhanced remineralization in spring due to photo-oxidation are other mechanisms considered to explain the discrepancy between model predictions and observations of pCO2. Model results suggest that year-round and lake-wide direct measurements of pCO2 would help to better constrain the lake carbon cycle.
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
NASA Astrophysics Data System (ADS)
Roslindar Yaziz, Siti; Zakaria, Roslinazairimah; Hura Ahmad, Maizah
2017-09-01
The model of Box-Jenkins - GARCH has been shown to be a promising tool for forecasting higher volatile time series. In this study, the framework of determining the optimal sample size using Box-Jenkins model with GARCH is proposed for practical application in analysing and forecasting higher volatile data. The proposed framework is employed to daily world gold price series from year 1971 to 2013. The data is divided into 12 different sample sizes (from 30 to 10200). Each sample is tested using different combination of the hybrid Box-Jenkins - GARCH model. Our study shows that the optimal sample size to forecast gold price using the framework of the hybrid model is 1250 data of 5-year sample. Hence, the empirical results of model selection criteria and 1-step-ahead forecasting evaluations suggest that the latest 12.25% (5-year data) of 10200 data is sufficient enough to be employed in the model of Box-Jenkins - GARCH with similar forecasting performance as by using 41-year data.
Computer simulations and experimental study on crash box of automobile in low speed collision
NASA Astrophysics Data System (ADS)
Liu, Yanjie; Ding, Lin; Yan, Shengyuan; Yang, Yongsheng
2008-11-01
Based on the problems of energy-absorbing components in the automobile low speed collision process, according to crash box frontal crash test in low speed as the example, the simulation analysis of crash box impact process was carried out by Hyper Mesh and LS-DYNA. Each parameter on the influence modeling was analyzed by mathematics analytical solution and test comparison, which guaranteed that the model was accurate. Combination of experiment and simulation result had determined the weakness part of crash box structure crashworthiness aspect, and improvement method of crash box crashworthiness was discussed. Through numerical simulation of the impact process of automobile crash box, the obtained analysis result was used to optimize the design of crash box. It was helpful to improve the vehicles structure and decrease the collision accident loss at most. And it was also provided a useful method for the further research on the automobile collision.
Dissecting children's observational learning of complex actions through selective video displays.
Flynn, Emma; Whiten, Andrew
2013-10-01
Children can learn how to use complex objects by watching others, yet the relative importance of different elements they may observe, such as the interactions of the individual parts of the apparatus, a model's movements, and desirable outcomes, remains unclear. In total, 140 3-year-olds and 140 5-year-olds participated in a study where they observed a video showing tools being used to extract a reward item from a complex puzzle box. Conditions varied according to the elements that could be seen in the video: (a) the whole display, including the model's hands, the tools, and the box; (b) the tools and the box but not the model's hands; (c) the model's hands and the tools but not the box; (d) only the end state with the box opened; and (e) no demonstration. Children's later attempts at the task were coded to establish whether they imitated the hierarchically organized sequence of the model's actions, the action details, and/or the outcome. Children's successful retrieval of the reward from the box and the replication of hierarchical sequence information were reduced in all but the whole display condition. Only once children had attempted the task and witnessed a second demonstration did the display focused on the tools and box prove to be better for hierarchical sequence information than the display focused on the tools and hands only. Copyright © 2013 Elsevier Inc. All rights reserved.
The CEO's role in business model reinvention.
Govindarajan, Vijay; Trimble, Chris
2011-01-01
Fending off new competitors is a perennial struggle for established companies. Govindarajan and Trimble, of Dartmouth's Tuck School of Business, explain why: Many corporations become too comfortable with their existing business models and neglect the necessary work of radically reinventing them. The authors map out an alternative in their "three boxes" framework. They argue that while a CEO manages the present (box 1), he or she must also selectively forget the past (box 2) in order to create the future (box 3). Infosys chairman N.R. Narayana Murthy mastered the three boxes to reinvigorate his company and greatly increased its changes of enduring for generations.
The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection.
NASA Astrophysics Data System (ADS)
Julien, K. A.; Plumley, M.; Knobloch, E.
2017-12-01
Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-B'enard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.
The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection
NASA Astrophysics Data System (ADS)
Julien, Keith; Knobloch, Edgar; Plumley, Meredith
2017-11-01
Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-Benard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.
NASA Astrophysics Data System (ADS)
CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.
2013-12-01
Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily resemble the FIA aboveground biomass in terms of data distribution, overall agreement, and spatial similarity across scales. Uncertainties are quantified (ranged from 0.2 to 0.4) by taking into account the spatial mismatch (FIA plot vs. PRISM grid), heterogeneity (species composition), and an example bias scenario (= 0.2) in the root system extents.
Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.
2009-01-01
Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.
Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
NASA Astrophysics Data System (ADS)
Schöbi, Roland; Sudret, Bruno
2017-06-01
In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.
Uncertainty propagation of p-boxes using sparse polynomial chaos expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schöbi, Roland, E-mail: schoebi@ibk.baug.ethz.ch; Sudret, Bruno, E-mail: sudret@ibk.baug.ethz.ch
2017-06-15
In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions tomore » surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.« less
Global observations of aerosol-cloud-precipitation-climate interactions
NASA Astrophysics Data System (ADS)
Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; Chin, Mian; de Leeuw, Gerrit; Donovan, David P.; Kahn, Ralph; Kinne, Stefan; Kivekäs, Niku; Kulmala, Markku; Lau, William; Schmidt, K. Sebastian; Suni, Tanja; Wagner, Thomas; Wild, Martin; Quaas, Johannes
2014-12-01
Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.
This tool box of ecological risk assessment (Eco-box) includes over 400+ links to tools, models, and databases found within EPA and our Government partners designed that can aid risk assessors with performing exposure assessments.
Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.
2008-01-01
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843
SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple
Wu, Rongmei; Tomes, Sumathi; Karunairetnam, Sakuntala; Tustin, Stuart D.; Hellens, Roger P.; Allan, Andrew C.; Macknight, Richard C.; Varkonyi-Gasic, Erika
2017-01-01
The annual growth cycle of trees is the result of seasonal cues. The onset of winter triggers an endodormant state preventing bud growth and, once a chilling requirement is satisfied, these buds enter an ecodormant state and resume growing. MADS-box genes with similarity to Arabidopsis SHORT VEGETATIVE PHASE (SVP) [the SVP-like and DORMANCY ASSOCIATED MADS-BOX (DAM) genes] have been implicated in regulating flowering and growth-dormancy cycles in perennials. Here, we identified and characterized three DAM-like (MdDAMs) and two SHORT VEGETATIVE PHASE-like (MdSVPs) genes from apple (Malus × domestica ‘Royal Gala’). The expression of MdDAMa and MdDAMc indicated they may play a role in triggering autumn growth cessation. In contrast, the expression of MdDAMb, MdSVPa and MdSVPb suggested a role in maintaining bud dormancy. Consistent with this, ectopic expression of MdDAMb and MdSVPa in ‘Royal Gala’ apple plants resulted in delayed budbreak and architecture change due to constrained lateral shoot outgrowth, but normal flower and fruit development. The association of MdSVPa and MdSVPb expression with floral bud development in the low fruiting ‘Off’ trees of a biennial bearing cultivar ‘Sciros’ suggested the SVP genes might also play a role in floral meristem identity. PMID:28421103
Unconventional bearing capacity analysis and optimization of multicell box girders.
Tepic, Jovan; Doroslovacki, Rade; Djelosevic, Mirko
2014-01-01
This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same girder weight and constant load conditions.
No significant impact of Foxf1 siRNA treatment in acute and chronic CCl4 liver injury.
Abshagen, Kerstin; Rotberg, Tobias; Genz, Berit; Vollmar, Brigitte
2017-08-01
Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl 4 -induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl 4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl 4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl 4 -induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl 4 model and did not ameliorate liver injury or fibrogenesis. This underlines the significance of the experimental model used. Each model displays specific characteristics in the pathogenic nature, time course and severity of fibrosis and the optimal time point for starting a therapy.
ERIC Educational Resources Information Center
Stoeger, Heidrun; Steinbach, Julia; Obergriesser, Stefanie; Matthes, Benjamin
2014-01-01
Multidimensional models of giftedness specify individual and environmental moderators or catalysts that help transform potential into achievement. However, these models do not state whether the importance of the "individual boxes" and the "environmental boxes" changes during this process. The present study examines whether,…
Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, Martijn; Zehe, Erwin; Archambeau, Pierre; Dewals, Benjamin
2016-04-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in an inverse manner such that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporations, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the - with the maximum power principle optimized - model with the asymptotes of the Budyko curve we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
Does the Budyko curve reflect a maximum-power state of hydrological systems? A backward analysis
NASA Astrophysics Data System (ADS)
Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.
2016-01-01
Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving run-off and evaporation for a simple one-box model. We did this in an inverse manner such that, when the conductances are optimized with the maximum-power principle, the steady-state behaviour of the model leads exactly to a point on the asymptotes of the Budyko curve. Subsequently, we added dynamics in forcing and actual evaporation, causing the Budyko curve to deviate from the asymptotes. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves subject to observed dynamics in rainfall and actual evaporation. Thus by constraining the model that has been optimized with the maximum-power principle with the asymptotes of the Budyko curve, we were able to derive more realistic values of the aridity and evaporation index without any parameter calibration. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.
Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres
NASA Astrophysics Data System (ADS)
Prokopiou, Markella; Martinerie, Patricia; Sapart, Célia J.; Witrant, Emmanuel; Monteil, Guillaume; Ishijima, Kentaro; Bernard, Sophie; Kaiser, Jan; Levin, Ingeborg; Blunier, Thomas; Etheridge, David; Dlugokencky, Ed; van de Wal, Roderik S. W.; Röckmann, Thomas
2017-04-01
N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290 ± 1) nmol mol-1 in 1940 to (322 ± 1) nmol mol-1 in 2008, the isotopic composition of atmospheric N2O decreased by (-2.2 ± 0.2) ‰ for δ15Nav, (-1.0 ± 0.3) ‰ for δ18O, (-1.3 ± 0.6) ‰ for δ15Nα, and (-2.8 ± 0.6) ‰ for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav = (-7.6 ± 0.8) ‰ (vs. air-N2), δ18O = (32.2 ± 0.2) ‰ (vs. Vienna Standard Mean Ocean Water - VSMOW) for δ18O, δ15Nα = (-3.0 ± 1.9) ‰ and δ15Nβ = (-11.7 ± 2.3) ‰. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference ( = δ15Nα - δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large.
NASA Astrophysics Data System (ADS)
Elkins, J. W.; Nance, J. D.; Dutton, G. S.; Montzka, S. A.; Hall, B. D.; Miller, B.; Butler, J. H.; Mondeel, D. J.; Siso, C.; Moore, F. L.; Hintsa, E. J.; Wofsy, S. C.; Rigby, M. L.
2015-12-01
The Halocarbons and other Atmospheric Trace Species (HATS) of NOAA's Global Monitoring Division started measurements of the major chlorofluorocarbons and nitrous oxide in 1977 from flask samples collected at five remote sites around the world. Our program has expanded to over 40 compounds at twelve sites, which includes six in situ instruments and twelve flask sites. The Montreal Protocol for Substances that Deplete the Ozone Layer and its subsequent amendments has helped to decrease the concentrations of many of the ozone depleting compounds in the atmosphere. Our goal is to provide zonal emission estimates for these trace gases from multi-box models and their estimated atmospheric lifetimes in this presentation and make the emission values available on our web site. We plan to use our airborne measurements to calibrate the exchange times between the boxes for 5-box and 12-box models using sulfur hexafluoride where emissions are better understood.
Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Kim, S. -Y.; Lee, M.
Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NO x, SO 2,more » ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HO x (OH, HO 2, and RO 2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HO x distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO 2 + HO 2 or HO 2 + RO 2) could be more efficient than radical recycling (RO 2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone–VOC–NO x sensitivity and VOC oxidation product formation rates. Overall, the NO x limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO 2 levels are positively correlated with oxygenated VOCs (OVOCs) production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher-than-expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.« less
Impact of isoprene and HONO chemistry on ozone and OVOC formation in a semirural South Korean forest
Kim, S.; Kim, S. -Y.; Lee, M.; ...
2015-04-29
Rapid urbanization and economic development in East Asia in past decades has led to photochemical air pollution problems such as excess photochemical ozone and aerosol formation. Asian megacities such as Seoul, Tokyo, Shanghai, Guangzhou, and Beijing are surrounded by densely forested areas, and recent research has consistently demonstrated the importance of biogenic volatile organic compounds (VOCs) from vegetation in determining oxidation capacity in the suburban Asian megacity regions. Uncertainties in constraining tropospheric oxidation capacity, dominated by hydroxyl radical, undermine our ability to assess regional photochemical air pollution problems. We present an observational data set of CO, NO x, SO 2,more » ozone, HONO, and VOCs (anthropogenic and biogenic) from Taehwa research forest (TRF) near the Seoul metropolitan area in early June 2012. The data show that TRF is influenced both by aged pollution and fresh biogenic volatile organic compound emissions. With the data set, we diagnose HO x (OH, HO 2, and RO 2) distributions calculated using the University of Washington chemical box model (UWCM v2.1) with near-explicit VOC oxidation mechanisms from MCM v3.2 (Master Chemical Mechanism). Uncertainty from unconstrained HONO sources and radical recycling processes highlighted in recent studies is examined using multiple model simulations with different model constraints. The results suggest that (1) different model simulation scenarios cause systematic differences in HO x distributions, especially OH levels (up to 2.5 times), and (2) radical destruction (HO 2 + HO 2 or HO 2 + RO 2) could be more efficient than radical recycling (RO 2 + NO), especially in the afternoon. Implications of the uncertainties in radical chemistry are discussed with respect to ozone–VOC–NO x sensitivity and VOC oxidation product formation rates. Overall, the NO x limited regime is assessed except for the morning hours (8 a.m. to 12 p.m. local standard time), but the degree of sensitivity can significantly vary depending on the model scenarios. The model results also suggest that RO 2 levels are positively correlated with oxygenated VOCs (OVOCs) production that is not routinely constrained by observations. These unconstrained OVOCs can cause higher-than-expected OH loss rates (missing OH reactivity) and secondary organic aerosol formation. The series of modeling experiments constrained by observations strongly urge observational constraint of the radical pool to enable precise understanding of regional photochemical pollution problems in the East Asian megacity region.« less
Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V
2017-01-01
The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.
A comparison between skeleton and bounding box models for falling direction recognition
NASA Astrophysics Data System (ADS)
Narupiyakul, Lalita; Srisrisawang, Nitikorn
2017-12-01
Falling is an injury that can lead to a serious medical condition in every range of the age of people. However, in the case of elderly, the risk of serious injury is much higher. Due to the fact that one way of preventing serious injury is to treat the fallen person as soon as possible, several works attempted to implement different algorithms to recognize the fall. Our work compares the performance of two models based on features extraction: (i) Body joint data (Skeleton Data) which are the joint's positions in 3 axes and (ii) Bounding box (Box-size Data) covering all body joints. Machine learning algorithms that were chosen are Decision Tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), Linear discriminant analysis (LDA), Voting Classification (VC), and Gradient boosting (GB). The results illustrate that the models trained with Skeleton data are performed far better than those trained with Box-size data (with an average accuracy of 94-81% and 80-75%, respectively). KNN shows the best performance in both Body joint model and Bounding box model. In conclusion, KNN with Body joint model performs the best among the others.
A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valluri, Monica; Abbott, Caleb; Shen, Juntai
We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less
Kiely, Daniel J; Stephanson, Kirk; Ross, Sue
2011-10-01
Low-cost laparoscopic box trainers built using home computers and webcams may provide residents with a useful tool for practice at home. This study set out to evaluate the image quality of low-cost laparoscopic box trainers compared with a commercially available model. Five low-cost laparoscopic box trainers including the components listed were compared in random order to one commercially available box trainer: A (high-definition USB 2.0 webcam, PC laptop), B (Firewire webcam, Mac laptop), C (high-definition USB 2.0 webcam, Mac laptop), D (standard USB webcam, PC desktop), E (Firewire webcam, PC desktop), and F (the TRLCD03 3-DMEd Standard Minimally Invasive Training System). Participants observed still image quality and performed a peg transfer task using each box trainer. Participants rated still image quality, image quality with motion, and whether the box trainer had sufficient image quality to be useful for training. Sixteen residents in obstetrics and gynecology took part in the study. The box trainers showing no statistically significant difference from the commercially available model were A, B, C, D, and E for still image quality; A for image quality with motion; and A and B for usefulness of the simulator based on image quality. The cost of the box trainers A-E is approximately $100 to $160 each, not including a computer or laparoscopic instruments. Laparoscopic box trainers built from a high-definition USB 2.0 webcam with a PC (box trainer A) or from a Firewire webcam with a Mac (box trainer B) provide image quality comparable with a commercial standard.
Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa
2016-01-01
Abstract The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200
Shave, Megan E; Lindell, Catherine A
2017-01-01
Nest boxes for predators in agricultural regions are an easily implemented tool to improve local habitat quality with potential benefits for both conservation and agriculture. The potential for nest boxes to increase raptor populations in agricultural regions is of particular interest given their positions as top predators. This study examined the effects of cherry orchard nest boxes on the local breeding population of a declining species, the American Kestrel (Falco sparverius), in a fruit-growing region of Michigan. During the 2013-2016 study, we added a total of 23 new nest boxes in addition to 24 intact boxes installed previously; kestrels used up to 100% of our new boxes each season. We conducted temporally-replicated surveys along four roadside transects divided into 1.6 km × 500 m sites. We developed a multi-season occupancy model under a Bayesian framework and found that nest boxes had strong positive effects on first-year site occupancy, site colonization, and site persistence probabilities. The estimated number of occupied sites increased between 2013 and 2016, which correlated with the increase in number of sites with boxes. Kestrel detections decreased with survey date but were not affected by time of day or activity at the boxes themselves. These results indicate that nest boxes determined the presence of kestrels at our study sites and support the conclusion that the local kestrel population is likely limited by nest site availability. Furthermore, our results are highly relevant to the farmers on whose properties the boxes were installed, for we can conclude that installing a nest box in an orchard resulted in a high probability of kestrels occupying that orchard or the areas adjacent to it.
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hatori, Tsuyoshi; Takemura, Kazuhisa; Fujii, Satoshi; Ideno, Takashi
2011-06-01
This paper presents a new model of category judgment. The model hypothesizes that, when more attention is focused on a category, the psychological range of the category gets narrower (category-focusing hypothesis). We explain this hypothesis by using the metaphor of a "mental-box" model: the more attention that is focused on a mental box (i.e., a category set), the smaller the size of the box becomes (i.e., a cardinal number of the category set). The hypothesis was tested in an experiment (N = 40), where the focus of attention on prescribed verbal categories was manipulated. The obtained data gave support to the hypothesis: category-focusing effects were found in three experimental tasks (regarding the category of "food", "height", and "income"). The validity of the hypothesis was discussed based on the results.
Aeroelastic Model Structure Computation for Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.
Lorenz, Ralph D
2010-05-12
The 'two-box model' of planetary climate is discussed. This model has been used to demonstrate consistency of the equator-pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b.
Models for nearly every occasion: Part I - One box models.
Hewett, Paul; Ganser, Gary H
2017-01-01
The standard "well mixed room," "one box" model cannot be used to predict occupational exposures whenever the scenario involves the use of local controls. New "constant emission" one box models are proposed that permit either local exhaust or local exhaust with filtered return, coupled with general room ventilation or the recirculation of a portion of the general room exhaust. New "two box" models are presented in Part II of this series. Both steady state and transient models were developed. The steady state equation for each model, including the standard one box steady state model, is augmented with an additional factor reflecting the fraction of time the substance was generated during each task. This addition allows the easy calculation of the average exposure for cyclic and irregular emission patterns, provided the starting and ending concentrations are zero or near zero, or the cumulative time across all tasks is long (e.g., several tasks to a full shift). The new models introduce additional variables, such as the efficiency of the local exhaust to immediately capture freshly generated contaminant and the filtration efficiency whenever filtered exhaust is returned to the workspace. Many of the model variables are knowable (e.g., room volume and ventilation rate). A structured procedure for calibrating a model to a work scenario is introduced that can be applied to both continuous and cyclic processes. The "calibration" procedure generates estimates of the generation rate and all of remaining unknown model variables.
Observational Constraints on Modeling Growth and Evaporation Kinetics of Isoprene SOA
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shilling, J. E.; Zelenyuk, A.; Liu, J.; Wilson, J. M.; Laskin, A.; Wang, B.; Fast, J. D.; Easter, R. C.; Wang, J.; Kuang, C.; Thornton, J. A.; Setyan, A.; Zhang, Q.; Onasch, T. B.; Worsnop, D. R.
2014-12-01
Isoprene is thought to be a major contributor to the global secondary organic aerosol (SOA) budget, and therefore has the potential to exert a significant influence on earth's climate via aerosol direct and indirect radiative effects. Both aerosol optical and cloud condensation nuclei properties are quite sensitive to aerosol number size distribution, as opposed to the total aerosol mass concentration. Recent studies suggest that SOA particles can be highly viscous, which can affect the kinetics of SOA partitioning and size distribution evolution when the condensing organic vapors are semi-volatile. In this study, we examine the growth kinetics of SOA formed from isoprene photooxidation in the presence of pre-existing Aitken and accumulation mode aerosols in: (a) the ambient atmosphere during the CARES field campaign, and (b) the environmental chamber at PNNL. Each growth episode is analyzed and interpreted with the updated MOSAIC aerosol box model, which performs kinetic gas-particle partitioning of SOA and takes into account diffusion and chemical reaction within the particle phase. The model is initialized with the observed aerosol size distribution and composition at the beginning of the experiment, and the total amount of SOA formed in the model at any given time is constrained by the observed total amount of SOA formed. The variable model parameters include the number of condensing organic species, their gas-phase formation rates, their effective volatilities, and their bulk diffusivities in the Aitken and accumulation modes. The objective of the constrained modeling exercise is then to determine which model configuration is able to best reproduce the observed size distribution evolution, thus providing valuable insights into the possible mechanism of SOA formation. We also examine the evaporation kinetics of size-selected particles formed in the environmental chamber to provide additional constraints on the effective volatility and bulk diffusivity of the organic species. Our results suggest that SOA formed from isoprene photooxidation is semi-volatile, and the resulting size distribution evolution is highly sensitive to the phase state (bulk diffusivity) of the pre-existing aerosol. Implications of these findings on further SOA model development and evaluation strategy will be discussed.
Öllinger, Michael; Jones, Gary; Knoblich, Günther
2014-03-01
The nine-dot problem is often used to demonstrate and explain mental impasse, creativity, and out of the box thinking. The present study investigated the interplay of a restricted initial search space, the likelihood of invoking a representational change, and the subsequent constraining of an unrestricted search space. In three experimental conditions, participants worked on different versions of the nine-dot problem that hinted at removing particular sources of difficulty from the standard problem. The hints were incremental such that the first suggested a possible route for a solution attempt; the second additionally indicated the dot at which lines meet on the solution path; and the final condition also provided non-dot locations that appear in the solution path. The results showed that in the experimental conditions, representational change is encountered more quickly and problems are solved more often than for the control group. We propose a cognitive model that focuses on general problem-solving heuristics and representational change to explain problem difficulty.
Dispersion relation for hadronic light-by-light scattering: two-pion contributions
Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; ...
2017-04-27
In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less
Dispersion relation for hadronic light-by-light scattering: two-pion contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano
In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less
Brane boxes, anomalies, bending, and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, R.G.; Rozali, M.
1999-01-01
Certain classes of chiral four-dimensional gauge theories may be obtained as the world volume theories of D5-branes are suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to an anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are {ital T} dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of themore » brane box theory. Thus string consistency is equivalent to world volume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the {beta} functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory. {copyright} {ital 1998} {ital The American Physical Society}« less
Quantifying parameter uncertainty in stochastic models using the Box Cox transformation
NASA Astrophysics Data System (ADS)
Thyer, Mark; Kuczera, George; Wang, Q. J.
2002-08-01
The Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.
A look inside 'black box' hydrograph separation models: A study at the hydrohill catchment
Kendall, C.; McDonnell, Jeffery J.; Gu, W.
2001-01-01
Runoff sources and dominant flowpaths are still poorly understood in most catchments; consequently, most hydrograph separations are essentially 'black box' models where only external information is used. The well-instrumented 490 m2 Hydrohill artificial grassland catchment located near Nanjing (China) was used to examine internal catchment processes. Since groundwater levels never reach the soil surface at this site, two physically distinct flowpaths can unambiguously be defined: surface and subsurface runoff. This study combines hydrometric, isotopic and geochemical approaches to investigating the relations between the chloride, silica, and oxygen isotopic compositions of subsurface waters and rainfall. During a 120 mm storm over a 24 h period in 1989, 55% of event water input infiltrated and added to soil water storage; the remainder ran off as infiltration-excess overland flow. Only about 3-5% of the pre-event water was displaced out of the catchment by in-storm rainfall. About 80% of the total flow was quickflow, and 10% of the total flow was pre-event water, mostly derived from saturated flow from deeper soils. Rain water with high ??18O values from the beginning of the storm appeared to be preferentially stored in shallow soils. Groundwater at the end of the storm shows a wide range of isotopic and chemical compositions, primarily reflecting the heterogeneous distribution of the new and mixed pore waters. High chloride and silica concentrations in quickflow runoff derived from event water indicate that these species are not suitable conservative tracers of either water sources or flowpaths in this catchment. Determining the proportion of event water alone does not constrain the possible hydrologic mechanisms sufficiently to distinguish subsurface and surface flowpaths uniquely, even in this highly controlled artificial catchment. We reconcile these findings with a perceptual model of stormflow sources and flowpaths that explicitly accounts for water, isotopic, and chemical mass balance. Copyright ?? 2001 John Wiley & Sons, Ltd.
Demographic consequences of nest box use for Red-footed Falcons Falco vespertinus in Central Asia
Bragin, Evgeny A.; Bragin, Alexander E.; Katzner, Todd
2017-01-01
Nest box programs are frequently implemented for the conservation of cavity-nesting birds, but their effectiveness is rarely evaluated in comparison to birds not using nest boxes. In the European Palearctic, Red-footed Falcon Falco vespertinus populations are both of high conservation concern and are strongly associated with nest box programs in heavily managed landscapes. We used a 21-year monitoring dataset collected on 753 nesting attempts by Red-footed Falcons in unmanaged natural or semi-natural habitats to provide basic information on this poorly known species; to evaluate long-term demographic trends; and to evaluate response of demographic parameters of Red-footed Falcons to environmental factors including use of nest boxes. We observed significant differences among years in laying date, offspring loss, and numbers of fledglings produced, but not in egg production. Of these four parameters, offspring loss and, to a lesser extent, number of fledglings exhibited directional trends over time. Variation in laying date and in numbers of eggs were not well explained by any one model, but instead by combinations of models, each with informative terms for nest type. Nevertheless, laying in nest boxes occurred 2.10 ± 0.70 days earlier than in natural nests. In contrast, variation in both offspring loss and numbers of fledglings produced were fairly well explained by a single model including terms for nest type, nest location, and an interaction between the two parameters (65% and 81% model weights respectively), with highest offspring loss in nest boxes on forest edges. Because, for other species, earlier laying dates are associated with more fit individuals, this interaction highlighted a possible ecological trap, whereby birds using nest boxes on forest edges lay eggs earlier but suffer greater offspring loss and produce lower numbers of fledglings than do those in other nesting settings. If nest boxes increase offspring loss for Red-footed Falcons in heavily managed landscapes where populations are at greater risk, or for the many other species of rare or endangered birds supported by nest box programs, these processes could have important demographic and conservation consequences.
Structure of an E3:E2~Ub Complex Reveals an Allosteric Mechanism Shared among RING/U-box Ligases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.
2012-09-28
Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanismby which this class of enzymes facilitates Ub transfer remains enigmatic. Here, we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 side chain and an E2 backbone carbonyl, observed in all structures of active RING/ U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformationalmore » biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/ U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/UBox activation of E2~Ub conjugates.« less
Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price
NASA Astrophysics Data System (ADS)
Yaziz, Siti Roslindar; Azizan, Noor Azlinna; Ahmad, Maizah Hura; Zakaria, Roslinazairimah; Agrawal, Manju; Boland, John
2015-02-01
Gold has been regarded as a valuable precious metal and the most popular commodity as a healthy return investment. Hence, the analysis and prediction of gold price become very significant to investors. This study is a preliminary analysis on gold price and its volatility that focuses on the performance of hybrid Box-Jenkins models together with GARCH in analyzing and forecasting gold price. The Box-Cox formula is used as the data transformation method due to its potential best practice in normalizing data, stabilizing variance and reduces heteroscedasticity using 41-year daily gold price data series starting 2nd January 1973. Our study indicates that the proposed hybrid model ARIMA-GARCH with t-innovation can be a new potential approach in forecasting gold price. This finding proves the strength of GARCH in handling volatility in the gold price as well as overcomes the non-linear limitation in the Box-Jenkins modeling.
Results for both sequential and simultaneous calibration of exchange flows between segments of a 10-box, one-dimensional, well-mixed, bifurcated tidal mixing model for Tampa Bay are reported. Calibrations were conducted for three model options with different mathematical expressi...
Time Series ARIMA Models of Undergraduate Grade Point Average.
ERIC Educational Resources Information Center
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
NASA Astrophysics Data System (ADS)
Gammie, Charles F.; Guan, Xiaoyue
2012-10-01
HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G.; Shah, Arvind K.; Lin, Jianxin
2013-01-01
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data (IPD) in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the Deviance Information Criterion (DIC) is used to select the best transformation model. Since the model is quite complex, a novel Monte Carlo Markov chain (MCMC) sampling scheme is developed to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol lowering drugs where the goal is to jointly model the three dimensional response consisting of Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglycerides (TG) (LDL-C, HDL-C, TG). Since the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately: however, a multivariate approach would be more appropriate since these variables are correlated with each other. A detailed analysis of these data is carried out using the proposed methodology. PMID:23580436
Kim, Sungduk; Chen, Ming-Hui; Ibrahim, Joseph G; Shah, Arvind K; Lin, Jianxin
2013-10-15
In this paper, we propose a class of Box-Cox transformation regression models with multidimensional random effects for analyzing multivariate responses for individual patient data in meta-analysis. Our modeling formulation uses a multivariate normal response meta-analysis model with multivariate random effects, in which each response is allowed to have its own Box-Cox transformation. Prior distributions are specified for the Box-Cox transformation parameters as well as the regression coefficients in this complex model, and the deviance information criterion is used to select the best transformation model. Because the model is quite complex, we develop a novel Monte Carlo Markov chain sampling scheme to sample from the joint posterior of the parameters. This model is motivated by a very rich dataset comprising 26 clinical trials involving cholesterol-lowering drugs where the goal is to jointly model the three-dimensional response consisting of low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TG) (LDL-C, HDL-C, TG). Because the joint distribution of (LDL-C, HDL-C, TG) is not multivariate normal and in fact quite skewed, a Box-Cox transformation is needed to achieve normality. In the clinical literature, these three variables are usually analyzed univariately; however, a multivariate approach would be more appropriate because these variables are correlated with each other. We carry out a detailed analysis of these data by using the proposed methodology. Copyright © 2013 John Wiley & Sons, Ltd.
Rosin-Rammler Distributions in ANSYS Fluent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
In Health Physics monitoring, particles need to be collected and tracked. One method is to predict the motion of potential health hazards with computer models. Particles released from various sources within a glove box can become a respirable health hazard if released into the area surrounding a glove box. The goal of modeling the aerosols in a glove box is to reduce the hazards associated with a leak in the glove box system. ANSYS Fluent provides a number of tools for modeling this type of environment. Particles can be released using injections into the flow path with turbulent properties. Themore » models of particle tracks can then be used to predict paths and concentrations of particles within the flow. An attempt to understand and predict the handling of data by Fluent was made, and results iteratively tracked. Trends in data were studied to comprehend the final results. The purpose of the study was to allow a better understanding of the operation of Fluent for aerosol modeling for future application in many fields.« less
Chetnani, Bhaskar
2017-01-01
Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275
System load forecasts for an electric utility. [Hourly loads using Box-Jenkins method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, N.D.
This paper discusses forecasting hourly system load for an electric utility using Box-Jenkins time-series analysis. The results indicate that a model based on the method of Box and Jenkins, given its simplicity, gives excellent results over the forecast horizon.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)
NASA Astrophysics Data System (ADS)
Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand
2018-03-01
Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.
Tanaka, Masayuki; Shinoda, Masahiro; Takayanagi, Atsushi; Oshima, Go; Nishiyama, Ryo; Fukuda, Kazumasa; Yagi, Hiroshi; Hayashida, Tetsu; Masugi, Yohei; Suda, Koichi; Yamada, Shingo; Miyasho, Taku; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Obara, Hideaki; Itano, Osamu; Takeuchi, Hiroya; Sakamoto, Michiie; Tanabe, Minoru; Maruyama, Ikuro; Kitagawa, Yuko
2015-04-01
High-mobility group box 1 (HMGB1) has recently been identified as an important mediator of various kinds of acute and chronic inflammation. The protein encoded by the box-A domain of the HMGB1 gene is known to act as a competitive inhibitor of HMGB1. In this study, we investigated whether box-A gene transfer results in box-A protein production in rats and assessed therapeutic efficacy in vivo using an acute liver failure (ALF) model. Three types of adenovirus vectors were constructed-a wild type and two mutants-and a mutant vector was then selected based on the secretion from HeLa cells. The secreted protein was subjected to a tumor necrosis factor (TNF) production inhibition test in vitro. The vector was injected via the portal vein in healthy Wistar rats to confirm box-A protein production in the liver. The vector was then injected via the portal vein in rats with ALF. Western blot analysis showed enhanced expression of box-A protein in HeLa cells transfected with one of the mutant vectors. The culture supernatant from HeLa cells transfected with the vector inhibited TNF-α production from macrophages. Expression of box-A protein was confirmed in the transfected liver at 72 h after transfection. Transfected rats showed decreased hepatic enzymes, plasma HMGB1, and hepatic TNF-α messenger RNA levels, and histologic findings and survival were significantly improved. HMGB1 box-A gene transfer results in box-A protein production in the liver and appears to have a beneficial effect on ALF in rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Cscibox: A Software System for Age-Model Construction and Evaluation
NASA Astrophysics Data System (ADS)
Bradley, E.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; White, J. W. C.; Anderson, D. M.
2014-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmetal archives, both directly dated and cross dated. The time has come to encourage cross-pollinization between earth science and computer science in dating paleorecords. This project addresses that need. The CSciBox code, which is being developed by a team of computer scientists and geoscientists, is open source and freely available on github. The system employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form. This makes it possible to do analysis on the whole core at once, in an interactive fashion, or to tailor the analysis to a subset of the core without loading the entire data file. CSciBox provides a number of 'components' that perform the common steps in age-model construction and evaluation: calibrations, reservoir-age correction, interpolations, statistics, and so on. The user employs these components via a graphical user interface (GUI) to go from raw data to finished age model in a single tool: e.g., an IntCal09 calibration of 14C data from a marine sediment core, followed by a piecewise-linear interpolation. CSciBox's GUI supports plotting of any measurement in the core against any other measurement, or against any of the variables in the calculation of the age model-with or without explicit error representations. Using the GUI, CSciBox's user can import a new calibration curve or other background data set and define a new module that employs that information. Users can also incorporate other software (e.g., Calib, BACON) as 'plug ins.' In the case of truly large data or significant computational effort, CSciBox is parallelizable across modern multicore processors, or clusters, or even the cloud. The next generation of the CSciBox code, currently in the testing stages, includes an automated reasoning engine that supports a more-thorough exploration of plausible age models and cross-dating scenarios.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
Lima, C B S; Nunes, L A; Carvalho, C A L; Ribeiro, M F; Souza, B A; Silva, C S B
2016-01-01
A geometric morphometrics approach was applied to evaluate differences in forewing patterns of the Jandaira bee (Melipona subnitida Ducke). For this, we studied the presence of fluctuating asymmetry (FA) in forewing shape and size of colonies kept in either rational hive boxes or natural tree trunks. We detected significant FA for wing size as well as wing shape independent of the type of housing (rational box or tree trunks), indicating the overall presence of stress during the development of the studied specimens. FA was also significant (p < 0.01) between rational boxes, possibly related to the use of various models of rational boxes used for keeping stingless bees. In addition, a Principal Component Analysis indicated morphometric variation between bee colonies kept in either rational hive boxes or in tree trunks, that may be related to the different origins of the bees: tree trunk colonies were relocated natural colonies while rational box colonies originated from multiplying other colonies. We conclude that adequate measures should be taken to reduce the amount of stress during bee handling by using standard models of rational boxes that cause the least disruption.
Lorenz, Ralph D.
2010-01-01
The ‘two-box model’ of planetary climate is discussed. This model has been used to demonstrate consistency of the equator–pole temperature gradient on Earth, Mars and Titan with what would be predicted from a principle of maximum entropy production (MEP). While useful for exposition and for generating first-order estimates of planetary heat transports, it has too low a resolution to investigate climate systems with strong feedbacks. A two-box MEP model agrees well with the observed day : night temperature contrast observed on the extrasolar planet HD 189733b. PMID:20368253
A review of presented mathematical models in Parkinson's disease: black- and gray-box models.
Sarbaz, Yashar; Pourakbari, Hakimeh
2016-06-01
Parkinson's disease (PD), one of the most common movement disorders, is caused by damage to the central nervous system. Despite all of the studies on PD, the formation mechanism of its symptoms remained unknown. It is still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact understanding of the brain function seems to be impossible. On the other hand, some engineering tools are trying to understand the behavior and performance of complex systems. Modeling is one of the most important tools in this regard. Developing quantitative models for this disease has begun in recent decades. They are very effective not only in better understanding of the disease, offering new therapies, and its prediction and control, but also in its early diagnosis. Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-box modeling, regardless of the system information, the symptom is only considered as the output. Such models, besides the quantitative analysis studies, increase our knowledge of the disorders behavior and the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance as well as the final disease symptoms. These models can effectively save time and be cost-effective for the researchers and help them select appropriate treatment mechanisms among all possible options. In this review paper, first, efforts are made to investigate some studies on PD quantitative analysis. Then, PD quantitative models will be reviewed. Finally, the results of using such models are presented to some extent.
Hydroxyl and Hydroperoxy Chemistry at the CalNex-LA 2010 Site: Measurements and Modeling
NASA Astrophysics Data System (ADS)
Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Stevens, P. S.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; Warneke, C.; De Gouw, J. A.; Young, C. J.; Washenfelder, R. A.; Brown, S. S.; Flynn, J. H.; Alvarez, S. L.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.
2011-12-01
Hydroxyl (OH) and hydroperoxy (HO2) radicals are key species in the atmosphere driving the oxidation of organic trace gases leading to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in urban environments have shown similarities and differences across sites due to differing levels of nitrogen oxides (NOx) and volatile organic compounds (VOCs), and the control strategies for dealing with these chemical species. Understanding the free radical chemistry is essential for effectively regulating NOx and VOC emissions and controlling ozone and other secondary pollutants. Measurements of OH and HO2 radicals were made using a laser-induced fluorescence technique as part of the CalNex LA campaign during May-June, 2010. Median HOx (OH + HO2) concentrations, as well as HO2-to-OH ratios, were similar to previous measurements in other urban areas. An extensive suite of supporting measurements including photolysis rates, NOx, and other inorganic species, biogenic, aromatic, and other anthropogenic VOCs are used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism. Model comparisons provide details about the ability of commonly used chemical mechanisms to reproduce HOx production and loss rates, the radical cycling, and instantaneous O3 production rates in the Los Angeles area.
HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison
NASA Astrophysics Data System (ADS)
Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.
2015-12-01
Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
USDA-ARS?s Scientific Manuscript database
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...
NASA Astrophysics Data System (ADS)
Russano, Euan; Schwanenberg, Dirk; Alvarado Montero, Rodolfo
2017-04-01
Operational forecasting and decision support systems for flood mitigation and the daily management of water resources require computationally efficient flow routing models. If backwater effects do not play an important role, a hydrological routing approach is often a pragmatic choice. It offers a reasonable accuracy at low computational costs in comparison to a more detailed hydraulic model. This work presents a nonlinear reservoir routing scheme as well as its implementation for the flow propagation between the hydro reservoir Três Marias and a downstream inundation-affected city Pirapora in Brazil. We refer to the model as a gray-box approach due to the identification of the parameter k by a data-driven approach for each reservoir of the cascade, instead of using estimates based on physical characteristics. The model reproduces the discharge at the gauge Pirapora, using 15 reservoirs in the cascade. The obtained results are compared with the ones obtained from the full-hydrodynamic model SOBEK. Results show a relatively good performance for the validation period, with a RMSE of 139.48 for the gray-box model, while the full-hydrodynamic model shows a RMSE of 136.67. The simulation time for a period of several years for the full-hydrodynamic took approximately 64s, while the gray-box model only required about 0.50s. This provides a significant speedup of the computation by only a little trade-off in accuracy, pointing at the potential of the simple approach in the context of time-critical, operational applications. Key-words: flow routing, reservoir routing, gray-box model
NASA Astrophysics Data System (ADS)
Spiers, E. M.; Schmidt, B. E.
2018-05-01
I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.
Chetnani, Bhaskar; Mondragón, Alfonso
2017-07-27
A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ford, W. Mark; Evans, A.M.; Odom, Richard H.; Rodrigue, Jane L.; Kelly, C.A.; Abaid, Nicole; Diggins, Corinne A.; Newcomb, Doug
2016-01-01
In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy models in the program PRESENCE for boxes surveyed in western North Carolina, 1996-2011. Our best approximating model showed CNFS denning associated with sheltered landforms and montane conifers, primarily red spruce Picea rubens. As sheltering decreased, decreasing distance to conifers was important. Area with a high probability (>0.5) of occupancy was distributed over 18662 ha of habitat, mostly across 10 mountain ranges. Because nest-box surveys underrepresented areas >1750 m and CNFS forage in conifers, we combined areas of high occupancy with conifer GIS coverages to create an additional distribution model of likely habitat. Regionally, above 1385 m, we determined that 31795 ha could be occupied by CNFS. Known occupied patches ranged from
Stochastic Thermodynamics of a Particle in a Box.
Gong, Zongping; Lan, Yueheng; Quan, H T
2016-10-28
The piston system (particles in a box) is the simplest paradigmatic model in traditional thermodynamics. However, the recently established framework of stochastic thermodynamics (ST) fails to apply to this model system due to the embedded singularity in the potential. In this Letter, we study the ST of a particle in a box by adopting a novel coordinate transformation technique. Through comparing with the exact solution of a breathing harmonic oscillator, we obtain analytical results of work distribution for an arbitrary protocol in the linear response regime and verify various predictions of the fluctuation-dissipation relation. When applying to the Brownian Szilard engine model, we obtain the optimal protocol λ_{t}=λ_{0}2^{t/τ} for a given sufficiently long total time τ. Our study not only establishes a paradigm for studying ST of a particle in a box but also bridges the long-standing gap in the development of ST.
NASA Astrophysics Data System (ADS)
Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.
2015-12-01
A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA and rising temperatures, the surface waters could switch from being a present-day source of CO2 to the atmosphere to a future sink. This ecosystem specific model can be applied to any reef system where data are available to constrain the initial model state and is a powerful tool for examining future changes in coral reef carbon budgets.
A Box-Cox normal model for response times.
Klein Entink, R H; van der Linden, W J; Fox, J-P
2009-11-01
The log-transform has been a convenient choice in response time modelling on test items. However, motivated by a dataset of the Medical College Admission Test where the lognormal model violated the normality assumption, the possibilities of the broader class of Box-Cox transformations for response time modelling are investigated. After an introduction and an outline of a broader framework for analysing responses and response times simultaneously, the performance of a Box-Cox normal model for describing response times is investigated using simulation studies and a real data example. A transformation-invariant implementation of the deviance information criterium (DIC) is developed that allows for comparing model fit between models with different transformation parameters. Showing an enhanced description of the shape of the response time distributions, its application in an educational measurement context is discussed at length.
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
NASA Astrophysics Data System (ADS)
Faybishenko, B.; Flach, G. P.
2012-12-01
The objectives of this presentation are: (a) to illustrate the application of Monte Carlo and fuzzy-probabilistic approaches for uncertainty quantification (UQ) in predictions of potential evapotranspiration (PET), actual evapotranspiration (ET), and infiltration (I), using uncertain hydrological or meteorological time series data, and (b) to compare the results of these calculations with those from field measurements at the U.S. Department of Energy Savannah River Site (SRS), near Aiken, South Carolina, USA. The UQ calculations include the evaluation of aleatory (parameter uncertainty) and epistemic (model) uncertainties. The effect of aleatory uncertainty is expressed by assigning the probability distributions of input parameters, using historical monthly averaged data from the meteorological station at the SRS. The combined effect of aleatory and epistemic uncertainties on the UQ of PET, ET, and Iis then expressed by aggregating the results of calculations from multiple models using a p-box and fuzzy numbers. The uncertainty in PETis calculated using the Bair-Robertson, Blaney-Criddle, Caprio, Hargreaves-Samani, Hamon, Jensen-Haise, Linacre, Makkink, Priestly-Taylor, Penman, Penman-Monteith, Thornthwaite, and Turc models. Then, ET is calculated from the modified Budyko model, followed by calculations of I from the water balance equation. We show that probabilistic and fuzzy-probabilistic calculations using multiple models generate the PET, ET, and Idistributions, which are well within the range of field measurements. We also show that a selection of a subset of models can be used to constrain the uncertainty quantification of PET, ET, and I.
Price of gasoline: forecasting comparisons. [Box-Jenkins, econometric, and regression methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bopp, A.E.; Neri, J.A.
Gasoline prices are simulated using three popular forecasting methodologies: A Box--Jenkins type method, an econometric method, and a regression method. One-period-ahead and 18-period-ahead comparisons are made. For the one-period-ahead method, a Box--Jenkins type time-series model simulated best, although all do well. However, for the 18-period simulation, the econometric and regression methods perform substantially better than the Box-Jenkins formulation. A rationale for and implications of these results ae discussed. 11 references.
NASA Technical Reports Server (NTRS)
Wang, John T.; Jegley, Dawn C.; Bush, Harold G.; Hinrichs, Stephen C.
1996-01-01
The analytical and experimental results of an all-composite wing stub box are presented in this report. The wing stub box, which is representative of an inboard portion of a commercial transport high-aspect-ratio wing, was fabricated from stitched graphite-epoxy material with a Resin Film Infusion manufacturing process. The wing stub box was designed and constructed by the McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology program. The test article contained metallic load-introduction structures on the inboard and outboard ends of the graphite-epoxy wing stub box. The root end of the inboard load introduction structure was attached to a vertical reaction structure, and an upward load was applied to the outermost tip of the outboard load introduction structure to induce bending of the wing stub box. A finite element model was created in which the center portion of the wing-stub-box upper cover panel was modeled with a refined mesh. The refined mesh was required to represent properly the geometrically nonlinear structural behavior of the upper cover panel and to predict accurately the strains in the stringer webs of the stiffened upper cover panel. The analytical and experimental results for deflections and strains are in good agreement.
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
An effective box trap for capturing lynx
Jay A. Kolbe; John R. Squires; Thomas W. Parker
2003-01-01
We designed a box trap for capturing lynx (Lynx lynx) that is lightweight, safe, effective, and less expensive than many commercial models. It can be constructed in approximately 3-4 hours from readily available materials. We used this trap to capture 40 lynx 89 times (96% of lynx entering traps) and observed no trapping related injuries. We compare our box...
Imaging learning and memory: classical conditioning.
Schreurs, B G; Alkon, D L
2001-12-15
The search for the biological basis of learning and memory has, until recently, been constrained by the limits of technology to classic anatomic and electrophysiologic studies. With the advent of functional imaging, we have begun to delve into what, for many, was a "black box." We review several different types of imaging experiments, including steady state animal experiments that image the functional labeling of fixed tissues, and dynamic human studies based on functional imaging of the intact brain during learning. The data suggest that learning and memory involve a surprising conservation of mechanisms and the integrated networking of a number of structures and processes. Copyright 2001 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Morin, Samuel; Sander, Rolf; Savarino, Joël.
2010-05-01
The isotope anomaly of secondary atmospheric species such as nitrate (NO3-) has potential to provide useful constrains on their formation pathways. Indeed, the ?17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero ?17O in the atmosphere. Interpreting variations of ?17O in nitrate requires an in-depth understanding of the ?17O of its precursors taking into account non-linear chemical regimes operating under various environmental settings. In addition, the role of isotope exchange reactions must be carefully accounted for. To investigate the relevance of various assessments of the isotopic signature of nitrate production pathways that have recently been proposed in the literature, an atmospheric chemistry box model (MECCA, Sander et al., 2005, ACP)) was used to explicitly compute the diurnal variations of the isotope anomaly of NOx, HOx under several conditions prevailing in the marine boundary layer. ?17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation applied at each time step of the model (30 seconds typically). The model confirms that diurnal variations in ?17O of NOx are well predicted by the photochemical steady-state relationship introduced by Michalski et al. (2003, GRL) during the day, but that at night a different approach must be employed (e.g. « fossilization » of the ?17O of NOx as soon as the photochemical lifetime of NOx drops below ca. 5 minutes). The model also allows to evaluate the impact on ?17O of NOx and nitrate of the frequently made simplifying assumption that ?17O(HOx)=0 permil, with and without mass-independent fractionation during the H+O2-HO2 reaction. Recommendations for the modeling of ?17O of nitrate will be given, based on the extensive model work carried out. In addition, the link between diurnal variations of the ?17O of nitrate precursors and seasonal variations of the ?17O of nitrate will be explored. Perspectives include the implementation of halogen species in this assessment, and the full incorporation of the developed framework into the CAABA-MECCA box model.
Comparison of distributed reacceleration and leaky-box models of cosmic-ray abundances (Z = 3-28)
NASA Technical Reports Server (NTRS)
Letaw, John R.; Silberberg, Rein; Tsao, C. H.
1993-01-01
A large collection of elemental and isotopic cosmic-ray data has been analyzed using the leaky-box transport model with and without reacceleration in the interstellar medium. Abundances of isotopes and elements with charges Z = 3-28 and energies E = 10 MeV/nucleon-1 TeV/nucleon were explored. Our results demonstrate that reacceleration models make detailed and accurate predictions with the same number of parameters or fewer as standard leaky-box models. Ad hoc fitting parameters in the standard model are replaced by astrophysically significant reacceleration parameters. Distributed reacceleration models explain the peak in secondary-to-primary ratios around 1 GeV/nucleon. They diminish the discrepancy between rigidity-dependent leakage and energy-independent anisotropy. They also offer the possibility of understanding isotopic anomalies at low energy.
A satellite simulator for TRMM PR applied to climate model simulations
NASA Astrophysics Data System (ADS)
Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.
2017-12-01
Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.
CSciBox: An Intelligent Assistant for Dating Ice and Sediment Cores
NASA Astrophysics Data System (ADS)
Finlinson, K.; Bradley, E.; White, J. W. C.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; Jones, T. R.; Lindsay, C. M.; Israelsen, B.
2015-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmental archives. It incorporates a number of data-processing and visualization facilities, ranging from simple interpolation to reservoir-age correction and 14C calibration via the Calib algorithm, as well as a number of firn and ice-flow models. It employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form, and offers the user access to those data and computational elements via a modern graphical user interface (GUI). In the case of truly large data or computations, CSciBox is parallelizable across modern multi-core processors, or clusters, or even the cloud. The code is open source and freely available on github, as are one-click installers for various versions of Windows and Mac OSX. The system's architecture allows users to incorporate their own software in the form of computational components that can be built smoothly into CSciBox workflows, taking advantage of CSciBox's GUI, data importing facilities, and plotting capabilities. To date, BACON and StratiCounter have been integrated into CSciBox as embedded components. The user can manipulate and compose all of these tools and facilities as she sees fit. Alternatively, she can employ CSciBox's automated reasoning engine, which uses artificial intelligence techniques to explore the gamut of age models and cross-dating scenarios automatically. The automated reasoning engine captures the knowledge of expert geoscientists, and can output a description of its reasoning.
Cosmic ray antiprotons in closed galaxy model
NASA Technical Reports Server (NTRS)
Protheroe, R.
1981-01-01
The flux of secondary antiprotons expected for the leaky-box model was calculated as well as that for the closed galaxy model of Peters and Westergard (1977). The antiproton/proton ratio observed at several GeV is a factor of 4 higher than the prediction for the leaky-box model but is consistent with that predicted for the closed galaxy model. New low energy data is not consistent with either model. The possibility of a primary antiproton component is discussed.
The Particle/Wave-in-a-Box Model in Dutch Secondary Schools
ERIC Educational Resources Information Center
Hoekzema, Dick; van den Berg, Ed; Schooten, Gert; van Dijk, Leo
2007-01-01
The combination of mathematical and conceptual difficulties makes teaching quantum physics at secondary schools a precarious undertaking. With many of the conceptual difficulties being unavoidable, simplifying the mathematics becomes top priority. The particle/wave-in-a-box provides a teaching model which includes many aspects of serious …
SUSCEPTIBILITY OF A GULF OF MEXICO ESTUARY TO HYPOXIA: AN ANALYSIS USING BOX MODELS
The extent of hypoxia and the physical factors affecting development and maintenance of hypoxia were examined for Pensacola Bay, Florida (USA) by conducting monthly water quality surveys for 3 years and by constructing salt-and-water balance box models using the resulting data. W...
The Analysis of Organizational Diagnosis on Based Six Box Model in Universities
ERIC Educational Resources Information Center
Hamid, Rahimi; Siadat, Sayyed Ali; Reza, Hoveida; Arash, Shahin; Ali, Nasrabadi Hasan; Azizollah, Arbabisarjou
2011-01-01
Purpose: The analysis of organizational diagnosis on based six box model at universities. Research method: Research method was descriptive-survey. Statistical population consisted of 1544 faculty members of universities which through random strafed sampling method 218 persons were chosen as the sample. Research Instrument were organizational…
Constrained optimization via simulation models for new product innovation
NASA Astrophysics Data System (ADS)
Pujowidianto, Nugroho A.
2017-11-01
We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Zhang, Bing; Chen, Hua
2016-04-01
The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more dramatic lowering in AI than the latter. Bax, caspase-8, and CHOP showed reduced expression, and Bcl-2 and p-AKT levels were upregulated in recombinant HMGB1 A-box pretreatment group. Thus, recombinant HMGB1 A-box treatment protects against I/R injury and the mechanisms may involve inhibition of miR-21 expression.
Smocks and Jocks outside the Box: The Paradigmatic Evolution of Sport and Exercise Psychology
ERIC Educational Resources Information Center
Vealey, Robin S.
2006-01-01
The objective of this article is to describe the historical development of sport and exercise psychology, with a particular emphasis on the construction and evolution of the "box" through history. The box represents the dominant paradigm that serves as the model for research and application as it evolves through successive historical eras (Kuhn,…
ERIC Educational Resources Information Center
Chiarini, Marc A.
2010-01-01
Traditional methods for system performance analysis have long relied on a mix of queuing theory, detailed system knowledge, intuition, and trial-and-error. These approaches often require construction of incomplete gray-box models that can be costly to build and difficult to scale or generalize. In this thesis, we present a black-box analysis…
Lo, Kenneth
2011-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components. PMID:22125375
Lo, Kenneth; Gottardo, Raphael
2012-01-01
Cluster analysis is the automated search for groups of homogeneous observations in a data set. A popular modeling approach for clustering is based on finite normal mixture models, which assume that each cluster is modeled as a multivariate normal distribution. However, the normality assumption that each component is symmetric is often unrealistic. Furthermore, normal mixture models are not robust against outliers; they often require extra components for modeling outliers and/or give a poor representation of the data. To address these issues, we propose a new class of distributions, multivariate t distributions with the Box-Cox transformation, for mixture modeling. This class of distributions generalizes the normal distribution with the more heavy-tailed t distribution, and introduces skewness via the Box-Cox transformation. As a result, this provides a unified framework to simultaneously handle outlier identification and data transformation, two interrelated issues. We describe an Expectation-Maximization algorithm for parameter estimation along with transformation selection. We demonstrate the proposed methodology with three real data sets and simulation studies. Compared with a wealth of approaches including the skew-t mixture model, the proposed t mixture model with the Box-Cox transformation performs favorably in terms of accuracy in the assignment of observations, robustness against model misspecification, and selection of the number of components.
Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns
Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng
2014-01-01
F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Juliane
MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.
Why the Particle-in-a-Box Model Works Well for Cyanine Dyes but Not for Conjugated Polyenes
ERIC Educational Resources Information Center
Autschbach, Jochen
2007-01-01
We investigate why the particle-in-a-box (PB) model works well for calculating the absorption wavelengths of cyanine dyes and why it does not work for conjugated polyenes. The PB model is immensely useful in the classroom, but owing to its highly approximate character there is little reason to expect that it can yield quantitative agreement with…
1996-09-16
approaches are: • Adaptive filtering • Single exponential smoothing (Brown, 1963) * The Box-Jenkins methodology ( ARIMA modeling ) - Linear exponential... ARIMA • Linear exponential smoothing: Holt’s two parameter modeling (Box and Jenkins, 1976). However, there are two approach (Holt et al., 1960) very...crucial disadvantages: The most important point in - Winters’ three parameter method (Winters, 1960) ARIMA modeling is model identification. As shown in
Efficient Hardware Implementation of the Lightweight Block Encryption Algorithm LEA
Lee, Donggeon; Kim, Dong-Chan; Kwon, Daesung; Kim, Howon
2014-01-01
Recently, due to the advent of resource-constrained trends, such as smartphones and smart devices, the computing environment is changing. Because our daily life is deeply intertwined with ubiquitous networks, the importance of security is growing. A lightweight encryption algorithm is essential for secure communication between these kinds of resource-constrained devices, and many researchers have been investigating this field. Recently, a lightweight block cipher called LEA was proposed. LEA was originally targeted for efficient implementation on microprocessors, as it is fast when implemented in software and furthermore, it has a small memory footprint. To reflect on recent technology, all required calculations utilize 32-bit wide operations. In addition, the algorithm is comprised of not complex S-Box-like structures but simple Addition, Rotation, and XOR operations. To the best of our knowledge, this paper is the first report on a comprehensive hardware implementation of LEA. We present various hardware structures and their implementation results according to key sizes. Even though LEA was originally targeted at software efficiency, it also shows high efficiency when implemented as hardware. PMID:24406859
NASA Astrophysics Data System (ADS)
Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; Zhang, Youcai; Shi, JingJing; Jing, Y. P.; Liu, Chengze; Li, Shijie; Kang, Xi; Gao, Yang
2016-11-01
A method we developed recently for the reconstruction of the initial density field in the nearby universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial conditions, with 30723 particles evolved in a 500 {h}-1 {Mpc} box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of Sloan Digital Sky Survey galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depends on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively, even for samples of small volumes.
Development of a mechanism for nitrate photochemistry in snow.
Bock, Josué; Jacobi, Hans-Werner
2010-02-04
A reaction mechanism to reproduce photochemical processes in the snow is reported. We developed a box model to represent snow chemistry. Constrained by laboratory experiments carried out with artificial snow, we deduced first a reaction mechanism for N-containing species including 13 reactions. An optimization tool was developed to adjust systematically unknown photolysis rates of nitrate and nitrite (NO(2)(-)) and transfer rates of nitrogen oxides from the snow to the gas phase resulting in an optimum fit with respect to the experimental data. Further experiments with natural snow samples are presented, indicating that NO(2)(-) concentrations were much lower than in the artificial snow experiments. These observations were used to extend the reaction mechanism into a more general scheme including hydrogen peroxide (H(2)O(2)) and formaldehyde (HCHO) chemistry leading to a set of 18 reactions. The simulations indicate the importance of H(2)O(2) and HCHO as either a source or sink of hydroxyl radicals in the snow photochemistry mechanism. The addition of H(2)O(2) and HCHO in the mechanism allows the reproduction of the observed low NO(2)(-) concentration.
Ecology and Economics of Using Native Managed Bees for Almond Pollination.
Koh, Insu; Lonsdorf, Eric V; Artz, Derek R; Pitts-Singer, Theresa L; Ricketts, Taylor H
2018-02-09
Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Barker, Elizabeth I; Ashton, Neil W
2016-03-01
The Physcomitrella pseudochromosomal genome assembly revealed previously invisible synteny enabling realisation of the full potential of shared synteny as a tool for probing evolution of this plant's MADS-box gene family. Assembly of the sequenced genome of Physcomitrella patens into 27 mega-scaffolds (pseudochromosomes) has confirmed the major predictions of our earlier model of expansion of the MADS-box gene family in the Physcomitrella lineage. Additionally, microsynteny has been conserved in the immediate vicinity of some recent duplicates of MADS-box genes. However, comparison of non-syntenic MIKC MADS-box genes and neighbouring genes indicates that chromosomal rearrangements and/or sequence degeneration have destroyed shared synteny over longer distances (macrosynteny) around MADS-box genes despite subsets comprising two or three MIKC genes having remained syntenic. In contrast, half of the type I MADS-box genes have been transposed creating new syntenic relations with MIKC genes. This implies that conservation of ancient ancestral synteny of MIKC genes and of more recently acquired synteny of type I and MIKC genes may be selectively advantageous. Our revised model predicts the birth rate of MIKC genes in Physcomitrella is higher than that of type I genes. However, this difference is attributable to an early tandem duplication and an early segmental duplication of MIKC genes prior to the two polyploidisations that account for most of the expansion of the MADS-box gene family in Physcomitrella. Furthermore, this early segmental duplication spawned two chromosomal lineages: one with a MIKC (C) gene, belonging to the PPM2 clade, in close proximity to one or a pair of MIKC* genes and another with a MIKC (C) gene, belonging to the PpMADS-S clade, characterised by greater separation from syntenic MIKC* genes. Our model has evolutionary implications for the Physcomitrella karyotype.
Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin
2015-11-01
The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.
NASA Astrophysics Data System (ADS)
Yoshino, Akira; Yamauchi, Chisato
2015-02-01
We investigate box/peanut and bar structures in image data of edge-on and face-on nearby galaxies taken from the Sloan Digital Sky Survey (SDSS) to present catalogues containing the surface brightness parameters and the morphology classification. About 1700 edge-on galaxies and 2600 face-on galaxies are selected from SDSS DR7 in the g, r and i-bands. The images of each galaxy are fitted with the model of two-dimensional surface brightness of the Sérsic bulge and exponential disk. After removing some irregular data, the box/peanut, bar and other structures are easily distinguished by eye using residual (observed minus model) images. We find 292 box/peanut structures in the 1329 edge-on samples and 630 bar structures in 1890 face-on samples in the i-band, after removing some irregular data. The fraction of box/peanut galaxies is about 22 per cent against the edge-on samples, and that of bar galaxies is about 33 per cent (about 50 per cent if 629 elliptical galaxies are removed) against the face-on samples. Furthermore the strengths of the box/peanuts and bars are evaluated as strong, standard or weak. We find that the strength increases slightly with increasing B/T (bulge-to-total flux ratio), and that the fraction of box/peanuts is generally about a half of that of bars, irrespective of the strength and B/T. Our result supports the idea that a box/peanut is a bar seen edge-on.
X-Ray Lines from Dark Matter Annihilation at the keV Scale.
Brdar, Vedran; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping
2018-02-09
In 2014, several groups reported hints for a yet unidentified line in astrophysical x-ray signals from galaxies and galaxy clusters at an energy of 3.5 keV. While it is not unlikely that this line is simply a reflection of imperfectly modeled atomic transitions, it has renewed the community's interest in models of keV-scale dark matter, whose decay would lead to such a line. The alternative possibility of dark matter annihilation into monochromatic photons is far less explored, a lapse that we strive to amend in this Letter. More precisely, we introduce a novel model of fermionic dark matter χ with O(keV) mass, annihilating to a scalar state ϕ which in turn decays to photons, for instance via loops of heavy vectorlike fermions. The resulting photon spectrum is box shaped, but if χ and ϕ are nearly degenerate in mass, it can also resemble a narrow line. We discuss dark matter production via two different mechanisms-misalignment and freeze-in-which both turn out to be viable in vast regions of parameter space. We constrain the model using astrophysical x-ray data, and we demonstrate that, thanks to the velocity dependence of the annihilation cross section, it has the potential to reconcile the various observations of the 3.5 keV line. We finally argue that the model can easily avoid structure formation constraints on keV-scale dark matter.
X-Ray Lines from Dark Matter Annihilation at the keV Scale
NASA Astrophysics Data System (ADS)
Brdar, Vedran; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping
2018-02-01
In 2014, several groups reported hints for a yet unidentified line in astrophysical x-ray signals from galaxies and galaxy clusters at an energy of 3.5 keV. While it is not unlikely that this line is simply a reflection of imperfectly modeled atomic transitions, it has renewed the community's interest in models of keV-scale dark matter, whose decay would lead to such a line. The alternative possibility of dark matter annihilation into monochromatic photons is far less explored, a lapse that we strive to amend in this Letter. More precisely, we introduce a novel model of fermionic dark matter χ with O (keV ) mass, annihilating to a scalar state ϕ which in turn decays to photons, for instance via loops of heavy vectorlike fermions. The resulting photon spectrum is box shaped, but if χ and ϕ are nearly degenerate in mass, it can also resemble a narrow line. We discuss dark matter production via two different mechanisms—misalignment and freeze-in—which both turn out to be viable in vast regions of parameter space. We constrain the model using astrophysical x-ray data, and we demonstrate that, thanks to the velocity dependence of the annihilation cross section, it has the potential to reconcile the various observations of the 3.5 keV line. We finally argue that the model can easily avoid structure formation constraints on keV-scale dark matter.
NASA Astrophysics Data System (ADS)
Ma, Prettiny K.; Zhao, Yunliang; Robinson, Allen L.; Worton, David R.; Goldstein, Allen H.; Ortega, Amber M.; Jimenez, Jose L.; Zotter, Peter; Prévôt, André S. H.; Szidat, Sönke; Hayes, Patrick L.
2017-08-01
Secondary organic aerosol (SOA) is an important contributor to fine particulate matter (PM) mass in polluted regions, and its modeling remains poorly constrained. A box model is developed that uses recently published literature parameterizations and data sets to better constrain and evaluate the formation pathways and precursors of urban SOA during the CalNex 2010 campaign in Los Angeles. When using the measurements of intermediate-volatility organic compounds (IVOCs) reported in Zhao et al. (2014) and of semi-volatile organic compounds (SVOCs) reported in Worton et al. (2014) the model is biased high at longer photochemical ages, whereas at shorter photochemical ages it is biased low, if the yields for VOC oxidation are not updated. The parameterizations using an updated version of the yields, which takes into account the effect of gas-phase wall losses in environmental chambers, show model-measurement agreement at longer photochemical ages, even though some low bias at short photochemical ages still remains. Furthermore, the fossil and non-fossil carbon split of urban SOA simulated by the model is consistent with measurements at the Pasadena ground site. Multi-generation oxidation mechanisms are often employed in SOA models to increase the SOA yields derived from environmental chamber experiments in order to obtain better model-measurement agreement. However, there are many uncertainties associated with these aging mechanisms. Thus, SOA formation in the model is compared to data from an oxidation flow reactor (OFR) in order to constrain SOA formation at longer photochemical ages than observed in urban air. The model predicts similar SOA mass at short to moderate photochemical ages when the aging mechanisms or the updated version of the yields for VOC oxidation are implemented. The latter case has SOA formation rates that are more consistent with observations from the OFR though. Aging mechanisms may still play an important role in SOA chemistry, but the additional mass formed by functionalization reactions during aging would need to be offset by gas-phase fragmentation of SVOCs. All the model cases evaluated in this work show a large majority of the urban SOA (70-83 %) at Pasadena coming from the oxidation of primary SVOCs (P-SVOCs) and primary IVOCs (P-IVOCs). The importance of these two types of precursors is further supported by analyzing the percentage of SOA formed at long photochemical ages (1.5 days) as a function of the precursor rate constant. The P-SVOCs and P-IVOCs have rate constants that are similar to highly reactive VOCs that have been previously found to strongly correlate with SOA formation potential measured by the OFR. Finally, the volatility distribution of the total organic mass (gas and particle phase) in the model is compared against measurements. The total SVOC mass simulated is similar to the measurements, but there are important differences in the measured and modeled volatility distributions. A likely reason for the difference is the lack of particle-phase reactions in the model that can oligomerize and/or continue to oxidize organic compounds even after they partition to the particle phase.
Impact of oceanic processes on the carbon cycle during the last termination
NASA Astrophysics Data System (ADS)
Bouttes, N.; Paillard, D.; Roche, D. M.; Waelbroeck, C.; Kageyama, M.; Lourantou, A.; Michel, E.; Bopp, L.
2012-01-01
During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with ice core data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.
Impact of oceanic processes on the carbon cycle during the last termination
NASA Astrophysics Data System (ADS)
Bouttes, N.; Paillard, D.; Roche, D. M.; Waelbroeck, C.; Kageyama, M.; Lourantou, A.; Michel, E.; Bopp, L.
2011-06-01
During the last termination (from ~18 000 yr ago to ~9000 yr ago) the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a climate-carbon coupled model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependant diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 yr ago, when the Antarctic ice sheet extent was at its maximum. Sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario it is possible to simulate both the amplitude and timing of the CO2 increase during the last termination in agreement with data. The atmospheric δ13C appears to be highly sensitive to changes in the terrestrial biosphere, underlining the need to better constrain the vegetation evolution during the termination.
Constrained reduced-order models based on proper orthogonal decomposition
Reddy, Sohail R.; Freno, Brian Andrew; Cizmas, Paul G. A.; ...
2017-04-09
A novel approach is presented to constrain reduced-order models (ROM) based on proper orthogonal decomposition (POD). The Karush–Kuhn–Tucker (KKT) conditions were applied to the traditional reduced-order model to constrain the solution to user-defined bounds. The constrained reduced-order model (C-ROM) was applied and validated against the analytical solution to the first-order wave equation. C-ROM was also applied to the analysis of fluidized beds. Lastly, it was shown that the ROM and C-ROM produced accurate results and that C-ROM was less sensitive to error propagation through time than the ROM.
Spatial Pattern of Cell Damage in Tissue from Heavy Ions
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A new Monte Carlo algorithm was developed that can model passage of heavy ions in a tissue, and their action on the cellular matrix for 2- or 3-dimensional cases. The build-up of secondaries such as projectile fragments, target fragments, other light fragments, and delta-rays was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix). A simple model of tissue was given as abstract spheres with close approximation to real cell geometries (3-d cell matrix), as well as a realistic model of tissue was proposed based on microscopy images. Image segmentation was used to identify cells in an irradiated cell culture monolayer, or slices of tissue. The cells were then inserted into the model box pixel by pixel. In the case of cell monolayers (2-d), the image size may exceed the modeled box size. Such image was is moved with respect to the box in order to sample as many cells as possible. In the case of the simple tissue (3-d), the tissue box is modeled with periodic boundary conditions, which extrapolate the technique to macroscopic volumes of tissue. For real tissue, specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated based on BNL data, and other experimental data.
Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog
NASA Astrophysics Data System (ADS)
Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh
2013-06-01
In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2016-01-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can…
Analysis of Time-Series Quasi-Experiments. Final Report.
ERIC Educational Resources Information Center
Glass, Gene V.; Maguire, Thomas O.
The objective of this project was to investigate the adequacy of statistical models developed by G. E. P. Box and G. C. Tiao for the analysis of time-series quasi-experiments: (1) The basic model developed by Box and Tiao is applied to actual time-series experiment data from two separate experiments, one in psychology and one in educational…
1974-01-01
REGRESSION MODEL - THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January 1974 Nelson Delfino d’Avila Mascarenha;? Image...Report 520 DIGITAL IMAGE RESTORATION UNDER A REGRESSION MODEL THE UNCONSTRAINED, LINEAR EQUALITY AND INEQUALITY CONSTRAINED APPROACHES January...a two- dimensional form adequately describes the linear model . A dis- cretization is performed by using quadrature methods. By trans
Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, M D; Cole, S; Frenk, C S
2011-02-14
We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a powermore » spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.« less
Flow-covariate prediction of stream pesticide concentrations.
Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin
2018-01-01
Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.
DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding
Putnam, Andrea A.
2013-01-01
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748
NASA Astrophysics Data System (ADS)
Vasconcelos, Francisco; Costa, Alexandre; Gandu, Adilson; Sales, Domingo; Araújo, Luiz
2013-04-01
Regional Climate Simulations were performed with RAMS6.0 to evaluate possible changes in the behaviour of the rainy season over the Amazon region, within the CORDEX domain of the Inter-tropical Americas. We forced the regional model using data from one of the CMIP5 participants (HadGEM2-ES), both for the Historical Experiment (1980-2005) and along the XXI century under RCP 8.5 (heavy-emission scenario). Regarding projections, we analyzed results for three time slices, short (2014-2035), middle (2044-2065) and long term (2078-2099), according to the following steps. First, the spatially averaged precipitation in non-overlapping pentads over 7 sub-regions over northern South America was calculated ("boxes" 1 to 7). Then, we calculated the climatological annual cycle for each one of them. Finally, dates of the onset and demise of the rainy season are found, validating the model results against GPCP observations and checking for projected changes. In general, in the Historical Experiment, the model delays the onset of the rainy season over the northern areas and anticipates it over most inland sub-regions. Over eastern Amazon, the regional model represents it properly, besides a delay in the demise of about one month. In short-term projections, there is a slight increase in precipitation and a modest anticipation of the rainy season onset in the coastal areas. Projected changes in the annual cycle of most sub-regions are relatively modest for the short-term and mid-term periods, but may become very significant by the end of the century. Over Colombia (Box 1), which has a bimodal precipitation annual cycle, the model projects a late century increase in the first precipitation peak. Little change is projected for the two boxes roughly covering Venezuela, the Guianas and the northernmost portion of northern Brazilian states (Boxes 2 and 3). The box covering northern Peru and Ecuador (Box 4) shows increased March-April precipitation, but with no significant changes in the phase of the annual cycle. The most important changes are expected over the three boxes corresponding to Brazilian Amazon. Over the westernmost box of them (Box 5), enhanced precipitation is projected towards the end of the century with a marked development of a bimodal annual distribution in the simulation, with well-defined rainfall peaks in November-January and March-May. Over Box 6 (Eastern Amazon) the most dramatic change is expected, with very large reduction of the springtime precipitation and a shift of about a 5-7 pentads in the onset of the rainy season over that area (in contrast, the later portion and the demise of the rainy season remain essentially unchanged). Finally, over Box 7, which covers the transition between the Amazon rainforest and the semiarid Northeast Brazil, the major projected features are a general increase in the wet season precipitation accompanied by a reduction of the dry season rainfall. Onset and demise dates of the rainy season are expected to remain unchanged over that area.
NASA Astrophysics Data System (ADS)
Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Gascuel-Odoux, Chantal; Savenije, Hubert
2014-05-01
Hydrological models are frequently characterized by what is often considered to be adequate calibration performances. In many cases, however, these models experience a substantial uncertainty and performance decrease in validation periods, thus resulting in poor predictive power. Besides the likely presence of data errors, this observation can point towards wrong or insufficient representations of the underlying processes and their heterogeneity. In other words, right results are generated for the wrong reasons. Thus ways are sought to increase model consistency and to thereby satisfy the contrasting priorities of the need a) to increase model complexity and b) to limit model equifinality. In this study a stepwise model development approach is chosen to test the value of an exhaustive and systematic combined use of hydrological signatures, expert knowledge and readily available, yet anecdotal and rarely exploited, hydrological information for increasing model consistency towards generating the right answer for the right reasons. A simple 3-box, 7 parameter, conceptual HBV-type model, constrained by 4 calibration objective functions was able to adequately reproduce the hydrograph with comparatively high values for the 4 objective functions in the 5-year calibration period. However, closer inspection of the results showed a dramatic decrease of model performance in the 5-year validation period. In addition, assessing the model's skill to reproduce a range of 20 hydrological signatures including, amongst others, the flow duration curve, the autocorrelation function and the rising limb density, showed that it could not adequately reproduce the vast majority of these signatures, indicating a lack of model consistency. Subsequently model complexity was increased in a stepwise way to allow for more process heterogeneity. To limit model equifinality, increase in complexity was counter-balanced by a stepwise application of "realism constraints", inferred from expert knowledge (e.g. unsaturated storage capacity of hillslopes should exceed the one of wetlands) and anecdotal hydrological information (e.g. long-term estimates of actual evaporation obtained from the Budyko framework and long-term estimates of baseflow contribution) to ensure that the model is well behaved with respect to the modeller's perception of the system. A total of 11 model set-ups with increased complexity and an increased number of realism constraints was tested. It could be shown that in spite of largely unchanged calibration performance, compared to the simplest set-up, the most complex model set-up (12 parameters, 8 constraints) exhibited significantly increased performance in the validation period while uncertainty did not increase. In addition, the most complex model was characterized by a substantially increased skill to reproduce all 20 signatures, indicating a more suitable representation of the system. The results suggest that a model, "well" constrained by 4 calibration objective functions may still be an inadequate representation of the system and that increasing model complexity, if counter-balanced by realism constraints, can indeed increase predictive performance of a model and its skill to reproduce a range of hydrological signatures, but that it does not necessarily result in increased uncertainty. The results also strongly illustrate the need to move away from automated model calibration towards a more general expert-knowledge driven strategy of constraining models if a certain level of model consistency is to be achieved.
Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L
2017-10-17
Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less
Simulating Cosmic Reionization and Its Observable Consequences
NASA Astrophysics Data System (ADS)
Shapiro, Paul
2017-01-01
I summarize recent progress in modelling the epoch of reionization by large- scale simulations of cosmic structure formation, radiative transfer and their interplay, which trace the ionization fronts that swept across the IGM, to predict observable signatures. Reionization by starlight from early galaxies affected their evolution, impacting reionization, itself, and imprinting the galaxies with a memory of reionization. Star formation suppression, e.g., may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. I describe CoDa (''Cosmic Dawn''), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster. The new RAMSES-CUDATON hybrid CPU-GPU code took 11 days to perform this simulation on the Titan supercomputer at Oak Ridge National Laboratory, with 4096-cubed N-body particles for the dark matter and 4096-cubed cells for the atomic gas and ionizing radiation.
NASA Technical Reports Server (NTRS)
Allen, Dale; Pickering, Kenneth; Pinder, Robert; Koshak, William; Pierce, Thomas
2011-01-01
Lightning-NO emissions are responsible for 15-30 ppbv enhancements in upper tropospheric ozone over the eastern United States during the summer time. Enhancements vary from year to year but were particularly large during the summer of 2006, a period during which meteorological conditions were particularly conducive to ozone formation. A lightning-NO parameterization has been developed that can be used with the CMAQ model. Lightning-NO emissions in this scheme are assumed to be proportional to convective precipitation rate and scaled so that monthly average flash rates in each grid box match National Lightning Detection Network (NLDN) observed flash rates after adjusting for climatological intracloud to cloud-to-ground (IC/CG) ratios. The contribution of lightning-NO emissions to eastern United States NOx and ozone distributions during the summer of 2006 will be evaluated by comparing results of 12- km CMAQ simulations with and without lightning-NO emissions to measurements from the IONS field campaign and to satellite retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Special attention will be paid to the impact of the assumed vertical distribution of emissions on upper tropospheric NOx and ozone amounts.
Chiaverano, Luciano M; Holland, Brenden S; Crow, Gerald L; Blair, Landy; Yanagihara, Angel A
2013-01-01
The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8-12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998- Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8-12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998-2001; 2006-2011) and decrease (2001-2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.
Chiaverano, Luciano M.; Holland, Brenden S.; Crow, Gerald L.; Blair, Landy; Yanagihara, Angel A.
2013-01-01
The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models (GAM), Change-Point Analysis (CPA), and General Regression Models (GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach. PMID:24194856
Compensated Box-Jenkins transfer function for short term load forecast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breipohl, A.; Yu, Z.; Lee, F.N.
In the past years, the Box-Jenkins ARIMA method and the Box-Jenkins transfer function method (BJTF) have been among the most commonly used methods for short term electrical load forecasting. But when there exists a sudden change in the temperature, both methods tend to exhibit larger errors in the forecast. This paper demonstrates that the load forecasting errors resulting from either the BJ ARIMA model or the BJTF model are not simply white noise, but rather well-patterned noise, and the patterns in the noise can be used to improve the forecasts. Thus a compensated Box-Jenkins transfer method (CBJTF) is proposed tomore » improve the accuracy of the load prediction. Some case studies have been made which result in about a 14-33% reduction of the root mean square (RMS) errors of the forecasts, depending on the compensation time period as well as the compensation method used.« less
Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine
2014-06-01
F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.
The Visible Signature Modelling and Evaluation ToolBox
2008-12-01
Technology Organisation DSTO–TR–2212 ABSTRACT A new software suite, the Visible Signature ToolBox ( VST ), has been developed to model and evaluate the...visible signatures of maritime platforms. The VST is a collection of commercial, off-the-shelf software and DSTO developed pro- grams and procedures. The...suite. The VST can be utilised to model and assess visible signatures of maritime platforms. A number of examples are presented to demonstrate the
NASA Astrophysics Data System (ADS)
Javed, M. U.; Hens, K.; Martinez, M.; Kubistin, D.; Novelli, A.; Beygi, Z. H.; Axinte, R.; Nölscher, A. C.; Sinha, V.; Song, W.; Johnson, A. M.; Auld, J.; Bohn, B.; Sander, R.; Taraborrelli, D.; Williams, J.; Fischer, H.; Lelieveld, J.; Harder, H.
2016-12-01
Peroxy radicals play a key role in ozone (O3) production and hydroxyl (OH) recycling influencing the self-cleansing capacity and air quality. Organic peroxy radical (RO2) concentrations are estimated by three different approaches for a boreal forest, based on the field campaign HUMPPA-COPEC 2010 in Southern Finland. RO2 concentrations were simulated by a box model constrained by the comprehensive dataset from the campaign and cross-checked against the photostationary state (PSS) of NOx [= nitric oxide (NO) + nitrogen dioxide (NO2)] calculations. The model simulated RO2 concentrations appear too low to explain the measured PSS of NOx. As the atmospheric RO2 production is proportional to OH loss, the total OH loss rate frequency (total OH reactivity) in the model is underestimated compared to the measurements. The total OH reactivity of the model is tuned to match the observed total OH reactivity by increasing the biogenic volatile organic compound (BVOCs) concentrations for the model simulations. The new-found simulated RO2 concentrations based on the tuned OH reactivity explain the measured PSS of NOx reasonably well. Furthermore, the sensitivity of the NOx lifetime and the catalytic efficiency of NOx (CE) in O3 production, in the context of organic alkyl nitrate (RONO2) formation, was also investigated. Based on the campaign data, it was found that the lifetime of NOx and the CE are reduced and are sensitive to the RONO2 formation under low-NOx conditions, which matches a previous model-based study.
The impact performance of headguards for combat sports.
McIntosh, Andrew S; Patton, Declan A
2015-09-01
To assess the impact energy attenuation performance of a range of headguards for combat sports. Seven headguards worn during combat sport training or competition, including two Association Internationale de Boxe Amateur (AIBA)-approved boxing models, were tested using drop tests. An International Organization for Standardization (ISO) rigid headform was used with a 5.6 kg drop assembly mass. Tests were conducted against a flat rigid anvil both with and without a boxing glove section. The centre forehead and lateral headguard areas were tested. Peak headform acceleration was measured. Tests from a selection of drop heights and repeated tests on the same headguard were conducted. Headguard performance varied by test condition. For the 0.4 m rigid anvil tests, the best model headguard was the thickest producing an average peak headform acceleration over 5 tests of 48 g compared with 456 g for the worst model. The mean peak acceleration for the 0.4, 0.5 and 0.6 frontal and lateral rigid anvil impact tests was between 32% and 40% lower for the Top Ten boxing model compared with the Adidas boxing model. The headguard performance deterioration observed with repeat impact against the flat anvil was reduced for impacts against the glove section. The overall reduction in acceleration for the combination of glove and headguard in comparison to the headguard condition was in the range of 72-93% for 0.6 and 0.8 m drop tests. The impact tests show the benefits of performance testing in identifying differences between headguard models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2007-06-01
4.2 Creating the Skybox and Terrain Model .........................................................................7 4.3 Creating New Textures... Skybox and Terrain Model The next step was to build a sky box. Since it already resided in Raven Shield, the creation of the sky box was limited to
Thinking inside the Tool Box: Creativity, Constraints, and the Colossal Portraits of Chuck Close
ERIC Educational Resources Information Center
Stokes, Patricia D.
2014-01-01
This article presents a problem-solving model to examine the often problematic relationship between expertise and creativity. The model has two premises, each the opposite of a common cliché. The first cliché asserts that creativity requires thinking outside-the-box. The first premise argues that experts can only think and problem solve inside the…
NASA Astrophysics Data System (ADS)
Olson, R.; An, S. I.
2016-12-01
Atlantic Meridional Overturning Circulation (AMOC) in the ocean might slow down in the future, which can lead to a host of climatic effects in North Atlantic and throughout the world. Despite improvements in climate models and availability of new observations, AMOC projections remain uncertain. Here we constrain CMIP5 multi-model ensemble output with observations of a recently developed AMOC index to provide improved Bayesian predictions of future AMOC. Specifically, we first calculate yearly AMOC index loosely based on Rahmstorf et al. (2015) for years 1880—2004 for both observations, and the CMIP5 models for which relevant output is available. We then assign a weight to each model based on a Bayesian Model Averaging method that accounts for differential model skill in terms of both mean state and variability. We include the temporal autocorrelation in climate model errors, and account for the uncertainty in the parameters of our statistical model. We use the weights to provide future weighted projections of AMOC, and compare them to un-weighted ones. Our projections use bootstrapping to account for uncertainty in internal AMOC variability. We also perform spectral and other statistical analyses to show that AMOC index variability, both in models and in observations, is consistent with red noise. Our results improve on and complement previous work by using a new ensemble of climate models, a different observational metric, and an improved Bayesian weighting method that accounts for differential model skill at reproducing internal variability. Reference: Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5(5), 475-480. doi:10.1038/nclimate2554
Ben Abdallah, Nada M-B; Fuss, Johannes; Trusel, Massimo; Galsworthy, Michael J; Bobsin, Kristin; Colacicco, Giovanni; Deacon, Robert M J; Riva, Marco A; Kellendonk, Christoph; Sprengel, Rolf; Lipp, Hans-Peter; Gass, Peter
2011-01-01
Deficits in executive functions are key features of schizophrenia. Rodent behavioral paradigms used so far to find animal correlates of such deficits require extensive effort and time. The puzzle box is a problem-solving test in which mice are required to complete escape tasks of increasing difficulty within a limited amount of time. Previous data have indicated that it is a quick but highly reliable test of higher-order cognitive functioning. We evaluated the use of the puzzle box to explore executive functioning in five different mouse models of schizophrenia: mice with prefrontal cortex and hippocampus lesions, mice treated sub-chronically with the NMDA-receptor antagonist MK-801, mice constitutively lacking the GluA1 subunit of AMPA-receptors, and mice over-expressing dopamine D2 receptors in the striatum. All mice displayed altered executive functions in the puzzle box, although the nature and extent of the deficits varied between the different models. Deficits were strongest in hippocampus-lesioned and GluA1 knockout mice, while more subtle deficits but specific to problem solving were found in the medial prefrontal-lesioned mice, MK-801-treated mice, and in mice with striatal overexpression of D2 receptors. Data from this study demonstrate the utility of the puzzle box as an effective screening tool for executive functions in general and for schizophrenia mouse models in particular. Published by Elsevier Inc.
Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob
SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less
Richter, Jonas N; Hochner, Binyamin; Kuba, Michael J
2015-04-01
The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside a transparent Perspex box with a hole at the center that allowed the insertion of a single arm. Animals had to reach out through the hole toward a target, to retrieve a food reward and fetch it. All subjects successfully adjusted their movements to the constraint without an adaptation phase. During reaching tasks, the animals showed two movement strategies: stereotypical bend propagation reachings, which were established at the hole of the Perspex box and variant waving-like movements that showed no bend propagations. During fetching movements, no complete pseudo-joint fetching was observed outside the box and subjects pulled their arms through the hole in a pull-in like movement. Our findings show that there is some flexibility in the octopus motor system to adapt to a novel situation. However, at present, it seems that these changes are more an effect of random choices between different alternative motor programs, without showing clear learning effects in the choice between the alternatives. Interestingly, animals were able to adapt the fetching movements to the physical constraint, or as an alternative explanation, they could switch the motor primitive fetching to a different motor primitive 'arm pulling'. © 2015. Published by The Company of Biologists Ltd.
Pal, Suvra; Balakrishnan, Narayanaswamy
2018-05-01
In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.
The time series approach to short term load forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, M.T.; Behr, S.M.
The application of time series analysis methods to load forecasting is reviewed. It is shown than Box and Jenkins time series models, in particular, are well suited to this application. The logical and organized procedures for model development using the autocorrelation function make these models particularly attractive. One of the drawbacks of these models is the inability to accurately represent the nonlinear relationship between load and temperature. A simple procedure for overcoming this difficulty is introduced, and several Box and Jenkins models are compared with a forecasting procedure currently used by a utility company.
Flutter analysis of composite box beams
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Greenman, Matthew
1995-01-01
The dynamic aeroelastic instability of flutter is an important factor in the design of modern high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay flutter. To obtain an optimum design, we need an accurate as well as efficient model. As a first step towards this goal, flutter analysis is carried out for an unswept composite box beam using a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration analysis is carried out. These fundamental modes are used to get the flutter solution using the V-g method. Future work is intended to build on this foundation.
NASA Astrophysics Data System (ADS)
Liu, Y.; Lu, K.; Li, X.; Dong, H.; Tan, Z.; Wu, Y.; Zeng, L.; Bohn, B.; Broch, S.; Zou, Q.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Rohrer, F.; Min, K. E.; Brown, S. S.; Wahner, A.; Zhang, Y.
2017-12-01
The photolysis of HONO, was frequently determined to be the major OH primary production channels in the city clusters of China. However, the source of ambient HONO is still a mystery needs to be elucidated. In the framework of an integrated field experiment performed at a rural site in the North China Plain (NCP), HONO was measured by two LOPAP instruments and one CEAS instrument in order to obtain the best quality of the observations and comprehensive parameters that support the exploration of the HONO budget were completely available. In general, the observed HONO concentrations by these three different instruments showed reasonable good agreement as indicated by the high correlation efficiencies while the difference of the regression slopes showed the HONO measured uncertainty is about 15% which is twice about the known uncertainties from each instrument. The diurnal variation of the observed HONO concentrations showed high value (1 -5 ppb) at night and small values (100 - 500 ppt) around noon time which is similar to other reported campaigns. With the assumption of photo stationary state, the missing HONO source is determined experimentally constrained to the observed HONO, jHONO, OH, and NO. Possible HONO formation rates from the chemical reactions as proposed from literatures were calculated in the framework of an observational based box model. It is found that heteorogeneous uptake of NO2 on the ground and the photolysis of nitrate were the major HONO sources for this site when constrained with the recommended kinetc parameters. Uncertainty analysis showed that the uptake coefficient of NO2 and the photolysis frequency of nitrate are the important kinetc factors to be determined in the future studies. In addition, the direct emission of HONO from soil is found to be very important for a few days after fertilization.
Dynamics of movie competition and popularity spreading in recommender systems.
Yeung, C H; Cimini, G; Jin, C-H
2011-01-01
We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers' reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.
Dynamics of movie competition and popularity spreading in recommender systems
NASA Astrophysics Data System (ADS)
Yeung, C. H.; Cimini, G.; Jin, C.-H.
2011-01-01
We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers’ reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.
Autocorrelated process control: Geometric Brownian Motion approach versus Box-Jenkins approach
NASA Astrophysics Data System (ADS)
Salleh, R. M.; Zawawi, N. I.; Gan, Z. F.; Nor, M. E.
2018-04-01
Existing of autocorrelation will bring a significant effect on the performance and accuracy of process control if the problem does not handle carefully. When dealing with autocorrelated process, Box-Jenkins method will be preferred because of the popularity. However, the computation of Box-Jenkins method is too complicated and challenging which cause of time-consuming. Therefore, an alternative method which known as Geometric Brownian Motion (GBM) is introduced to monitor the autocorrelated process. One real case of furnace temperature data is conducted to compare the performance of Box-Jenkins and GBM methods in monitoring autocorrelation process. Both methods give the same results in terms of model accuracy and monitoring process control. Yet, GBM is superior compared to Box-Jenkins method due to its simplicity and practically with shorter computational time.
Box truss analysis and technology development. Task 1: Mesh analysis and control
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.
1985-01-01
An analytical tool was developed to model, analyze and predict RF performance of box truss antennas with reflective mesh surfaces. The analysis system is unique in that it integrates custom written programs for cord tied mesh surfaces, thereby drastically reducing the cost of analysis. The analysis system is capable of determining the RF performance of antennas under any type of manufacturing or operating environment by integrating together the various disciplines of design, finite element analysis, surface best fit analysis and RF analysis. The Integrated Mesh Analysis System consists of six separate programs: The Mesh Tie System Model Generator, The Loadcase Generator, The Model Optimizer, The Model Solver, The Surface Topography Solver and The RF Performance Solver. Additionally, a study using the mesh analysis system was performed to determine the effect of on orbit calibration, i.e., surface adjustment, on a typical box truss antenna.
NASA Astrophysics Data System (ADS)
Keck, John W.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona; Hong, Jae Sub; Kahn, Steven M.; Lubin, Philip M.; McLean, Ryan; Pivovaroff, Michael J.; Seiffert, Michael; Wurtz, Ron; Ziock, Klaus P.
2001-12-01
We present a long-term multiwavelength light curve of Galactic black hole candidate GRS 1758-258 by combining previously published and archival data from Granat, ROSAT, the Compton Gamma Ray Observatory, the Rossi X-Ray Timing Explorer, BeppoSAX, ASCA, EXOSAT, and the Very Large Array. In addition, we include the first spectral results from the balloon-borne Gamma-Ray Arcminute Telescope Imaging System (GRATIS). In light of divergent analyses of the 1991-1993 ROSAT observations, we have reanalyzed these data; we find that the soft X-rays track the hard X-rays and that the fits require no blackbody component-indicating that GRS 1758-258 did not go to the high state in 1993. We offer an interpretation of these long-baseline data based on the advection-dominated accretion flow (ADAF) model for a system with m<~mcrit. We find that the 1990-1993 coeval hard and soft X-ray observations support the ADAF predictions. We discuss a new way to constrain black hole mass with spectral data and the ADAF theory and apply this technique to GRS 1758-258 to find M1>~8-9 Msolar at an assumed distance of 8.5 kpc. Further investigations of the ADAF model allow us to evaluate the model critically against the 1996 data and flux-flux diagram of Barret, McClintock, & Grindlay and to understand the limits of the latter's ``X-ray burster box.''
POD Model Reconstruction for Gray-Box Fault Detection
NASA Technical Reports Server (NTRS)
Park, Han; Zak, Michail
2007-01-01
Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.
Estimating on-orbit optical properties for GNSS satellites
NASA Astrophysics Data System (ADS)
Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter
One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
ERIC Educational Resources Information Center
Science Teacher, 1988
1988-01-01
Reviews two computer software packages for use in physical science, physics, and chemistry classes. Includes "Physics of Model Rocketry" for Apple II, and "Black Box" for Apple II and IBM compatible computers. "Black Box" is designed to help students understand the concept of indirect evidence. (CW)
A Statistical Framework for Analyzing Cyber Threats
defender cares most about the attacks against certain ports or services). The grey-box statistical framework formulates a new methodology of Cybersecurity ...the design of prediction models. Our research showed that the grey-box framework is effective in predicting cybersecurity situational awareness.
Probability of Decompression Sickness in No-Stop Air Diving
2004-12-01
21 Figure 10. VVal-1 8 and StandAir Models .......................................... 22 Figure 11. Comparisons for...recommendations appear in heavy boxes. Information outside the heavy boxes allows comparisons between models. The recommendations are essentially arbitrary and...N2-0 2 Saturation Dives in Humans: DCS Risk and Evidence of a Threshold," Undersea Hyperbaric Medicine, In Press. 15. S. S. Survanshi, E. D. Parker, E
Okada, Kazuma; Moriya, Shigeki; Haji, Takashi; Abe, Kazuyuki
2013-06-01
Using 11 consensus primer pairs designed from S-linked F-box genes of apple and Japanese pear, 10 new F-box genes (MdFBX21 to 30) were isolated from the apple cultivar 'Spartan' (S(9)S(10)). MdFBX21 to 23 and MdFBX24 to 30 were completely linked to the S(9) -RNase and S(10-)RNase, respectively, and showed pollen-specific expression and S-haplotype-specific polymorphisms. Therefore, these 10 F-box genes are good candidates for the pollen determinant of self-incompatibility in apple. Phylogenetic analysis and comparison of deduced amino acid sequences of MdFBX21 to 30 with those of 25 S-linked F-box genes previously isolated from apple showed that a deduced amino acid identity of greater than 88.0 % can be used as the tentative criterion to classify F-box genes into one type. Using this criterion, 31 of 35 F-box genes of apple were classified into 11 types (SFBB1-11). All types included F-box genes derived from S(3-) and S(9-)haplotypes, and seven types included F-box genes derived from S(3-), S(9-), and S(10-)haplotypes. Moreover, comparison of nucleotide sequences of S-RNases and multiple F-box genes among S(3-), S(9-), and S(10-)haplotypes suggested that F-box genes within each type showed high nucleotide identity regardless of the identity of the S-RNase. The large number of F-box genes as candidates for the pollen determinant and the high degree of conservation within each type are consistent with the collaborative non-self-recognition model reported for Petunia. These findings support that the collaborative non-self-recognition system also exists in apple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saurav, Kumar; Chandan, Vikas
District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less
Compound Heterozygosity for Y Box Proteins Causes Sterility Due to Loss of Translational Repression
Sharma, Manju; Dearth, Andrea; Smith, Benjamin; Braun, Robert E.
2015-01-01
The Y-box proteins YBX2 and YBX3 bind RNA and DNA and are required for metazoan development and fertility. However, possible functional redundancy between YBX2 and YBX3 has prevented elucidation of their molecular function as RNA masking proteins and identification of their target RNAs. To investigate possible functional redundancy between YBX2 and YBX3, we attempted to construct Ybx2 -/- ;Ybx3 -/- double mutants using a previously reported Ybx2 -/- model and a newly generated global Ybx3 -/- model. Loss of YBX3 resulted in reduced male fertility and defects in spermatid differentiation. However, homozygous double mutants could not be generated as haploinsufficiency of both Ybx2 and Ybx3 caused sterility characterized by extensive defects in spermatid differentiation. RNA sequence analysis of mRNP and polysome occupancy in single and compound Ybx2/3 heterozygotes revealed loss of translational repression almost exclusively in the compound Ybx2/3 heterozygotes. RNAseq analysis also demonstrated that Y-box protein dose-dependent loss of translational regulation was inversely correlated with the presence of a Y box recognition target sequence, suggesting that Y box proteins bind RNA hierarchically to modulate translation in a range of targets. PMID:26646932
Three-dimensional Model of Tissue and Heavy Ions Effects
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.
Increasing the realism of a laparoscopic box trainer: a simple, inexpensive method.
Hull, Louise; Kassab, Eva; Arora, Sonal; Kneebone, Roger
2010-01-01
Simulation-based training in medical education is increasing. Realism is an integral element of creating an engaging, effective training environment. Although physical trainers offer a low-cost alternative to expensive virtual reality (VR) simulators, many lack in realism. The aim of this research was to enhance the realism of a laparoscopic box trainer by using a simple, inexpensive method. Digital images of the abdominal cavity were captured from a VR simulator. The images were printed onto a laminated card that lined the bottom and sides of the box-trainer cavity. The standard black neoprene material that encloses the abdominal cavity was replaced with a skin-colored silicon model. The realism of the modified box trainer was assessed by surgeons, using quantitative and qualitative methodologies. Results suggest that the modified box trainer was more realistic than a standard box trainer alone. Incorporating this technique in the training of laparoscopic skills is an inexpensive means of emulating surgical reality that may enhance the engagement of the learner in simulation.
Automatic load forecasting. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.J.; Vemuri, S.
A method which lends itself to on-line forecasting of hourly electric loads is presented and the results of its use are compared to models developed using the Box-Jenkins method. The method consists of processing the historical hourly loads with a sequential least-squares estimator to identify a finite order autoregressive model which in turn is used to obtain a parsimonious autoregressive-moving average model. A procedure is also defined for incorporating temperature as a variable to improve forecasts where loads are temperature dependent. The method presented has several advantages in comparison to the Box-Jenkins method including much less human intervention and improvedmore » model identification. The method has been tested using three-hourly data from the Lincoln Electric System, Lincoln, Nebraska. In the exhaustive analyses performed on this data base this method produced significantly better results than the Box-Jenkins method. The method also proved to be more robust in that greater confidence could be placed in the accuracy of models based upon the various measures available at the identification stage.« less
NASA Astrophysics Data System (ADS)
Grant, K.; Rohling, E. J.; Amies, J.
2017-12-01
Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.
Nitrous acid in a street canyon environment: Sources and contributions to local oxidation capacity
NASA Astrophysics Data System (ADS)
Yun, Hui; Wang, Zhe; Zha, Qiaozhi; Wang, Weihao; Xue, Likun; Zhang, Li; Li, Qinyi; Cui, Long; Lee, Shuncheng; Poon, Steven C. N.; Wang, Tao
2017-10-01
Nitrous acid (HONO) plays an important role in radical formation and photochemical oxidation processes in the boundary layer. However, its impact on the chemistry in a street canyon microenvironment has not been thoroughly investigated. In this study, we measured HONO in a street canyon in urban Hong Kong and used an observation-based box model (OBM) with the Master Chemical Mechanism (MCM v3.3.1) to investigate the contribution of HONO to local oxidation chemistry. The observed HONO mixing ratios were in the range of 0.4-13.9 ppbv, with an average of 3.91 ppbv in the daytime and 2.86 ppbv at night. A mean HONO/NOx emission ratio of 1.0% (±0.5%) from vehicle traffic was derived. OBM simulations constrained by the observed HONO showed that the maximum concentrations of OH, HO2, and RO2 reached 4.65 × 106, 4.40 × 106, and 1.83 × 106 molecules cm-3, which were 7.9, 5.0, and 7.5 times, respectively, the results in the case without HONO constrained. Photolysis of HONO contributed to 86.5% of the total primary radical production rates and led to efficient NO2 and O3 production under the condition of weak regional transport of O3. The formation of HNO3 contributed to 98.4% of the total radical termination rates. Our results suggest that HONO could significantly increase the atmospheric oxidation capacity in a street canyon and enhance the secondary formation of HNO3 and HCHO, which can damage outdoor building materials and pose health risks to pedestrians.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi
2010-01-01
The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.
Exposure to sub-concussive head injury in boxing and other sports.
Erlanger, David M
2015-01-01
Current characterizations of chronic traumatic brain injury (CTBI) in boxing, football and other sports are reviewed in the context of the history of research on sub-concussive brain trauma in athletes. The utility of exposure models for understanding CTBI in boxers is examined and concerns regarding the paucity of findings supportive of an exposure model for CTBI in football players are discussed. Recommendations for development of exposure models for sport-specific phenotypic characterizations of CTBI are presented.
Humber-in-a-Box : Gamification to Communicate Coastal Flood Risk in the Face of Rising Seas
NASA Astrophysics Data System (ADS)
Skinner, C. J.; van Rij, J. D.
2015-12-01
Humber-in-a-Box is an immersive visualisation of the Humber Estuary (on the east coast of the UK), designed to communicate coastal flood risk in the face of rising seas. It is designed for use in a busy festival-like setting. The user views the environment via an Oculus Rift Virtual Reality (VR) headset and is able to explore using an XBOX controller. A live simulation of tidal flows on a modelled version of the estuary can be viewed on a box in the centre of a virtual room. Using the controller, the user is able to raise sea levels and see what happens as the tide levels adjust. Humber-in-a-Box uses a numerical model built with data used for published research. The hydraulic component of the CAESAR-Lisflood model code was incorporated into the UNITY-3D gaming engine, and the model uses recorded tidal stage data, bathymetry and elevations to build the virtual environment and drive the simulation. Present day flood defences are incorporated into the model, and in conjunction with modelling tidal flows, this provides a better representation of future flood risk than simpler linear models. The user is able to raise and lower sea levels between -10 m and 100 m, in 1m increments, and can reset the simulation to present day levels with one button click. Humber-in-a-Box has been showcased at several outreach events and has proven to be very popular and effective in an environment where time with each user is pressured, and information needs to exchange quickly. It has also been used in teaching at Undergraduate level, although the full potential of this is yet to be explored. A non-interactive version of the application is available on YouTube which is designed for use with Google Cardboard and similar kit.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.
NASA Technical Reports Server (NTRS)
Marvin, Margaret R.; Wolfe, Glenn M.; Salawitch, Ross J.; Canty, Timothy P.; Roberts, Sandra J.; Travis, Katherine R.; Aiken, Kenneth C.; de Gouw, Joost A.; Graus, Martin; Hanisco, Thomas F.;
2017-01-01
Isoprene oxidation schemes vary greatly among gas-phase chemical mechanisms, with potentially significant ramifications for air quality modeling and interpretation of satellite observations in biogenic-rich regions. In this study, in situ observations from the 2013 SENEX mission are combined with a constrained O-D photochemical box model to evaluate isoprene chemistry among five commonly used gas-phase chemical mechanisms: CBO5, CB6r2, MCMv3.2, MCMv3.3.1, and a recent version of GEOS-Chem. Mechanisms are evaluated and inter-compared with respect to formaldehyde (HCHO), a high-yield product of isoprene oxidation. Though underestimated by all considered mechanisms, observed HCHO mixing ratios are best reproduced by MCMv3.3.1 (normalized mean bias = -15%), followed by GEOS-Chem (-17%), MCMv3.2 (-25%), CB6r2 (-32%) and CB05 (-33%). Inter-comparison of HCHO production rates reveals that major restructuring of the isoprene oxidation scheme in the Carbon Bond mechanism increases HCHO production by only approx. 5% in CB6r2 relative to CBO5, while further refinement of the complex isoprene scheme in the Master Chemical Mechanism increases HCHO production by approx. 16% in MCMv3.3.1 relative to MCMv3.2. The GEOS-Chem mechanism provides a good approximation of the explicit isoprene chemistry in MCMv3.3.1 and generally reproduces the magnitude and source distribution of HCHO production rates. We analytically derive improvements to the isoprene scheme in CB6r2 and incorporate these changes into a new mechanism called CB6r2-UMD, which is designed to preserve computational efficiency. The CB6r2-UMD mechanism mimics production of HCHO in MCMv3.3.1 and demonstrates good agreement with observed mixing ratios from SENEX (-14%). Improved simulation of HCHO also impacts modeled ozone: at approx. 0.3 ppb NO, the ozone production rate increases approx. 3% between CB6r2 and CB6r2-UMD, and rises another approx. 4% when HCHO is constrained to match observations.
1986-06-01
P.O. Box 2007 3101 E. Alejo Rd. Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated June 1979 Summary The BABYbird Ventilator, Model 5900...air. Procurement Manufacturer 15 Product and Manufacturer Infant AIRbird Resuscitator Medical Products Oivision/3M P.O. Box 2007 3101 E. Alejo Rd. Palm...Silicone Bag Medical Products Division/3M P.O. Box 20073101 E. Alejo Rd Palm Springs, CA 92262 Telephone: (619) 327-1571 Date Evaluated July 1978 Sumary
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; MacMurdy, Dale E.; Kapania, Rakesh K.
1994-01-01
Strong interactions between flow about an aircraft wing and the wing structure can result in aeroelastic phenomena which significantly impact aircraft performance. Time-accurate methods for solving the unsteady Navier-Stokes equations have matured to the point where reliable results can be obtained with reasonable computational costs for complex non-linear flows with shock waves, vortices and separations. The ability to combine such a flow solver with a general finite element structural model is key to an aeroelastic analysis in these flows. Earlier work involved time-accurate integration of modal structural models based on plate elements. A finite element model was developed to handle three-dimensional wing boxes, and incorporated into the flow solver without the need for modal analysis. Static condensation is performed on the structural model to reduce the structural degrees of freedom for the aeroelastic analysis. Direct incorporation of the finite element wing-box structural model with the flow solver requires finding adequate methods for transferring aerodynamic pressures to the structural grid and returning deflections to the aerodynamic grid. Several schemes were explored for handling the grid-to-grid transfer of information. The complex, built-up nature of the wing-box complicated this transfer. Aeroelastic calculations for a sample wing in transonic flow comparing various simple transfer schemes are presented and discussed.
Hot forming of composite prepreg : Experimental study
NASA Astrophysics Data System (ADS)
Tardif, Xavier; Duthille, Bertrand; Bechtel, Stephane; le Pinru, Louis; Campagne, Benjamin; Destombes, Gautier; Deshors, Antoine; Marchand, Christophe; Azzouzi, Khalid El; Moro, Tanguy
2017-10-01
The hot forming of thermoset prepreg consists in bending an uncured composite part by applying a mechanical constrain on the hot laminate. Most of the time, the mold is inserted in a vacuum box and the mechanical constrain is applied on the composite laminate by a single membrane or a double-membrane. But the performance improvement products resulted in forming increasingly complex parts with advanced materials having a less formability. These new complex parts require a finer comprehension of the process and an optimization of the key parameters to get acceptable quality. In this work, an experimental study has been carried out to identify the process conditions that do not lead to unacceptable defaults: undulations of fibers. In the present study, downward-bending has been evaluated with an original light mechanical forming concept, for a given stacking sequence. The influence of the part's temperature and the part's bending speed are investigated. To carry this study out, a hot forming test bench has been designed and manufactured to have a precise supervision of the process conditions. It is able to bend parts of 1500 mm length x 600 mm width x 20 mm thick.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... numbers of the crew oxygen mask stowage box units; and replacement of the crew oxygen mask stowage box unit with a new crew oxygen mask stowage unit, if necessary. This proposed AD results [[Page 67638
ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.
Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J
2014-07-01
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.
Nayhouse, Michael; Kwon, Joseph Sang-Il; Orkoulas, G
2012-05-28
In simulation studies of fluid-solid transitions, the solid phase is usually modeled as a constrained system in which each particle is confined to move in a single Wigner-Seitz cell. The constrained cell model has been used in the determination of fluid-solid coexistence via thermodynamic integration and other techniques. In the present work, the phase diagram of such a constrained system of Lennard-Jones particles is determined from constant-pressure simulations. The pressure-density isotherms exhibit inflection points which are interpreted as the mechanical stability limit of the solid phase. The phase diagram of the constrained system contains a critical and a triple point. The temperature and pressure at the critical and the triple point are both higher than those of the unconstrained system due to the reduction in the entropy caused by the single occupancy constraint.
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less
The DEAD-box helicase eIF4A: paradigm or the odd one out?
Andreou, Alexandra Z; Klostermeier, Dagmar
2013-01-01
DEAD-box helicases catalyze the ATP-dependent unwinding of RNA duplexes. They share a helicase core formed by two RecA-like domains that carries a set of conserved motifs contributing to ATP binding and hydrolysis, RNA binding and duplex unwinding. The translation initiation factor eIF4A is the founding member of the DEAD-box protein family, and one of the few examples of DEAD-box proteins that consist of a helicase core only. It is an RNA-stimulated ATPase and a non-processive helicase that unwinds short RNA duplexes. In the catalytic cycle, a series of conformational changes couples the nucleotide cycle to RNA unwinding. eIF4A has been considered a paradigm for DEAD-box proteins, and studies of its function have revealed the governing principles underlying the DEAD-box helicase mechanism. However, as an isolated helicase core, eIF4A is rather the exception, not the rule. Most helicase modules in other DEAD-box proteins are modified, some by insertions into the RecA-like domains, and the majority by N- and C-terminal appendages. While the basic catalytic function resides within the helicase core, its modulation by insertions, additional domains or a network of interaction partners generates the diversity of DEAD-box protein functions in the cell. This review summarizes the current knowledge on eIF4A and its regulation, and discusses to what extent eIF4A serves as a model DEAD-box protein.
Forkhead box transcription factors in embryonic heart development and congenital heart disease.
Zhu, Hong
2016-01-01
Embryonic heart development is a very complicated process regulated precisely by a network composed of many genes and signaling pathways in time and space. Forkhead box (Fox, FOX) proteins are a family of transcription factors characterized by the presence of an evolutionary conserved "forkhead"or "winged-helix" DNA-binding domain and able to organize temporal and spatial gene expression during development. They are involved in a wide variety of cellular processes, such as cell cycle progression, proliferation, differentiation, migration, metabolism and DNA damage response. An abundance of studies in model organisms and systems has established that Foxa2, Foxc1/c2, Foxh1 and Foxm1, Foxos and Foxps are important components of the signaling pathways that instruct cardiogenesis and embryonic heart development, playing paramount roles in heart development. The previous studies also have demonstrated that mutations in some of the forkhead box genes and the aberrant expression of forkhead box gene are heavily implicated in the congenital heart disease (CHD) of humans. This review primarily focuses on the current understanding of heart development regulated by forkhead box transcription factors and molecular genetic mechanisms by which forkhead box factors modulate heart development during embryogenesis and organogenesis. This review also summarizes human CHD related mutations in forkhead box genes as well as the abnormal expression of forkhead box gene, and discusses additional possible regulatory mechanisms of the forkhead box genes during embryonic heart development that warrant further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Javed, Umar; Kubistin, Dagmar; Martinez, Monica; Rudolf, Markus; Reiffs, Andreas; Parchatka, Uwe; Nölscher, Anke; Song, Wie; Thieser, Jim; Bohn, Birger; Pöhler, Denis; Berkes, Florian; Sander, Rolf; Crowley, John; Williams, Jonathan; Hoor, Peter; Fischer, Horst; Lelieveld, Jos; Harder, Hartwig
2013-04-01
Here we present an investigation of the photostationary state (PSS) between NO and NO2 using measurements of NO2 performed during PARADE with a new Gas Analyzer for Nitrogen Dioxide Applying Laser-induced Fluorescence (GANDALF). The focus of PARADE, a collaboration between different German research institutes, is to investigate the summertime emissions and photochemistry in a semi-remote environment. Field measurements took place in summer 2011 at the Taunus Observatory, located on the Kleiner Feldberg in southwestern Germany. The measurement site is surrounded by forest with biogenic emissions in summer and influenced by anthropogenic sources from nearby large cities and highways. A comprehensive set of measurements of several important trace species and meteorological parameters were carried out during PARADE, including three different in-situ measurement techniques for NO2, namely LIF, TD-CRD and a blue light converter/CLD. Being the first deployment of GANDALF this opportunity provided the means for a detailed comparison. Further we present the characteristics of the PSS observed in different chemical regimes observed for different wind directions during the campaign and compare the results with chemical box model simulations constrained by measurements.
Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A
2016-04-25
Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.
Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D'Ambro, Emma L.; Thornton, Joel A.
2016-01-01
Speciated particle-phase organic nitrates (pONs) were quantified using online chemical ionization MS during June and July of 2013 in rural Alabama as part of the Southern Oxidant and Aerosol Study. A large fraction of pONs is highly functionalized, possessing between six and eight oxygen atoms within each carbon number group, and is not the common first generation alkyl nitrates previously reported. Using calibrations for isoprene hydroxynitrates and the measured molecular compositions, we estimate that pONs account for 3% and 8% of total submicrometer organic aerosol mass, on average, during the day and night, respectively. Each of the isoprene- and monoterpenes-derived groups exhibited a strong diel trend consistent with the emission patterns of likely biogenic hydrocarbon precursors. An observationally constrained diel box model can replicate the observed pON assuming that pONs (i) are produced in the gas phase and rapidly establish gas–particle equilibrium and (ii) have a short particle-phase lifetime (∼2–4 h). Such dynamic behavior has significant implications for the production and phase partitioning of pONs, organic aerosol mass, and reactive nitrogen speciation in a forested environment. PMID:26811465
On the biomechanical analysis of the calories expended in a straight boxing jab
2017-01-01
Boxing and related sports activities have become a standard workout regime at many fitness studios worldwide. Oftentimes, people are interested in the calories expended during these workouts. This note focuses on determining the calories in a boxer's jab, using kinematic vector-loop relations and basic work–energy principles. Numerical simulations are undertaken to illustrate the basic model. Multi-limb extensions of the model are also discussed. PMID:28404871
Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Wang, John T.; Ransom, Jonathan B.
1997-01-01
A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.
Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth
NASA Astrophysics Data System (ADS)
Masson, Yder; Romanowicz, Barbara
2017-04-01
The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D'' region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori. REFERENCES [1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99 [2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459. [3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692. [4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).
Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.
Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony
1998-05-01
The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.
Experiences in Automated Calibration of a Nickel Equation of State
NASA Astrophysics Data System (ADS)
Carpenter, John H.
2017-06-01
Wide availability of large computers has led to increasing incorporation of computational data, such as from density functional theory molecular dynamics, in the development of equation of state (EOS) models. Once a grid of computational data is available, it is usually left to an expert modeler to model the EOS using traditional techniques. One can envision the possibility of using the increasing computing resources to perform black-box calibration of EOS models, with the goal of reducing the workload on the modeler or enabling non-experts to generate good EOSs with such a tool. Progress towards building such a black-box calibration tool will be explored in the context of developing a new, wide-range EOS for nickel. While some details of the model and data will be shared, the focus will be on what was learned by automatically calibrating the model in a black-box method. Model choices and ensuring physicality will also be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Explaining electric conductivity using the particle-in-a-box model: quantum superposition is the key
NASA Astrophysics Data System (ADS)
Sivanesan, Umaseh; Tsang, Kin; Izmaylov, Artur F.
2017-12-01
Most of the textbooks explaining electric conductivity in the context of quantum mechanics provide either incomplete or semi-classical explanations that are not connected with the elementary concepts of quantum mechanics. We illustrate the conduction phenomena using the simplest model system in quantum dynamics, a particle in a box (PIB). To induce the particle dynamics, a linear potential tilting the bottom of the box is introduced, which is equivalent to imposing a constant electric field for a charged particle. Although the PIB model represents a closed system that cannot have a flow of electrons through the system, we consider the oscillatory dynamics of the particle probability density as the analogue of the electric current. Relating the amplitude and other parameters of the particle oscillatory dynamics with the gap between the ground and excited states of the PIB model allows us to demonstrate one of the most basic dependencies of electric conductivity on the valence-conduction band gap of the material.
Steam-load-forecasting technique for central-heating plants. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M.C.; Carnahan, J.V.
Because boilers generally are most efficient at full loads, the Army could achieve significant savings by running fewer boilers at high loads rather than more boilers at low loads. A reliable load prediction technique could help ensure that only those boilers required to meet demand are on line. This report presents the results of an investigation into the feasibility of forecasting heat plant steam loads from historical patterns and weather information. Using steam flow data collected at Fort Benjamin Harrison, IN, a Box-Jenkins transfer function model with an acceptably small prediction error was initially identified. Initial investigation of forecast modelmore » development appeared successful. Dynamic regression methods using actual ambient temperatures yielded the best results. Box-Jenkins univariate models' results appeared slightly less accurate. Since temperature information was not needed for model building and forecasting, however, it is recommended that Box-Jenkins models be considered prime candidates for load forecasting due to their simpler mathematics.« less
Astrophysical Model Selection in Gravitational Wave Astronomy
NASA Technical Reports Server (NTRS)
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Han, Cong; Kronmal, Richard
2004-12-15
Box-Cox transformation is investigated for regression models for left-censored data. Examples are provided using coronary calcification data from the Multi-Ethnic Study of Atherosclerosis and pharmacokinetic data of a nicotine nasal spray. Copyright 2004 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
The compelling elegance of using genome-wide scans to detect the signature of selection is difficult to resist, but is countered by the low demonstrated efficacy of pinpointing the actual genes and traits that are the targets of selection in non-model species. While the difficulty of going from a s...
A Short-Term Forecasting Procedure for Institution Enrollments.
ERIC Educational Resources Information Center
Pfitzner, Charles Barry
1987-01-01
Applies the Box-Jenkins time series methodology to enrollment data for the Virginia community college system. Describes the enrollment data set, the Box-Jenkins approach, and the forecasting results. Discusses the value of one-quarter ahead enrollment forecasts and implications for practice. Provides a technical discussion of the model. (DMM)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
.... Farina Lima, 2170, Sao Jose dos Campos--SP, CEP: 12227-901--PO Box: 38/2, BRASIL, telephone: ++55 12 3927... Campos--SP, CEP: 12227-901--PO Box: 38/2, BRASIL, telephone: ++55 12 3927-5383; fax: ++55 12 3927-2610; E...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
..., Sao Jose dos Campos--SP, CEP: 12227-901--PO Box: 36/2, BRASIL; telephone: ++55 12 3927-5383; fax: ++55... Campos--SP, CEP: 12227-901--PO Box: 36/2, BRASIL; telephone: ++55 12 3927-5383; fax: ++55 12 3927-2619; E...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
..., Sao Jose dos Campos--SP, CEP: 12227-901--P.O. Box: 38/2, BRASIL, telephone: ++55 12 3927-5383; fax... Support, Av. Brig. Farina Lima, 2170, Sao Jose dos Campos--SP, CEP: 12227-901--P.O. Box: 38/2, BRASIL...
Combat Identification Modeling Using Neural Networks Techniques
2009-03-01
Ybarvector SSpe ANOVA Xhatp; clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; clear leveragepoints Cooks DFFITS Cooksinfluence...counter lofFo e; clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF; clear invR Tcrit X LofFit ALLREG BOXCOX GRAPHS globalp Warnng
Combat Identification Modeling Using Robust Optimization Techniques
2008-03-01
ePRESS Si2 Rstud t nvector groupnum Ybarvector SSpe ANOVA Xhatp; clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; clear...dfsslof; clear nvector ttlvector Ybarvector m j N groupnum counter lofFo e; clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF
Li, Jing; Pan, Qunwan; Zhu, Zaiman; Li, Min; Bai, Yu; Yu, Ran
2015-05-01
To investigate the changes of telemetry electrical activity in the infralimbic cortex (IL) of morphine-dependent rats with extinguished drug-seeking behavior. SD rats were randomly divided into model group and control group and received operations of brain stereotaxic electrode embedding in the IL. The rats in the model group were induced to acquire morphine dependence and then received subsequent extinction training, and the changes of electrical activity in the IL were recorded with a physical wireless telemetry system. In rats with morphine dependence, the time staying in the white box was significantly longer on days 1 and 2 after withdrawal than that before morphine injection and that of the control rats, but was obviously reduced on days 1 and 2 after extinction training to the control level. Compared with the control group, the morphine-dependent rats on day 2 following withdrawal showed significantly increased β wave and decreased δ wave when they stayed in the white box but significantly increased δ wave and decreased α wave and β wave when they shuttled from the black to the white box. On day 2 of extinction, the model rats, when staying in the white box, showed significantly decreased θ wave compared with that of the control rats group but decreased β wave and θ wave and increased δ wave compared with those in the withdrawal period. When they shuttled from black to white box, the model rats showed decreased δ wave and increased α wave and β wave compared with those in the withdrawal period. Morphine-dependent rats have abnormal changes of electrical activity in the IL in drug-seeking extinction to affect their drug-seeking motive and inhibit the expression and maintenance of drug-seeking behaviors.
Assessing household health expenditure with Box-Cox censoring models.
Chaze, Jean-Paul
2005-09-01
In order to assess the combined presence of zero expenditures and a heavily skewed distribution of positive expenditures, the Box-Cox transformation with location parameter is used to define a set of models generalising the standard Tobit, Heckman selection and double-hurdle models. Extended flexibility with respect to previous specifications is introduced, notably regarding negative transformation parameters, which may prove necessary for medical expenditures, and corner-solution outcomes. An illustration is provided by the analysis of household health expenditure in Switzerland. Copyright (c) 2005 John Wiley & Sons, Ltd.
Describing litho-constrained layout by a high-resolution model filter
NASA Astrophysics Data System (ADS)
Tsai, Min-Chun
2008-05-01
A novel high-resolution model (HRM) filtering technique was proposed to describe litho-constrained layouts. Litho-constrained layouts are layouts that have difficulties to pattern or are highly sensitive to process-fluctuations under current lithography technologies. HRM applies a short-wavelength (or high NA) model simulation directly on the pre-OPC, original design layout to filter out low spatial-frequency regions, and retain high spatial-frequency components which are litho-constrained. Since no OPC neither mask-synthesis steps are involved, this new technique is highly efficient in run time and can be used in design stage to detect and fix litho-constrained patterns. This method has successfully captured all the hot-spots with less than 15% overshoots on a realistic 80 mm2 full-chip M1 layout in 65nm technology node. A step by step derivation of this HRM technique is presented in this paper.
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios
2017-01-01
Abstract Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. PMID:28973457
Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.
Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos
2017-09-29
Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs
Yip, W. S. Vincent; Shigematsu, Hideki; Taylor, David W.; Baserga, Susan J.
2016-01-01
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. PMID:27342279
A fast ellipse extended target PHD filter using box-particle implementation
NASA Astrophysics Data System (ADS)
Zhang, Yongquan; Ji, Hongbing; Hu, Qi
2018-01-01
This paper presents a box-particle implementation of the ellipse extended target probability hypothesis density (ET-PHD) filter, called the ellipse extended target box particle PHD (EET-BP-PHD) filter, where the extended targets are described as a Poisson model developed by Gilholm et al. and the term "box" is here equivalent to the term "interval" used in interval analysis. The proposed EET-BP-PHD filter is capable of dynamically tracking multiple ellipse extended targets and estimating the target states and the number of targets, in the presence of clutter measurements, false alarms and missed detections. To derive the PHD recursion of the EET-BP-PHD filter, a suitable measurement likelihood is defined for a given partitioning cell, and the main implementation steps are presented along with the necessary box approximations and manipulations. The limitations and capabilities of the proposed EET-BP-PHD filter are illustrated by simulation examples. The simulation results show that a box-particle implementation of the ET-PHD filter can avoid the high number of particles and reduce computational burden, compared to a particle implementation of that for extended target tracking.
Predicting a future lifetime through Box-Cox transformation.
Yang, Z
1999-09-01
In predicting a future lifetime based on a sample of past lifetimes, the Box-Cox transformation method provides a simple and unified procedure that is shown in this article to meet or often outperform the corresponding frequentist solution in terms of coverage probability and average length of prediction intervals. Kullback-Leibler information and second-order asymptotic expansion are used to justify the Box-Cox procedure. Extensive Monte Carlo simulations are also performed to evaluate the small sample behavior of the procedure. Certain popular lifetime distributions, such as Weibull, inverse Gaussian and Birnbaum-Saunders are served as illustrative examples. One important advantage of the Box-Cox procedure lies in its easy extension to linear model predictions where the exact frequentist solutions are often not available.
NASA Technical Reports Server (NTRS)
York, P.; Labell, R. W.
1980-01-01
An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.
NASA Astrophysics Data System (ADS)
Shi, Z.; Crowell, S.; Luo, Y.; Rayner, P. J.; Moore, B., III
2015-12-01
Uncertainty in predicted carbon-climate feedback largely stems from poor parameterization of global land models. However, calibration of global land models with observations has been extremely challenging at least for two reasons. First we lack global data products from systematical measurements of land surface processes. Second, computational demand is insurmountable for estimation of model parameter due to complexity of global land models. In this project, we will use OCO-2 retrievals of dry air mole fraction XCO2 and solar induced fluorescence (SIF) to independently constrain estimation of net ecosystem exchange (NEE) and gross primary production (GPP). The constrained NEE and GPP will be combined with data products of global standing biomass, soil organic carbon and soil respiration to improve the community land model version 4.5 (CLM4.5). Specifically, we will first develop a high fidelity emulator of CLM4.5 according to the matrix representation of the terrestrial carbon cycle. It has been shown that the emulator fully represents the original model and can be effectively used for data assimilation to constrain parameter estimation. We will focus on calibrating those key model parameters (e.g., maximum carboxylation rate, turnover time and transfer coefficients of soil carbon pools, and temperature sensitivity of respiration) for carbon cycle. The Bayesian Markov chain Monte Carlo method (MCMC) will be used to assimilate the global databases into the high fidelity emulator to constrain the model parameters, which will be incorporated back to the original CLM4.5. The calibrated CLM4.5 will be used to make scenario-based projections. In addition, we will conduct observing system simulation experiments (OSSEs) to evaluate how the sampling frequency and length could affect the model constraining and prediction.
Constrained and Unconstrained Partial Adjacent Category Logit Models for Ordinal Response Variables
ERIC Educational Resources Information Center
Fullerton, Andrew S.; Xu, Jun
2018-01-01
Adjacent category logit models are ordered regression models that focus on comparisons of adjacent categories. These models are particularly useful for ordinal response variables with categories that are of substantive interest. In this article, we consider unconstrained and constrained versions of the partial adjacent category logit model, which…
ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics
Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J.
2014-01-01
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity. PMID:24992156
Willis, Megan D.; Healy, Robert M.; Riemer, Nicole; ...
2016-04-14
The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) inmore » two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Lastly, significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.« less
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Finite element cochlea box model - Mechanical and electrical analysis of the cochlea
NASA Astrophysics Data System (ADS)
Nikolic, Milica; Teal, Paul D.; Isailovic, Velibor; Filipović, Nenad
2015-12-01
The primary role of the cochlea is to transform external sound stimuli into mechanical vibrations and then to neural impulses which are sent to the brain. A simplified cochlea box model was developed using the finite element method. Firstly, a mechanical model of the cochlea was analyzed. The box model consists of the basilar membrane and two fluid chambers - the scala vestibuli and scala tympani. The third chamber, the scala media, was neglected in the mechanical analysis. The best agreement with currently available analytical and experimental results was obtained when behavior of the fluid in the chambers was described using the wave acoustic equation and behavior of the basilar membrane was modeled with Newtonian dynamics. The obtained results show good frequency mapping. The second approach was to use an active model of the cochlea in which the Organ of Corti was included. The operation of the Organ of Corti involves the generation of current, caused by mechanical vibration. This current in turn causes a force applied to the basilar membrane, creating in this way an active feedback mechanism. A state space representation of the electro-mechanical model from existing literature was implemented and a first comparison with the finite element method is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.
2000-12-01
The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.
On the biomechanical analysis of the calories expended in a straight boxing jab.
Zohdi, T I
2017-04-01
Boxing and related sports activities have become a standard workout regime at many fitness studios worldwide. Oftentimes, people are interested in the calories expended during these workouts. This note focuses on determining the calories in a boxer's jab, using kinematic vector-loop relations and basic work-energy principles. Numerical simulations are undertaken to illustrate the basic model. Multi-limb extensions of the model are also discussed. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Ren, X.; Mazzuca, G.; Loughner, C.; Estes, M. J.; Crawford, J. H.; Weinheimer, A. J.; Pickering, K. E.; Dickerson, R. R.
2016-12-01
An observation-constrained box model based on the Carbon Bond mechanism, Version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA DISCOVER-AQ campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and VOCs were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlation of these results with other parameters, such as radical sources and NOx mixing ratio, was also evaluated. It was generally found that O3 production tends to be more VOC sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx sensitive with some exceptions. O3 production at near major emissions sources such as Deer Park was mostly VOC sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston, but led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.
NASA Astrophysics Data System (ADS)
Mazzuca, Gina M.; Ren, Xinrong; Loughner, Christopher P.; Estes, Mark; Crawford, James H.; Pickering, Kenneth E.; Weinheimer, Andrew J.; Dickerson, Russell R.
2016-11-01
An observation-constrained box model based on the Carbon Bond mechanism, version 5 (CB05), was used to study photochemical processes along the NASA P-3B flight track and spirals over eight surface sites during the September 2013 Houston, Texas deployment of the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. Data from this campaign provided an opportunity to examine and improve our understanding of atmospheric photochemical oxidation processes related to the formation of secondary air pollutants such as ozone (O3). O3 production and its sensitivity to NOx and volatile organic compounds (VOCs) were calculated at different locations and times of day. Ozone production efficiency (OPE), defined as the ratio of the ozone production rate to the NOx oxidation rate, was calculated using the observations and the simulation results of the box and Community Multiscale Air Quality (CMAQ) models. Correlations of these results with other parameters, such as radical sources and NOx mixing ratio, were also evaluated. It was generally found that O3 production tends to be more VOC-sensitive in the morning along with high ozone production rates, suggesting that control of VOCs may be an effective way to control O3 in Houston. In the afternoon, O3 production was found to be mainly NOx-sensitive with some exceptions. O3 production near major emissions sources such as Deer Park was mostly VOC-sensitive for the entire day, other urban areas near Moody Tower and Channelview were VOC-sensitive or in the transition regime, and areas farther from downtown Houston such as Smith Point and Conroe were mostly NOx-sensitive for the entire day. It was also found that the control of NOx emissions has reduced O3 concentrations over Houston but has led to larger OPE values. The results from this work strengthen our understanding of O3 production; they indicate that controlling NOx emissions will provide air quality benefits over the greater Houston metropolitan area in the long run, but in selected areas controlling VOC emissions will also be beneficial.
Optimal vibration control of a rotating plate with self-sensing active constrained layer damping
NASA Astrophysics Data System (ADS)
Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng
2012-04-01
This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.
Black-hole universe: time evolution.
Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi
2013-10-18
Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.
Lui, Lauren M; Uzilov, Andrew V; Bernick, David L; Corredor, Andrea; Lowe, Todd M; Dennis, Patrick P
2018-05-16
Archaeal homologs of eukaryotic C/D box small nucleolar RNAs (C/D box sRNAs) guide precise 2'-O-methyl modification of ribosomal and transfer RNAs. Although C/D box sRNA genes constitute one of the largest RNA gene families in archaeal thermophiles, most genomes have incomplete sRNA gene annotation because reliable, fully automated detection methods are not available. We expanded and curated a comprehensive gene set across six species of the crenarchaeal genus Pyrobaculum, particularly rich in C/D box sRNA genes. Using high-throughput small RNA sequencing, specialized computational searches and comparative genomics, we analyzed 526 Pyrobaculum C/D box sRNAs, organizing them into 110 families based on synteny and conservation of guide sequences which determine methylation targets. We examined gene duplications and rearrangements, including one family that has expanded in a pattern similar to retrotransposed repetitive elements in eukaryotes. New training data and inclusion of kink-turn secondary structural features enabled creation of an improved search model. Our analyses provide the most comprehensive, dynamic view of C/D box sRNA evolutionary history within a genus, in terms of modification function, feature plasticity, and gene mobility.
The Bees among Us: Modelling Occupancy of Solitary Bees
MacIvor, J. Scott; Packer, Laurence
2016-01-01
Occupancy modelling has received increasing attention as a tool for differentiating between true absence and non-detection in biodiversity data. This is thought to be particularly useful when a species of interest is spread out over a large area and sampling is constrained. We used occupancy modelling to estimate the probability of three phylogenetically independent pairs of native—introduced species [Megachile campanulae (Robertson)—Megachile rotundata (Fab.), Megachile pugnata Say—Megachile centuncularis (L.), Osmia pumila Cresson—Osmia caerulescens (L.)] (Apoidea: Megachilidae) being present when repeated sampling did not always find them. Our study occurred along a gradient of urbanization and used nest boxes (bee hotels) set up over three consecutive years. Occupancy modelling discovered different patterns to those obtained by species detection and abundance-based data alone. For example, it predicted that the species that was ranked 4th in terms of detection actually had the greatest occupancy among all six species. The native M. pugnata had decreased occupancy with increasing building footprint and a similar but not significant pattern was found for the native O. pumila. Two introduced bees (M. rotundata and M. centuncularis), and one native (M. campanulae) had modelled occupancy values that increased with increasing urbanization. Occupancy probability differed among urban green space types for three of six bee species, with values for two native species (M. campanulae and O. pumila) being highest in home gardens and that for the exotic O. caerulescens being highest in community gardens. The combination of occupancy modelling with analysis of habitat variables as an augmentation to detection and abundance-based sampling is suggested to be the best way to ensure that urban habitat management results in the desired outcomes. PMID:27911954
NASA Astrophysics Data System (ADS)
Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.
The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.
One-Dimensional Oscillator in a Box
ERIC Educational Resources Information Center
Amore, Paolo; Fernandez, Francisco M.
2010-01-01
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…
Modeling Wind Wave Evolution from Deep to Shallow Water
2013-09-30
Janssen Theiss Research, PO Box 1533, El Granada , CA 94018 t: 415 609 5359 e: ttjanssen@gmail.com Thomas H. C. Herbers Department of Oceanography...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Theiss Research,PO Box 1533,El Granada ,CA,94018 8
The Use of Computer-Assisted Identification of ARIMA Time-Series.
ERIC Educational Resources Information Center
Brown, Roger L.
This study was conducted to determine the effects of using various levels of tutorial statistical software for the tentative identification of nonseasonal ARIMA models, a statistical technique proposed by Box and Jenkins for the interpretation of time-series data. The Box-Jenkins approach is an iterative process encompassing several stages of…
Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.
Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong
2010-09-24
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.
Fault detection method for railway wheel flat using an adaptive multiscale morphological filter
NASA Astrophysics Data System (ADS)
Li, Yifan; Zuo, Ming J.; Lin, Jianhui; Liu, Jianxin
2017-02-01
This study explores the capacity of the morphology analysis for railway wheel flat fault detection. A dynamic model of vehicle systems with 56 degrees of freedom was set up along with a wheel flat model to calculate the dynamic responses of axle box. The vehicle axle box vibration signal is complicated because it not only contains the information of wheel defect, but also includes track condition information. Thus, how to extract the influential features of wheels from strong background noise effectively is a typical key issue for railway wheel fault detection. In this paper, an algorithm for adaptive multiscale morphological filtering (AMMF) was proposed, and its effect was evaluated by a simulated signal. And then this algorithm was employed to study the axle box vibration caused by wheel flats, as well as the influence of track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method was verified by bench testing. Research results demonstrate that the AMMF extracts the influential characteristic of axle box vibration signals effectively and can diagnose wheel flat faults in real time.
ERIC Educational Resources Information Center
Hoijtink, Herbert; Molenaar, Ivo W.
1997-01-01
This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)
Fraccaro, Paolo; Nicolo, Massimo; Bonetto, Monica; Giacomini, Mauro; Weller, Peter; Traverso, Carlo Enrico; Prosperi, Mattia; OSullivan, Dympna
2015-01-27
To investigate machine learning methods, ranging from simpler interpretable techniques to complex (non-linear) "black-box" approaches, for automated diagnosis of Age-related Macular Degeneration (AMD). Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected during routine visits via an Electronic Health Record (EHR) system. Patients' attributes included demographics and, for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar, subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM), random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the receiver operating characteristic (AUC) were used to assess performance. Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models identified soft drusen and age as the most discriminating variables in clinicians' decision pathways to diagnose AMD. Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.
Mortality of riparian box elder from sediment mobilization and extended inundation
Friedman, Jonathan M.; Auble, Gregor T.
1999-01-01
To explore how high flows limit the streamward extent of riparian vegetation we quantified the effects of sediment mobilization and extended inundation on box elder (Acer negundo) saplings along the cobble-bed Gunnison River in Black Canyon of the Gunnison National Monument, Colorado, USA. We counted and aged box elders in 144 plots of 37.2 m2, and combined a hydraulic model with the hydrologic record to determine the maximum shear stress and number of growing-season days inundated for each plot in each year of the record. We quantified the effects of the two mortality factors by calculating the extreme values survived during the lifetime of trees sampled in 1994 and by recounting box elders in the plots following a high flow in 1995. Both mortality factors can be modeled as threshold functions; box elders are killed either by inundation for more than 85 days during the growing season or by shear stress that exceeds the critical value for mobilization of the underlying sediment particles. Construction of upstream reservoirs in the 1960s and 1970s reduced the proportion of the canyon bottom annually cleared of box elders by high flows. Furthermore, because the dams decreased the magnitude of high flows more than their duration, flow regulation has decreased the importance of sediment mobilization relative to extended inundation. We use the threshold functions and cross-section data to develop a response surface predicting the proportion of the canyon bottom cleared at any combination of flow magnitude and duration. This response surface allows vegetation removal to be incorporated into quantitative multi-objective water management decisions.
Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)
NASA Technical Reports Server (NTRS)
Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.
Prediction of AL and Dst Indices from ACE Measurements Using Hybrid Physics/Black-Box Techniques
NASA Astrophysics Data System (ADS)
Spencer, E.; Rao, A.; Horton, W.; Mays, L.
2008-12-01
ACE measurements of the solar wind velocity, IMF and proton density is used to drive a hybrid Physics/Black- Box model of the nightside magnetosphere. The core physics is contained in a low order nonlinear dynamical model of the nightside magnetosphere called WINDMI. The model is augmented by wavelet based nonlinear mappings between the solar wind quantities and the input into the physics model, followed by further wavelet based mappings of the model output field aligned currents onto the ground based magnetometer measurements of the AL index and Dst index. The black box mappings are introduced at the input stage to account for uncertainties in the way the solar wind quantities are transported from the ACE spacecraft at L1 to the magnetopause. Similar mappings are introduced at the output stage to account for a spatially and temporally varying westward auroral electrojet geometry. The parameters of the model are tuned using a genetic algorithm, and trained using the large geomagnetic storm dataset of October 3-7 2000. It's predictive performance is then evaluated on subsequent storm datasets, in particular the April 15-24 2002 storm. This work is supported by grant NSF 7020201
Filling box stratification fed by a gravity current
NASA Astrophysics Data System (ADS)
Hogg, Charlie; Huppert, Herbert; Imberger, Jorg
2012-11-01
Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.
An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation.
1984-09-01
commenced with the * aluminum plate from which the links will be fabricated having been cut out. Welding of the leg links is-in progress. The leg boxes , which...Control forkoulh-Ternain Locomotion i Multilegged Robot Vehicle, TEX di s~s- rt o n, March, 1984.- 28. Ozguner, F. and Kao, M.L., "A Multimicroprocessor...efficient structure. 3.3.1 Body Model The body is modelled as a hexahedral box with the top plane wider than the bottom plane, which allows the abduction
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
Empirical models of Jupiter's interior from Juno data. Moment of inertia and tidal Love number k2
NASA Astrophysics Data System (ADS)
Ni, Dongdong
2018-05-01
Context. The Juno spacecraft has significantly improved the accuracy of gravitational harmonic coefficients J4, J6 and J8 during its first two perijoves. However, there are still differences in the interior model predictions of core mass and envelope metallicity because of the uncertainties in the hydrogen-helium equations of state. New theoretical approaches or observational data are hence required in order to further constrain the interior models of Jupiter. A well constrained interior model of Jupiter is helpful for understanding not only the dynamic flows in the interior, but also the formation history of giant planets. Aims: We present the radial density profiles of Jupiter fitted to the Juno gravity field observations. Also, we aim to investigate our ability to constrain the core properties of Jupiter using its moment of inertia and tidal Love number k2 which could be accessible by the Juno spacecraft. Methods: In this work, the radial density profile was constrained by the Juno gravity field data within the empirical two-layer model in which the equations of state are not needed as an input model parameter. Different two-layer models are constructed in terms of core properties. The dependence of the calculated moment of inertia and tidal Love number k2 on the core properties was investigated in order to discern their abilities to further constrain the internal structure of Jupiter. Results: The calculated normalized moment of inertia (NMOI) ranges from 0.2749 to 0.2762, in reasonable agreement with the other predictions. There is a good correlation between the NMOI value and the core properties including masses and radii. Therefore, measurements of NMOI by Juno can be used to constrain both the core mass and size of Jupiter's two-layer interior models. For the tidal Love number k2, the degeneracy of k2 is found and analyzed within the two-layer interior model. In spite of this, measurements of k2 can still be used to further constrain the core mass and size of Jupiter's two-layer interior models.
da Costa, Renata Souza; Bicca-Marques, Júlio César
2014-01-01
Foraging at night imposes different challenges from those faced during daylight, including the reliability of sensory cues. Owl monkeys (Aotus spp.) are ideal models among anthropoids to study the information used during foraging at low light levels because they are unique by having a nocturnal lifestyle. Six Aotus nigriceps and four A. infulatus individuals distributed into five enclosures were studied for testing their ability to rely on olfactory, visual, auditory, or spatial and quantitative information for locating food rewards and for evaluating the use of routes to navigate among five visually similar artificial feeding boxes mounted in each enclosure. During most experiments only a single box was baited with a food reward in each session. The baited box changed randomly throughout the experiment. In the spatial and quantitative information experiment there were two baited boxes varying in the amount of food provided. These baited boxes remained the same throughout the experiment. A total of 45 sessions (three sessions per night during 15 consecutive nights) per enclosure was conducted in each experiment. Only one female showed a performance suggestive of learning of the usefulness of sight to locate the food reward in the visual information experiment. Subjects showed a chance performance in the remaining experiments. All owl monkeys showed a preference for one box or a subset of boxes to inspect upon the beginning of each experimental session and consistently followed individual routes among feeding boxes. PMID:25517894
da Costa, Renata Souza; Bicca-Marques, Júlio César
2014-01-01
Foraging at night imposes different challenges from those faced during daylight, including the reliability of sensory cues. Owl monkeys (Aotus spp.) are ideal models among anthropoids to study the information used during foraging at low light levels because they are unique by having a nocturnal lifestyle. Six Aotus nigriceps and four A. infulatus individuals distributed into five enclosures were studied for testing their ability to rely on olfactory, visual, auditory, or spatial and quantitative information for locating food rewards and for evaluating the use of routes to navigate among five visually similar artificial feeding boxes mounted in each enclosure. During most experiments only a single box was baited with a food reward in each session. The baited box changed randomly throughout the experiment. In the spatial and quantitative information experiment there were two baited boxes varying in the amount of food provided. These baited boxes remained the same throughout the experiment. A total of 45 sessions (three sessions per night during 15 consecutive nights) per enclosure was conducted in each experiment. Only one female showed a performance suggestive of learning of the usefulness of sight to locate the food reward in the visual information experiment. Subjects showed a chance performance in the remaining experiments. All owl monkeys showed a preference for one box or a subset of boxes to inspect upon the beginning of each experimental session and consistently followed individual routes among feeding boxes.
Constraining N2O emissions since 1940 by firn air isotope measurements in both hemispheres
NASA Astrophysics Data System (ADS)
Prokopiou, Markella; Martinerie, Patricia; Sapart, Celia; Witrant, Emmanuel; Monteil, Guillaume; Ishijima, Kentaro; Kaiser, Jan; Levin, Ingeborg; Sowers, Todd; Blunier, Thomas; Etheridge, David; Dlugokencky, Ed; van de Wal, Roderik; Röckmann, Thomas
2017-04-01
N2O is currently the 3rd most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290±1) nmol mol-1 in 1940 to (322±1) nmol mol-1 in 2008 the isotopic δ values of atmospheric N2O decreased by (- 2.2±0.2) ‰ for δ15Nav, (- 1.0±0.3) ‰ for δ18O, (- 1.3±0.6) ‰ for δ15Nα, and (- 2.8±0.6) ‰ for δ15Nβover the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to be 123 a. Adopting this lifetime results in total average source isotopic signatures of (- 7.6±0.8) ‰ (vs. Air-N2) for δ15Nav, (32.2±0.2) ‰ (vs. VSMOW) for δ18O, (- 3.0±1.9) ‰ (vs. Air-N2) for δ15Nα, and (- 11.7±2.3) ‰ (vs. Air-N2) for δ15Nβ over the investigated period. δ15Navand δ15Nβ show some temporal variability while the other source isotopic signatures remain unchanged. The 15N site-preference (= δ15Nα - δ15Nβ) can be used to reveal further information on the source emission origins. Based on the changes in the isotopes we conclude that the main contribution to N2O changes in the atmosphere since 1940 is from soils, with agricultural soils being the principal anthropogenic component, which is in line with previous studies.
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Level-Set Topology Optimization with Aeroelastic Constraints
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2015-01-01
Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.
A new Information publishing system Based on Internet of things
NASA Astrophysics Data System (ADS)
Zhu, Li; Ma, Guoguang
2018-03-01
A new information publishing system based on Internet of things is proposed, which is composed of four level hierarchical structure, including the screen identification layer, the network transport layer, the service management layer and the publishing application layer. In the architecture, the screen identification layer has realized the internet of screens in which geographically dispersed independent screens are connected to the internet by the customized set-top boxes. The service management layer uses MQTT protocol to implement a lightweight broker-based publish/subscribe messaging mechanism in constrained environments such as internet of things to solve the bandwidth bottleneck. Meanwhile the cloud-based storage technique is used to storage and manage the promptly increasing multimedia publishing information. The paper has designed and realized a prototype SzIoScreen, and give some related test results.
An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.
Huitema, Bradley E; McKean, Joseph W
2007-08-01
A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).
Assessment of environmental impacts part one. Intervention analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hipel, Keith William; Lettenmaier, Dennis P.; McLeod, A. Ian
The use of intervention analysis as a statistical method of gauging the effects of environmental changes is discussed. The Box-Jenkins model, serves as the basis for the intervention analysis methodology. Environmental studies of the Aswan Dam, the South Saskatchewan River, and a forest fire near the Pipers Hole River, Canada, are included as case studies in which intervention analysis was employed. Methods of data collection for intervention analysis are found to have a significant impact on model reliability; effective data collection processes for the Box-Jenkins model are provided. (15 graphs, 27 references, 2 tables)
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Burley, J. R., II
1985-01-01
An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.
ERIC Educational Resources Information Center
Mare, Robert D.; Mason, William M.
An important class of applications of measurement error or constrained factor analytic models consists of comparing models for several populations. In such cases, it is appropriate to make explicit statistical tests of model similarity across groups and to constrain some parameters of the models to be equal across groups using a priori substantive…
Advanced solar box and flat plate collector cookers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grupp, M.; Bergler, H.
Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.
Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs.
Yip, W S Vincent; Shigematsu, Hideki; Taylor, David W; Baserga, Susan J
2016-10-14
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2'-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; VandenBoer, Trevor; Young, Cora
2014-06-10
We present OH observation results during the NACHTT-11 field campaign at the Boulder Atmospheric Observatory in Weld County, Colorado. The observed OH levels during the daytime (at noon) were ~ 2.7 × 106 molecules cm-3 at the ground level (2 m above ground level, AGL). HONO and ozone photolysis were the two dominant photochemical OH production pathways during the field campaign. However, alkene ozonolysis, found an important source for OH by two previous winter season OH observations, was a minor contribution to OH primary production (~5 %). To evaluate recycling sources of OH from HO2 and RO2, an observation constrainedmore » University of Washington Chemical Mechanism (UWCM) box model is employed to simulated ambient OH levels with different model scenarios. For the base run without constraining observed HONO, the model simulated OH significantly underestimates the observed OH level (20.8 times in the morning and 7.2 times in the daytime). This indicates that the known HONO sources incorporated in the UWCM model cannot explain the observed HONO level. Once HONO is constrained by the observation, the discrepancy between observation and model simulation improves (5.1 times in the morning and 2.1 times in the daytime) but still out of the measurement uncertainty range (35 %). We explore two possible reasons for the observed unexplainably high wintertime OH levels. First, potential roles of Cl atoms produce organic peroxy radicals from the reactions between Cl atmos and alkane compounds. However, the Cl levels during the observation period are estimated very low (~ 103 atoms cm-3) to explain the enhanced OH levels. Second, Impacts of higher HONO levels on the ground was evaluated. Strong HONO gradient towards ground was observed especially during the early morning (6 am to 8 am) was observed and the lowest level available for the HONO observation during the campaign is 5 m AGL. Once we assume the twice of the observed HONO levels averaged between 5 m to 15 m at 2 m AGL, model predicted OH levels agree well within the observation uncertainty range. Wintertime photochemistry has not been investigated as much as the summer season. The results of this study along with a limited number of winter OH observations clearly urge further investigation on tropospheric oxidation capacity in the winter season considering implications of tropospheric oxidation capacity to the short-lived climate forcers especially methane.« less
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
Vibration signature analysis of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
Order-Constrained Bayes Inference for Dichotomous Models of Unidimensional Nonparametric IRT
ERIC Educational Resources Information Center
Karabatsos, George; Sheu, Ching-Fan
2004-01-01
This study introduces an order-constrained Bayes inference framework useful for analyzing data containing dichotomous scored item responses, under the assumptions of either the monotone homogeneity model or the double monotonicity model of nonparametric item response theory (NIRT). The framework involves the implementation of Gibbs sampling to…
Spatially inhomogeneous acceleration of electrons in solar flares
NASA Astrophysics Data System (ADS)
Stackhouse, Duncan J.; Kontar, Eduard P.
2018-04-01
The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.
NASA Astrophysics Data System (ADS)
Guven, A.; Hassan, M.; Sabir, Shahin
2013-09-01
This study investigates the hydraulic characteristics of simultaneous flow over broad crested weir and through box (square) culverts experimentally. The variation of discharge coefficient (Cd) of the combined structure with various affective parameters such as upstream head, length of culvert, culvert inlet shape, culvert internal dimension, weir crest height, weir side slope angle, and weir width was analyzed. For this purpose 12 glass models of combined broad crested weirs and box culverts were manufactured and tested in a laboratory flume of 12 m. Discharge coefficient predicting equations were developed as a function of the dimensionless terms. The overall results showed that Cd increases as the ratio of the total head of water above the weir crest to the height of the weir crest H/P increases for all the models and for each flow state (weir and combined). Cd values increased as the head increased for all the models tested as culvert flow only, and also with decreasing of the angle between crest of the weir with the sides.
The five-box method: The "four-box method" for the Catholic physician.
Marugg, Lindsey; Atkinson, Marie-Noelle; Fernandes, Ashley
2014-11-01
The traditional ethical model of the "Four-Box Method" can be adapted to integrate the perspective of a Catholic physician. In an increasingly secularist environment, medical students and physicians are often asked to "leave religious beliefs at the door" and not consider the care and stewardship of our own morality and involvement as a provider. We reject this view. A patient's own religious and moral beliefs should be respected to the extent that they do not destroy our own; for us, the Catholic viewpoint can shine a light into dark corners and aid us in translating true things to patients of any religion. We analyzed a sample case in five different categories: medical indications, patient preferences, quality of life, contextual features, and the Catholic context. We explored how to methodically integrate the perspective of a Catholic physician into the analysis of this case to make the best decision for the patients. We felt that we were successfully able to integrate this perspective and create a "fifth box" based on the principles of Catholic social teaching. There were also points during the analysis that the perspective of the Catholic physician was integrated into the discussion of medical indications, proving to us that the "Catholic perspective" cannot be just put in one box either. The traditional ethical model of the "four-box method" can be adapted to integrate the perspective of a Catholic physician. In an increasingly secularist environment, medical students and physicians are often asked to "leave religious beliefs at the door" and not consider the care and stewardship of our own morality and involvement as a provider. We reject this view. A patient's own religious and moral beliefs should be respected to the extent that they do not destroy our own; for us, the Catholic viewpoint can shine a light into dark corners and aid us in translating true things to patients of any religion. By expanding to a "fifth box" of Catholic social teaching, the Catholic physician finds a way to methodically analyze an ethical scenario. This case study is an example of this type of "five-box" analysis.
W. Mark Ford; Andrew M. Evans; Richard H. Odom; Jane L. Rodrigue; Christine A. Kelly; Nicole Abaid; Corinne A. Diggins; Douglas Newcomb
2015-01-01
In the southern Appalachians, artificial nest-boxes are used to survey for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus), a disjunct subspecies associated with high elevation (>1385 m) forests. Using environmental parameters diagnostic of squirrel habitat, we created 35 a priori occupancy...
Tables View the latest hourly text summary CLICK ON UNDERLINED HOUR / SHADED BOX FOR THE LATEST CYCLE 00z Dump Tables View the latest rap text summary CLICK ON UNDERLINED HOUR / SHADED BOX FOR THE LATEST CYCLE Data Dump Tables View the latest model data text summary NAM GFS GDS CLICK ON UNDERLINED HOUR / SHADED
2012-03-22
Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62
Formaldehyde Production from Isoprene Oxidation Across NOx Regimes
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.;
2015-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= 27 NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9), while background HCHO increases by more than a factor of 2 (from 1.5 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D chemical box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Moreover, we find that the total organic peroxy radical production rate is essentially independent of NOx, as the increase in oxidizing capacity with NOx is largely balanced by a decrease in VOC reactivity. Thus, the observed NOx dependence of HCHO mainly reflects the changing fate of organic peroxy radicals.
A random effects meta-analysis model with Box-Cox transformation.
Yamaguchi, Yusuke; Maruo, Kazushi; Partlett, Christopher; Riley, Richard D
2017-07-19
In a random effects meta-analysis model, true treatment effects for each study are routinely assumed to follow a normal distribution. However, normality is a restrictive assumption and the misspecification of the random effects distribution may result in a misleading estimate of overall mean for the treatment effect, an inappropriate quantification of heterogeneity across studies and a wrongly symmetric prediction interval. We focus on problems caused by an inappropriate normality assumption of the random effects distribution, and propose a novel random effects meta-analysis model where a Box-Cox transformation is applied to the observed treatment effect estimates. The proposed model aims to normalise an overall distribution of observed treatment effect estimates, which is sum of the within-study sampling distributions and the random effects distribution. When sampling distributions are approximately normal, non-normality in the overall distribution will be mainly due to the random effects distribution, especially when the between-study variation is large relative to the within-study variation. The Box-Cox transformation addresses this flexibly according to the observed departure from normality. We use a Bayesian approach for estimating parameters in the proposed model, and suggest summarising the meta-analysis results by an overall median, an interquartile range and a prediction interval. The model can be applied for any kind of variables once the treatment effect estimate is defined from the variable. A simulation study suggested that when the overall distribution of treatment effect estimates are skewed, the overall mean and conventional I 2 from the normal random effects model could be inappropriate summaries, and the proposed model helped reduce this issue. We illustrated the proposed model using two examples, which revealed some important differences on summary results, heterogeneity measures and prediction intervals from the normal random effects model. The random effects meta-analysis with the Box-Cox transformation may be an important tool for examining robustness of traditional meta-analysis results against skewness on the observed treatment effect estimates. Further critical evaluation of the method is needed.
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco
2017-07-01
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed, most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, X. F.; Oswald, Fred B.
1992-01-01
Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L.; Salt, Jennifer N.; Goring, Daphne R.
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis. PMID:14657406
Mudgil, Yashwanti; Shiu, Shin-Han; Stone, Sophia L; Salt, Jennifer N; Goring, Daphne R
2004-01-01
The Arabidopsis genome was searched to identify predicted proteins containing armadillo (ARM) repeats, a motif known to mediate protein-protein interactions in a number of different animal proteins. Using domain database predictions and models generated in this study, 108 Arabidopsis proteins were identified that contained a minimum of two ARM repeats with the majority of proteins containing four to eight ARM repeats. Clustering analysis showed that the 108 predicted Arabidopsis ARM repeat proteins could be divided into multiple groups with wide differences in their domain compositions and organizations. Interestingly, 41 of the 108 Arabidopsis ARM repeat proteins contained a U-box, a motif present in a family of E3 ligases, and these proteins represented the largest class of Arabidopsis ARM repeat proteins. In 14 of these U-box/ARM repeat proteins, there was also a novel conserved domain identified in the N-terminal region. Based on the phylogenetic tree, representative U-box/ARM repeat proteins were selected for further study. RNA-blot analyses revealed that these U-box/ARM proteins are expressed in a variety of tissues in Arabidopsis. In addition, the selected U-box/ARM proteins were found to be functional E3 ubiquitin ligases. Thus, these U-box/ARM proteins represent a new family of E3 ligases in Arabidopsis.
NASA Astrophysics Data System (ADS)
Sakhr, Jamal; Nieminen, John M.
2018-03-01
Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.
Nakako, Tomokazu; Murai, Takeshi; Ikejiri, Masaru; Hashimoto, Takashi; Kotani, Manato; Matsumoto, Kenji; Manabe, Shoji; Ogi, Yuji; Konoike, Naho; Nakamura, Katsuki; Ikeda, Kazuhito
2014-11-01
Infants with autism have difficulties performing joint visual attention (JVA), defined as following another person's pointing gesture and gaze. Some non-human primates (NHPs) can also perform JVA. Most preclinical research on autism spectrum disorders (ASD) has used rodents as animal models of this social interaction disorder. However, models using rodents fail to capture the complexity of social interactions that are disrupted in ASD. Therefore, JVA impairment in NHPs might be a more useful model of ASD. The aim of this study was to develop an appropriate and convenient ASD model with common marmosets. We first tested whether marmosets were capable of performing JVA. Subsequently, we administered ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, to induce JVA impairment and investigated the effects of lurasidone, a newer antipsychotic agent, on the JVA impairments. An apparatus was constructed using 4 white boxes, which were attached to the corners of a frame. All boxes had a hinged door, and marmosets could easily obtain a reward by pushing the door. An experimenter pointed and gazed at the boxes to inform the marmosets which box contained the reward. Their behavior was scored according to the number of incorrect choices. The JVA score was significantly higher in the cued vs. uncued tasks. Ketamine significantly decreased the JVA score, but lurasidone significantly reversed this effect. These findings suggest that this experimental system could be a useful animal model of neuropsychiatric disorders characterized by NMDA-receptor signaling, including ASD, and that lurasidone might be effective for some aspects of ASD. Copyright © 2014 Elsevier B.V. All rights reserved.
Axisymmetric Shearing Box Models of Magnetized Disks
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Gammie, Charles F.
2008-01-01
The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.
Nilsson, Jan-Åke; Nord, Andreas
2017-01-01
At temperate latitudes, altricial birds and their nestlings need to handle night temperatures well below thermoneutrality during the breeding season. Thus, energy costs of thermoregulation might constrain nestling growth, and low nocturnal temperatures might require resources that parents could otherwise have invested into nestlings during the day. To manipulate parental work rate, we performed brood size manipulations in breeding marsh tits ( Poecile palustris ). Nest box temperatures were always well above ambient temperature and increased with increasing brood size. In line with predictions, a large majority of females (but no males) made use of this benign environment for roosting. Furthermore, females tending enlarged broods, thereby having to work harder during the day, reduced their body temperature at night. This might have reduced nocturnal energy expenditure. Our finding that a higher proportion of enlarged, as compared to control, females continued to use the nest box as roosting sites even after a simulated predation event despite increased vulnerability to predation, further highlighting the need for energy conservation in this group. High nest box attendance and reduced body temperature in brood-reduced females may indicate that these females prioritised self-maintenance by initiating other costly physiological adjustments, e.g. moult, when relieved from parental work. We suggest that the energy demand for defending homeothermy is an element of the general trade-off between current and future reproduction, i.e. between daytime investment in food provisioning and the potential short- and long-term costs of a reduction in body temperature and increased predation risk. Even during summer at temperate latitudes, breeding birds need to use energy to maintain stable body temperature. Parents, thus, need to enter the night with sufficient body reserves to cover energy requirements for thermoregulation. As these resources could be used for feeding nestling during the day, adaptations to reduce the cost of thermoregulation would be selected for. We performed brood size manipulations, thereby increasing the need for nestling provisioning in marsh tits ( Parus palustris ). We found that females typically spent the night in the thermally benign environment of the nest box together with their brood. Females working hard during the day continued to roost in the nest box during the night despite an increase in the perceived risk of nest predation. Furthermore, these females reduced their body temperature at night, thereby reducing the gradient between ambient and body temperature, further reducing the cost of thermoregulation.
A class of Box-Cox transformation models for recurrent event data.
Sun, Liuquan; Tong, Xingwei; Zhou, Xian
2011-04-01
In this article, we propose a class of Box-Cox transformation models for recurrent event data, which includes the proportional means models as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the proposed models, we apply a profile pseudo-partial likelihood method to estimate the model parameters via estimating equation approaches and establish large sample properties of the estimators and examine its performance in moderate-sized samples through simulation studies. In addition, some graphical and numerical procedures are presented for model checking. An example of application on a set of multiple-infection data taken from a clinic study on chronic granulomatous disease (CGD) is also illustrated.
11. RW Meyer Sugar Mill: 18761889. Locomotive=type, firetube, portable boiler, ...
11. RW Meyer Sugar Mill: 1876-1889. Locomotive=type, fire-tube, portable boiler, model No. 1, Manufactured by Ames Iron Works, Oswego, New York, 1879. 120 lbs./sq. in. working pressure, 66 sq. ft. heating surface in tubes. View: the boiler provided steam for steam engine which in turn powered the centrifugals. View shows front fire box, end of boiler. Below fire-box,used for removing ashes, is a door. Circular openings at the rear of the fire-box are where fire-tubes connected with furnace. Column to right of fire-box carried pressure and water level gauges. Fluted chimney-type structure is steam-port, safety valve, and whistle. Weights originally sat on the arm extending from the top of the port and controlled the boiler pressure. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
NASA Astrophysics Data System (ADS)
Shi, Ji-Ming; Stone, James M.; Huang, Chelsea X.
2016-03-01
Previous studies of the non-linear regime of the magnetorotational instability in one particular type of shearing box model - unstratified with no net magnetic flux - find that without explicit dissipation (viscosity and resistivity) the saturation amplitude decreases with increasing numerical resolution. We show that this result is strongly dependent on the vertical aspect ratio of the computational domain Lz/Lx. When Lz/Lx ≲ 1, we recover previous results. However, when the vertical domain is extended Lz/Lx ≳ 2.5, we find the saturation level of the stress is greatly increased (giving a ratio of stress to pressure α ≳ 0.1), and moreover the results are independent of numerical resolution. Consistent with previous results, we find that saturation of the magnetorotational (MRI) in this regime is controlled by a cyclic dynamo which generates patches of strong toroidal field that switches sign on scales of Lx in the vertical direction. We speculate that when Lz/Lx ≲ 1, the dynamo is inhibited by the small size of the vertical domain, leading to the puzzling dependence of saturation amplitude on resolution. We show that previous toy models developed to explain the MRI dynamo are consistent with our results, and that the cyclic pattern of toroidal fields observed in stratified shearing box simulations (leading to the so-called butterfly diagram) may also be related. In tall boxes the saturation amplitude is insensitive to whether or not explicit dissipation is included in the calculations, at least for large magnetic Reynolds and Prandtl number. Finally, we show MRI turbulence in tall domains has a smaller critical Pmc, and an extended lifetime compared to Lz/Lx ≲ 1 boxes.
Deconvolution single shot multibox detector for supermarket commodity detection and classification
NASA Astrophysics Data System (ADS)
Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian
2017-07-01
This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.
A Method to Constrain Mass and Spin of GRB Black Holes within the NDAF Model
NASA Astrophysics Data System (ADS)
Liu, Tong; Xue, Li; Zhao, Xiao-Hong; Zhang, Fu-Wen; Zhang, Bing
2016-04-01
Black holes (BHs) hide themselves behind various astronomical phenomena and their properties, I.e., mass and spin, are usually difficult to constrain. One leading candidate for the central engine model of gamma-ray bursts (GRBs) invokes a stellar mass BH and a neutrino-dominated accretion flow (NDAF), with the relativistic jet launched due to neutrino-anti-neutrino annihilations. Such a model gives rise to a matter-dominated fireball, and is suitable to interpret GRBs with a dominant thermal component with a photospheric origin. We propose a method to constrain BH mass and spin within the framework of this model and apply the method to the thermally dominant GRB 101219B, whose initial jet launching radius, r0, is constrained from the data. Using our numerical model of NDAF jets, we estimate the following constraints on the central BH: mass MBH ˜ 5-9 M⊙, spin parameter a* ≳ 0.6, and disk mass 3 M⊙ ≲ Mdisk ≲ 4 M⊙. Our results also suggest that the NDAF model is a competitive candidate for the central engine of GRBs with a strong thermal component.
NASA Astrophysics Data System (ADS)
He, Hong-di; Lu, Wei-Zhen; Xue, Yu
2009-12-01
At urban traffic intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly during the green-light period. The changes of driving patterns (i.e., idle, acceleration, deceleration and cruising patterns) generally produce uncertain emission. Additionally, the movement of pedestrians and the influence of wind further result in the random dispersion of pollutants. It is, therefore, too complex to simulate the effects of such dynamics on the resulting emission using conventional deterministic causal models. For this reason, a modified semi-empirical box model for predicting the PM 10 concentrations on roadsides is proposed in this paper. The model constitutes three parts, i.e., traffic, emission and dispersion components. The traffic component is developed using a generalized force traffic model to obtain the instantaneous velocity and acceleration when vehicles move through intersections. Hence the distribution of vehicle emission in street canyon during the green-light period is calculated. Then the dispersion component is investigated using a semi-empirical box model combining average wind speed, box height and background concentrations. With these considerations, the proposed model is applied and evaluated using measured data at a busy traffic intersection in Mong Kok, Hong Kong. In order to test the performance of the model, two situations, i.e., the data sets within a sunny day and between two sunny days, were selected to examine the model performance. The predicted values are generally well coincident with the observed data during different time slots except several values are overestimated or underestimated. Moreover, two types of vehicles, i.e., buses and petrol cars, are separately taken into account in the study. Buses are verified to contribute most to the emission in street canyons, which may be useful in evaluating the impact of vehicle emissions on the ambient air quality when there is a significant change in a specific vehicular population.
NASA Astrophysics Data System (ADS)
Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.
2016-07-01
The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation facilitates to constrain the geometrical parameters of analogue models.
NASA Astrophysics Data System (ADS)
Elkhateeb, Esraa
2018-01-01
We consider a cosmological model based on a generalization of the equation of state proposed by Nojiri and Odintsov (2004) and Štefančić (2005, 2006). We argue that this model works as a dark fluid model which can interpolate between dust equation of state and the dark energy equation of state. We show how the asymptotic behavior of the equation of state constrained the parameters of the model. The causality condition for the model is also studied to constrain the parameters and the fixed points are tested to determine different solution classes. Observations of Hubble diagram of SNe Ia supernovae are used to further constrain the model. We present an exact solution of the model and calculate the luminosity distance and the energy density evolution. We also calculate the deceleration parameter to test the state of the universe expansion.
On-line algorithms for forecasting hourly loads of an electric utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemuri, S.; Huang, W.L.; Nelson, D.J.
A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less
Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario
NASA Astrophysics Data System (ADS)
Tobias, Guillermo; Jesús García, Adrián
2016-04-01
The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of taking the physical interactions between satellite and solar radiation into account in an empirical model with respect to a pure empirical model.
The Box and the Circle--Two Systems of Life: A Model for Understanding Native-Non-Native Issues.
ERIC Educational Resources Information Center
Derrick, Jann
Working as a family systems therapist with Native and non-Native families, the author observed two opposing social systems. Non-native families systems typify "The Box System," whereas native family systems portray "The Circle System." A few characteristics of the Circle System are: (1) a focus on life and peacefulness; (2) females and children…
Linguistic Mediation of Children's Performance in a New Symbolic Understanding Task
ERIC Educational Resources Information Center
Homer, Bruce D.; Petroff, Natalya; Hayward, Elizabeth O.
2013-01-01
The effects of language on symbolic functioning were examined using the "boxes task," a new symbolic understanding task based on DeLoache's model task. Children ("N" = 32; ages 2;4--3;8) observed an object being hidden in a stack of four boxes and were then asked to retrieve a similar object in the same location from a set of…
Box compression analysis of world-wide data spanning 46 years
Thomas J. Urbanik; Benjamin Frank
2006-01-01
The state of the art among most industry citations of box compression estimation is the equation by McKee developed in 1963. Because of limitations in computing tools at the time the McKee equation was developed, the equation is a simplification, with many constraints, of a more general relationship. By applying the results of sophisticated finite element modeling, in...
NASA Astrophysics Data System (ADS)
Verginelli, Iason; Nocentini, Massimo; Baciocchi, Renato
2017-09-01
Simplified analytical solutions of fate and transport models are often used to carry out risk assessment on contaminated sites, to evaluate the long-term air quality in relation to volatile organic compounds in either soil or groundwater. Among the different assumptions employed to develop these solutions, in this work we focus on those used in the ASTM-RBCA ;box model; for the evaluation of contaminant dispersion in the atmosphere. In this simple model, it is assumed that the contaminant volatilized from the subsurface is dispersed in the atmosphere within a mixing height equal to two meters, i.e. the height of the breathing zone. In certain cases, this simplification could lead to an overestimation of the outdoor air concentration at the point of exposure. In this paper we first discuss the maximum source lengths (in the wind direction) for which the application of the ;box model; can be considered acceptable. Specifically, by comparing the results of ;box model; with the SCREEN3 model of U.S.EPA we found that under very stable atmospheric conditions (class F) the ASTM-RBCA approach provides acceptable results for source lengths up to 200 m while for very unstable atmospheric conditions (class A and B) the overestimation of the concentrations at the point of the exposure can be already observed for source lengths of only 10 m. In the latter case, the overestimation of the ;box model; can be of more than one order of magnitude for source lengths above 500 m. To overcome this limitation, in this paper we introduce a simple analytical solution that can be used for the calculation of the concentration at the point of exposure for large contaminated sites. The method consists in the introduction of an equivalent mixing zone height that allows to account for the dispersion of the contaminants along the source length while keeping the simplistic ;box model; approach that is implemented in most of risk assessment tools that are based on the ASTM-RBCA standard (e.g. RBCA toolkit). Based on our testing, we found that the developed model replicates very well the results of the more sophisticated dispersion SCREEN3 model with deviations always below 10%. The key advantage of this approach is that it can be very easily incorporated in the current risk assessment screening tools that are based on the ASTM standards while ensuring a more accurate evaluation of the concentration at the point of exposure.
On meeting capital requirements with a chance-constrained optimization model.
Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan
2016-01-01
This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.
WHITE BOX: LOW COST BOX FOR LAPAROSCOPIC TRAINING
MARTINS, João Maximiliano Pedron; RIBEIRO, Roberto Vanin Pinto; CAVAZZOLA, Leandro Totti
2015-01-01
Background: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation. Aim: To present a low cost model for laparoscopic training box. Methods: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. Results: It can be finalized in two days costing R$ 280,00 (US$ 90). Conclusion: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room. PMID:26537148
Structural dynamic and thermal stress analysis of nuclear reactor vessel support system
NASA Technical Reports Server (NTRS)
Chi-Diango, J.
1972-01-01
A nuclear reactor vessel is supported by a Z-ring and a box ring girder. The two proposed structural configurations to transmit the loads from the Z-ring and the box ring girder to the foundation are shown. The cantilever concrete ledge transmitting the load from the Z-ring and the box girder via the cavity wall to the foundation is shown, along with the loads being transmitted through one of the six steel columns. Both of these two supporting systems were analyzed by using rigid format 9 of NASTRAN for dynamic loads, and the thermal stresses were analyzed by AXISOL. The six column configuration was modeled by a combination of plate and bar elements, and the concrete cantilever ledge configuration was modeled by plate elements. Both configurations were found structurally satisfactory; however, nonstructural considerations favored the concrete cantilever ledge.
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
NASA Technical Reports Server (NTRS)
Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.
1991-01-01
Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.
Constraining new physics models with isotope shift spectroscopy
NASA Astrophysics Data System (ADS)
Frugiuele, Claudia; Fuchs, Elina; Perez, Gilad; Schlaffer, Matthias
2017-07-01
Isotope shifts of transition frequencies in atoms constrain generic long- and intermediate-range interactions. We focus on new physics scenarios that can be most strongly constrained by King linearity violation such as models with B -L vector bosons, the Higgs portal, and chameleon models. With the anticipated precision, King linearity violation has the potential to set the strongest laboratory bounds on these models in some regions of parameter space. Furthermore, we show that this method can probe the couplings relevant for the protophobic interpretation of the recently reported Be anomaly. We extend the formalism to include an arbitrary number of transitions and isotope pairs and fit the new physics coupling to the currently available isotope shift measurements.
Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination
NASA Technical Reports Server (NTRS)
Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.
1992-01-01
Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.
NASA Astrophysics Data System (ADS)
Byrne, Michael P.; O'Gorman, Paul A.
2016-12-01
Climate models simulate a strong land-ocean contrast in the response of near-surface relative humidity to global warming: relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving moisture transport between the land and ocean boundary layers and evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to idealized and full-complexity (CMIP5) general circulation model simulations, and it is found to capture many of the features of the simulated changes in land relative humidity. The box model suggests there is a strong link between fractional changes in specific humidity over land and ocean, and the greater warming over land than ocean then implies a decrease in land relative humidity. Evapotranspiration is of secondary importance for the increase in specific humidity over land, but it matters more for the decrease in relative humidity. Further analysis shows there is a strong feedback between changes in surface-air temperature and relative humidity, and this can amplify the influence on relative humidity of factors such as stomatal conductance and soil moisture.
Learning Kinematic Constraints in Laparoscopic Surgery
Huang, Felix C.; Mussa-Ivaldi, Ferdinando A.; Pugh, Carla M.; Patton, James L.
2012-01-01
To better understand how kinematic variables impact learning in surgical training, we devised an interactive environment for simulated laparoscopic maneuvers, using either 1) mechanical constraints typical of a surgical “box-trainer” or 2) virtual constraints in which free hand movements control virtual tool motion. During training, the virtual tool responded to the absolute position in space (Position-Based) or the orientation (Orientation-Based) of a hand-held sensor. Volunteers were further assigned to different sequences of target distances (Near-Far-Near or Far-Near-Far). Training with the Orientation-Based constraint enabled much lower path error and shorter movement times during training, which suggests that tool motion that simply mirrors joint motion is easier to learn. When evaluated in physically constrained (physical box-trainer) conditions, each group exhibited improved performance from training. However, Position-Based training enabled greater reductions in movement error relative to Orientation-Based (mean difference: 14.0 percent; CI: 0.7, 28.6). Furthermore, the Near-Far-Near schedule allowed a greater decrease in task time relative to the Far-Near-Far sequence (mean −13:5 percent, CI: −19:5, −7:5). Training that focused on shallow tool insertion (near targets) might promote more efficient movement strategies by emphasizing the curvature of tool motion. In addition, our findings suggest that an understanding of absolute tool position is critical to coping with mechanical interactions between the tool and trocar. PMID:23293709
Ausiello, Pietro; Ciaramella, Stefano; Fabianelli, Andrea; Gloria, Antonio; Martorelli, Massimo; Lanzotti, Antonio; Watts, David C
2017-06-01
To study the influence of resin based and lithium disilicate materials on the stress and strain distributions in adhesive class II mesio-occlusal-distal (MOD) restorations using numerical finite element analysis (FEA). To investigate the materials combinations in the restored teeth during mastication and their ability to relieve stresses. One 3D model of a sound lower molar and three 3D class II MOD cavity models with 95° cavity-margin-angle shapes were modelled. Different material combinations were simulated: model A, with a 10μm thick resin bonding layer and a resin composite bulk filling material; model B, with a 70μm resin cement with an indirect CAD-CAM resin composite inlay; model C, with a 70μm thick resin cement with an indirect lithium disilicate machinable inlay. To simulate polymerization shrinkage effects in the adhesive layers and bulk fill composite, the thermal expansion approach was used. Shell elements were employed for representing the adhesive layers. 3D solid CTETRA elements with four grid points were employed for modelling the food bolus and tooth. Slide-type contact elements were used between the tooth surface and food. A vertical occlusal load of 600 N was applied, and nodal displacements on the bottom cutting surfaces were constrained in all directions. All the materials were assumed to be isotropic and elastic and a static linear analysis was performed. Displacements were different in models A, B and C. Polymerization shrinkage hardly affected model A and mastication only partially affected mechanical behavior. Shrinkage stress peaks were mainly located marginally along the enamel-restoration interface at occlusal and mesio-distal sites. However, at the internal dentinal walls, stress distributions were critical with the highest maximum stresses concentrated in the proximal boxes. In models B and C, shrinkage stress was only produced by the 70μm thick resin layer, but the magnitudes depended on the Young's modulus (E) of the inlay materials. Model B mastication behavior (with E=20GPa) was similar to the sound tooth stress relief pattern. Model B internally showed differences from the sound tooth model but reduced maximum stresses than model A and partially than model C. Model C (with E=70GPa) behaved similarly to model B with well redistributed stresses at the occlusal margins and the lateral sides with higher stress concentrations in the proximal boxes. Models B and C showed a more favorable performance than model A with elastic biomechanics similar to the sound tooth model. Bulk filling resin composite with 1% linear polymerization shrinkage negatively affected the mechanical behavior of class II MOD restored teeth. Class II MOD direct resin composite showed greater potential for damage because of higher internal and marginal stress evolution during resin polymerization shrinkage. With a large class II MOD cavity an indirect composite or a lithium disilicate inlay restoration may provide a mechanical response close to that of a sound tooth. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Orac, Crina M; Zhou, Shu; Means, John A; Boehm, David; Bergmeier, Stephen C; Hines, Jennifer V
2011-10-13
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.
2012-01-01
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425
Hollenbeak, Christopher S
2005-10-15
While risk-adjusted outcomes are often used to compare the performance of hospitals and physicians, the most appropriate functional form for the risk adjustment process is not always obvious for continuous outcomes such as costs. Semi-log models are used most often to correct skewness in cost data, but there has been limited research to determine whether the log transformation is sufficient or whether another transformation is more appropriate. This study explores the most appropriate functional form for risk-adjusting the cost of coronary artery bypass graft (CABG) surgery. Data included patients undergoing CABG surgery at four hospitals in the midwest and were fit to a Box-Cox model with random coefficients (BCRC) using Markov chain Monte Carlo methods. Marginal likelihoods and Bayes factors were computed to perform model comparison of alternative model specifications. Rankings of hospital performance were created from the simulation output and the rankings produced by Bayesian estimates were compared to rankings produced by standard models fit using classical methods. Results suggest that, for these data, the most appropriate functional form is not logarithmic, but corresponds to a Box-Cox transformation of -1. Furthermore, Bayes factors overwhelmingly rejected the natural log transformation. However, the hospital ranking induced by the BCRC model was not different from the ranking produced by maximum likelihood estimates of either the linear or semi-log model. Copyright (c) 2005 John Wiley & Sons, Ltd.
An artificial intelligence tool for complex age-depth models
NASA Astrophysics Data System (ADS)
Bradley, E.; Anderson, K. A.; de Vesine, L. R.; Lai, V.; Thomas, M.; Nelson, T. H.; Weiss, I.; White, J. W. C.
2017-12-01
CSciBox is an integrated software system for age modeling of paleoenvironmental records. It incorporates an array of data-processing and visualization facilities, ranging from 14C calibrations to sophisticated interpolation tools. Using CSciBox's GUI, a scientist can build custom analysis pipelines by composing these built-in components or adding new ones. Alternatively, she can employ CSciBox's automated reasoning engine, Hobbes, which uses AI techniques to perform an in-depth, autonomous exploration of the space of possible age-depth models and presents the results—both the models and the reasoning that was used in constructing and evaluating them—to the user for her inspection. Hobbes accomplishes this using a rulebase that captures the knowledge of expert geoscientists, which was collected over the course of more than 100 hours of interviews. It works by using these rules to generate arguments for and against different age-depth model choices for a given core. Given a marine-sediment record containing uncalibrated 14C dates, for instance, Hobbes tries CALIB-style calibrations using a choice of IntCal curves, with reservoir age correction values chosen from the 14CHRONO database using the lat/long information provided with the core, and finally composes the resulting age points into a full age model using different interpolation methods. It evaluates each model—e.g., looking for outliers or reversals—and uses that information to guide the next steps of its exploration, and presents the results to the user in human-readable form. The most powerful of CSciBox's built-in interpolation methods is BACON, a Bayesian sedimentation-rate algorithm—a powerful but complex tool that can be difficult to use. Hobbes adjusts BACON's many parameters autonomously to match the age model to the expectations of expert geoscientists, as captured in its rulebase. It then checks the model against the data and iteratively re-calculates until it is a good fit to the data.
Deflection monitoring for a box girder based on a modified conjugate beam method
NASA Astrophysics Data System (ADS)
Chen, Shi-Zhi; Wu, Gang; Xing, Tuo
2017-08-01
After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.
Forecasts of non-Gaussian parameter spaces using Box-Cox transformations
NASA Astrophysics Data System (ADS)
Joachimi, B.; Taylor, A. N.
2011-09-01
Forecasts of statistical constraints on model parameters using the Fisher matrix abound in many fields of astrophysics. The Fisher matrix formalism involves the assumption of Gaussianity in parameter space and hence fails to predict complex features of posterior probability distributions. Combining the standard Fisher matrix with Box-Cox transformations, we propose a novel method that accurately predicts arbitrary posterior shapes. The Box-Cox transformations are applied to parameter space to render it approximately multivariate Gaussian, performing the Fisher matrix calculation on the transformed parameters. We demonstrate that, after the Box-Cox parameters have been determined from an initial likelihood evaluation, the method correctly predicts changes in the posterior when varying various parameters of the experimental setup and the data analysis, with marginally higher computational cost than a standard Fisher matrix calculation. We apply the Box-Cox-Fisher formalism to forecast cosmological parameter constraints by future weak gravitational lensing surveys. The characteristic non-linear degeneracy between matter density parameter and normalization of matter density fluctuations is reproduced for several cases, and the capabilities of breaking this degeneracy by weak-lensing three-point statistics is investigated. Possible applications of Box-Cox transformations of posterior distributions are discussed, including the prospects for performing statistical data analysis steps in the transformed Gaussianized parameter space.
Simplified method for the transverse bending analysis of twin celled concrete box girder bridges
NASA Astrophysics Data System (ADS)
Chithra, J.; Nagarajan, Praveen; S, Sajith A.
2018-03-01
Box girder bridges are one of the best options for bridges with span more than 25 m. For the study of these bridges, three-dimensional finite element analysis is the best suited method. However, performing three-dimensional analysis for routine design is difficult as well as time consuming. Also, software used for the three-dimensional analysis are very expensive. Hence designers resort to simplified analysis for predicting longitudinal and transverse bending moments. Among the many analytical methods used to find the transverse bending moments, SFA is the simplest and widely used in design offices. Results from simplified frame analysis can be used for the preliminary analysis of the concrete box girder bridges.From the review of literatures, it is found that majority of the work done using SFA is restricted to the analysis of single cell box girder bridges. Not much work has been done on the analysis multi-cell concrete box girder bridges. In this present study, a double cell concrete box girder bridge is chosen. The bridge is modelled using three- dimensional finite element software and the results are then compared with the simplified frame analysis. The study mainly focuses on establishing correction factors for transverse bending moment values obtained from SFA.
Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence
NASA Astrophysics Data System (ADS)
Johansen, A.; Youdin, A.; Klahr, H.
2009-06-01
We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.
MADS-box genes and floral development: the dark side.
Heijmans, Klaas; Morel, Patrice; Vandenbussche, Michiel
2012-09-01
The origin of the flower during evolution has been a crucial step in further facilitating plants to colonize a wide range of different niches on our planet. The >250 000 species of flowering plants existing today display an astonishing diversity in floral architecture. For this reason, the flower is a very attractive subject for evolutionary developmental (evo-devo) genetics studies. Research during the last two decades has provided compelling evidence that the origin and functional diversification of MIKC(c) MADS-box transcription factors has played a critical role during evolution of flowering plants. As master regulators of floral organ identity, MADS-box proteins are at the heart of the classic ABC model for floral development. Despite the enormous progress made in the field of floral development, there still remain aspects that are less well understood. Here we highlight some of the dark corners within our current knowledge on MADS-box genes and flower development, which would be worthwhile investigating in more detail in future research. These include the general question of to what extent MADS-box gene functions are conserved between species, the function of TM8-clade MADS-box genes which so far have remained uncharacterized, the divergence within the A-function, and post-transcriptional regulation of the ABC-genes.
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Baloga, S. M.; Garvin, J. B.; Quick, L. C.
2014-05-01
Lava flows and flow fields on Venus lack sufficient topographic data for any type of quantitative modeling to estimate eruption rates and durations. Such modeling can constrain rates of resurfacing and provide insights into magma plumbing systems.
Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.
1991-01-01
The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.
Enhanced ClO from 10 to 12 km Near the Winter Polar Tropopause During SOLVE/THESEO-2000
NASA Technical Reports Server (NTRS)
Toohey, Darin W.; Thornton, Brett F.; Avery, Melody A.; Avallone, Linnea M.; Harder, Hartwig; Martinez, Monica; Simpas, James B.; Brune, William H.
2002-01-01
Abundances of chlorine oxide have been measured in situ near the tropopause from the NASA DC-8 aircraft during the SOLVE/THESEO-2000 campaign. Significant abundances, averaging 15-20 parts per trillion, were observed throughout the lowermost stratosphere at high latitudes during winter. Mixing ratios of ClO generally increased with increasing ozone (the latter an indicator of stratospheric air) as has been observed at other latitudes and seasons. However, the ratio of ClO to inorganic chlorine ([ClO]/[Cl(sub y)]) was found to be largest in air characterized by low abundances of ozone (approximately l00-250). It was within this range of ozone values that cirrus clouds were also observed occasionally throughout the measurement period, although distinct enhancements of ClO were not commonly observed directly within cirrus clouds. Elevated abundances of ClO were also apparently observed in polar darkness. However, we attribute these measurements to OClO, a species that can also be detected by the DC-8 instrument under the conditions encountered during SOLVE/THESEO-2000. Using a photochemical box model constrained by daytime abundances of ClO, we infer that BrO mixing ratios in this region were approximately 2-4 ppt, consistent with previous measurements from balloon-borne remote sensors.
2011-01-01
Background Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Methods Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI®) for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Results Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. Conclusions The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects. PMID:21854614
Hou, Qingjiang; Mahnken, Jonathan D; Gajewski, Byron J; Dunton, Nancy
2011-08-19
Many nursing and health related research studies have continuous outcome measures that are inherently non-normal in distribution. The Box-Cox transformation provides a powerful tool for developing a parsimonious model for data representation and interpretation when the distribution of the dependent variable, or outcome measure, of interest deviates from the normal distribution. The objectives of this study was to contrast the effect of obtaining the Box-Cox power transformation parameter and subsequent analysis of variance with or without a priori knowledge of predictor variables under the classic linear or linear mixed model settings. Simulation data from a 3 × 4 factorial treatments design, along with the Patient Falls and Patient Injury Falls from the National Database of Nursing Quality Indicators (NDNQI® for the 3rd quarter of 2007 from a convenience sample of over one thousand US hospitals were analyzed. The effect of the nonlinear monotonic transformation was contrasted in two ways: a) estimating the transformation parameter along with factors with potential structural effects, and b) estimating the transformation parameter first and then conducting analysis of variance for the structural effect. Linear model ANOVA with Monte Carlo simulation and mixed models with correlated error terms with NDNQI examples showed no substantial differences on statistical tests for structural effects if the factors with structural effects were omitted during the estimation of the transformation parameter. The Box-Cox power transformation can still be an effective tool for validating statistical inferences with large observational, cross-sectional, and hierarchical or repeated measure studies under the linear or the mixed model settings without prior knowledge of all the factors with potential structural effects.
Evaluation of Pre-marketing Factors to Predict Post-marketing Boxed Warnings and Safety Withdrawals.
Schick, Andreas; Miller, Kathleen L; Lanthier, Michael; Dal Pan, Gerald; Nardinelli, Clark
2017-06-01
An important goal in drug regulation is understanding serious safety issues with new drugs as soon as possible. Achieving this goal requires us to understand whether information provided during the Food and Drug Administration (FDA) drug review can predict serious safety issues that are usually identified after the product is approved. However, research on this topic remains understudied. In this paper, we examine whether any pre-marketing drug characteristics are associated with serious post-marketing safety actions. We study this question using an internal FDA database containing every new small molecule drug submitted to the FDA's Center for Drug Evaluation and Research (CDER) on or after November 21, 1997, and approved and commercially launched before December 31, 2009. Serious post-marketing safety actions include whether these drugs ever experienced either a post-marketing boxed warning or a withdrawal from the market due to safety concerns. A random effects logistic regression model was used to test whether any pre-marketing characteristics were associated with either post-marketing safety action. A total of 219 new molecular entities were analyzed. Among these drugs, 11 experienced a safety withdrawal and 30 received boxed warnings by July 31, 2016. Contrary to prevailing hypotheses, we find that neither clinical trial sample sizes nor review time windows are associated with the addition of a post-marketing boxed warning or safety withdrawal. However, we do find that new drugs approved with either a boxed warning or priority review are more likely to experience post-marketing boxed warnings. Furthermore, drugs approved with boxed warnings tend to receive post-marketing boxed warnings resulting from new safety information that are unrelated to the original warning. Drugs approved with a boxed warning are 3.88 times more likely to receive a post-marketing boxed warning, while drugs approved with a priority review are 3.51 times more likely to receive a post-marketing boxed warning. Although drugs approved with a boxed warning or priority review are more likely to experience serious post-marketing safety events, other information provided during the FDA drug review that is easy to quantify is generally not associated with post-marketing safety events. It appears that these post-marketing events are not discernible during a pre-marketing review and therefore might not be avoidable using current review data.
MADS-Box gene diversity in seed plants 300 million years ago.
Becker, A; Winter, K U; Meyer, B; Saedler, H; Theissen, G
2000-10-01
MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants ranging from root development to flower and fruit development. Through phylogeny reconstructions, most of these genes can be subdivided into defined monophyletic gene clades whose members share similar expression patterns and functions. Therefore, the establishment of the diversity of gene clades was probably an important event in land plant evolution. In order to determine when these clades originated, we isolated cDNAs of 19 different MADS-box genes from Gnetum gnemon, a gymnosperm model species and thus a representative of the sister group of the angiosperms. Phylogeny reconstructions involving all published MADS-box genes were then used to identify gene clades containing putative orthologs from both angiosperm and gymnosperm lineages. Thus, the minimal number of MADS-box genes that were already present in the last common ancestor of extant gymnosperms and angiosperms was determined. Comparative expression studies involving pairs of putatively orthologous genes revealed a diversity of patterns that has been largely conserved since the time when the angiosperm and gymnosperm lineages separated. Taken together, our data suggest that there were already at least seven different MADS-box genes present at the base of extant seed plants about 300 MYA. These genes were probably already quite diverse in terms of both sequence and function. In addition, our data demonstrate that the MADS-box gene families of extant gymnosperms and angiosperms are of similar complexities.
NASA Astrophysics Data System (ADS)
Volk, Brent L.; Lagoudas, Dimitris C.; Maitland, Duncan J.
2011-09-01
In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5-4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data.
Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant
Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa
2013-09-17
System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenerani, Anna; Velli, Marco
Alfvénic fluctuations in the solar wind display many properties reflecting an ongoing nonlinear cascade, e.g., a well-defined spectrum in frequency, together with some characteristics more commonly associated with the linear propagation of waves from the Sun, such as the variation of fluctuation amplitude with distance, dominated by solar wind expansion effects. Therefore, both nonlinearities and expansion must be included simultaneously in any successful model of solar wind turbulence evolution. Because of the disparate spatial scales involved, direct numerical simulations of turbulence in the solar wind represent an arduous task, especially if one wants to go beyond the incompressible approximation. Indeed,more » most simulations neglect solar wind expansion effects entirely. Here we develop a numerical model to simulate turbulent fluctuations from the outer corona to 1 au and beyond, including the sub-Alfvénic corona. The accelerating expanding box (AEB) extends the validity of previous expanding box models by taking into account both the acceleration of the solar wind and the inhomogeneity of background density and magnetic field. Our method incorporates a background accelerating wind within a magnetic field that naturally follows the Parker spiral evolution using a two-scale analysis in which the macroscopic spatial effect coupling fluctuations with background gradients becomes a time-dependent coupling term in a homogeneous box. In this paper we describe the AEB model in detail and discuss its main properties, illustrating its validity by studying Alfvén wave propagation across the Alfvén critical point.« less
The added value of remote sensing products in constraining hydrological models
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
The reaction between CH 3O 2 and OH radicals: Product yields and atmospheric implications
Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa; ...
2017-01-25
The reaction between CH 3O 2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH 3O 2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO 2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH 3O 2, OH, and HO 2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of Φ HO2more » = (0.8 ± 0.2) and an upper limit for Φ Criegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH 3O 2+OH reaction into the model results in up to 30% decrease in the CH 3O 2 radical concentration while the HO 2 concentration increased by up to 20%. Finally, production and destruction of O 3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH 3O 2 and OH leads to a 6% decrease of O 3.« less
Precessional control of Sr ratios in marginal basins during the Messinian Salinity Crisis?
NASA Astrophysics Data System (ADS)
Topper, R. P. M.; Lugli, S.; Manzi, V.; Roveri, M.; Meijer, P. Th.
2014-05-01
Based on 87Sr/86Sr data of the Primary Lower Gypsum (PLG) deposits in the Vena del Gesso basin—a marginal basin of the Mediterranean during the Messinian Salinity Crisis—a correlation between 87Sr/86Sr values and precessional forcing has recently been proposed but not yet confirmed. In this study, a box model is set up to represent the Miocene Mediterranean deep basin and a connected marginal basin. Measurements of 87Sr/86Sr in the Vena del Gesso and estimated salinity extrema are used to constrain model results. In an extensive analysis with this model, we assess whether coeval 87Sr/86Sr and salinity fluctuations could have been forced by precession-driven changes in the fresh water budget. A comprehensive set of the controlling parameters is examined to assess the conditions under which precession-driven 87Sr/86Sr variations occur and to determine the most likely setting for PLG formation. Model results show that precession-driven 87Sr/86Sr and salinity fluctuations in marginal basins are produced in settings within a large range of marginal basin sizes, riverine strontium characteristics, amplitudes of precessional fresh water budget variation, and average fresh water budgets of both the marginal and deep basin. PLG deposition most likely occurred when the Atlantic-Mediterranean connection was restricted, and the average fresh water budget in the Mediterranean was significantly less negative than at present day. Considering the large range of settings in which salinities and 87Sr/86Sr fluctuate on a precessional timescale, 87Sr/86Sr variations are expected to be a common feature in PLG deposits in marginal basins of the Mediterranean.
The reaction between CH 3O 2 and OH radicals: Product yields and atmospheric implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa
The reaction between CH 3O 2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH 3O 2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO 2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH 3O 2, OH, and HO 2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of Φ HO2more » = (0.8 ± 0.2) and an upper limit for Φ Criegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH 3O 2+OH reaction into the model results in up to 30% decrease in the CH 3O 2 radical concentration while the HO 2 concentration increased by up to 20%. Finally, production and destruction of O 3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH 3O 2 and OH leads to a 6% decrease of O 3.« less
Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge
NASA Astrophysics Data System (ADS)
Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin
2015-06-01
Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.
Evaluating and improving the representation of heteroscedastic errors in hydrological models
NASA Astrophysics Data System (ADS)
McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.
2013-12-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.
NASA Technical Reports Server (NTRS)
Parker, L. Neergaard; Zank, G. P.
2013-01-01
Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
Hansen, Flemming G.; Atlung, Tove
2018-01-01
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model. PMID:29541066
Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
2012-01-01
Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Conclusions Yeast 5 expands and refines the computational reconstruction of yeast metabolism and improves the predictive accuracy of a stoichiometrically constrained yeast metabolic model. It differs from previous reconstructions and models by emphasizing the distinction between the yeast metabolic reconstruction and the stoichiometrically constrained model, and makes both available as Additional file 4 and Additional file 5 and at http://yeast.sf.net/ as separate systems biology markup language (SBML) files. Through this separation, we intend to make the modeling process more accessible, explicit, transparent, and reproducible. PMID:22663945
de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; de Almeida, Euziclei Gonzaga; da Silva Coelho, Irene; Schwan, Rosane Freitas
2013-02-01
Spontaneous cocoa bean fermentations carried out in a novel-design 40-kg-capacity stainless steel tank (SST) was studied in parallel to traditional Brazilian methods of fermentation in wooden boxes (40-kg-capacity wooden boxes (WB1) and 600-kg-capacity wooden boxes (WB2)) using a multiphasic approach that entailed culture-dependent and -independent microbiological analyses of fermenting cocoa bean pulp samples and target metabolite analyses of both cocoa pulp and cotyledons. Both microbiological approaches revealed that the dominant species of major physiological roles were the same for fermentations in SST, relative to boxes. These species consisted of Saccharomyces cerevisiae and Hanseniaspora sp. in the yeast group; Lactobacillus fermentum and L. plantarum in the lactic acid bacteria (LAB) group; Acetobacter tropicalis belonging to the acetic acid bacteria (AAB) group; and Bacillus subtilis in the Bacillaceae family. A greater diversity of bacteria and non-Saccharomyces yeasts was observed in box fermentations. Additionally, a potentially novel AAB belonging to the genus Asaia was isolated during fermentation in WB1. Cluster analysis of the rRNA genes-PCR-DGGE profiles revealed a more complex picture of the box samples, indicating that bacterial and yeast ecology were fermentation-specific processes (wooden boxes vs. SST). The profile of carbohydrate consumption and fermentation products in the pulp and beans showed similar trends during both fermentation processes. However, the yeast-AAB-mediated conversion of carbohydrates into ethanol, and subsequent conversion of ethanol into acetic acid, was achieved with greater efficiency in SST, while temperatures were generally higher during fermentation in wooden boxes. With further refinements, the SST model may be useful in designing novel bioreactors for the optimisation of cocoa fermentation with starter cultures. Copyright © 2012 Elsevier B.V. All rights reserved.
Model reconstruction using POD method for gray-box fault detection
NASA Technical Reports Server (NTRS)
Park, H. G.; Zak, M.
2003-01-01
This paper describes using Proper Orthogonal Decomposition (POD) method to create low-order dynamical models for the Model Filter component of Beacon-based Exception Analysis for Multi-missions (BEAM).
Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen
2013-01-01
Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...
NASA Astrophysics Data System (ADS)
Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.
2014-01-01
Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.
Yu Wei; Michael Bevers; Erin Belval; Benjamin Bird
2015-01-01
This research developed a chance-constrained two-stage stochastic programming model to support wildfire initial attack resource acquisition and location on a planning unit for a fire season. Fire growth constraints account for the interaction between fire perimeter growth and construction to prevent overestimation of resource requirements. We used this model to examine...
Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J
2011-01-01
In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272
NASA Astrophysics Data System (ADS)
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng
2018-01-01
Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.
Means, John A.; Simson, Crystal M.; Zhou, Shu; Rachford, Aaron A.; Rack, Jeffrey J.; Hines, Jennifer V.
2009-01-01
The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg2+ plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced fit. This binding is enhanced by the presence of Mg2+, facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge. PMID:19755116
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.
Grey-box state-space identification of nonlinear mechanical vibrations
NASA Astrophysics Data System (ADS)
Noël, J. P.; Schoukens, J.
2018-05-01
The present paper deals with the identification of nonlinear mechanical vibrations. A grey-box, or semi-physical, nonlinear state-space representation is introduced, expressing the nonlinear basis functions using a limited number of measured output variables. This representation assumes that the observed nonlinearities are localised in physical space, which is a generic case in mechanics. A two-step identification procedure is derived for the grey-box model parameters, integrating nonlinear subspace initialisation and weighted least-squares optimisation. The complete procedure is applied to an electrical circuit mimicking the behaviour of a single-input, single-output (SISO) nonlinear mechanical system and to a single-input, multiple-output (SIMO) geometrically nonlinear beam structure.
Peripheral refraction profiles in subjects with low foveal refractive errors.
Tabernero, Juan; Ohlendorf, Arne; Fischer, M Dominik; Bruckmann, Anna R; Schiefer, Ulrich; Schaeffel, Frank
2011-03-01
To study the variability of peripheral refraction in a population of 43 subjects with low foveal refractive errors. A scan of the refractive error in the vertical pupil meridian of the right eye of 43 subjects (age range, 18 to 80 years, foveal spherical equivalent, < ± 2.5 diopter) over the central ± 45° of the visual field was performed using a recently developed angular scanning photorefractor. Refraction profiles across the visual field were fitted with four different models: (1) "flat model" (refractions about constant across the visual field), (2) "parabolic model" (refractions follow about a parabolic function), (3) "bi-linear model" (linear change of refractions with eccentricity from the fovea to the periphery), and (4) "box model" ("flat" central area with a linear change in refraction from a certain peripheral angle). Based on the minimal residuals of each fit, the subjects were classified into one of the four models. The "box model" accurately described the peripheral refractions in about 50% of the subjects. Peripheral refractions in six subjects were better characterized by a "linear model," in eight subjects by a "flat model," and in eight by the "parabolic model." Even after assignment to one of the models, the variability remained strikingly large, ranging from -0.75 to 6 diopter in the temporal retina at 45° eccentricity. The most common peripheral refraction profile (observed in nearly 50% of our population) was best described by the "box model." The high variability among subjects may limit attempts to reduce myopia progression with a uniform lens design and may rather call for a customized approach.
Economics of a nest-box program for the conservation of an endangered species: a reappraisal
Daniel A. Spring; Michael Bevers; John O.S. Kennedy; Dan Harley
2001-01-01
An optimization model is developed to identify timing and placement strategies for the installation of nest boxes and the harvesting of timber to meet joint timberâwildlife objectives. Optimal management regimes are determined on the basis of their impacts on the local abundance of a threatened species and net present value (NPV) and are identified for a range of NPV...
Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.
2007-01-01
The SMK box is a conserved riboswitch motif found in the 5′ untranslated region of metK genes [encoding S-adenosylmethionine (SAM) synthetase] in lactic acid bacteria, including Enterococcus, Streptococcus, and Lactococcus sp. Previous studies showed that this RNA element binds SAM in vitro, and SAM binding causes a structural rearrangement that sequesters the Shine–Dalgarno (SD) sequence by pairing with an anti-SD (ASD) element. A model was proposed in which SAM binding inhibits metK translation by preventing binding of the ribosome to the SD region of the mRNA. In the current work, the addition of SAM was shown to inhibit binding of 30S ribosomal subunits to SMK box RNA; in contrast, the addition of S-adenosylhomocysteine (SAH) had no effect. A mutant RNA, which has a disrupted SD-ASD pairing, was defective in SAM binding and showed no reduction of ribosome binding in the presence of SAM, whereas a compensatory mutation that restored SD-ASD pairing restored the response to SAM. Primer extension inhibition assays provided further evidence for SD-ASD pairing in the presence of SAM. These results strongly support the model that SMK box translational repression operates through occlusion of the ribosome binding site and that SAM binding requires the SD-ASD pairing. PMID:17360376
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
Song, Ji Hyun; Kim, Ji Yeon; Piao, Chunxian; Lee, Seonyeong; Kim, Bora; Song, Su Jeong; Choi, Joon Sig; Lee, Minhyung
2016-07-28
In this study, the efficacy of the high-mobility group box-1 box A (HMGB1A)/heparin complex was evaluated for the treatment of acute lung injury (ALI). HMGB1A is an antagonist against wild-type high-mobility group box-1 (wtHMGB1), a pro-inflammatory cytokine that is involved in ALIs. HMGB1A has positive charges and can be captured in the mucus layer after intratracheal administration. To enhance the delivery and therapeutic efficiency of HMGB1A, the HMGB1A/heparin complex was produced using electrostatic interactions, with the expectation that the nano-sized complex with a negative surface charge could efficiently penetrate the mucus layer. Additionally, heparin itself had an anti-inflammatory effect. Complex formation with HMGB1A and heparin was confirmed by atomic force microscopy. The particle size and surface charge of the HMGB1A/heparin complex at a 1:1 weight ratio were 113nm and -25mV, respectively. Intratracheal administration of the complex was performed into an ALI animal model. The results showed that the HMGB1A/heparin complex reduced pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, more effectively than HMGB1A or heparin alone. Hematoxylin and eosin staining confirmed the decreased inflammatory reaction in the lungs after delivery of the HMGB1A/heparin complex. In conclusion, the HMGB1A/heparin complex might be useful to treat ALI. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrologic and hydraulic flood forecasting constrained by remote sensing data
NASA Astrophysics Data System (ADS)
Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.
2017-12-01
Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.
NASA Astrophysics Data System (ADS)
Burrage, Clare; Sakstein, Jeremy
2018-03-01
Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.
Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.
Giedt, Joel; Thomas, Anthony W; Young, Ross D
2009-11-13
Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.
NASA Technical Reports Server (NTRS)
Abercromby, Kira J.; Rapp, Jason; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan
2013-01-01
Constrained Linear Least Squares model is generally more accurate than the "human-in-the-loop". However, "human-in-the-loop" can remove materials that make no sense. The speed of the model in determining a "first cut" at the material ID makes it a viable option for spectral unmixing of debris objects.
NASA Astrophysics Data System (ADS)
Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven
2017-04-01
Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.
Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model
NASA Astrophysics Data System (ADS)
Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha
2018-04-01
The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.
Wu, Sheng; Jin, Qibing; Zhang, Ridong; Zhang, Junfeng; Gao, Furong
2017-07-01
In this paper, an improved constrained tracking control design is proposed for batch processes under uncertainties. A new process model that facilitates process state and tracking error augmentation with further additional tuning is first proposed. Then a subsequent controller design is formulated using robust stable constrained MPC optimization. Unlike conventional robust model predictive control (MPC), the proposed method enables the controller design to bear more degrees of tuning so that improved tracking control can be acquired, which is very important since uncertainties exist inevitably in practice and cause model/plant mismatches. An injection molding process is introduced to illustrate the effectiveness of the proposed MPC approach in comparison with conventional robust MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Light directs zebrafish period2 expression via conserved D and E boxes.
Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S
2009-10-01
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.
A fast and flexible MRI system for the study of dynamic vocal tract shaping.
Lingala, Sajan Goud; Zhu, Yinghua; Kim, Yoon-Chul; Toutios, Asterios; Narayanan, Shrikanth; Nayak, Krishna S
2017-01-01
The aim of this work was to develop and evaluate an MRI-based system for study of dynamic vocal tract shaping during speech production, which provides high spatial and temporal resolution. The proposed system utilizes (a) custom eight-channel upper airway coils that have high sensitivity to upper airway regions of interest, (b) two-dimensional golden angle spiral gradient echo acquisition, (c) on-the-fly view-sharing reconstruction, and (d) off-line temporal finite difference constrained reconstruction. The system also provides simultaneous noise-cancelled and temporally aligned audio. The system is evaluated in 3 healthy volunteers, and 1 tongue cancer patient, with a broad range of speech tasks. We report spatiotemporal resolutions of 2.4 × 2.4 mm 2 every 12 ms for single-slice imaging, and 2.4 × 2.4 mm 2 every 36 ms for three-slice imaging, which reflects roughly 7-fold acceleration over Nyquist sampling. This system demonstrates improved temporal fidelity in capturing rapid vocal tract shaping for tasks, such as producing consonant clusters in speech, and beat-boxing sounds. Novel acoustic-articulatory analysis was also demonstrated. A synergistic combination of custom coils, spiral acquisitions, and constrained reconstruction enables visualization of rapid speech with high spatiotemporal resolution in multiple planes. Magn Reson Med 77:112-125, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Moorkamp, M.; Fishwick, S.; Jones, A. G.
2015-12-01
Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.
Kim, Taegu; Hong, Jungsik; Kang, Pilsung
2017-01-01
Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered.
Kim, Taegu; Hong, Jungsik
2017-01-01
Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social network services (SNS) are used to gauge the atmosphere spread by WOM. Among these candidate variables, only significant variables are selected by genetic algorithm (GA), based on which machine learning algorithms are trained to build forecasting models. The forecasts are combined to improve forecasting performance. Experimental results on the Korean film market show that the forecasting accuracy in early screening periods can be significantly improved by considering competition. In addition, WOM has a stronger influence on total box office forecasting. Considering both competition and WOM improves forecasting performance to a larger extent than when only one of them is considered. PMID:28819355
Aerostructural Level Set Topology Optimization for a Common Research Model Wing
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2014-01-01
The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.
Periodic Forced Response of Structures Having Three-Dimensional Frictional Constraints
NASA Astrophysics Data System (ADS)
CHEN, J. J.; YANG, B. D.; MENQ, C. H.
2000-01-01
Many mechanical systems have moving components that are mutually constrained through frictional contacts. When subjected to cyclic excitations, a contact interface may undergo constant changes among sticks, slips and separations, which leads to very complex contact kinematics. In this paper, a 3-D friction contact model is employed to predict the periodic forced response of structures having 3-D frictional constraints. Analytical criteria based on this friction contact model are used to determine the transitions among sticks, slips and separations of the friction contact, and subsequently the constrained force which consists of the induced stick-slip friction force on the contact plane and the contact normal load. The resulting constrained force is often a periodic function and can be considered as a feedback force that influences the response of the constrained structures. By using the Multi-Harmonic Balance Method along with Fast Fourier Transform, the constrained force can be integrated with the receptance of the structures so as to calculate the forced response of the constrained structures. It results in a set of non-linear algebraic equations that can be solved iteratively to yield the relative motion as well as the constrained force at the friction contact. This method is used to predict the periodic response of a frictionally constrained 3-d.o.f. oscillator. The predicted results are compared with those of the direct time integration method so as to validate the proposed method. In addition, the effect of super-harmonic components on the resonant response and jump phenomenon is examined.
NASA Astrophysics Data System (ADS)
Pan, M.; Wood, E. F.
2004-05-01
This study explores a method to estimate various components of the water cycle (ET, runoff, land storage, etc.) based on a number of different info sources, including both observations and observation-enhanced model simulations. Different from existing data assimilations, this constrained Kalman filtering approach keeps the water budget perfectly closed while updating the states of the underlying model (VIC model) optimally using observations. Assimilating different data sources in this way has several advantages: (1) physical model is included to make estimation time series smooth, missing-free, and more physically consistent; (2) uncertainties in the model and observations are properly addressed; (3) model is constrained by observation thus to reduce model biases; (4) balance of water is always preserved along the assimilation. Experiments are carried out in Southern Great Plain region where necessary observations have been collected. This method may also be implemented in other applications with physical constraints (e.g. energy cycles) and at different scales.
Guenole, Nigel
2018-01-01
The test for item level cluster bias examines the improvement in model fit that results from freeing an item's between level residual variance from a baseline model with equal within and between level factor loadings and between level residual variances fixed at zero. A potential problem is that this approach may include a misspecified unrestricted model if any non-invariance is present, but the log-likelihood difference test requires that the unrestricted model is correctly specified. A free baseline approach where the unrestricted model includes only the restrictions needed for model identification should lead to better decision accuracy, but no studies have examined this yet. We ran a Monte Carlo study to investigate this issue. When the referent item is unbiased, compared to the free baseline approach, the constrained baseline approach led to similar true positive (power) rates but much higher false positive (Type I error) rates. The free baseline approach should be preferred when the referent indicator is unbiased. When the referent assumption is violated, the false positive rate was unacceptably high for both free and constrained baseline approaches, and the true positive rate was poor regardless of whether the free or constrained baseline approach was used. Neither the free or constrained baseline approach can be recommended when the referent indicator is biased. We recommend paying close attention to ensuring the referent indicator is unbiased in tests of cluster bias. All Mplus input and output files, R, and short Python scripts used to execute this simulation study are uploaded to an open access repository.
Guenole, Nigel
2018-01-01
The test for item level cluster bias examines the improvement in model fit that results from freeing an item's between level residual variance from a baseline model with equal within and between level factor loadings and between level residual variances fixed at zero. A potential problem is that this approach may include a misspecified unrestricted model if any non-invariance is present, but the log-likelihood difference test requires that the unrestricted model is correctly specified. A free baseline approach where the unrestricted model includes only the restrictions needed for model identification should lead to better decision accuracy, but no studies have examined this yet. We ran a Monte Carlo study to investigate this issue. When the referent item is unbiased, compared to the free baseline approach, the constrained baseline approach led to similar true positive (power) rates but much higher false positive (Type I error) rates. The free baseline approach should be preferred when the referent indicator is unbiased. When the referent assumption is violated, the false positive rate was unacceptably high for both free and constrained baseline approaches, and the true positive rate was poor regardless of whether the free or constrained baseline approach was used. Neither the free or constrained baseline approach can be recommended when the referent indicator is biased. We recommend paying close attention to ensuring the referent indicator is unbiased in tests of cluster bias. All Mplus input and output files, R, and short Python scripts used to execute this simulation study are uploaded to an open access repository. PMID:29551985
Optimal observation network design for conceptual model discrimination and uncertainty reduction
NASA Astrophysics Data System (ADS)
Pham, Hai V.; Tsai, Frank T.-C.
2016-02-01
This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.
The beta Pictoris circumstellar disk. XXIV. Clues to the origin of the stable gas
NASA Astrophysics Data System (ADS)
Lagrange, A.-M.; Beust, H.; Mouillet, D.; Deleuil, M.; Feldman, P. D.; Ferlet, R.; Hobbs, L.; Lecavelier Des Etangs, A.; Lissauer, J. J.; McGrath, M. A.; McPhate, J. B.; Spyromilio, J.; Tobin, W.; Vidal-Madjar, A.
1998-02-01
GHRS high resolution spectra of {beta \\:Pictoris} were obtained to study the stable gas around this star. Several elements are detected and their abundances measured. Upper limits to the abundances of others are also measured. The data permit improved chemical analysis of the stable gas around {beta \\:Pictoris}, and yield new and more accurate estimates of the radiation pressure acting on various elements. We first analyze the data in the framework of a closed-box model. The electron density is evaluated (Neion {S}imeq10(6) cm(-3) ), which in turn implies constraints on the ionization stages of the various elements. The refractory elements in the stable gas have then standard abundances. In contrast, in this model, the lighter elements sulfur and carbon, observed in their neutral form, seem to be depleted. However several arguments, especially the strong radiation pressure, argue against a closed-box hypothesis. We therefore develop hydrodynamical simulations, taking into account the radiation pressure, to reproduce the stable features under three different hypotheses for the origin of the stable gas: stellar ejection, comet evaporation and grain evaporation. They show that a permanent production of gas is needed in order to sustain a stable absorption. In order to reproduce the observed zero velocity of the absorption features a mechanism is also needed to slow down the radial flow of matter. We show that this could be achieved by a colliding ring of neutral hydrogen farther than 0.5AU from the star. Applied to the Fe Ii\\ lines, the simulations constrain the temperature (Tion {S}imeq1500-2000K) and the velocity dispersion (ion {S}imeq2kms(-1) ) in the gaseous medium. When applied to Ca Ii\\ and to other UV lines, they test the chemical composition of the parent source of gas, which is found to have standard abundances in refractory elements. The gas production rate is ion {S}imeq 10(-16}M_{sun) yr(-1) . This description is the first consistent explanation for these long-lived stable absorptions observed for a large number of lines arising from a variety of energy levels in different chemical elements. It raises the question of the origin of the parent material, together with its composition and dynamics. This realizes a link between this gaseous component and the whole circumstellar system. Based on observations collected with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J. A.; Dubé, W. P.; Geiger, F.; Gilman, J. B.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-03-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snowcovered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests of our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the explicit Master Chemical Mechanism (MCM) V3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited. Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average. Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
NASA Astrophysics Data System (ADS)
Kapalova, N.; Haumen, A.
2018-05-01
This paper addresses to structures and properties of the cryptographic information protection algorithm model based on NPNs and constructed on an SP-network. The main task of the research is to increase the cryptostrength of the algorithm. In the paper, the transformation resulting in the improvement of the cryptographic strength of the algorithm is described in detail. The proposed model is based on an SP-network. The reasons for using the SP-network in this model are the conversion properties used in these networks. In the encryption process, transformations based on S-boxes and P-boxes are used. It is known that these transformations can withstand cryptanalysis. In addition, in the proposed model, transformations that satisfy the requirements of the "avalanche effect" are used. As a result of this work, a computer program that implements an encryption algorithm model based on the SP-network has been developed.
Interpreting Black-Box Classifiers Using Instance-Level Visual Explanations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamagnini, Paolo; Krause, Josua W.; Dasgupta, Aritra
2017-05-14
To realize the full potential of machine learning in diverse real- world domains, it is necessary for model predictions to be readily interpretable and actionable for the human in the loop. Analysts, who are the users but not the developers of machine learning models, often do not trust a model because of the lack of transparency in associating predictions with the underlying data space. To address this problem, we propose Rivelo, a visual analytic interface that enables analysts to understand the causes behind predictions of binary classifiers by interactively exploring a set of instance-level explanations. These explanations are model-agnostic, treatingmore » a model as a black box, and they help analysts in interactively probing the high-dimensional binary data space for detecting features relevant to predictions. We demonstrate the utility of the interface with a case study analyzing a random forest model on the sentiment of Yelp reviews about doctors.« less
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Constraints on Dark Energy from Baryon Acoustic Peak and Galaxy Cluster Gas Mass Measurements
NASA Astrophysics Data System (ADS)
Samushia, Lado; Ratra, Bharat
2009-10-01
We use baryon acoustic peak measurements by Eisenstein et al. and Percival et al., together with the Wilkinson Microwave Anisotropy Probe (WMAP) measurement of the apparent acoustic horizon angle, and galaxy cluster gas mass fraction measurements of Allen et al., to constrain a slowly rolling scalar field dark energy model, phiCDM, in which dark energy's energy density changes in time. We also compare our phiCDM results with those derived for two more common dark energy models: the time-independent cosmological constant model, ΛCDM, and the XCDM parameterization of dark energy's equation of state. For time-independent dark energy, the Percival et al. measurements effectively constrain spatial curvature and favor a close to the spatially flat model, mostly due to the WMAP cosmic microwave background prior used in the analysis. In a spatially flat model the Percival et al. data less effectively constrain time-varying dark energy. The joint baryon acoustic peak and galaxy cluster gas mass constraints on the phiCDM model are consistent with but tighter than those derived from other data. A time-independent cosmological constant in a spatially flat model provides a good fit to the joint data, while the α parameter in the inverse power-law potential phiCDM model is constrained to be less than about 4 at 3σ confidence level.
The Effect of Operating Temperature on Open, Multimegawatt Space Power Systems
1988-04-01
Chemical and Nuclear Engineering Department Albuquerque, NM 87131 Attn: M. El-Genk University of Wisconsin Fussion Technology Institute 1500...Space Power Systems: A Simplified Axial Flow Gas Turbine Model," 5th Symposium on Space Nuclear Power Systems, January 1988, Albuquerque, New Mexico... Nuclear Power Division 3315 Old Forest Road P.O. Box 10935 Lynchburg, VA 24506-0935 Attn: B. J. Short Battelle Pacific Northwest Lab. P. 0. BOX 999
ERIC Educational Resources Information Center
Huitema, Bradley E.; McKean, Joseph W.
2007-01-01
Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…
Blast Load Simulator Experiments for Computational Model Validation: Report 1
2016-08-01
involving the inclusion of non-responding box-type structures in a BLS simulated blast environment. The BLS is a highly tunable com- pressed-gas-driven...Blast Load Simulator (BLS) to evaluate its suitability for a future effort involving the inclusion of non-responding box-type structures located in...Recommendations Preliminary testing indicated that inclusion of the grill and diaphragm striker resulted in a decrease in peak pressure of about 12
Large-scale expensive black-box function optimization
NASA Astrophysics Data System (ADS)
Rashid, Kashif; Bailey, William; Couët, Benoît
2012-09-01
This paper presents the application of an adaptive radial basis function method to a computationally expensive black-box reservoir simulation model of many variables. An iterative proxy-based scheme is used to tune the control variables, distributed for finer control over a varying number of intervals covering the total simulation period, to maximize asset NPV. The method shows that large-scale simulation-based function optimization of several hundred variables is practical and effective.
F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function
Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique
2006-01-01
Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454
NASA Astrophysics Data System (ADS)
Clark, Abe; Behringer, Robert; Brandenburg, John
2009-11-01
This project characterizes crater formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing crater formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the crater is consistent with a predicted catenary shape (Brandenburg). The depth and width of the crater both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the crater depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the crater.
Critical Robotic Lunar Missions
NASA Astrophysics Data System (ADS)
Plescia, J. B.
2018-04-01
Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.
Universally Sloppy Parameter Sensitivities in Systems Biology Models
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-01-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a “sloppy” spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters. PMID:17922568
Universally sloppy parameter sensitivities in systems biology models.
Gutenkunst, Ryan N; Waterfall, Joshua J; Casey, Fergal P; Brown, Kevin S; Myers, Christopher R; Sethna, James P
2007-10-01
Quantitative computational models play an increasingly important role in modern biology. Such models typically involve many free parameters, and assigning their values is often a substantial obstacle to model development. Directly measuring in vivo biochemical parameters is difficult, and collectively fitting them to other experimental data often yields large parameter uncertainties. Nevertheless, in earlier work we showed in a growth-factor-signaling model that collective fitting could yield well-constrained predictions, even when it left individual parameters very poorly constrained. We also showed that the model had a "sloppy" spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed over many decades. Here we use a collection of models from the literature to test whether such sloppy spectra are common in systems biology. Strikingly, we find that every model we examine has a sloppy spectrum of sensitivities. We also test several consequences of this sloppiness for building predictive models. In particular, sloppiness suggests that collective fits to even large amounts of ideal time-series data will often leave many parameters poorly constrained. Tests over our model collection are consistent with this suggestion. This difficulty with collective fits may seem to argue for direct parameter measurements, but sloppiness also implies that such measurements must be formidably precise and complete to usefully constrain many model predictions. We confirm this implication in our growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra are universal in systems biology models. The prevalence of sloppiness highlights the power of collective fits and suggests that modelers should focus on predictions rather than on parameters.
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo.
Gresock, Michael G; Postle, Kathleen
2017-05-15
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivo IMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo , including two neighboring residues that may explain how FepA signals to TonB that ligand has bound. Copyright © 2017 American Society for Microbiology.
A log-sinh transformation for data normalization and variance stabilization
NASA Astrophysics Data System (ADS)
Wang, Q. J.; Shrestha, D. L.; Robertson, D. E.; Pokhrel, P.
2012-05-01
When quantifying model prediction uncertainty, it is statistically convenient to represent model errors that are normally distributed with a constant variance. The Box-Cox transformation is the most widely used technique to normalize data and stabilize variance, but it is not without limitations. In this paper, a log-sinh transformation is derived based on a pattern of errors commonly seen in hydrological model predictions. It is suited to applications where prediction variables are positively skewed and the spread of errors is seen to first increase rapidly, then slowly, and eventually approach a constant as the prediction variable becomes greater. The log-sinh transformation is applied in two case studies, and the results are compared with one- and two-parameter Box-Cox transformations.
Ou, Guoliang; Tan, Shukui; Zhou, Min; Lu, Shasha; Tao, Yinghui; Zhang, Zuo; Zhang, Lu; Yan, Danping; Guan, Xingliang; Wu, Gang
2017-12-15
An interval chance-constrained fuzzy land-use allocation (ICCF-LUA) model is proposed in this study to support solving land resource management problem associated with various environmental and ecological constraints at a watershed level. The ICCF-LUA model is based on the ICCF (interval chance-constrained fuzzy) model which is coupled with interval mathematical model, chance-constrained programming model and fuzzy linear programming model and can be used to deal with uncertainties expressed as intervals, probabilities and fuzzy sets. Therefore, the ICCF-LUA model can reflect the tradeoff between decision makers and land stakeholders, the tradeoff between the economical benefits and eco-environmental demands. The ICCF-LUA model has been applied to the land-use allocation of Wujiang watershed, Guizhou Province, China. The results indicate that under highly land suitable conditions, optimized area of cultivated land, forest land, grass land, construction land, water land, unused land and landfill in Wujiang watershed will be [5015, 5648] hm 2 , [7841, 7965] hm 2 , [1980, 2056] hm 2 , [914, 1423] hm 2 , [70, 90] hm 2 , [50, 70] hm 2 and [3.2, 4.3] hm 2 , the corresponding system economic benefit will be between 6831 and 7219 billion yuan. Consequently, the ICCF-LUA model can effectively support optimized land-use allocation problem in various complicated conditions which include uncertainties, risks, economic objective and eco-environmental constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wong, T. E.; Noone, D. C.; Kleiber, W.
2014-12-01
The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2014-01-01
This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.
Evaluation of incremental reactivity and its uncertainty in Southern California.
Martien, Philip T; Harley, Robert A; Milford, Jana B; Russell, Armistead G
2003-04-15
The incremental reactivity (IR) and relative incremental reactivity (RIR) of carbon monoxide and 30 individual volatile organic compounds (VOC) were estimated for the South Coast Air Basin using two photochemical air quality models: a 3-D, grid-based model and a vertically resolved trajectory model. Both models include an extended version of the SAPRC99 chemical mechanism. For the 3-D modeling, the decoupled direct method (DDM-3D) was used to assess reactivities. The trajectory model was applied to estimate uncertainties in reactivities due to uncertainties in chemical rate parameters, deposition parameters, and emission rates using Monte Carlo analysis with Latin hypercube sampling. For most VOC, RIRs were found to be consistent in rankings with those produced by Carter using a box model. However, 3-D simulations show that coastal regions, upwind of most of the emissions, have comparatively low IR but higher RIR than predicted by box models for C4-C5 alkenes and carbonyls that initiate the production of HOx radicals. Biogenic VOC emissions were found to have a lower RIR than predicted by box model estimates, because emissions of these VOC were mostly downwind of the areas of primary ozone production. Uncertainties in RIR of individual VOC were found to be dominated by uncertainties in the rate parameters of their primary oxidation reactions. The coefficient of variation (COV) of most RIR values ranged from 20% to 30%, whereas the COV of absolute incremental reactivity ranged from about 30% to 40%. In general, uncertainty and variability both decreased when relative rather than absolute reactivity metrics were used.
Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform
NASA Astrophysics Data System (ADS)
Gato-Rivera, B.; Semikhatov, A. M.
1992-08-01
A direct relation between the conformal formalism for 2D quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the W ( l) -constrained KP hierarchy to the ( p‧, p‧) minimal model, with the tau function being given by the correlator of a product of (dressed) ( l, 1) [or (1, l)] operators, provided the Miwa parameter ni and the free parameter (an abstract bc spin) present in the constraint are expressed through the ratio p‧/ p and the level l.
Filming Underwater in 3d Respecting Stereographic Rules
NASA Astrophysics Data System (ADS)
Rinaldi, R.; Hordosch, H.
2015-04-01
After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie's box offices due to the overall quality of its products. Special environments such as space ("Gravity") and the underwater realm look perfect to be reproduced in 3D. "Filming in space" was possible in "Gravity" using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.
Age-class differences in the pattern of hibernation in yellow-bellied marmots, Marmota flaviventris.
French, A R
1990-01-01
Age-related differences in the patterns of body temperature regulation during hibernation were found in yellow-bellied marmots. The timing of all entrances into and arousals from torpor was determined from continuous records of thermocouples mounted in each animal's nest box. Older marmots spent more time at high body temperatures following periodic arousals from torpor than did juveniles undergoing their first season of hibernation. In addition, older marmots spontaneously terminated their hibernation seasons in the spring, whereas most juveniles continued to hibernate until either they were emaciated from starvation or they were fed. These two patterns of hibernation reflect age- and size-related differences in the degree to which the animals are constrained energetically and the probability that they can successfully reproduce in spring. The patterns also are consistent with age-related differences in the timing of dormancy in nature.
First results from a combined analysis of CERN computing infrastructure metrics
NASA Astrophysics Data System (ADS)
Duellmann, Dirk; Nieke, Christian
2017-10-01
The IT Analysis Working Group (AWG) has been formed at CERN across individual computing units and the experiments to attempt a cross cutting analysis of computing infrastructure and application metrics. In this presentation we will describe the first results obtained using medium/long term data (1 months — 1 year) correlating box level metrics, job level metrics from LSF and HTCondor, IO metrics from the physics analysis disk pools (EOS) and networking and application level metrics from the experiment dashboards. We will cover in particular the measurement of hardware performance and prediction of job duration, the latency sensitivity of different job types and a search for bottlenecks with the production job mix in the current infrastructure. The presentation will conclude with the proposal of a small set of metrics to simplify drawing conclusions also in the more constrained environment of public cloud deployments.
NASA Astrophysics Data System (ADS)
Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.
2017-12-01
The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Nielsen, J. Eric
2011-01-01
Attribution of observed atmospheric carbon concentrations to emissions on the country, state or city level is often inferred using "inversion" techniques. Such computations are often performed using advanced mathematical techniques, such as synthesis inversion or four-dimensional variational analysis, that invoke tracing observed atmospheric concentrations backwards through a transport model to a source region. It is, to date, not well understood how well such techniques can represent fine spatial (and temporal) structure in the inverted flux fields. This question is addressed using forward-model computations with idealized tracers emitted at the surface in a large number of grid boxes over selected regions and examining how distinctly these emitted tracers can be detected downstream. Initial results show that tracers emitted in half-degree grid boxes over a large region of the Eastern USA cannot be distinguished from each other, even at short distances over the Atlantic Ocean, when they are emitted in grid boxes separated by less than five degrees of latitude - especially when only total-column observations are available. A large number of forward model simulations, with varying meteorological conditions, are used to assess how distinctly three types observations (total column, upper tropospheric column, and surface mixing ratio) can separate emissions from different sources. Inferences inverse modeling and source attribution will be drawn.
NASA Astrophysics Data System (ADS)
Quan, Lulin; Yang, Zhixin
2010-05-01
To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.
Optimization of extraction of chitin from procambarus clarkia shell by Box-Behnken design
NASA Astrophysics Data System (ADS)
Dong, Fang; Qiu, Hailong; Jia, Shaoqian; Dai, Cuiping; Kong, Qingxin; Xu, Changliang
2018-06-01
This paper investigated the optimizing extraction processing of chitin from procambarus clarkia shell by Box-Behnken design. Firstly, four independent variables were explored in single factor experiments, namely, concentration of hydrochloric acid, soaking time, concentration of sodium hydroxide and reaction time. Then, based on the results of the above experiments, four factors and three levels experiments were planned by Box-Behnken design. According to the experimental results, we harvested a second-order polynomial equation using multiple regression analysis. In addition, the optimum extraction process of chitin of the model was obtained: concentration of HCl solution 1.54mol/L, soaking time 19.87h, concentration of NaOH solution 2.9mol/L and reaction time 3.54h. For proving the accuracy of the model, we finished the verification experiment under the following conditions: concentration of hydrochloric acid 1.5mol/L, soaking time 20h, concentration of sodium hydroxide 3mol/L and reaction time 3.5h. The actual yield of chitin reached 18.76%, which was very close to the predicted yield (18.66%) of the model. The result indicated that the optimum extraction processing of chitin was feasible and practical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A.; Gruszczynski, M.; Malkowski, K.
1991-05-01
The phenomena of (i) inverse correlation between the oceanic carbon and sulfur isotopic curves, and (ii) covariation between the oceanic carbon and oxygen isotopic curves at all their major excursions appear as paradoxes in the current paradigm of global biogeochemical cycles. These phenomena, however, are fully explicable by a model proposing that the ocean alternates between two general modes: stagnant, stratified, and net autotrophic (overfed) ocean, on the one hand, and vigorously mixed and net heterotrophic (hungry) ocean, on the other. This model is in fact strongly supported by the carbon isotopic evidence. The directions of change in the isotopicmore » ratios of carbon, oxygen, and sulfur should be different in the lower, anoxic box of a stratified ocean than in the upper, oxic box; whereas ocean destratification and mixing of the two boxes should lead to coeval shifts in the oceanic isotopic curves of these elements. The model has far-reaching implications for (i) the causal explanation of both secular trends and major shifts in the oceanic isotopic curves, and (ii) for the application of oxygen isotopic data for paleotemperature and paleoenvironment determinations.« less
A dynamic box model of bioactive elements in the southern Taiwan Strait
NASA Astrophysics Data System (ADS)
Hua-Sheng, Hong; Shao-Ling, Shang
1994-06-01
A dynamic box model was applied to study the characteristics of biogeochemical cycling of PO4-P, NO3-N, AOU, POC and PON in the southern Taiwan Strait region based on the field data of the “Minnan Taiwan Bank Fishing Ground Upwelling Ecosystem Study” during the period of Dec. 1987-Nov. 1988. According to the unique hydrological and topographical features of the region, six boxes and three layers were considered in the model. The variation rates and fluxes of elements induced by horizontal current, upwelling, by diffusion, sinking of particles and biogeochemical processes were estimated respectively. Results further confirmed that upwellings had important effects in this region. The nearshore upwelling areas had net input fluxes of nutrients brought by upwelling water, also had high depletion rates of nutrients and production rates of particulate organic matter and dissolved oxygen. The abnormal net production of nutrients in the middle layer, (10-30 m) indicated the important role of bacteria in this high production region. The phytoplankton POC contributed about 28% of the total POC. POC settling out from the euphotic zone was estimated to be 2×10-6 g/(m2·s) which was about 35% of the primary production.
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Zank, Gary P.
2013-01-01
We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).
A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans
NASA Astrophysics Data System (ADS)
Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.
2018-02-01
Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.
A Student Operated Animated Infrared Spectroscopy Teaching Model
ERIC Educational Resources Information Center
Hartman, Karel
1976-01-01
Describes a teaching model that consists of a plywood box containing mechanisms that instruct the student about the technical aspects of an infrared spectrophotometer and how a spectrum is generated. (MLH)
Small-kernel, constrained least-squares restoration of sampled image data
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Park, Stephen K.
1992-01-01
Following the work of Park (1989), who extended a derivation of the Wiener filter based on the incomplete discrete/discrete model to a more comprehensive end-to-end continuous/discrete/continuous model, it is shown that a derivation of the constrained least-squares (CLS) filter based on the discrete/discrete model can also be extended to this more comprehensive continuous/discrete/continuous model. This results in an improved CLS restoration filter, which can be efficiently implemented as a small-kernel convolution in the spatial domain.
Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, G. M.; Cantrell, Chris; Kim, S.
2014-05-13
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptvmore » and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.« less
NASA Astrophysics Data System (ADS)
Coburn, Sean; Wang, Siyuan; terSchure, Arnout; Evans, Matt; Volkamer, Rainer
2013-04-01
The Tropical Ocean tRoposphere Exchange experiment TORERO (Jan/Feb 2012) probed air-sea exchange of very short lived halogens and organic carbon species over the full tropospheric air column above the eastern tropical Pacific Ocean. It is well known that halogens influence the oxidative capacity in the marine boundary layer, but their distribution and abundance is less clear in the tropical free troposphere, where most of tropospheric ozone mass resides, and about 80% of the global methane destruction occurs. The oxidation of elemental mercury (GEM) by halogens (i.e., bromine) further forms gaseous oxidized mercury (GOM), and this oxidation is accelerated at the low temperatures in the free troposphere compared to the boundary layer. Free tropospheric halogen radical abundances are thus of particular importance to understand the entry pathways for GOM deposition from the free troposphere to ecosystem, and the subsequent bio-accumulation of this neurotoxin. This presentation summarizes new observational evidence for halogen vertical distributions over the full tropospheric air column, and their abundance in the tropical troposphere, at mid-latitudes in the Northern and Southern hemisphere. BrO and IO were measured simultaneously by the CU Airborne MAX-DOAS instrument, and organic halogen precursors were measured by online GC-MS (TOGA) during 22 research flights aboard the NSF/NCAR GV aircraft. We employ atmospheric box modeling constrained by observations of gas-phase hydrocarbons, aerosols, photolysis frequencies, and meterological parameters measured aboard the plane to test the observed BrO and IO abundances, and evaluate the rate of GEM oxidation in light of recent updates about the stability of the Hg-Br adduct, and it's fate (Goodsite et al., 2012; Dibble et al., 2012). Finally, we compare our measurements with output from the GEOS-Chem model for selected case studies.
Missing Peroxy Radical Sources Within a Rural Forest Canopy
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.;
2013-01-01
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.
Park, Hyun Jung; Costa, Robert H.; Lau, Lester F.; Tyner, Angela L.; Raychaudhuri, Pradip
2008-01-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G1 phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G1 phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G1 phase and that its proteolysis is important for regulated entry into S phase. PMID:18573889
Park, Hyun Jung; Costa, Robert H; Lau, Lester F; Tyner, Angela L; Raychaudhuri, Pradip
2008-09-01
The forkhead box M1 (FoxM1) transcription factor is overexpressed in many cancers, and in mouse models it is required for tumor progression. FoxM1 activates expression of the cell cycle genes required for both S and M phase progression. Here we demonstrate that FoxM1 is degraded in late mitosis and early G(1) phase by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. FoxM1 interacts with the APC/C complex and its adaptor, Cdh1. Expression of Cdh1 stimulated degradation of the FoxM1 protein, and depletion of Cdh1 resulted in stabilization of the FoxM1 protein in late mitosis and in early G(1) phase of the cell cycle. Cdh1 has been implicated in regulating S phase entry. We show that codepletion of FoxM1 inhibits early S phase entry observed in Cdh1-depleted cells. The N-terminal region of FoxM1 contains both destruction box (D box) and KEN box sequences that are required for targeting by Cdh1. Mutation of either the D box sequence or the KEN box sequence stabilized FoxM1 and blocked Cdh1-induced proteolysis. Cells expressing a nondegradable form of FoxM1 entered S phase rapidly following release from M phase arrest. Together, our observations show that FoxM1 is one of the targets of Cdh1 in late M or early G(1) phase and that its proteolysis is important for regulated entry into S phase.
Injury risk in professional boxing.
Bledsoe, Gregory H; Li, Guohu; Levy, Fred
2005-10-01
Although a popular endeavor, boxing has fallen under increased scrutiny because of its association with traumatic brain injury. However, few studies have investigated the overall epidemiology of boxing injuries from representative samples, and no study has ever documented the incidence of injuries in female boxers. This study is a review of professional boxing data from the state of Nevada from September 2001 through March 2003. Medical and outcome data for all professional boxing matches occurring in Nevada between September 2001 and March 2003 (n = 524 matches) were analyzed on the basis of a pair-matched, case-control design. Cases were boxers who received an injury during the boxing matches. Boxers who were not injured served as control subjects. Both conditional and unconditional logistic regression models were used to assess risk factors for injury. The overall incidence rate of injury was 17.1 per 100 boxer-matches, or 3.4 per 100 boxer-rounds. Facial laceration accounted for 51% of all injuries, followed by hand injury (17%), eye injury (14%), and nose injury (5%). Male boxers were significantly more likely than female boxers to receive injuries (3.6 versus 1.2 per 100 boxer-rounds, P = 0.01). Male boxing matches also ended in knockouts and technical knockouts more often than did female matches (P < 0.001). The risk of injury for those who lost the matches was nearly twice the risk for the winners. Those who lost by knockout had double the risk of injury compared with those who lost by other means. Neither age nor weight was significantly associated with the risk of injury. The injury rate in professional boxing matches is high, particularly among male boxers. Superficial facial lacerations are the most common injury reported. Male boxers have a higher rate of knockout and technical knockouts than female boxers. Further research is necessary to determine the outcomes of injury, particularly the long-term neurologic outcome differences between sexes.
Identification of different geologic units using fuzzy constrained resistivity tomography
NASA Astrophysics Data System (ADS)
Singh, Anand; Sharma, S. P.
2018-01-01
Different geophysical inversion strategies are utilized as a component of an interpretation process that tries to separate geologic units based on the resistivity distribution. In the present study, we present the results of separating different geologic units using fuzzy constrained resistivity tomography. This was accomplished using fuzzy c means, a clustering procedure to improve the 2D resistivity image and geologic separation within the iterative minimization through inversion. First, we developed a Matlab-based inversion technique to obtain a reliable resistivity image using different geophysical data sets (electrical resistivity and electromagnetic data). Following this, the recovered resistivity model was converted into a fuzzy constrained resistivity model by assigning the highest probability value of each model cell to the cluster utilizing fuzzy c means clustering procedure during the iterative process. The efficacy of the algorithm is demonstrated using three synthetic plane wave electromagnetic data sets and one electrical resistivity field dataset. The presented approach shows improvement on the conventional inversion approach to differentiate between different geologic units if the correct number of geologic units will be identified. Further, fuzzy constrained resistivity tomography was performed to examine the augmentation of uranium mineralization in the Beldih open cast mine as a case study. We also compared geologic units identified by fuzzy constrained resistivity tomography with geologic units interpreted from the borehole information.
How well can future CMB missions constrain cosmic inflation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe, E-mail: jmartin@iap.fr, E-mail: christophe.ringeval@uclouvain.be, E-mail: vennin@iap.fr
2014-10-01
We study how the next generation of Cosmic Microwave Background (CMB) measurement missions (such as EPIC, LiteBIRD, PRISM and COrE) will be able to constrain the inflationary landscape in the hardest to disambiguate situation in which inflation is simply described by single-field slow-roll scenarios. Considering the proposed PRISM and LiteBIRD satellite designs, we simulate mock data corresponding to five different fiducial models having values of the tensor-to-scalar ratio ranging from 10{sup -1} down to 10{sup -7}. We then compute the Bayesian evidences and complexities of all Encyclopædia Inflationaris models in order to assess the constraining power of PRISM alone andmore » LiteBIRD complemented with the Planck 2013 data. Within slow-roll inflation, both designs have comparable constraining power and can rule out about three quarters of the inflationary scenarios, compared to one third for Planck 2013 data alone. However, we also show that PRISM can constrain the scalar running and has the capability to detect a violation of slow roll at second order. Finally, our results suggest that describing an inflationary model by its potential shape only, without specifying a reheating temperature, will no longer be possible given the accuracy level reached by the future CMB missions.« less
Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham
2015-01-01
TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.
NASA Astrophysics Data System (ADS)
Tadini, Alessandro; Neri, Augusto; Cioni, Raffaello; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Gurioli, Lucia
2017-04-01
The purpose of this work is to present a validation procedure for a physical and numerical model of Pyroclastic Density Currents (PDC) using feedbacks from well-known deposits emplaced by specific single eruptive units. The study is specifically focused on the PDCs generated during the overall famous AD 79 eruption of the Somma-Vesuvio volcano. To this purpose, values of the maximum runout, volumes and Total Grain Size Distributions have been estimated for two eruptive units (i.e. EU3pf and EU4; Cioni et al. 2000) of the AD 79 eruption. These units have been used to define the input volcanological parameters for testing the Box-Model of Dade and Huppert (1995), when reproducing one specific end-member of the complex spectrum of PDCs, that is the more dilute, turbulent part of the PDCs reconstructed in the Somma-Vesuvio record (stratified flows with concentration of solid particles in volume up to about 5%). The Box-Model is a kinematic approach, which calculates the flow density and velocity along time and the kinetic energy of the flow front. This can be compared with the potential energy needed to overcome topographic obstacles to estimate flow invasion across complex topographies. Validation of the model has been performed with respect to: i) the degree of overlapping between inundation areas given by the model and by field data; ii) the thickness of the deposit versus the thickness of the model output with distance; iii) the mass fractions of the different grain size classes with distance in the real deposit versus the model output. Several simulations have been performed considering i) polydisperse (with 10 grain size classes) and monodisperse (with the Mdφ values) systems; ii) a direct version (where the initial volume is released and the invasion area is computed) and an inverse version (where the initial collapsing volume is a function of an inundation area defined by the user); iii) axisymmetrical and asymmetrical collapses. Results allow to obtain first order estimates of the main variables characterizing the flow source and emplacement; among the two eruptive units chosen for model validation, the EU4 provided better results with only a minor empirical calibration of few parameters (i.e. settling velocity and initial volume fraction of solid particles), indicating that the Box Model can be suited to represent the kinematics of large (volume > 108 m^3, runout > 15 km) PDC at Somma-Vesuvio. Dade W. B., Huppert H. E. (1995) A box model for non-entraining, suspension-driven gravity surges on horizontal surfaces. Sedimentology 42 (3):453-470 Cioni R., Marianelli P., Santacroce R., Sbrana A. (2000). Plinian and subplinian eruptions. Encyclopedia of volcanoes. Academic, San Diego, 2000, 477-494.
Effects of numerical tolerance levels on an atmospheric chemistry model for mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, D.C.; Burns, D.S.; Shuford, J.
1996-12-31
A Box Model was developed to investigate the atmospheric oxidation processes of mercury in the environment. Previous results indicated the most important influences on the atmospheric concentration of HgO(g) are (i) the flux of HgO(g) volatilization, which is related to the surface medium, extent of contamination, and temperature, and (ii) the presence of Cl{sub 2} in the atmosphere. The numerical solver which has been incorporated into the ORganic CHemistry Integrated Dispersion (ORCHID) model uses the Livermore Solver of Ordinary Differential Equations (LSODE). In the solution of the ODE`s, LSODE uses numerical tolerances. The tolerances effect computer run time, the relativemore » accuracy of ODE calculated species concentrations and whether or not LSODE converges to a solution using this system of equations. The effects of varying these tolerances on the solution of the box model and the ORCHID model will be discussed.« less
Can Condensing Organic Aerosols Lead to Less Cloud Particles?
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S.
2017-12-01
We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.
Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.
2004-01-01
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.
Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Agnew, Michael J; Kamalzadeh, Amin
2009-04-01
The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement [image omitted] was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions.
Nuclear spin noise in the central spin model
NASA Astrophysics Data System (ADS)
Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail
2018-05-01
We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jie; Kim, Donghun; Braun, James E.
It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less
Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill
NASA Astrophysics Data System (ADS)
Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis
2011-10-01
In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.
NASA Astrophysics Data System (ADS)
Li, Duo; Liu, Yajing
2017-04-01
Along-strike segmentation of slow-slip events (SSEs) and nonvolcanic tremors in Cascadia may reflect heterogeneities of the subducting slab or overlying continental lithosphere. However, the nature behind this segmentation is not fully understood. We develop a 3-D model for episodic SSEs in northern and central Cascadia, incorporating both seismological and gravitational observations to constrain the heterogeneities in the megathrust fault properties. The 6 year automatically detected tremors are used to constrain the rate-state friction parameters. The effective normal stress at SSE depths is constrained by along-margin free-air and Bouguer gravity anomalies. The along-strike variation in the long-term plate convergence rate is also taken into consideration. Simulation results show five segments of ˜Mw6.0 SSEs spontaneously appear along the strike, correlated to the distribution of tremor epicenters. Modeled SSE recurrence intervals are equally comparable to GPS observations using both types of gravity anomaly constraints. However, the model constrained by free-air anomaly does a better job in reproducing the cumulative slip as well as more consistent surface displacements with GPS observations. The modeled along-strike segmentation represents the averaged slip release over many SSE cycles, rather than permanent barriers. Individual slow-slip events can still propagate across the boundaries, which may cause interactions between adjacent SSEs, as observed in time-dependent GPS inversions. In addition, the moment-duration scaling is sensitive to the selection of velocity criteria for determining when SSEs occur. Hence, the detection ability of the current GPS network should be considered in the interpretation of slow earthquake source parameter scaling relations.
NASA Astrophysics Data System (ADS)
SUN, D.; TONG, L.
2002-05-01
A detailed model for the beams with partially debonded active constraining damping (ACLD) treatment is presented. In this model, the transverse displacement of the constraining layer is considered to be non-identical to that of the host structure. In the perfect bonding region, the viscoelastic core is modelled to carry both peel and shear stresses, while in the debonding area, it is assumed that no peel and shear stresses be transferred between the host beam and the constraining layer. The adhesive layer between the piezoelectric sensor and the host beam is also considered in this model. In active control, the positive position feedback control is employed to control the first mode of the beam. Based on this model, the incompatibility of the transverse displacements of the active constraining layer and the host beam is investigated. The passive and active damping behaviors of the ACLD patch with different thicknesses, locations and lengths are examined. Moreover, the effects of debonding of the damping layer on both passive and active control are examined via a simulation example. The results show that the incompatibility of the transverse displacements is remarkable in the regions near the ends of the ACLD patch especially for the high order vibration modes. It is found that a thinner damping layer may lead to larger shear strain and consequently results in a larger passive and active damping. In addition to the thickness of the damping layer, its length and location are also key factors to the hybrid control. The numerical results unveil that edge debonding can lead to a reduction of both passive and active damping, and the hybrid damping may be more sensitive to the debonding of the damping layer than the passive damping.
A THREE-DIMENSIONAL MODEL ASSESSMENT OF THE GLOBAL DISTRIBUTION OF HEXACHLOROBENZENE
The distributions of persistent organic pollutants (POPs) in the global environment have been studied typically with box/fugacity models with simplified treatments of atmospheric transport processes1. Such models are incapable of simulating the complex three-dimensional mechanis...